
Chapter 10:  Approximate Solutions of 
the Navier-Stokes Equation
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Objectives

1. Appreciate why approximations are 
necessary, and know when and where to 
use.

2. Understand effects of lack of inertial 
terms in the creeping flow approximation.

3. Understand superposition as a method 
for solving potential flow.

4. Predict boundary layer thickness and 
other boundary layer properties.
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Introduction

In Chap. 9, we derived the NSE and developed several 
exact solutions.
In this Chapter, we will study several methods for simplifying 
the NSE, which permit use of mathematical analysis and 
solution

These approximations often hold for certain regions of the flow field.
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Nondimensionalization of the NSE

Purpose:  Order-of-magnitude analysis of the terms in 
the NSE, which is necessary for simplification and 
approximate solutions.
We begin with the incompressible NSE

Each term is dimensional, and each variable or property 
(ρ, V, t, µ, etc.) is also dimensional.
What are the primary dimensions of each term in the 
NSE equation?
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Nondimensionalization of the NSE

To nondimensionalize, we choose scaling 
parameters as follows
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Nondimensionalization of the NSE

Next, we define nondimensional variables, using the 
scaling parameters in Table 10-1

To plug the nondimensional variables into the NSE, we 
need to first rearrange the equations in terms of the 
dimensional variables
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Nondimensionalization of the NSE

Now we substitute into the NSE to obtain

Every additive term has primary dimensions 
{m1L-2t-2}.  To nondimensionalize, we multiply 
every term by L/(ρV2), which has primary 
dimensions {m-1L2t2}, so that the dimensions 
cancel.  After rearrangement, 
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Nondimensionalization of the NSE

Terms in [ ] are nondimensional parameters

Strouhal number Euler number Inverse of Froude
number squared

Inverse of Reynolds
number

Navier-Stokes equation in nondimensional form
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Nondimensionalization of the NSE

Nondimensionalization vs. Normalization
NSE are now nondimensional, but not necessarily normalized.
What is the difference?
Nondimensionalization concerns only the dimensions of the 
equation - we can use any value of scaling parameters L, V, etc.
Normalization is more restrictive than nondimensionalization.  
To normalize the equation, we must choose scaling parameters 
L,V, etc. that are appropriate for the flow being analyzed, such 
that all nondimensional variables are of order of magnitude 
unity, i.e., their minimum and maximum values are close to 1.0.

If we have properly normalized the NSE, we can compare the relative 
importance of the terms in the equation by comparing the relative magnitudes of 
the nondimensional parameters St, Eu, Fr, and Re.
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Creeping Flow

Also known as “Stokes Flow” or “Low 
Reynolds number flow”
Occurs when Re << 1

ρ, V, or L are very small, e.g., micro-
organisms, MEMS, nano-tech, particles, 
bubbles
µ is very large, e.g., honey, lava
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Creeping Flow

To simplify NSE, assume St ~ 1, Fr ~ 1

Since

Pressure
forces

Viscous
forces
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Creeping Flow

This is important

Very different from inertia dominated flows where

Density has completely dropped out of NSE.  To 
demonstrate this, convert back to dimensional form.

This is now a LINEAR EQUATION which can be 
solved for simple geometries.
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Creeping Flow

Solution of Stokes flow is beyond the scope of 
this course.
Analytical solution for flow over a sphere gives a 
drag coefficient which is a linear function of 
velocity V and viscosity µ.
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Inviscid Regions of Flow

Definition:  Regions where net viscous forces 
are negligible compared to pressure and/or 
inertia forces

~0 if Re large

Euler Equation
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Inviscid Regions of Flow

Euler equation often used in aerodynamics
Elimination of viscous term changes PDE from mixed 
elliptic-hyperbolic to hyperbolic.   This affects the type of 
analytical and computational tools used to solve the 
equations.
Must “relax” wall boundary condition from no-slip to slip
For example for the case of a fixed wall:

Slip BC
τw = 0, vn = 0

No-slip BC
u = v = w = 0

vn = normal velocity
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Irrotational Flow Approximation

Irrotational 
approximation: vorticity is 
negligibly small

In general, inviscid 
regions are also 
irrotational, but there are 
situations where inviscid 
flow are rotational, e.g., 
solid body rotation (Ex. 
10-3)
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Irrotational Flow Approximation

What are the implications of irrotational 
approximation.  Look at continuity and 
momentum equations.
Continuity equation

Use the vector identity
Since the flow is irrotational

φ is a scalar potential function
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Irrotational Flow Approximation

Therefore, regions of irrotational flow are also 
called regions of potential flow.
From the definition of the gradient operator ∇

Substituting into the continuity equation gives

Cartesian

Cylindrical
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Irrotational Flow Approximation

This means we only need to solve 1 linear 
scalar equation to determine all 3 components 
of velocity!

Luckily, the Laplace equation appears in 
numerous fields of science, engineering, and 
mathematics.  This means that there are well 
developed tools for solving this equation.

Laplace Equation
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Irrotational Flow Approximation

Momentum equation
If we can compute φ from the Laplace 
equation (which came from continuity) and 
velocity from the definition , why do 
we need the NSE?  ⇒ To compute Pressure.
To begin analysis, apply irrotational 
approximation to viscous term of the NSE

= 0
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Irrotational Flow Approximation

Therefore, the NSE reduces to the Euler 
equation for irrotational flow

Instead of integrating to find P, use vector 
identity to derive Bernoulli equation

nondimensional

dimensional
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Irrotational Flow Approximation

This allows the steady Euler equation to be written as

This form of Bernoulli equation is valid for inviscid and
irrotational flow since we’ve shown that NSE reduces to 
the Euler equation. 

= _=
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Irrotational Flow Approximation

However, 
Inviscid

Irrotational (ζ = 0)
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Irrotational Flow Approximation

Therefore, the process for irrotational flow
1. Calculate φ from Laplace equation (from continuity)
2. Calculate velocity from definition
3. Calculate pressure from Bernoulli equation (derived 

from momentum equation)

Valid for 3D or 2D
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Irrotational Flow Approximation
2D Flows

For 2D flows, we can also use the streamfunction
Recall the definition of streamfunction for planar (x-y) 
flows

Since vorticity is zero,

This proves that the Laplace equation holds for the 
streamfunction and the velocity potential
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Irrotational Flow Approximation
2D Flows

Constant values of ψ:  
streamlines
Constant values of φ: 
equipotential lines
ψ and φ are mutually 
orthogonal
ψ and φ are harmonic functions
ψ is defined by continuity; 
∇2ψ results from irrotationality
φ is defined by irrotationality;
∇2φ results from continuity

Flow solution can be achieved by solving either ∇2φ or ∇2ψ, 
however, BC are easier to formulate for ψ.
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Irrotational Flow Approximation
2D Flows

Similar derivation can be performed for cylindrical 
coordinates (except for ∇2ψ for axisymmetric flow)

Planar, cylindrical coordinates :  flow is in (r,θ) plane
Axisymmetric, cylindrical coordinates : flow is in (r,z) plane

AxisymmetricPlanar
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Irrotational Flow Approximation
2D Flows
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Irrotational Flow Approximation
2D Flows

Method of Superposition
1. Since ∇2φ=0 is linear, a linear combination of 

two or more solutions is also a solution, e.g., 
if φ1 and φ2 are solutions, then (Aφ1), (φ1+φ2), 
(Aφ1+Bφ2) are also solutions

2. Also true for ψ in 2D flows (∇2ψ =0)
3. Velocity components are also additive
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Irrotational Flow Approximation
2D Flows

Given the principal of superposition, there 
are several elementary planar irrotational 
flows which can be combined to create 
more complex flows.  

Uniform stream
Line vortex
Line source/sink
Doublet
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Elementary Planar Irrotational Flows
Uniform Stream

In Cartesian coordinates

Conversion to cylindrical 
coordinates can be 
achieved using the 
transformation
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Elementary Planar Irrotational Flows
Line Vortex

Vortex at the origin.  First 
look at irrotationality
condition which leads to 
the following velocity 
components

Γ is the circulationEquations are for a vortex
centered on the origin
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Elementary Planar Irrotational Flows
Line Vortex

Integrating:
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Elementary Planar Irrotational Flows
Line Vortex

If vortex is moved to 
(x,y) = (a,b)
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Elementary Planar Irrotational Flows
Line Source/Sink

Potential and stream-
function are derived by 
observing that volume 
flow rate across any circle 
in the x-y plane is 
See also continuity
equation
This gives velocity 
components
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Elementary Planar Irrotational Flows
Line Source/Sink

Using definition of (Ur , Uθ)

These can be integrated to 
give φ and ψ

Equations are for a source/sink
at the origin. Result is different in 3D.
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Elementary Planar Irrotational Flows
Line Source/Sink

If source/sink is 
moved to (x,y) = (a,b)
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Elementary Planar Irrotational Flows
Doublet

A doublet is a 
combination of a line 
sink and source of 
equal magnitude
Source

Sink
a a
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Elementary Planar Irrotational Flows
Doublet

Adding ψ1 and ψ2
together, performing 
some algebra, and 
taking a → 0 gives

K is the doublet strength
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Examples of Irrotational Flows Formed 
by Superposition

Superposition of sink and 
vortex : bathtub vortex

Sink Vortex
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Examples of Irrotational Flows Formed 
by Superposition

Flow over a circular 
cylinder:  Free stream 
+ doublet

Assume body is ψ = 0
(r = a) ⇒ K = Va2
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Examples of Irrotational Flows Formed 
by Superposition

Velocity field can be found by 
differentiating streamfunction

On the cylinder surface (r = a)

Normal velocity (Ur) is zero, Tangential 
velocity (Uθ) is non-zero ⇒slip condition.
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Examples of Irrotational Flows Formed 
by Superposition

Compute pressure 
using Bernoulli 
equation and velocity 
on cylinder surface

Irrotational 
flow

Laminar
separation

Turbulent
separation

1/2
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Examples of Irrotational Flows Formed 
by Superposition

Integration of surface pressure (which is 
symmetric in x), reveals that the DRAG is ZERO.
This is known as D’Alembert’s Paradox

For the irrotational flow approximation, the drag force 
on any non-lifting body of any shape immersed in a 
uniform stream is ZERO
Why?

Viscous effects have been neglected.  Viscosity and the no-
slip condition are responsible for

Flow separation (which contributes to pressure drag)
Wall-shear stress (which contributes to friction drag)
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Boundary Layer (BL) Approximation

BL approximation 
bridges the gap 
between the Euler 
and NS equations, 
and between the slip 
and no-slip BC at the 
wall.
Prandtl (1904) 
introduced the BL 
approximationδ99(x)

Ue(x)



Chapter 10:  Approximate SolutionsFondamenti di Meccanica dei Continui            46

Boundary Layer (BL) Approximation

Not to scale

To scale

δ99(x)

δ99(x)

Ue(x)

Ue(x)
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Boundary Layer (BL) Approximation

BL Equations:  we 
restrict attention to 
steady, 2D, laminar 
flow (although method 
is fully applicable to 
unsteady, 3D, 
turbulent flow)
BL coordinate system

x : tangential direction
y : normal direction

δ99(x)

e

Ue(x)
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Boundary Layer (BL) Approximation

To derive the equations, start with the steady 
nondimensional NS equations

Recall definitions

Since                               Eu ~ 1
Re >> 1, should we neglect viscous terms?  No (!), 
because we would end up with the Euler equation along 
with deficiencies already discussed.
Can we neglect some of the viscous terms?

Ue
2

Ue L

Ue
2
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Boundary Layer (BL) Approximation

To answer this question, we need to do a 
normalization

Use L as length scale in streamwise direction 
and for derivatives of velocity and pressure 
with respect to x.
Use δ(x) (a quantity proportional to the 
boundary layer thickness δ99) for distances     
and derivatives in y.
Use local outer (or edge) velocity Ue.
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Boundary Layer (BL) Approximation

Orders of Magnitude (OM)

What about V?  Use continuity

Since

e

e

e

e

Ue
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Boundary Layer (BL) Approximation

Now, define new nondimensional variables

All are order unity, therefore normalized
Apply to x- and y-components of NSE
...
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Boundary Layer (BL) Approximation

Incompressible Laminar Boundary Layer 
Equations

Continuity

x-momentum

y-momentum

(from now on use small letters to denote dependent variables)
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Boundary Layer Procedure

1. Solve for outer flow, ignoring the 
BL.  Use potential flow (irrotational 
approximation) or Euler equation

2. Assume δ/L << 1 (thin BL)
3. Solve BLE

y = 0 ⇒ no-slip, u=0, v=0
y = δ99 ⇒ u = Ue(x)
x = x0 ⇒ u = ustarting(x0,y)

4. Calculate δ, θ, δ*, τw, Drag
5. Verify δ/L << 1
6. If δ/L is not << 1, use δ* as body, 

go to step 1 and repeat

Ue(x)
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Boundary Layer Procedure

Possible Limitations
1. Re is not large enough ⇒ BL 

may be too thick for thin BL 
assumption.

2. ∂p/∂y ≠ 0 due to wall curvature 
δ99 ~ R

3. Re too large ⇒ transitional 
flow starts at Re ∼ 105.  BL 
approximation still valid, but 
new terms required.

4. Flow separation

δ99

Ue(x)
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Boundary Layer Procedure

Before defining and δ* and θ, are there 
analytical solutions to the BL equations?

Unfortunately, NO
Blasius Similarity Solution boundary layer on a 
flat plate, constant edge velocity, zero external 
pressure gradient (Ue = const.)

u = Ue
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Blasius Similarity Solution

Blasius introduced similarity 
variables

This reduces the BLE to

This ODE can be solved using 
Runge-Kutta technique
Result is a BL profile which holds at 
every station along the flat plate

e

u

2
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Blasius Similarity Solution
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Blasius Similarity Solution

Boundary layer thickness can be computed by 
assuming that δ99 corresponds to point where 
u/Ue = 0.990.  At this point, η = 4.91, therefore

Wall shear stress τw and friction coefficient Cf,x
can be directly related to Blasius solution

Recall

Rex = Ue x / ν99

99
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Displacement Thickness

Displacement thickness δ* is the 
imaginary increase in thickness of the 
wall (or body), as seen by an ideal 
inviscid flow of same flow rate, and is 
due to the effect of a growing BL.
Expression for δ* is based upon control 
volume analysis of conservation of mass

Blasius profile for laminar BL can be 
integrated to give

(≈1/3 of δ99)

δ99(x)

δ99(x)

u = Ue

u(x,y)

Ue

u
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Momentum Thickness

Momentum thickness θ is another 
measure of boundary layer thickness.
Defined as the loss of momentum flux 
per unit width divided by ρUe

2 due to 
the presence of the growing BL.
Derived using CV analysis (Karman
integral equation).

θ for Blasius solution, 
identical to Cf,x

δ99(x)

δ99(x)

Ue

Ue

u u

u
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Turbulent Boundary Layer

Black lines:  instantaneous
Pink line:  time-averaged

e

99

Comparison of laminar and 
turbulent BL profiles

e

99

Illustration of unsteadiness of a 
turbulent BL
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Turbulent Boundary Layer

All BL variables [u(x,y), δ99 , δ*, θ ] are 
determined empirically.
One common empirical approximation for 
the time-averaged velocity profile is the 
one-seventh-power law

99)
99

1u

u

99
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Turbulent Boundary Layer

δ99 δ99 δ99
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Turbulent Boundary Layer

Flat plate zero-pressure-gradient TBL can be plotted in 
a universal form if a new velocity scale, called the 
friction velocity Uτ , is used.  Sometimes referred to as 
the “Law of the Wall” Velocity Profile in Wall Coordinates

u
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Turbulent Boundary Layer

Despite its simplicity, the Law of the Wall
is the basis for many CFD turbulence 
models.
Spalding (1961) developed a formula 
which is valid over most of the boundary 
layer

κ, B are constants
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Pressure Gradients

Shape of the BL is strongly 
influenced by external pressure 
gradient
(a) favorable (dp/dx < 0)
(b) zero
(c) mild adverse (dp/dx > 0)
(d) critical adverse (τw = 0)
(e) large adverse with reverse (or 

separated) flow
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Pressure Gradients

The BL approximation is 
not valid downstream of a 
separation point because 
of reverse flow in the 
separation bubble.
Turbulent BL is more 
resistant to flow separation 
than laminar BL exposed 
to the same adverse 
pressure gradient

Laminar flow separates at corner

Turbulent flow does not separate
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