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Overview

Fluid kinematics deals with the motion of 
fluids without considering the forces and 
moments which create the motion.
Items discussed in this Chapter. 

Material derivative and its relationship to 
Lagrangian and Eulerian descriptions of fluid 
flow.
Fundamental kinematic properties of fluid 
motion and deformation.
Reynolds Transport Theorem.
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Lagrangian Description

Lagrangian description of fluid flow tracks the 
position and velocity of individual particles.
Based upon Newton's laws of motion. 
Difficult to use for practical flow analysis.

Fluids are composed of billions of molecules.
Interaction between molecules hard to 
describe/model. 

However, useful for specialized applications
Sprays, particles, bubble dynamics, rarefied gases.
Coupled Eulerian-Lagrangian methods.

Named after Italian mathematician Joseph Louis 
Lagrange (1736-1813).
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Eulerian Description

Eulerian description of fluid flow: a flow domain or control volume
is defined by which fluid flows in and out.
We define field variables which are functions of space and time.

Pressure field, P = P(x,y,z,t)
Velocity field,

Acceleration field,

These (and other) field variables define the flow field.
Well suited for formulation of initial boundary-value problems 
(PDE's).
Named after Swiss mathematician Leonhard Euler (1707-1783).
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Example:  Coupled Eulerian-Lagrangian 
Method

Forensic analysis of Columbia accident:  simulation of 
shuttle debris trajectory using Eulerian CFD for flow field 
and Lagrangian method for the debris. 
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Acceleration Field

Consider a fluid particle and Newton's second law, 

The acceleration of the particle is the time derivative of 
the particle's velocity:

However, particle velocity at a point is the same as the 
fluid velocity,

To take the time derivative, chain rule must be used.

particle particle particleF m a=
r r

particle
particle

dV
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Acceleration Field

Since

In vector form, the acceleration can be written as

First term is called the local acceleration and is nonzero only for 
unsteady flows.
Second term is called the advective (or convective) acceleration
and accounts for the effect of the fluid particle moving to a new 
location in the flow, where the velocity is different (it can thus be 
nonzero even for steady flows).
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Material Derivative

The total derivative operator d/dt is call the material 
derivative and is often given special notation, D/Dt.

Advective acceleration is nonlinear:                           
source of many phenomena and primary              
challenge in solving fluid flow problems.
Provides “transformation”' between 
Lagrangian and Eulerian frames.
Other names for the material derivative include:           
total, particle, Lagrangian, Eulerian, and       
substantial derivative. 

( )DV dV V V V
Dt dt t

∂
= = + ∇

∂

r r r
r r r..
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Flow Visualization

Flow visualization is the visual examination of 
flow-field features.
Important for both physical experiments and 
numerical (CFD) solutions.
Numerous methods

Streamlines and streamtubes
Pathlines
Streaklines
Timelines
Refractive flow visualization techniques
Surface flow visualization techniques
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Streamlines and streamtubes
A streamline is a curve that is 
everywhere tangent to the 
instantaneous local velocity vector.
Consider an infinitesimal arc length 
along a streamline: 

By definition       must be parallel to 
the local velocity vector 

Geometric arguments result in the 
equation for a streamline

dr dxi dyj dzk= + +
rr rr

drr

V ui vj wk= + +
rr r r

dr dx dy dz
V u v w

= = =
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Streamlines and streamtubes
Airplane surface pressure contours, 
volume streamlines, and surface 
streamlines 

NASCAR surface pressure contours 
and streamlines
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Streamlines and streamtubes

A streamtube consists of a bundle of 
individual streamlines. Since fluid 
cannot cross a streamline (by 
definition), fluid within a streamtube
must remain there. Streamtubes are, 
obviously, instantaneous quantities 
and they may change significantly with 
time.

In the converging portion of an    
incompressible flow field, the
diameter of the streamtube must
decrease as the velocity  
increases, so as to conserve
mass.
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Pathlines

A pathline is the actual path 
traveled by an individual fluid 
particle over some time period.
Same as the fluid particle's 
material position vector 

Particle location at time t: 

Particle Image Velocimetry 
(PIV) is a modern experimental 
technique to measure velocity 
field over a plane in the flow 
field.

( ) ( ) ( )( ), ,particle particle particlex t y t z t
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Streaklines

A streakline is the locus 
of fluid particles that have 
passed sequentially 
through a prescribed 
point in the flow.

Easy to generate in 
experiments:  continuous 
introduction of dye (in a 
water flow) or smoke (in 
an airflow) from a point.
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Comparisons

If the flow is steady, streamlines, pathlines
and streaklines are identical.
For unsteady flows, they can be very
different. 

Streamlines provide an instantaneous   
picture of the flow field
Pathlines and streaklines are flow patterns 
that have a time history associated with them.
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Timelines

A timeline is a set of 
adjacent fluid particles 
that were marked at     
the same (earlier) instant  
in time.
Experimentally, timelines 
can be generated using a 
hydrogen bubble wire: a 
line is marked and its 
movement/deformation   
is followed in time.
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Plots of Data

A Profile plot indicates how the 
value of a scalar property varies 
along some desired direction in 
the flow field.
A Vector plot is an array of 
arrows indicating the magnitude 
and direction of a vector property 
at an instant in time.
A Contour plot shows curves of 
constant values of a scalar 
property (or magnitude for a vector 
property) at an instant in time.
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Kinematic Description

In fluid mechanics (as in solid 
mechanics), an element may 
undergo four fundamental types 
of motion. 
a) Translation
b) Rotation
c) Linear strain
d) Shear strain

Because fluids are in constant 
motion, motion and deformation 
is best described in terms of 
rates 
a) velocity: rate of translation
b) angular velocity: rate of rotation
c) linear strain rate: rate of linear 

strain
d) shear strain rate:  rate of shear 

strain
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Rate of Translation and Rotation

To be useful, these deformation rates must be expressed 
in terms of velocity and derivatives of velocity
The rate of translation vector is described 
mathematically as the velocity vector.  
In Cartesian coordinates:

Rate of rotation (angular velocity)                                    
at a point is defined as the average                           
rotation rate of two lines which are                                 
initially perpendicular and that                                
intersect at that point. 

V ui vj wk= + +
rr r r
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Rate of Rotation

In 2D the average rotation angle of the 
fluid element about the point  P is
 ω = (αa + αb)/2

The rate of rotation of the fluid element
about  P is 

1 1 1
2 2 2

w v u w v ui j k
y z z x x y

ω
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

rr rr

1 1
2 2

v u w v ui j k
z z x x y
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In 3D the angular velocity vector is:

α
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Linear Strain Rate

Linear Strain Rate is defined as the 
rate of increase in length per unit length.
In Cartesian coordinates

The rate of increase of volume of a fluid                       
element per unit volume is the volumetric                                        
strain rate, in Cartesian coordinates:

(we are talking about a material volume, hence the D)
Since the volume of a fluid element is constant for an     
incompressible flow, the volumetric strain rate must be zero.

, ,xx yy zz
u v w
x y z

ε ε ε∂ ∂ ∂
= = =

∂ ∂ ∂

1
xx yy zz

DV u v w
V Dt x y z

ε ε ε ∂ ∂ ∂
= + + = + +

∂ ∂ ∂
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Shear Strain Rate

Shear Strain Rate at a point is defined as half the 
rate of decrease of the angle between two initially 
perpendicular lines that intersect at a point.

positive shear strain

negative shear strain
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Shear Strain Rate

The shear strain at point P
is εxy = - _ __αa-b

Shear strain rate can be                           
expressed in Cartesian                            
coordinates as: 

1 1 1, ,
2 2 2xy zx yz

u v w u v w
y x x z z y

ε ε ε
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= + = + = +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

1
2

d
dt
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Shear Strain Rate

We can combine linear strain rate and shear strain 
rate into one symmetric second-order tensor called 
E: strain-rate tensor. In Cartesian coordinates:
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1 1
2 2
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xx xy xz

ij yx yy yz

zx zy zz

u u v u w
x y x z x

v u v v w
x y y z y

w u w v w
x z y z z

ε ε ε
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State of Motion 

Particle moves from O to P in time ∆ t

Taylor series around O (for a small displacement)
yields:

The tensor ∇u can be split into a symmetric part (E, the
strain tensor) and an antisymmetric part (Ω, the rotation 
tensor) part as

so that ∼
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Shear Strain Rate

Purpose of our discussion of fluid element 
kinematics:  

Better appreciation of the inherent complexity of fluid 
dynamics 
Mathematical sophistication required to fully describe 
fluid motion

Strain-rate tensor is important for numerous 
reasons.  For example,

Develop relationships between fluid stress and strain 
rate. 
Feature extraction and flow visualization in CFD 
simulations.
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Translation, Rotation, Linear Strain, 
Shear Strain, and Volumetric Strain

Deformation of fluid elements (made visible with a tracer) during
their compressible motion through a convergent channel; shear  
strain is more evident near the walls because of larger velocity
gradients (a boundary layer is present there).
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Strain Rate Tensor
Example:  Visualization of trailing-edge turbulent 
eddies for a hydrofoil with a beveled trailing edge

Feature extraction method is based upon eigen-analysis of the strain-rate tensor.
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Vorticity and Rotationality

The vorticity vector is defined as the curl of the velocity 
vector
Vorticity is equal to twice the angular                       
velocity of a fluid particle: 
Cartesian coordinates

Cylindrical coordinates

In regions where ζ = 0, the flow is called irrotational.
Elsewhere, the flow is called rotational.

Vζ = ∇ ×
r r r

2ζ ω=
r r

w v u w v ui j k
y z z x x y

ζ
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Vorticity and Rotationality
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Comparison of Two Circular Flows
Special case:  consider two flows with circular streamlines

( ) ( )2

0,

1 1 0 2
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Reynolds Transport Theorem (RTT)

A system is a quantity of matter of fixed identity. No 
mass can cross a system boundary.
A control volume is a region in space chosen for study. 
Mass can cross a control surface.
The fundamental conservation laws (conservation of 
mass, energy, and momentum) apply directly to 
systems.
However, in most fluid mechanics problems, control 
volume analysis is preferred over system analysis (for 
the same reason that the Eulerian description is usually 
preferred over the Lagrangian description).
Therefore, we need to transform the conservation laws 
from a system to a control volume. This is accomplished 
with the Reynolds transport theorem (RTT).
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Reynolds Transport Theorem (RTT)

There is a direct analogy between the transformation from 
Lagrangian to Eulerian descriptions (for differential analysis 
using infinitesimally small fluid elements) and the 
transformation from systems to control volumes (for integral 
analysis using large, finite flow fields).
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Reynolds Transport Theorem (RTT)

Material derivative (differential analysis):

RTT, moving or deformable CV (integral analysis):    Vr = V - Vcs

In Chaps 5 and 6, we will apply RTT to conservation of mass, energy, linear 
momentum, and angular momentum.

( )Db b V b
Dt t

∂
= + ∇

∂

r r

Mass Momentum Energy Angular 
momentum

B, Extensive properties m E

b, Intensive properties 1 e

mV
r

V
r

H
r

( )r V×
rr

.
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Reynolds Transport Theorem (RTT)

RTT, fixed CV:

( )sys

CV CS

dB
b dV bV ndA

dt t
ρ ρ∂

= +
∂∫ ∫

r r.V

Time rate of change of the property B of the closed system 
is equal to (Term 1) + (Term 2)

Term 1:  time rate of change of B of the control volume

Term 2:  net flux of B out of the control volume by mass
crossing the control surface
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