
Chapter 9:  Differential Analysis of 
Fluid Flow
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Objectives

1. Understand how the differential 
equations of mass and momentum 
conservation are derived.

2. Calculate the stream function and 
pressure field, and plot streamlines for a 
known velocity field.

3. Obtain analytical solutions of the 
equations of motion for simple flows.



Chapter 9:  Differential AnalysisFondamenti di Meccanica dei Continui            3

Introduction

Recall
Chap 5:  Control volume (CV) versions of the laws of 
conservation of mass and energy
Chap 6:  CV version of the conservation of momentum

CV, or integral, forms of equations are useful for 
determining overall effects
However, we cannot obtain detailed knowledge about 
the flow field inside the CV ⇒ motivation for differential 
analysis
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Introduction

Example:  incompressible Navier-Stokes 
equations

We will learn:
Physical meaning of each term
How to derive
How to solve
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Introduction

For example, how to solve?
Computational Fluid Dynamics

(Chapter 15)

6

5

4

3

2

1

Step

Verify and plot resultsVerify and plot results

Apply I.C.’s and B.C.’s to solve 
for constants of integration

Solve algebraic system of 
equations including I.C.’s and 
B.C’s

Integrate equations

Build grid / discretize PDE’sSimplify PDE’s

List all assumptions, approximations, simplifications, boundary 
conditions

Setup Problem and geometry, identify all dimensions and 
parameters

Analytical Fluid Dynamics
(Chapter 9)
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Conservation of Mass

Recall CV form (Chap 5) from Reynolds 
Transport Theorem (RTT)

We’ll examine two methods to derive 
differential form of conservation of mass

Divergence (Gauss) Theorem
Differential CV and Taylor series expansions
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Conservation of Mass
Divergence Theorem

Divergence theorem allows us to 
transform a volume integral of the 
divergence of a vector into an area integral 
over the surface that defines the volume.
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Conservation of Mass
Divergence Theorem

Rewrite conservation of mass

Using divergence theorem, replace area integral 
with volume integral and collect terms

Integral holds for ANY CV, therefore:



Chapter 9:  Differential AnalysisFondamenti di Meccanica dei Continui            9

Conservation of Mass
Differential CV and Taylor series

First, define an 
infinitesimal control 
volume dx x dy x dz
Next, we approximate the 
mass flow rate into or out 
of each of the 6 faces  
using Taylor series 
expansions around the 
center point    , e.g., at 
the right face

Ignore terms higher than order dx
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Conservation of Mass
Differential CV and Taylor series

Infinitesimal control volume
of dimensions dx, dy, dz Area of right

face = dy dz

Mass flow rate through
the right face of the 
control volume
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Conservation of Mass
Differential CV and Taylor series

Now, sum up the mass flow rates into and out of 
the 6 faces of the CV

Plug into integral conservation of mass equation

Net mass flow rate into CV:

Net mass flow rate out of CV:
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Conservation of Mass
Differential CV and Taylor series

After substitution,

Dividing through by volume dxdydz

Or, if we apply the definition of the divergence of a vector

y z

zy
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Conservation of Mass
Alternative form

Use product rule on divergence term
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Conservation of Mass
Cylindrical coordinates

There are many problems which are simpler to solve if 
the equations are written in cylindrical-polar coordinates
Easiest way to convert from Cartesian is to use vector 
form and definition of divergence operator in cylindrical 
coordinates
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Conservation of Mass
Cylindrical coordinates
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Conservation of Mass
Special Cases

Steady compressible flow

Cartesian

Cylindrical

zy
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Conservation of Mass
Special Cases

Incompressible flow

Cartesian

Cylindrical

and ρ = constant 

zy
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Conservation of Mass

In general, continuity equation cannot be 
used by itself to solve for flow field, 
however it can be used to 

1. Determine if velocity field is incompressible
2. Find missing velocity component
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The Stream Function

Consider the continuity equation for  an 
incompressible 2D flow

Substituting the clever transformation

Gives

This is true for any smooth
function ψ(x,y)

y
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The Stream Function

Why do this?
Single variable ψ replaces (u,v).  Once ψ is 
known, (u,v) can be computed.
Physical significance
1. Curves of constant ψ are streamlines of the flow
2. Difference in ψ between streamlines is equal to 

volume flow rate between streamlines
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The Stream Function
Physical Significance

Recall from Chap. 4 that 
along a streamline

∴ Change in ψ along 
streamline is zero
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The Stream Function
Physical Significance

Difference in ψ between 
streamlines is equal to 
volume flow rate between 
streamlines
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Conservation of Linear Momentum

Recall CV form from Chap. 6

Using the divergence theorem to convert area 
integrals

Body 
Force

Surface 
Force

σij = stress tensor
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Conservation of Linear Momentum

Substituting volume integrals gives,

Recognizing that this holds for any CV, 
the integral may be dropped

This is Cauchy’s Equation
Can also be derived using infinitesimal CV and Newton’s 2nd Law (see text)
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Conservation of Linear Momentum

Alternate form of the Cauchy Equation can be 
derived by introducing

Inserting these into Cauchy Equation and 
rearranging gives

(Chain Rule)
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Conservation of Linear Momentum

Unfortunately, this equation is not very 
useful

10 unknowns
Stress tensor, σij : 6 independent components
Density ρ
Velocity, V : 3 independent components

4 equations (continuity + momentum)
6 more equations required to close problem!
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Navier-Stokes Equation

First step is to separate σij into pressure and 
viscous stresses

Situation not yet improved
6 unknowns in σij ⇒ 6 unknowns in τij + 1 in P, 
which means that we’ve added 1!

σ ij =
σ xx σ xy σ xz

σ yx σ yy σ yz

σ zx σ zy σ zz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=
−p 0 0
0 −p 0
0 0 −p

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 
+

τ xx τ xy τ xz

τ yx τ yy τ yz

τ zx τ zy τ zz

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞

⎠
Viscous (Deviatoric) 

Stress Tensor
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Navier-Stokes Equation

(toothpaste)

(paint)

(quicksand)

Reduction in the 
number of variables is 
achieved by relating 
shear stress to strain-
rate tensor.
For Newtonian fluid 
with constant 
properties

Newtonian fluid includes most common
fluids:  air, other gases, water, gasoline Newtonian closure is analogous

to Hooke’s law for elastic solids
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Navier-Stokes Equation

Substituting Newtonian closure into stress 
tensor gives

Using the definition of εij (Chapter 4) 

= _
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Navier-Stokes Equation

Substituting σij into Cauchy’s equation gives the 
Navier-Stokes equations

This results in a closed system of equations!
4 equations (continuity and momentum equations)
4 unknowns (U, V, W, p)

Incompressible NSE
written in vector form
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Navier-Stokes Equation

In addition to vector form, incompressible 
N-S equation can be written in several 
other forms

Cartesian coordinates
Cylindrical coordinates
Tensor notation
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Navier-Stokes Equation
Cartesian Coordinates

Continuity

X-momentum

Y-momentum

Z-momentum

See page 431 for equations in cylindrical coordinates
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Navier-Stokes Equation
Tensor and Vector Notation

Continuity

Conservation of Momentum
Tensor notation Vector notation

Vector notationTensor notation

Tensor and Vector notation offer a more compact form of the equations.

Repeated indices are summed over j
(x1 = x, x2 = y, x3 = z, U1 = U, U2 = V, U3 = W)
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Differential Analysis of Fluid Flow Problems

Now that we have a set of governing 
partial differential equations, there are 2 
problems we can solve

1. Calculate pressure (P) for a known velocity 
field  

2. Calculate velocity (U, V, W) and pressure 
(P) for known geometry, boundary 
conditions (BC), and initial conditions (IC)
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Exact Solutions of the NSE

Solutions can also be 
classified by type or 
geometry
1. Couette shear flows
2. Steady duct/pipe flows
3. Unsteady duct/pipe flows
4. Flows with moving 

boundaries
5. Similarity solutions
6. Asymptotic suction flows
7. Wind-driven Ekman flows

There are about 80 
known exact solutions 
to the NSE
The can be classified 
as:

Linear solutions 
where the convective      

term is zero

Nonlinear solutions 
where convective 
term is not zero



Chapter 9:  Differential AnalysisFondamenti di Meccanica dei Continui            36

Exact Solutions of the NSE

1.Set up the problem and geometry, identifying all 
relevant dimensions and parameters

2.List all appropriate assumptions, approximations, 
simplifications, and boundary conditions

3.Simplify the differential equations as much as 
possible

4.Integrate the equations
5.Apply BC to solve for constants of integration
6.Verify results

Procedure for solving continuity and NSE
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Boundary conditions

Boundary conditions are critical to exact, 
approximate, and computational solutions.
Discussed in Chapters 9 & 15

BC’s used in analytical solutions are discussed here
No-slip boundary condition
Interface boundary condition

These are used in CFD as well, plus there are some 
BC’s which arise due to specific issues in CFD 
modeling.  These will be presented in Chap. 15.

Inflow and outflow boundary conditions
Symmetry and periodic boundary conditions
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No-slip boundary condition

For a fluid in contact 
with a solid wall, the 
velocity of the fluid 
must equal that of the 
wall
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Interface boundary condition

When two fluids meet at an 
interface, the velocity and 
shear stress must be the 
same on both sides

The latter expresses the fact that 
when the interface is in equilibrium, 
the sum of the forces over it is zero.

If surface tension effects 
are negligible and the 
surface is nearly flat:
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Interface boundary condition

Degenerate case of the interface BC occurs at the free 
surface of a liquid.
Same conditions hold

Since µair << µwater, 

As with general interfaces, if surface 
tension effects are negligible and the 
surface is nearly flat Pwater = Pair
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Example exact solution (Ex. 9-15)
Fully Developed Couette Flow

For the given geometry and BC’s, calculate the velocity 
and pressure fields, and estimate the shear force per 
unit area acting on the bottom plate

Step 1:  Geometry, dimensions, and properties
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Example exact solution (Ex. 9-15)
Fully Developed Couette Flow

Step 2:  Assumptions and BC’s
Assumptions
1. Plates are infinite in x and z
2. Flow is steady, ∂/∂t = 0
3. Parallel flow, the vertical component of velocity v = 0
4. Incompressible, Newtonian, laminar, constant properties
5. No pressure gradient
6. 2D, w=0, ∂/∂z = 0
7. Gravity acts in the -z direction, 

Boundary conditions
1. Bottom plate (y=0) : u = 0, v = 0, w = 0
2. Top plate (y=h) : u =V, v = 0, w = 0
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Example exact solution (Ex. 9-15)
Fully Developed Couette Flow

Step 3:  Simplify 3 6

Note:  these numbers refer
to the assumptions on the 
previous slide

This means the flow is “fully developed”
or not changing in the direction of flow

Continuity

X-momentum
2 Cont. 3 6 5 7 Cont. 6
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Example exact solution (Ex. 9-15)
Fully Developed Couette Flow

Step 3:  Simplify, cont.
Y-momentum

2,3 3 3 3,6 7 3 33

Z-momentum

2,6 6 6 6 7 6 66
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Example exact solution (Ex. 9-15)
Fully Developed Couette Flow

Step 4:  Integrate

Z-momentum

X-momentum

integrate integrate

integrate

(in fact the constant C3 should - in general –
be a function of y and z …)
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Example exact solution (Ex. 9-15)
Fully Developed Couette Flow

Step 5:  Apply BC’s
y=0, u=0=C1(0) + C2 ⇒ C2 = 0
y=h, u=V=C1h ⇒ C1 = V/h
This gives

For pressure, no explicit BC, therefore C3 can remain 
an arbitrary constant (recall only ∇P appears in 
NSE).

Let p = p0 at z = 0 (C3 renamed p0)
1. Hydrostatic pressure
2. Pressure acts independently of flow
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Example exact solution (Ex. 9-15)
Fully Developed Couette Flow

Step 6:  Verify solution by back-substituting into 
differential equations

Given the solution (u,v,w)=(Vy/h, 0, 0)

Continuity is satisfied
0 + 0 + 0 = 0

X-momentum is satisfied
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Example exact solution (Ex. 9-15)
Fully Developed Couette Flow

Finally, calculate shear force on bottom plate

Shear force per unit area acting on the wall 

Note that τw is equal and opposite to the 
shear stress acting on the fluid τyx
(Newton’s third law).


