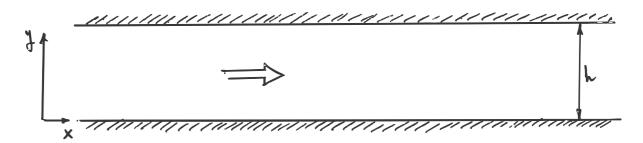


Università degli Studi di Genova Facoltà di Ingegneria


Esame di Meccanica dei Continui
Parte 2: Meccanica dei fluidi
17 Gennaio 2005, ore 10:00 aula DIAM1
Appunti del corso e testi ammessi
Rispondete dettagliatamente e giustificate tutte le vostre risposte

Esercizio 1: Moto non-Newtoniano di un fluido in un condotto piano (18 punti)

Si consideri una corrente incomprimibile, permanente e bidimensionale tra due lastre piane e parallele, infinitamente lunghe, con un gradiente di pressione longitudinale costante (responsabile del moto del fluido) che si potrà indicare con dp/dx = Π , cf. figura. Il fluido è non-newtoniano, e tale che la componente xy del tensore degli sforzi viscosi è data dall'espressione:

$$\tau_{xy} = \mu \, dv_x/dy + \varepsilon \, (dv_x/dy)^2,$$

dove ε è un parametro piccolo, $0 < \varepsilon << 1$. Sapendo che, per ε piccolo, il termine $(1 + \varepsilon A)^{1/2}$ si sviluppa come $1 + \varepsilon A/2 - \varepsilon^2 A^2/8 + ...$, si inserisca l'espressione di τ_{xy} nel bilancio delle forze lungo x (per il caso di moto completamente sviluppato) e si ricavi un'espressione al prim'ordine in ε per dv_x/dy , tenendo conto del fatto che per $\varepsilon \to 0$ si deve ricadere nel caso classico del moto di Poiseuille. Si integri infine tale espressione e si calcoli il profilo di velocità al prim'ordine in ε (che dovrà risultare uguale a $v_x = \Pi/(2\mu)$ (y^2 - hy) + $\varepsilon f(y; \Pi, \mu, h) + ...$)

Esercizio 2: Funzione di corrente e potenziale di velocità (12 punti)

- a) Per ognuna delle affermazioni sottostanti, specificare se si applica alla funzione di corrente (ψ) oppure al potenziale di velocità (ϕ), giustificando le risposte fornite.
 - 1. Esiste solo per moti piani.
 - 2. Può esistere per flussi bi- e tri-dimensionali.

- 3. Se il moto è definito da $\mathbf{v} = \nabla \xi$, il campo scalare ξ risulta uguale a ψ oppure a ϕ ?
- 4. Esiste per tutti i flussi incomprimibili. Perché?
- 5. Esiste per tutti i flussi irrotazionali. Perché?
- 6. Se si ha $\nabla^2 \xi = 0$ (equazione di Laplace), per $\xi = \psi$ oppure $\xi = \phi$, quale proprietà deve essere soddisfatta dal moto in ciascuno dei due casi?
- b) Per un moto piano, incomprimibile ed irrotazionale, che relazione esiste tra le linee definite dall'equazione ϕ = costante e quelle definite da ψ = costante.
- c) Specificare tutte le ipotesi necessarie affinché un fluido soddisfi l'equazione di Bernoulli nella forma:

$$p/\rho + v^2/2 + gz = costante$$
,

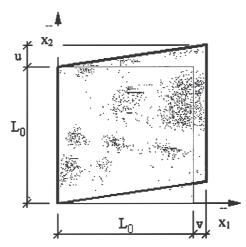
lungo una linea di corrente. Quale ipotesi supplementare deve essere soddisfatta affinché l'equazione sia valida in tutto il campo di moto?

Esercizio 3: DOMANDA ALTERNATIVA

(12 punti)

Si scelga di rispondere solo alla domanda 2 o alla domanda 3

Descrivere in non più di <u>una pagina</u> A4 la teoria di Prandtl (1905) dello strato limite laminare, indicando chiaramente


- 1. cosa si intende per strato limite,
- 2. come e perché, scegliendo scale opportune, Prandtl e' riuscito ad eliminare i termini di diffusione longitudinale dall'equazione della quantità di moto,
- 3. come si può calcolare il gradiente di pressione normale alla parete nel caso in cui il flusso potenziale lontano dalla piastra sia uniforme (e parallelo alla piastra stessa).

PROVA SCRITTA MECCANICA DEI CONTINUI – SOLIDI GENNAIO 2005

Nota: le domande "di teoria" vanno affrontate come se si trattasse di una domanda orale (introdurre il problema, spiegare i termini usati, le ipotesi fatte, i passaggi svolti,...) Libri di testo ed appunti del corso non sono ammessi alla prova scritta. Lo studente può utilizzare il foglio aiuti (A4).

1) (punti 18)

Una lastra quadrata piana di lato $L_0 = 10$ cm, realizzata in materiale elastico lineare avente modulo di Young E = 10 GPa e coefficiente di Poisson v = 0.3, è testata in laboratorio e soggetta al campo di spostamenti mostrato in figura ed identificato da u = 0.01 cm e v = 0.005 cm;

(Nota: gli spostamenti u_1 e u_2 sono impediti sul lato $x_1 = 0$).

Si assuma che gli spostamenti lungo l'asse x₃ siano impediti.

- a) Definire il campo di spostamenti della membrana ed il relativo tensore delle deformazioni infinitesime (nota: si assumano gli spostamenti u_1 e u_2 funzione lineare della coordinata x_1 ; le deformazioni sono infinitesime).
- b) Definire il tensore delle tensioni di Cauchy.
- c) Descrivere i campi di tensione e deformazione.
- d) Definire le direzioni principali di deformazione e il relativo tensore delle deformazioni principali; definire le direzioni principali di tensione e il relativo tensore delle tensioni principali.

2) (punti 17)

Introdurre il Principio dei lavori virtuali e spiegare come può essere utilizzato per calcolare spostamenti di corpi continui. Mostrare un esempio di applicazione.