Chapter 2: Properties of Fluids

Introduction

\square Any characteristic of a system is called a property.
■ Familiar: pressure P, temperature T, volume v, and mass m.
■ Less familiar: viscosity, thermal conductivity, modulus of elasticity, thermal expansion coefficient, vapor pressure, surface tension.

- Intensive properties are independent of the mass of the system. Examples: temperature, pressure, and density.
- Extensive properties are those whose value depends on the size of the system. Examples: Total mass, total volume, and total momentum.
■ Extensive properties per unit mass are called specific properties. Examples include specific volume $v=v / m$ and specific total energy $e=E / m$.

Continuum

- Atoms are widely spaced in the gas phase.
■ However, we can disregard the atomic nature of a substance.
■ View it as a continuous, homogeneous matter with no holes, that is, a continuum.
■ This allows us to treat properties as smoothly varying quantities.
- Continuum is valid as long as size of the system is large in comparison to distance between molecules.

Mean free path of O_{2} at 1 atm and $20^{\circ} \mathrm{C}=6.3 \times 10^{-8} \mathrm{~m} \approx 200 \mathrm{x}$ diameter of a molecule

Density and Specific Gravity

- Density is defined as the mass per unit volume $\rho=m / \mathcal{V}$. Density has units of $\mathrm{kg} / \mathrm{m}^{3}$
- Specific volume is defined as $v=1 / \rho=v / m$.

■ For a gas, density depends on temperature and pressure (for liquids and solids ρ depends almost only upon T).

- Specific gravity, or relative density is defined as the ratio of the density of a substance to the density of some standard substance at a specified temperature (usually water at $4^{\circ} \mathrm{C}$), i.e., $S G=\rho / \rho_{\mathrm{H}_{2} \mathrm{O}} . S G$ is a dimensionless quantity.
- The specific weight is defined as the weight per unit volume, i.e., $\gamma_{s}=\rho g$ where g is the gravitational acceleration. γ_{s} has units of $\mathrm{N} / \mathrm{m}^{3}$.

Density of Ideal Gases

\square Equation of State: equation for the relationship between pressure, temperature and density.
\square The simplest and best-known equation of state is the ideal-gas equation.

$$
P_{v}=R T \quad \text { or } \quad P=\rho R T
$$

■ Ideal-gas equation holds for most gases.
\square However, dense gases such as water vapor and refrigerant vapor should not be treated as ideal gases. Tables should be consulted for their properties, e.g., Tables A-1E through A-11E in textbook.

Vapor Pressure and Cavitation

■ Vapor Pressure P_{v} of a pure substance is defined as the pressure exerted by its vapor in phase equilibrium with its liquid at a given temperature

- If P drops below P_{v}, liquid is locally vaporized, creating cavities of vapor.
- Vapor cavities collapse when local P rises above P_{v}.
- Collapse of cavities is a violent process which can damage machinery.
- Cavitation is noisy, and can cause structural vibrations.

Forms of Energy

\square Total energy E is comprised of numerous forms: thermal, mechanical, kinetic, potential, electrical, magnetic, chemical, and nuclear.
■ Units of energy are joule ($($) or British thermal unit (BTU).

- Microscopic energy
- Internal energy u is for a non-flowing fluid and is due to molecular activity.
- Enthalpy $h=u+P_{v}$ is for a flowing fluid and includes flow energy (P v).
■ Macroscopic energy
- Kinetic energy $k e=V^{2} / 2$
- Potential energy $p e=g z$
- In the absence of electrical, magnetic, chemical, and nuclear energy, the total energy is $e_{\text {flowing }}=h+V^{2} / 2+g z$.

Coefficients of Compressibility and Volume Expansion

■ How does fluid volume change with P and T ?
■ Fluids expand as $T \uparrow$ or $P \downarrow$; fluids contract as $T \downarrow$ or $P \uparrow$
■ Need fluid properties that relate volume changes to changes in P and T.

- Coefficient of compressibility or bulk modulus of elasticity

$$
\kappa=-v\left(\frac{\partial P}{\partial v}\right)_{T}=\rho\left(\frac{\partial P}{\partial \rho}\right)_{T} \quad \mathcal{K}_{\text {ideal gas }}=P
$$

$$
\alpha=1 / \mathcal{K}=\text { coefficient of isothermal compressibility }
$$

- Coefficient of volume expansion

$$
\beta=\frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{P}=-\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_{P} \quad \beta_{\text {ideal gas }}=1 / T
$$

■ Combined effects of P and T can be written as

$$
d v=\left(\frac{\partial v}{\partial T}\right)_{P} d T+\left(\frac{\partial v}{\partial P}\right)_{T} d P
$$

Viscosity

\square Viscosity is a property that represents the internal resistance of a fluid to motion.

- The force a flowing fluid exerts on a body in the flow direction is called the drag force, and the magnitude of this force depends, in part, on viscosity.

Viscosity

Velocity profile

$$
u(y)=\frac{y}{\ell} V
$$

- To obtain a relation for viscosity, consider a fluid layer between two very large parallel plates separated by a distance ℓ. Fis the force applied on the upper plate
■ Definition of shear stress is $\tau=F / A$.
- Using the no-slip condition, $u(0)=0$ and $u(\ell)=V$, the velocity profile and gradient are $u(y)=V y / \ell$ and $d u / d y=V / \ell$
■ Shear stress for Newtonian fluid: $\tau \propto d \beta / d t=d u / d y$ (deformation rate)
■ μ is the constant of proportionality: dynamic viscosity. Units of $\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}, \mathrm{Pa} \cdot \mathrm{s}$, or poise $=0.1 \mathrm{~Pa} \cdot \mathrm{~s}$.
■ The viscosity of water at $20^{\circ} \mathrm{C}$ is 1 centipoise

Viscosity

Rate of deformation, $d u / d y$

Rate of deformation, $d u / d y$

Kinematic viscosity: $v=\mu / \rho$, units are $\mathrm{m}^{2} / \mathrm{s}$ and stoke $\left(=1 \mathrm{~cm}^{2} / \mathrm{s}\right)$. The kinematic viscosity of water at $20^{\circ} \mathrm{C}$ is 1 centistokes.

Air at $20^{\circ} \mathrm{C}$ and 1 atm : $\mu=1.83 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$
$\nu=1.52 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
Air at $20^{\circ} \mathrm{C}$ and 4 atm : $\mu=1.83 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$ $\nu=0.380 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
dynamic viscosity varies little with P

Viscosity

The viscosity of liquids decreases and the viscosity of gases increases with temperature.

Variation of μ with T at 1 atm for different fluids

Viscometry

- How is viscosity measured? A rotating viscometer.
- Two concentric cylinders with a fluid in the small gap ℓ.
- Inner cylinder is rotating, outer one is fixed.
- Use definition of shear force:

$$
F=\tau A=\mu A \frac{d u}{d y}
$$

■ If $\ell / R \ll 1$, then cylinders can be modeled as flat plates.

- Torque $T=F R$, and tangential velocity $V=\omega R$
■ Wetted surface area $A=2 \pi R L$.
- Measure T and ω to compute μ

Surface Tension

- Liquid droplets behave like small spherical balloons filled with liquid, and the surface of the liquid acts like a stretched elastic membrane under tension.
- The pulling force that causes this is
- due to the attractive forces between molecules
- called surface tension $\sigma_{s}(N / m)$.
- Attractive force on surface molecule is not symmetric \rightarrow the interface is not necessarily flat.
- σ_{s} is also measured in $\mathrm{J} / \mathrm{m}^{2}$. It can be interpreted as the stretching work needed to be done to increase the surface area of a liquid by a unit amount.

Surface Tension

- Film of soapy water suspended on a Ushaped wire frame with a movable side
- The liquid film tends to pull the wire inwards to minimize surface area (σ_{s})
- F can be applied to balance the pulling effect; equilibrium requires that $F=2 b \sigma_{s}$
- To stretch the film and increase surface area by $\Delta A=2 b \Delta x$ the work done is $W=F \Delta x=\sigma_{s} \Delta A$
- During the stretching process the surface energy of the film is increased by $\sigma_{s} \Delta A$
- σ_{s} varies greatly from substance to substance and is function of the two fluids in contact

Capillary Effect

■ Capillary effect is the rise or fall of a liquid in a smalldiameter tube. The curved free surface of the liquid in the tube is called the meniscus.

- Water meniscus curves up because water is a wetting fluid ($\phi=$ contact angle).
- Mercury meniscus curves down because mercury is a nonwetting fluid.
- Force balance (cohesive vs adhesive forces) can describe magnitude of capillary rise/fall.

