

Chapter 9: Differential Analysis of Fluid Flow

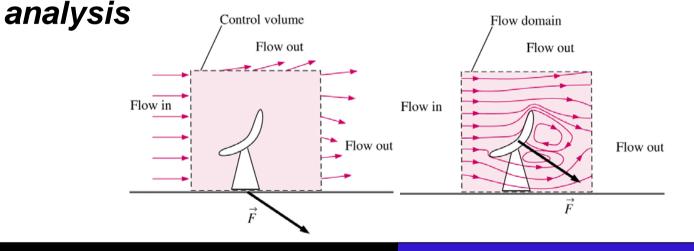
Objectives

- 1. Understand how the differential equations of mass and momentum conservation are derived.
- 2. Calculate the stream function and pressure field, and plot streamlines for a known velocity field.
- 3. Obtain analytical solutions of the equations of motion for simple flows.

Introduction

Recall

- Chap 5: Control volume (CV) versions of the laws of conservation of mass and energy
- Chap 6: CV version of the conservation of momentum
- CV, or integral, forms of equations are useful for determining overall effects
- However, we cannot obtain detailed knowledge about the flow field <u>inside</u> the CV ⇒ motivation for differential



Introduction

Example: incompressible Navier-Stokes equations

$$\nabla \cdot \vec{V} = 0$$

4

$$\rho \frac{\partial \vec{V}}{\partial t} + \rho \left(\vec{V} \cdot \nabla \right) \vec{V} = -\nabla p + \mu \nabla^2 \vec{V} + \rho \vec{g}$$

We will learn:

- Physical meaning of each term
- How to derive
- How to solve

Introduction

For example, how to solve?

Step	Analytical Fluid Dynamics (Chapter 9)	Computational Fluid Dynamics (Chapter 15)
1	Setup Problem and geometry, identify all dimensions and parameters	
2	List all assumptions, approximations, simplifications, boundary conditions	
3	Simplify PDE's	Build grid / discretize PDE's
4	Integrate equations	Solve algebraic system of equations including I.C.'s and B.C's
5	Apply I.C.'s and B.C.'s to solve for constants of integration	
6	Verify and plot results	Verify and plot results

Conservation of Mass

Recall CV form (Chap 5) from Reynolds Transport Theorem (RTT)

$$0 = \int_{CV} \frac{\partial \rho}{\partial t} \, d\mathcal{V} + \int_{CS} \rho \left(\vec{V} \cdot \vec{n} \right) \, dA$$

We'll examine two methods to derive differential form of conservation of mass

Divergence (Gauss) Theorem

Differential CV and Taylor series expansions

Conservation of Mass Divergence Theorem

Divergence theorem allows us to transform a volume integral of the divergence of a vector into an area integral over the surface that defines the volume.

$$\int_{\mathcal{V}} \nabla \cdot \vec{G} \, d\mathcal{V} = \oint_{A} \vec{G} \cdot \vec{n} \, dA$$

Conservation of Mass Divergence Theorem

Rewrite conservation of mass

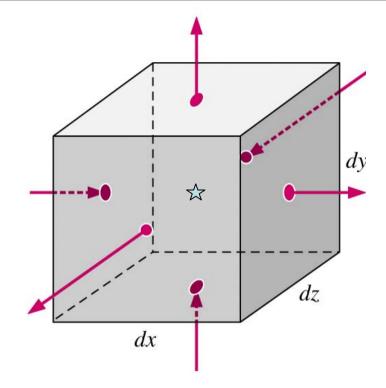
$$\int_{\mathcal{V}} \frac{\partial \rho}{\partial t} \, \mathrm{d}\mathcal{V} + \oint_{A} \rho \left(\vec{V} \cdot \vec{n} \right) \, \mathrm{d}A = 0$$

■ Using divergence theorem, replace area integral with volume integral and collect terms $\int_{\mathcal{V}} \frac{\partial \rho}{\partial t} \, \mathrm{d}\mathcal{V} + \int_{\mathcal{V}} \nabla \cdot \rho \vec{V} \, \mathrm{d}\mathcal{V} = 0 \quad \Longrightarrow \quad \int_{\mathcal{V}} \left[\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{V} \right) \right] \, \mathrm{d}\mathcal{V} = 0$

■ Integral holds for <u>ANY</u> CV, therefore:

$$\frac{\partial\rho}{\partial t} + \nabla\cdot\left(\rho\vec{V}\right) = 0$$

- First, define an infinitesimal control volume dx x dy x dz
- Next, we approximate the mass flow rate into or out of each of the 6 faces using Taylor series expansions around the center point *, e.g., at the right face



Ignore terms higher than order dx

$$(\rho u)_{\text{center of right face}} = \rho u + \frac{\partial (\rho u)}{\partial x} \frac{dx}{2} + \frac{1}{2!} \frac{\partial^2 (\rho u)}{\partial x^2} \left(\frac{dx}{2}\right)^2 + \dots$$



Now, sum up the mass flow rates into and out of the 6 faces of the CV

Net mass flow rate into CV:

$$\sum_{in} \dot{m} \approx \left(\rho u - \frac{\partial (\rho u)}{\partial x} \frac{dx}{2}\right) dy dz + \left(\rho v - \frac{\partial (\rho v)}{\partial y} \frac{dy}{2}\right) dx dz + \left(\rho w - \frac{\partial (\rho w)}{\partial z} \frac{dx}{2}\right) dx dy$$
Net mass flow rate out of CV:

$$\sum_{out} \dot{m} \approx \left(\rho u + \frac{\partial (\rho u)}{\partial x} \frac{dx}{2}\right) dy dz + \left(\rho v + \frac{\partial (\rho v)}{\partial y} \frac{dy}{2}\right) dx dz + \left(\rho w + \frac{\partial (\rho w)}{\partial z} \frac{dx}{2}\right) dx dy$$

Plug into integral conservation of mass equation

$$\int_{CV} \frac{\partial \rho}{\partial t} \, \mathrm{d}\mathcal{V} = \sum_{in} \dot{m} - \sum_{out} \dot{m}$$

After substitution,

$$\frac{\partial \rho}{\partial t} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = -\frac{\partial (\rho u)}{\partial x} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z - \frac{\partial (\rho v)}{\partial y} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z - \frac{\partial (\rho w)}{\partial z} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

Dividing through by volume *dxdydz*

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho w)}{\partial z} = 0$$

Or, if we apply the definition of the divergence of a vector

$$\frac{\partial\rho}{\partial t} + \vec{\nabla}\cdot\left(\rho\vec{V}\right) = 0$$

Conservation of Mass Alternative form

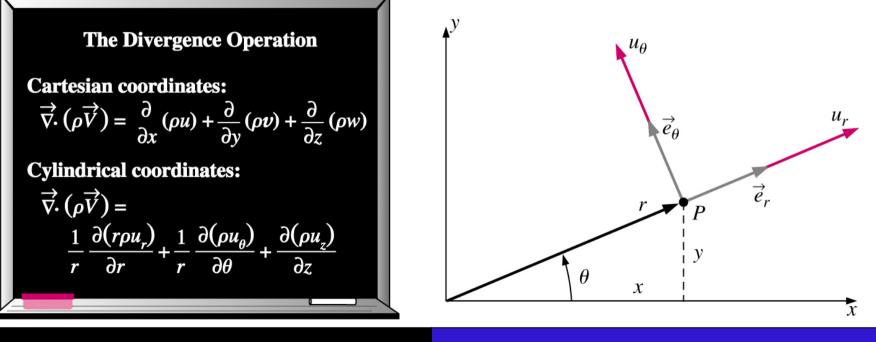
Use product rule on divergence term

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \left(\rho \vec{V}\right) = \frac{\partial \rho}{\partial t} + \vec{V} \cdot \nabla \rho + \rho \nabla \cdot \vec{V} = 0$$
$$\frac{D\rho}{Dt} + \rho \nabla \cdot \vec{V} = 0$$

$$\frac{1}{\rho} \frac{D\rho}{Dt} + \nabla \cdot \vec{V} = 0$$

Conservation of Mass Cylindrical coordinates

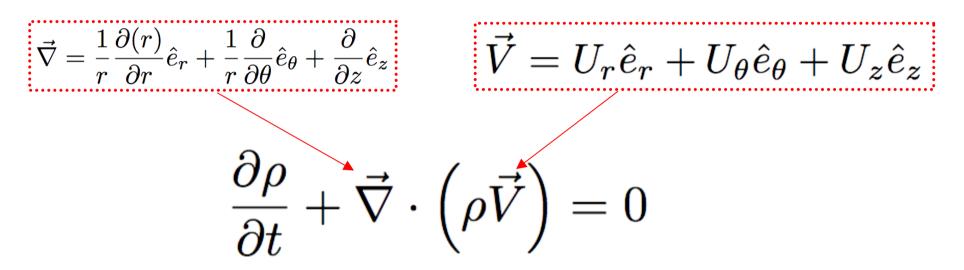
- There are many problems which are simpler to solve if the equations are written in cylindrical-polar coordinates
- Easiest way to convert from Cartesian is to use vector form and definition of divergence operator in cylindrical coordinates



14

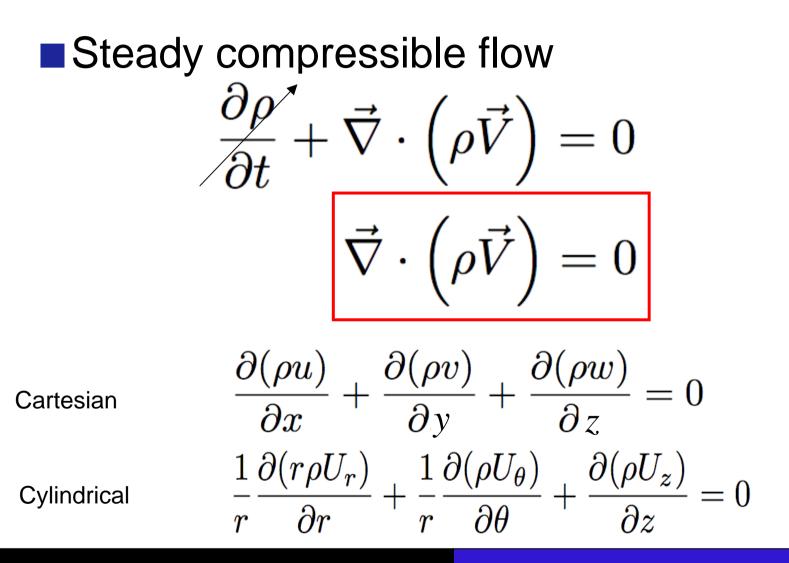
Chapter 9: Differential Analysis

Conservation of Mass Cylindrical coordinates



$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial (r \rho U_r)}{\partial r} + \frac{1}{r} \frac{\partial (\rho U_\theta)}{\partial \theta} + \frac{\partial (\rho U_z)}{\partial z} = 0$$

Conservation of Mass Special Cases



Conservation of Mass Special Cases

Incompressible flow

$$\frac{\partial \rho}{\partial t} = 0 \text{ and } \rho = \text{constant}$$

 $\vec{\nabla} \cdot \vec{V} = 0$

Cartesian

Cylindrical

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
$$\frac{1}{r} \frac{\partial (rU_r)}{\partial r} + \frac{1}{r} \frac{\partial (U_\theta)}{\partial \theta} + \frac{\partial (U_z)}{\partial z} = 0$$

Conservation of Mass

- In general, continuity equation cannot be used by itself to solve for flow field, however it can be used to
 - 1. Determine if velocity field is incompressible
 - 2. Find missing velocity component

The Stream Function

Consider the continuity equation for an incompressible 2D flow

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Substituting the clever transformation

Gives
$$u = \frac{\partial \psi}{\partial y}$$
 $v = -\frac{\partial \psi}{\partial x}$
 $\frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial^2 \psi}{\partial y \partial x} \equiv 0$ This is true for any s function $\psi(x,y)$

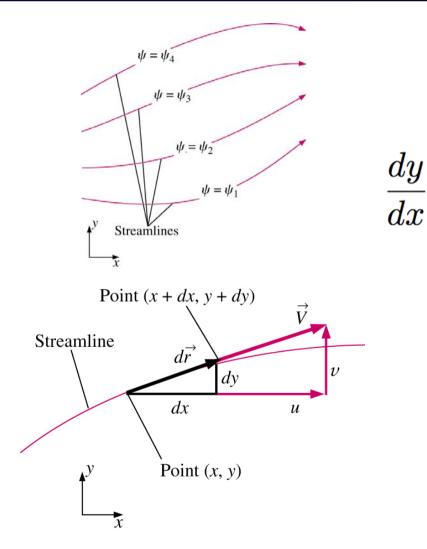
mooth

The Stream Function

Why do this?

- Single variable ψ replaces (u,v). Once ψ is known, (u,v) can be computed.
- Physical significance
 - 1. Curves of constant ψ are streamlines of the flow
 - 2. Difference in ψ between streamlines is equal to volume flow rate between streamlines

The Stream Function Physical Significance

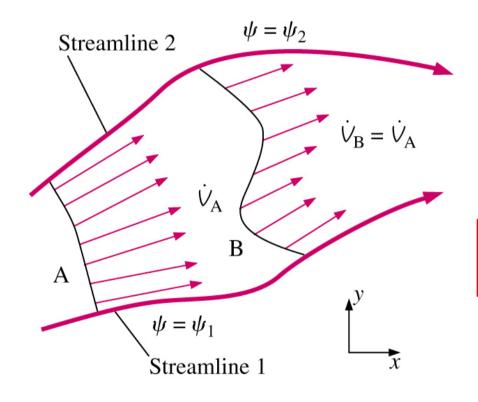


Recall from Chap. 4 that along a streamline

 $v = rac{v}{u}$ $rac{-v \, dx + u \, dy = 0}{\int}$ $rac{\partial \psi}{\partial x} \, dx + rac{\partial \psi}{\partial y} \, dy = 0$ $d\psi = 0$

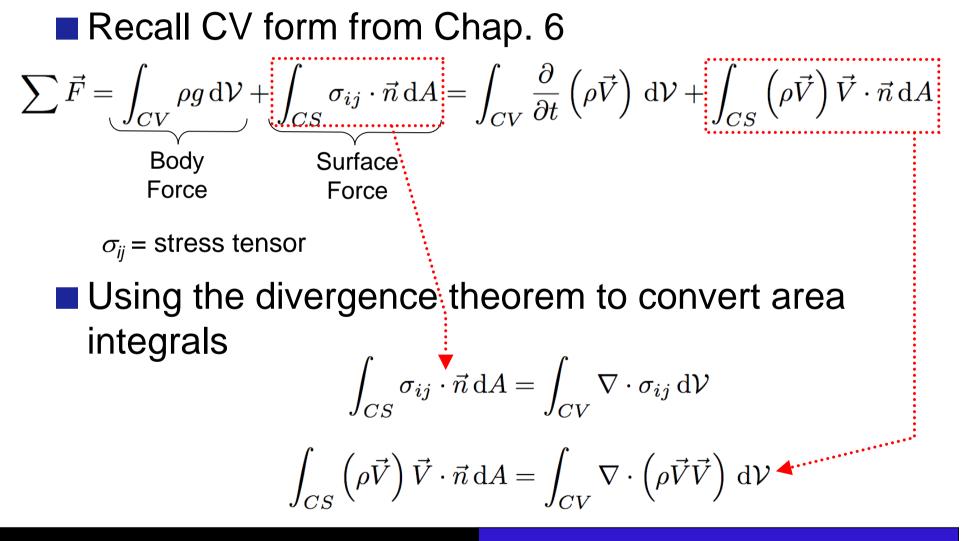
 \therefore Change in ψ along streamline is zero

The Stream Function Physical Significance



Difference in ψ between streamlines is equal to volume flow rate between streamlines

$$\dot{\mathcal{V}}_A = \dot{\mathcal{V}}_B = \psi_2 - \psi_1$$



Substituting volume integrals gives,

$$\int_{CV} \left[\frac{\partial}{\partial t} \left(\rho \vec{V} \right) + \nabla \cdot \left(\rho \vec{V} \vec{V} \right) - \rho \vec{g} - \nabla \cdot \sigma_{ij} \right] \, \mathrm{d}\mathcal{V} = 0$$

Recognizing that this holds for <u>any</u> CV, the integral may be dropped

$$\frac{\partial}{\partial t} \left(\rho \vec{V} \right) + \nabla \cdot \left(\rho \vec{V} \vec{V} \right) = \rho \vec{g} + \nabla \cdot \sigma_{ij}$$

Can also be derived using infinitesimal CV and Newton's 2nd Law (see text)

Alternate form of the Cauchy Equation can be derived by introducing

$$\frac{\partial \left(\rho \vec{V} \right)}{\partial t} = \rho \frac{\partial \vec{V}}{\partial t} + \vec{V} \frac{\partial \rho}{\partial t} \qquad \text{(Chain Rule)}$$
$$\nabla \cdot \left(\rho \vec{V} \vec{V} \right) = \vec{V} \nabla \cdot \left(\rho \vec{V} \right) + \rho \left(\vec{V} \cdot \nabla \right) \vec{V}$$

Inserting these into Cauchy Equation and rearranging gives

$$\rho \left[\frac{\partial \vec{V}}{\partial t} + \left(\vec{V} \cdot \nabla \right) \vec{V} \right] = \rho \vec{g} + \nabla \cdot \sigma_{ij}$$
$$\rho \frac{D \vec{V}}{D t} = \rho \vec{g} + \nabla \cdot \sigma_{ij}$$

Unfortunately, this equation is not very useful

- 10 unknowns
 - Stress tensor, σ_{ii} : 6 independent components
 - Density ρ
 - Velocity, \vec{V} : 3 independent components
- 4 equations (continuity + momentum)
- 6 more equations required to close problem!

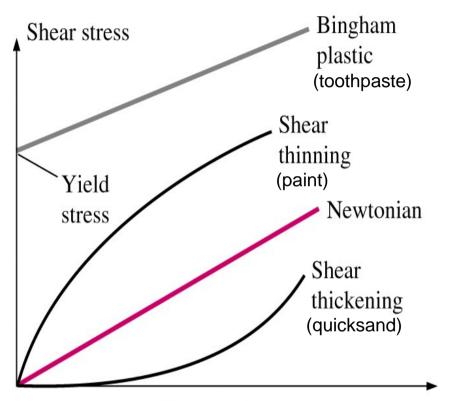
Situation not yet improved

First step is to separate σ_{ij} into pressure and viscous stresses

 $\sigma_{ij} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix} = \begin{pmatrix} -p & 0 & 0 \\ 0 & -p & 0 \\ 0 & 0 & -p \end{pmatrix} + \begin{pmatrix} \tau_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \tau_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \tau_{zz} \end{pmatrix}$

Viscous (Deviatoric) Stress Tensor

• 6 unknowns in $\sigma_{ij} \Rightarrow$ 6 unknowns in τ_{ij} + 1 in *P*, which means that we've added 1!



Shear strain rate

Newtonian fluid includes <u>most</u> common fluids: air, other gases, water, gasoline

28

Reduction in the number of variables is achieved by relating shear stress to strainrate tensor.

For Newtonian fluid with constant properties

$$\tau_{ij} = 2\mu\epsilon_{ij}$$

Newtonian closure is analogous to Hooke's law for elastic solids

Substituting Newtonian closure into stress tensor gives

$$\sigma_{ij} = -p\delta_{ij} + 2\mu\epsilon_{ij}$$

Using the definition of ε_{ij} (Chapter 4)

$$\sigma_{ij} = \begin{pmatrix} -p & 0 & 0 \\ 0 & -p & 0 \\ 0 & 0 & -p \end{pmatrix} + \begin{pmatrix} 2\mu\frac{\partial U}{\partial x} & \mu\left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right) & \mu\left(\frac{\partial U}{\partial z} + \frac{\partial W}{\partial x}\right) \\ \mu\left(\frac{\partial V}{\partial x} + \frac{\partial U}{\partial y}\right) & 2\mu\frac{\partial V}{\partial y} & \mu\left(\frac{\partial V}{\partial z} + \frac{\partial W}{\partial y}\right) \\ \mu\left(\frac{\partial W}{\partial x} + \frac{\partial U}{\partial z}\right) & \mu\left(\frac{\partial W}{\partial y} + \frac{\partial V}{\partial z}\right) & 2\mu\frac{\partial W}{\partial z} \end{pmatrix}$$

Fondamenti di Meccanica dei Continui

Substituting σ_{ij} into Cauchy's equation gives the Navier-Stokes equations

Incompressible NSE written in vector form

This results in a *closed* system of equations!

- 4 equations (continuity and momentum equations)
- 4 unknowns (U, V, W, p)

In addition to vector form, incompressible N-S equation can be written in several other forms

- Cartesian coordinates
- Cylindrical coordinates
- Tensor notation

Navier-Stokes Equation Cartesian Coordinates

Continuity

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} = 0$$

X-momentum

$$\rho\left(\frac{\partial U}{\partial t} + U\frac{\partial U}{\partial x} + V\frac{\partial U}{\partial y} + W\frac{\partial U}{\partial z}\right) = -\frac{\partial P}{\partial x} + \rho g_x + \mu\left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2}\right)$$

Y-momentum

$$\rho\left(\frac{\partial V}{\partial t} + U\frac{\partial V}{\partial x} + V\frac{\partial V}{\partial y} + W\frac{\partial V}{\partial z}\right) = -\frac{\partial P}{\partial y} + \rho g_y + \mu\left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}\right)$$

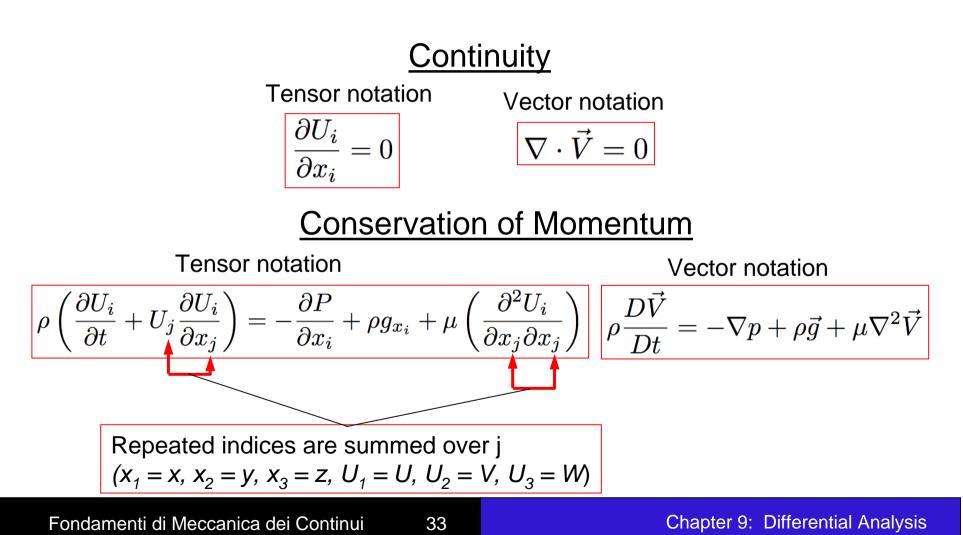
Z-momentum

$$\rho\left(\frac{\partial W}{\partial t} + U\frac{\partial W}{\partial x} + V\frac{\partial W}{\partial y} + W\frac{\partial W}{\partial z}\right) = -\frac{\partial P}{\partial z} + \rho g_z + \mu\left(\frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial y^2} + \frac{\partial^2 W}{\partial z^2}\right)$$

See page 431 for equations in cylindrical coordinates

Navier-Stokes Equation Tensor and Vector Notation

Tensor and Vector notation offer a more compact form of the equations.



Differential Analysis of Fluid Flow Problems

- Now that we have a set of governing partial differential equations, there are 2 problems we can solve
 - 1. Calculate pressure (*P*) for a known velocity field
 - Calculate velocity (*U*, *V*, *W*) and pressure (*P*) for known geometry, boundary conditions (BC), and initial conditions (IC)

Exact Solutions of the NSE

- There are about 80 known exact solutions to the NSE
- The can be classified as:
 - Linear solutions where the convective $(\vec{V} \cdot \nabla) \vec{V}$ term is zero
 - Nonlinear solutions where convective term is not zero

- Solutions can also be classified by type or geometry
 - 1. Couette shear flows
 - 2. Steady duct/pipe flows
 - 3. Unsteady duct/pipe flows
 - 4. Flows with moving boundaries
 - 5. Similarity solutions
 - 6. Asymptotic suction flows
 - 7. Wind-driven Ekman flows

Exact Solutions of the NSE

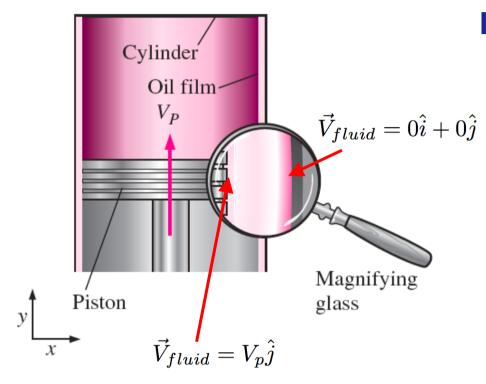
Procedure for solving continuity and NSE

- 1.Set up the problem and geometry, identifying all relevant dimensions and parameters
- 2.List all appropriate assumptions, approximations, simplifications, and boundary conditions
- 3.Simplify the differential equations as much as possible
- 4. Integrate the equations
- 5.Apply BC to solve for constants of integration6.Verify results

Boundary conditions

- Boundary conditions are critical to exact, approximate, and computational solutions.
- Discussed in Chapters 9 & 15
 - BC's used in analytical solutions are discussed here
 - No-slip boundary condition
 - Interface boundary condition
 - These are used in CFD as well, plus there are some BC's which arise due to specific issues in CFD modeling. These will be presented in Chap. 15.
 - Inflow and outflow boundary conditions
 - Symmetry and periodic boundary conditions

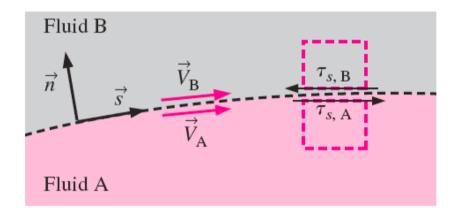
No-slip boundary condition



For a fluid in contact with a solid wall, the velocity of the fluid must equal that of the wall

$$\vec{V}_{fluid} = \vec{V}_{wall}$$

Interface boundary condition



When two fluids meet at an interface, the velocity and shear stress must be the same on both sides

$$ec{V}_A = ec{V}_B \qquad au_{s,A} = au_{s,B}$$

The latter expresses the fact that when the interface is in equilibrium, the sum of the forces over it is zero.

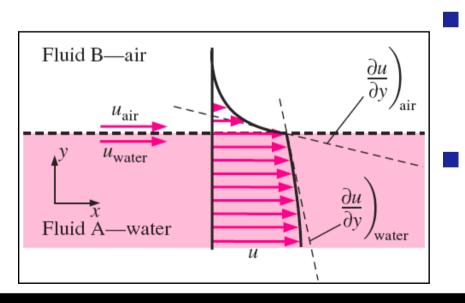
If surface tension effects are negligible and the surface is nearly flat:

$$P_A = P_B$$

Interface boundary condition

- Degenerate case of the interface BC occurs at the free surface of a liquid.
 - Same conditions hold $u_{air} = u_{water}$ $\tau_{s,water} = \mu_{water} \left(\frac{\partial u}{\partial y}\right)_{water} = \tau_{s,air} = \mu_{air} \left(\frac{\partial u}{\partial y}\right)_{air}$

40



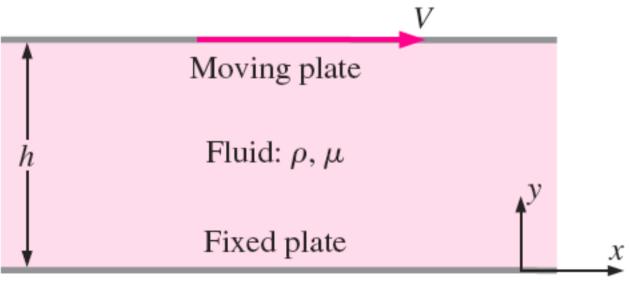
Since
$$\mu_{\text{air}} << \mu_{\text{water}}$$
, $\left(\frac{\partial u}{\partial y}\right)_{water} \approx 0$

As with general interfaces, if surface tension effects are negligible and the surface is nearly flat $P_{water} = P_{air}$

For the given geometry and BC's, calculate the velocity and pressure fields, and estimate the shear force per unit area acting on the bottom plate

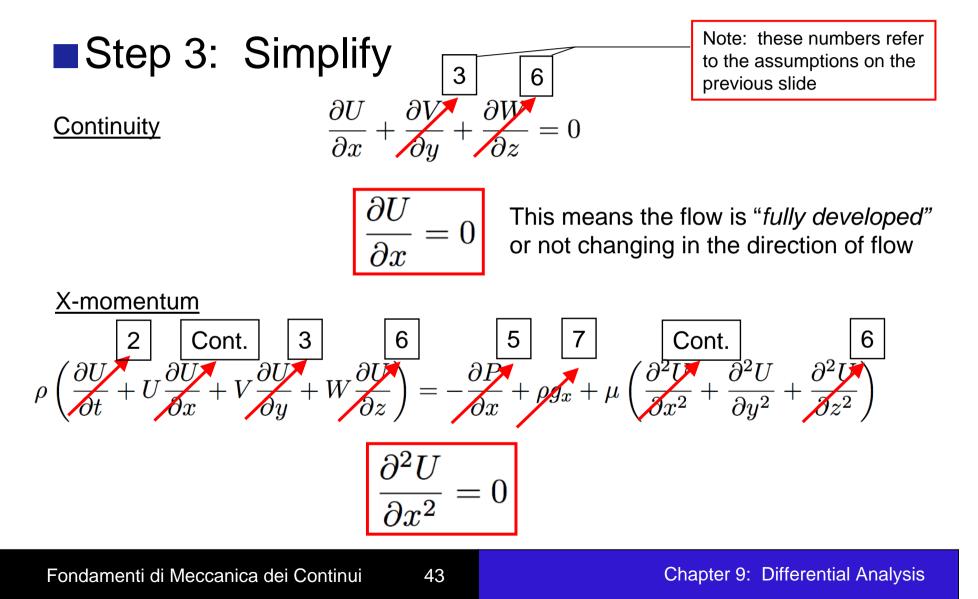
Step 1: Geometry, dimensions, and properties

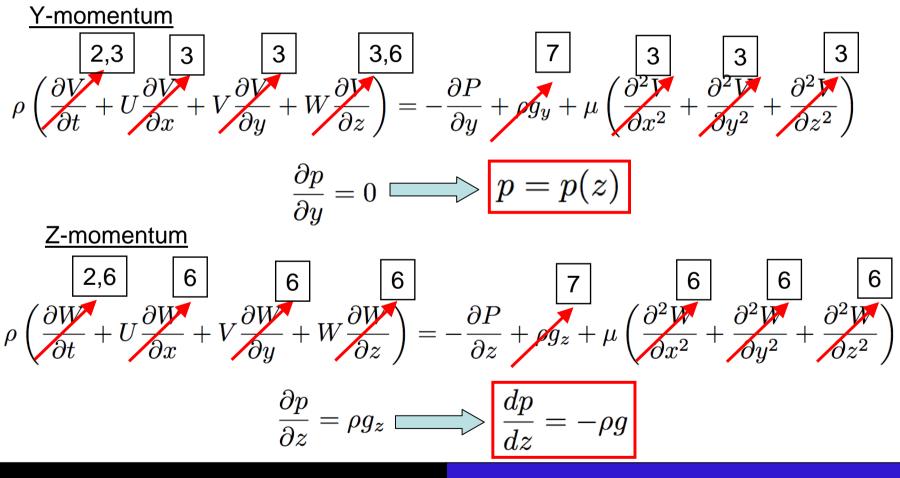
41



Step 2: Assumptions and BC's

- Assumptions
 - 1. Plates are infinite in x and z
 - 2. Flow is steady, $\partial/\partial t = 0$
 - 3. Parallel flow, the vertical component of velocity v = 0
 - 4. Incompressible, Newtonian, laminar, constant properties
 - 5. No pressure gradient
 - 6. 2D, w=0, $\partial/\partial z = 0$
 - 7. Gravity acts in the -z direction, $\vec{g} = -g\vec{k}, g_z = -g$
- Boundary conditions
 - 1. Bottom plate (y=0) : u = 0, v = 0, w = 0
 - 2. Top plate (y=h) : u = V, v = 0, w = 0

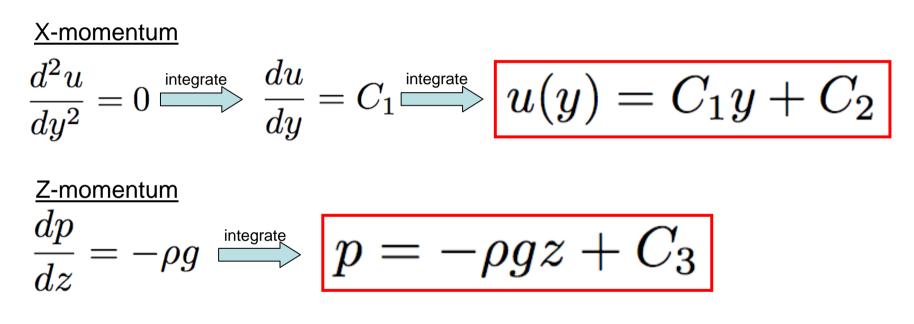




44

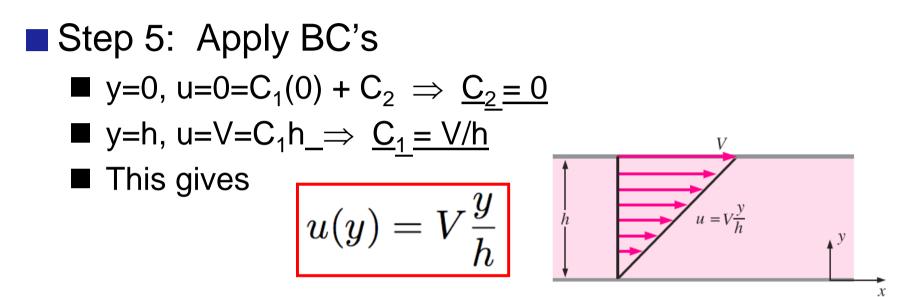
Chapter 9: Differential Analysis

Step 4: Integrate



45

(in fact the constant C_3 should - in general – be a function of y and z ...)



For pressure, no explicit BC, therefore C_3 can remain an arbitrary constant (recall only ∇P appears in NSE).

• Let
$$p = p_0$$
 at $z = 0$ (C_3 renamed p_0)

$$p(z)=p_0-
ho g z$$
 {1.

Hydrostatic pressure Pressure acts independently of flow

Step 6: Verify solution by back-substituting into differential equations

Given the solution (u,v,w)=(Vy/h, 0, 0)

$$\frac{\partial u}{\partial x} = 0, \frac{\partial v}{\partial y} = 0, \frac{\partial w}{\partial z} = 0$$

Continuity is satisfied

0 + 0 + 0 = 0

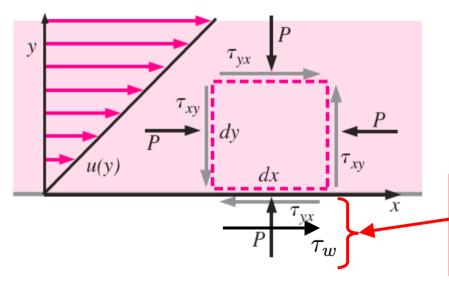
■ X-momentum is satisfied

$$\rho \left(\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + W \frac{\partial U}{\partial z} \right) = -\frac{\partial P}{\partial x} + \rho g_x + \mu \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} \right)$$
$$\rho \left(0 + V \frac{y}{h} \cdot 0 + 0 \cdot V/h + 0 \cdot 0 \right) = -0 + \rho \cdot 0 + \mu \left(0 + 0 + 0 \right)$$
$$0 = 0$$

Finally, calculate shear force on bottom plate

48

$$\tau_{ij} = \begin{pmatrix} 2\mu \frac{\partial U}{\partial x} & \mu \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \right) & \mu \left(\frac{\partial U}{\partial z} + \frac{\partial W}{\partial x} \right) \\ \mu \left(\frac{\partial V}{\partial x} + \frac{\partial U}{\partial y} \right) & 2\mu \frac{\partial V}{\partial y} & \mu \left(\frac{\partial V}{\partial z} + \frac{\partial W}{\partial y} \right) \\ \mu \left(\frac{\partial W}{\partial x} + \frac{\partial U}{\partial z} \right) & \mu \left(\frac{\partial W}{\partial y} + \frac{\partial V}{\partial z} \right) & 2\mu \frac{\partial W}{\partial z} \end{pmatrix} = \begin{pmatrix} 0 & \mu \frac{V}{h} & 0 \\ \mu \frac{V}{h} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$



Shear force per unit area acting on the wall

$$\frac{\vec{F}}{A} = \tau_w = \mu \frac{V}{h} \hat{i}$$

Note that τ_w is equal and opposite to the shear stress acting on the fluid τ_{yx} (Newton's third law).

Chapter 9: Differential Analysis