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Abstract

For the last two decades, gas turbine producers have faced the problem
of combustion instabilities - strong combustion-driven pressure fluctuations.
Such pressure oscillations can lead to heavy damage of gas turbines. Despite
the enormous work done in this field, the problem of the occurrence of such in-
stabilities is still not fully understood and has to be investigated. In particular,
tools to predict combustion instabilities are in high demand.

A three-step approach to predict combustion instabilities in gas turbines
is proposed in this work. The first step is to compute the heat release re-
sponse of the burner to the velocity excitation at various frequencies and am-
plitudes. To accomplish this task, Unsteady Reynolds-Averaged Navier-Stokes
(URANS) simulations are performed with a Flame Speed Closure (FSC) model
implemented in the OpenFOAM environment. To compute the heat release
response to small-amplitude excitations, the setup is excited with the broad-
band signal and a Wiener-Hopf inversion is performed. The second step is to
approximate the computed heat release response with a time-lag distributed
flame model. The third step is to model closed loop thermoacoustic phenom-
ena with a low-order network model. The network model is implemented in
a Simulink environment and simulations in the time domain are performed.
The time domain simulations with the time-lag distributed flame model al-
low computing both frequencies and amplitudes of pressure oscillations in a
straightforward way.

The three-step approach is first applied to a laboratory test rig. The time-
lag distributed flame model presented in the literature for low-amplitude ex-
citation is extended to high-amplitude excitation. Dependencies of the model
parameters on the amplitude of the excitation are calculated and justified.
The stability prediction approximates well the available experimental data.
The unstable acoustic mode of the setup is associated with the unsteady heat
release; this acoustic mode would not appear in the absence of unsteady heat
release. The dependencies of the computed mode on the acoustic character-
istics of the setup are addressed. A dependence of the unstable mode on the
amplitude of the acoustic oscillations is observed and explained.

Then, the three-step approach is applied to an industrial test rig. URANS
simulations with the FSC model are conducted and the heat release response
to the acoustic excitation at different amplitudes is calculated. The computed
heat release response is approximated with a time-lag distributed model for
technically-premixed swirl-stabilised flames. The response of the technically-
premixed swirl-stabilised flames to excitations is characterised by a more com-
plicated physics than for perfectly-premixed flames. However, if certain con-
ditions are met, the heat release response of the technically-premixed flames
can be modelled by fewer parameters than the perfectly premixed flames. De-
pendencies of the flame model parameters on the excitation amplitude are
computed and justified. Several flame models are presented for this setup.
Results of the stability analysis in the network model with one of the flame
models agree with the experimental analysis both in terms of the unstable
frequency and its amplitude.
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Chapter 1

Introduction to the problem

1.1 The gas turbine

The gas turbine is an internal combustion engine of continuous action in which
energy of compressed heated gas is transformed into rotating energy of a shaft.
The main gas turbine components are the compressor, the combustion chamber
and the turbine (see Fig. 1.1). Nowadays, gas turbines are widely used in
aeronautics as aircraft engines, in marine for propulsion, for mechanical and
electrical power generation.

The processes which occur in a gas turbine can be described by the Bray-
ton cycle and are schematically shown in Fig. 1.2. First, the working fluid,
usually air, is compressed in the compressor following the path 1-2 (see Fig. 1.3
and 1.4). Then, air is mixed with the fuel in the combustion chamber and is
burnt there. Energy in the form of heat, Q2−3, is supplied to the working fluid
during the isobaric process 2-3. After the combustion chamber, the working
fluid (now combustion products) is directed to the turbine (step 3-4). There,
heated compressed gas enters the nozzle guide vanes channels, where a part of
the internal energy is transformed into kinetic energy of the flow [15]. Then,
the flow acts on the rotating blades and produces torque on the turbine shaft.
After the turbine, the fluid at atmospheric pressure is either directed to the
atmosphere or can be further used as a source of energy in the form of heat
Q4−1. The processes 1-2 and 3-4 are isentropic in the idealised case and adi-
abatic in general. Part of the rotating energy of the turbine shaft is given to
the compressor; another part is the effective work of the gas turbine. It can
be further used as a source of mechanical work or to produce electric energy
if an electric generator is connected.

Processes that take place in the combustion chamber are discussed in this
work.

1.2 Combustion and flame types

The following definition of combustion was given by Frank-Kamenetskii [16]:
’chemical reaction in conditions of progressing self-acceleration connected to
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1. Introduction to the problem

Figure 1.1: Gas turbine main components shown on the example of an Ansaldo
Energia gas turbine.

Figure 1.2: Scheme of open Brayton cycle.
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1.2. COMBUSTION AND FLAME TYPES

Figure 1.3: Brayton cycle in the p-V diagram.

Figure 1.4: Brayton cycle in the T-s diagram.
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1. Introduction to the problem

heat accumulation or catalysing reaction products’. Combustion can be di-
vided into four categories: perfectly premixed, technically premixed, partially
premixed, and diffusion [17] (see Fig. 1.5).

Conversion of reactants into combustion products can be described by an
overall unique one-step reaction of the form

ν ′FF + ν ′OO → ν ′′PP, (1.1)

where ν ′F , ν ′O and ν ′′P are numbers of moles of fuel F , oxidizer O and combus-
tion products P , respectively. The mass fractions of fuel YF and oxidizer YO
correspond to the stoichiometric condition when(

YO
YF

)
st

=
ν ′OWO

ν ′FWF

= s, (1.2)

where WO and WF are molecular weights of oxidizer and fuel, respectively, and
s is the stoichiometric ratio. The equivalence ratio φ is then

φ = s

(
YF
YO

)
=

(
YF
YO

)
/

(
YF
YO

)
st

. (1.3)

It can be also recast as

φ = s

(
ṁF

ṁO

)
, (1.4)

where ṁF and ṁO are mass flow rates of fuel and oxidizer, respectively.
Let us consider each type of combustion shown schematically in Fig. 1.5.

Diffusion combustion is characterised by mixing of the fuel and the oxidizer
directly in the region where the combustion occurs. Mixing of reactants is the
main factor that regulates the process of diffusion combustion. Combustion
occurs in the limited region where the fuel and the oxidizer are close to the
stoichiometric ratio. Around this zone, there are regions of rich and lean mix-
ture. As opposed to premixed combustion, a diffusion flame cannot propagate
contrary to the flow. It is easier to design equipment with diffusion combustion
and they are considered to be safer. However, such combustion is less effective
than the premixed combustion, since the speed of chemical reactions is limited
by the speed of the mixing. In modern gas turbine engines, this combustion
is usually used to stabilise the main flame and during the engine start. The
main drawback of diffusion combustion is the inability to control the combus-
tion temperature and NOX emissions since the maximum temperature always
remains in the zone of stoichiometry mixing where NOX emissions are mainly
formed. The idealised structure of a one-dimensional diffusion flame is shown
in Fig. 1.6.

In contrast to a diffusion flame, during premixed combustion fuel and ox-
idizer are mixed before they enter the combustion region. Schematically, pre-
mixed combustion is shown in Fig. 1.7 for idealised one-dimensional combus-
tion. It is characterised by a gas temperature increase along the abscissa from
the minimum temperature of the reactants to the maximum temperature of
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(a)

(b)

(c)

(d)

Figure 1.5: Perfectly premixed (a), technically premixed (b), partially pre-
mixed (c), and diffusion (d) flames.
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Figure 1.6: Diffusion flame structure [1].

Figure 1.7: Premixed flame structure [1].

the products. A flame front defined as the region of significant temperature
change consists of two main parts. In the first preliminary zone, heat and
mass diffusions are most intense and chemical reactions are not yet initiated.
In the reaction zone, the reaction speed rapidly increases and then decreases;
in this region, chemical processes dominate on the diffusion processes. After
the reaction zone, there is a zone of after-burning with negligible heat due to
slow reactions occurring at the high temperatures reached in the reaction zone.

These are the principles formulated by Zeldovich, Frank-Kamenetskii and
von Karman (ZFK) for the premixed flame description [17]:

• the reaction zone is located in the high-temperature zone and has the
temperature close to the temperature of the combustion products;

• the thickness of the reaction zone is an order of magnitude lower than
the flame front thickness for the stoichiometric mixture;

• the flame front propagates towards the reactants;
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1.3. FLASHBACK, BLOW-OFF AND FLAME STABILISATION

• the maximum temperature of combustion is equal to the adiabatic tem-
perature of chemical reaction and can be estimated independently of the
theory of flame propagation.

At a relatively low exit velocity a turbulent jet diffusion diffusion flame is
attached to the nozzle (see Fig. 1.5(d)). When the exit velocity is increased,
the flame sheet gets stretched. At certain flow velocity it is disrupted, lifts
off and stabilise itself downstream the jet [18]. Such flame is called partially
premixed and is schematically shown in Fig. 1.5(c).

A technically premixed flame could be considered as particular case of the
perfectly premixed flame. Perfectly premixed combustion is a combustion in
which fuel-oxidizer ratio in reactants mixture is unaffected by acoustic os-
cillations. On the contrary, fuel-oxidizer ratio is affected by eventual acoustic
fluctuations in the technically premixed combustion (see Fig. 1.5). In this work
setups with perfectly and technically premixed combustion are considered.

1.3 Flashback, blow-off and flame stabilisation

Machines which operate using premixed combustion are vulnerable to such
undesirable phenomena as flashback and blow-off that should be avoided at
the design stage.

Flashback describes the upstream propagation of a premixed flame into a
region not designed for the flame to exist [4] and can occur due to several
reasons:

• the flame speed exceeds the average axial flow velocity;

• flame propagation in the high-velocity core flow (see Fig. 1.8(a));

• flashback in the boundary layer (see Fig. 1.8(b));

• flashback due to combustion instabilities.

The flashback occurrence strongly depends on fuel-oxidizer composition, op-
erating pressure and temperature, and fluid mechanics. Flashback induced by
a combustion instability occurs when the instantaneous axial flow velocity de-
creases to low, or even negative, values during large-amplitude oscillations [19].
In fact, the flashback is often the mechanism through which combustion insta-
bilities damage combustion systems.

The blow-off phenomenon strongly depends on the flame stabilisation tech-
nique which, thus, should be considered first. There are different techniques
to stabilise the flame in high-velocity flows; the most common of them are

1. usage of pilot flames;

2. usage of bluff-body, Fig. 1.9(a);

3. sudden area increase as in Fig. 1.9(b);
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Figure 1.8: Experimental images of flame flashback in (a) core flow and (b)
boundary layer. Images from (a) Kröner et al. [2] and (b) Heeger et al. [3],
adapted by Lieuwen [4].

Figure 1.9: Illustration of flames stabilised by (a) a bluff body, (b) a backward-
facing step, and (c) a swirling flow [4].

4. swirling the flow [20], Fig. 1.9(c).

In the second and the third case (Fig. 1.9(a), (b)), flames are stabilised in
the low-velocity, high-shear regions of flow separation. In the fourth case
(Fig. 1.9(c)), the flame is stabilised by a rapidly diverging jet. Basically, the
flame is stabilised in the region where flame velocity and flow velocity are
equal. Flames stabilised in shear layers reside in regions of very strong flow
gradients and are highly stretched. In many combustors, both bluff-bodies,
area increase and swirlers are used.

Three main types of swirlers - axial, diagonal and radial - are shown in
Fig. 1.10. In an axial swirler the flow is supplied to the swirler in the direction
of the swirler axis; scheme of axial swirler is shown in Fig. 1.10(a). The flow
is supplied to the radial swirler radially; radial swirler is schematically shown
in Fig. 1.10(c). Diagonal swirler has an intermediate air supply between axial
and radial swirlers; it is schematically shown in Fig. 1.10(b).

Blow-off is referred to a condition under which the flame cannot be sta-
bilised and is convected downstream by the flow [4]. It is an important issue
in any practical combustion device, as it imposes fundamental operational
boundaries on the combustor (see Fig. 1.11).

Determining flame stabilisation locations is also an important problem, as
flames can exhibit fundamentally different shapes and lengths in situations in
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(a)

(b) (c)

Figure 1.10: Types of flow swirlers: (a) axial, (b) diagonal, and (c) radial.

Figure 1.11: Flame blow-off in the SR-71 during a high-acceleration manoeu-
vre [5].

27



1. Introduction to the problem

Figure 1.12: Basic flame configurations possible for an annular, swirling flow
geometry [4].

which multiple stabilisation points exist. For example, Fig. 1.12 illustrates
four possible premixed flame configurations in an annular, swirling combustor
arrangement. In a low-velocity flow, configuration (d) is typically observed.
However, the flame can exhibit one of the other three shapes if it cannot
stabilise in either the inner or the outer shear layer. For example, if the flame
cannot anchor in the outer shear layer, the configuration (d) will bifurcate
to the configuration (c). If it cannot anchor in the inner shear layer, the
configuration (c) may bifurcate to the configuration (a). These shifts in flame
location can be thought of as a sequence of local blow-off events. Blow-off
occurs when no stabilisation of the flame is possible.

The location/spatial distribution of the flame in a combustion chamber is
a fundamental problem that has important ramifications on combustor’s op-
eration, durability, and emissions. For example, the flame location has an
important influence on the stability boundary of combustion [4]. Combus-
tor stability limits are controlled by the time delay between the creation of
a fuel/air ratio disturbance (or vortex) and the moment it reaches the flame.
This time delay is much longer for configurations (a) and (c) than for (b) and
(d). This also illustrates that sudden changes in the combustor stability be-
haviour may occur when the flame abruptly bifurcates from one configuration
to another.

1.4 Combustion instabilities phenomena

The history of thermoacoustic investigations dates back more than 150 years.
The first thermally driven acoustic oscillations were observed by Rijke in
1859 [21]. In the experiments performed by Rijke, a vertical tube open at
both ends was used. A metal wire gauze was placed in the tube at around a
quarter of the tube length from its bottom. First, the gauze was heated by a
flame until it became glowing red hot. After that, the flame was removed and
a loud sound from the tube could be heard to last for a few seconds, before
the gauze became cool [6].

The phenomena observed by Rijke was explained later as follows. Sound

28



1.4. COMBUSTION INSTABILITIES PHENOMENA

Figure 1.13: Explanation of the physical mechanism within the Rijke tube [6].

is produced by a standing wave with the half wavelength equal to the length
of the tube, i.e. the fundamental frequency of the tube. The cycle of acoustic
oscillations could be divided into two parts. During the first half of the period
the air is pushed from both ends outside the tube, thus the pressure in the
tube is decreasing (see Fig. 1.13). In particular, the air that passes through
the gauze from the middle of the tube towards its bottom is already heated,
thus no additional energy is supplied to the air. During the second half of the
cycle, the air is pushed inside the tube from both ends, yielding an increase
of the pressure in the tube. The cold air that passes from the bottom of the
tube to the middle of the tube through the gauze is heated by the gauze. This
makes the temperature of the air rise and, in turn, it locally increases the
pressure. Because the temperature rise occurs when the pressure in the tube
is increasing, additional acoustic energy is supplied to the system, maintaining
acoustic oscillations.

In the 1950’s the thermoacoustic phenomenon was observed in liquid pro-
pellant rocket engines [22]. At that time pressure oscillations were driven by
combustion and were called combustion instabilities. These pressure oscilla-
tions could display very high amplitudes, decreasing the power of the rocket
engine and sometimes even be destructive for the engine. It is difficult to un-
derstand the reason of the occurrence of combustion instabilities because of
the presence of various complicated phenomena such as the hydrodynamics
of the injection, the spray formation process, the transport characteristics of
individual droplets, the turbulent multiphase flow conditions, and the complex
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Figure 1.14: Transition piece damaged by combustion instability [7].

chemical phenomena taking place in a turbulent environment. Oefelein and
Yang [23] give an extensive overview of the enormous amount of work done in
the period 1962-1966 to suppress combustion instabilities in the F-1 engines
installed on the Saturn-V rockets used in the US Apollo moon programme.
Despite a lot of work done so far both analytically, experimentally and nu-
merically, the thermoacoustic problem is still not fully understood and still
occures in rocket engines (see Sirignano [24]).

In the 1990’s, the problem of undesirable destructive pressure oscillations
arose again, this time in gas turbines. Gas turbines manufacturers were forced
to reduce NOx emissions into the atmosphere. Molecules of NOx are mainly
formed in gas turbines by the thermal mechanism in the high-temperature
zones of combustion by the oxidation of the diatomic nitrogen in combus-
tion air, as was shown first by Zeldovich [25] and then extended by Lavoie et
al. [26]. One of the main approaches to decrease thermal NOx emissions is to
lower combustion temperature by operating under lean conditions. However,
gas turbines operating in the lean combustion regime are prone to combus-
tion instabilities [27, 28]. Pressure oscillations can cause serious damage to
combustion hardware, see Figs. 1.14-1.16.

It is difficult to describe the thermoacoustic problem in gas turbines com-
bustion chambers because it involves chemical reactions, flow turbulence, heat
release and propagation of acoustic waves. Combustion instabilities in gas tur-
bines are usually seen as a coupling between unsteady combustion, acoustics
of combustion chamber and turbulent flow (see Fig. 1.17). Unsteady flame
heat release acts as a monopole acoustic source and produces acoustic waves.
In turn, the waves influence the mass flow rate of the air-fuel mixture that
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Figure 1.15: Combustion liner damaged by combustion instability [8].

Figure 1.16: New burner assembly (left) and burner assembly damaged by
combustion instability (right) [8].
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Figure 1.17: Scheme of a combustor as a thermoacoustic system.

goes to combustion and the stoichiometry of this mixture. Mass flow fluc-
tuations themselves also contribute to perturbations of the equivalence ratio
of the mixture. Equivalence ratio fluctuations and mass flow perturbations
produce heat release fluctuations through the kinematic response and the loop
repeats. Apart from acoustic waves, heat release oscillations produce also en-
tropy waves that are convected to the outlet of the combustion chamber with
the flow. When entropy perturbations pass through a nozzle that is typically
placed at the outlet of combustor systems, they produce acoustic waves, as
was noted by Marble and Candel [29].

1.5 Prediction of thermoacoustic instabilities:

state of the art

There are different approaches to study combustion instabilities as well as dif-
ferent ways to classify these approaches. Thermoacoustic phenomena could be
studied experimentally, analytically, performing numerical and semi-analytical
simulations. Performing experimental thermoacoustic analysis in gas turbines
requires both large expenditures for the construction of experimental test rig
and operating expenses for running test campaigns. In this case, a very precise
and reliable information could be obtained but the cost of the final product -
the gas turbine - might be significantly augmented. So far, the completely ex-
perimental thermoacoustic analysis was applied to rocket engines used in space
programmes (see Oefelein and Yang [23]). On the other hand, it is possible to
perform completely analytical or semi-analytical thermoacoustic analyses, as
done for example by Dowling and Stow [30]. In between, there are various nu-
merical approaches. These approaches are usually considered to yield results
close to those of the experimental analyses, but are cheaper and require fewer
efforts.

CFD analysis

There are different approaches to perform complete simulations of the un-
steady flame-acoustic interaction of combustion systems. This means perform-
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ing unsteady Computational Fluid Dynamics (CFD) simulations of the whole
thermoacoustic system. They are Unsteady Reynolds-averaged Navier-Stokes
(URANS) simulations, Large Eddy Simulations (LES) and Direct Numerical
Simulations (DNS) [1]. These methods differ by the range of turbulent scales
that are modeled versus those that are resolved. DNS resolves the entire range
of turbulent length scales, thus this method gives the highest possible preci-
sion. Using the LES technique, the smallest scales of the turbulent flow are
modelled, while the largest and most important scales are resolved. In the
URANS approach, all the turbulent scales are modelled, which makes it com-
putationally the less expensive approach. The price of the DNS precision is
the computational cost that depends cubically on the Reynolds number of the
flow under consideration. Because of its high cost, DNS methods up to now
have been applied only to simulate closed-loop combustion-acoustic interac-
tion of laminar flames with very small computational domain [31, 32]. The
LES was recently used to analyse the onset of thermoacoustic instabilities in a
laboratory-scale combustor [33], a self-excited azimuthal mode in a helicopter
combustion chamber [34], and transverse and radial modes in a liquid rocket
engine [35]. LES methods give very good precision and continuous improve-
ment of High-Performance Computing clusters computational capabilities will
make its use more common. Nevertheless, nowadays it still remains computa-
tionally expensive. This is the reason for the use of URANS CFD calculations
in this work. A detailed description of the URANS method is presented in
section 2.1.1.

Decoupled analysis

Since the thermoacoustic problem is a multiscale phenomenon, in most ther-
moacoustic studies combined approaches are employed. This means that the
analysis of turbulent reacting flow is conducted apart from the acoustic anal-
ysis, and it is done for the sake of reducing the computational time. Length
scales of low-frequency acoustic oscillations, as the ones studied in this work,
are often considered to be much larger than chemical and turbulent scales. This
makes possible to perform simulations of turbulent combustion and acoustics
separately, using different tools. This decoupling is artificial but it helps to
simplify the analysis. The heat response to acoustic and stoichiometry pertur-
bations is usually computed experimentally [36, 37, 38] or numerically [9, 39]
performing unsteady analysis and is the input for the network model. Because
of the high costs, difficulties and uncertainties of the experimental heat re-
sponse computation [40], CFD methods are widely used now. For the acoustic
analysis, either network models, Computational Acoustics (CA) or Computa-
tional Aero-Acoustics (CAA) methods are employed.

Acoustic network models

The analysis of linear waves is made easier when the cross-section dimen-
sion of the combustor is small compared with the acoustic wavelength [41].
Then, acoustic modes with variations across the cross-sectional are ’cut-off’,
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decaying with the axial position rather than propagating, and variations of
the acoustic waves across the cross-section can be neglected. This leads to
plane waves in a cylindrical combustor and axial and circumferential waves in
an annular combustor. The frequencies of interest for combustion instabilities
in gas turbines are sufficiently low that this is often a good approximation.
Then, the linear wave equations can be solved semi-analytically by a network
approach [42, 43, 44, 45]. This enables physical insight into important mecha-
nisms. The setup is divided into a set of ducts with constant cross-section and
constant thermophysical properties. Acoustic waves propagate along the ducts
and are connected between neighboring ducts through transfer matrices [46].
The Green’s function approach introduced by Heckl [47] is similar to the net-
work model approach. The flame is modelled in the network model as one or
as a number of compact heat sources [48]. Because of its relatively simple de-
scription, the network model approaches can be considered as semi-analytical.

Helmholtz equation, Linearized Euler Equations, and Linearized
Navier-Stokes Equations

The following groups of analyses are the Computational Acoustics and Com-
putational Aero-Acoustics methods. Both of these approaches are applicable
to complex three-dimentional geometries of gas turbines combustion systems.
The CA approach solves the inhomogeneous Helmholtz equation using e.g.
the Finite Element Method (FEM) (see Camporeale et al. [49]). In this ap-
proach, mean flow and viscous effects on the acoustic field are neglected. In
the CAA approach either the Linearized Euler Equations (LEE) [50, 51] or the
Linearized Navier-Stokes Equations (LNSE) are resolved [51]. Both the LEE
and the LNSE approaches take into account the mean flow. The difference
between the two approaches is that LEE neglects viscous effects, while LNSE
takes them into consideration. Despite its simplifications, various Helmholtz
solvers are widely used in the industrial setting to forecast combustion insta-
bilities.

Frequency-domain versus time-domain analysis

Numerical tools for thermoacoustic analysis can be divided in another way
into two large groups: frequency domain analyses [49, 52] and time domain
simulations [53, 54]. The first type of analysis is usually used in the linear
setting, i.e. to predict whether the setup is linearly stable or not [49]. It
can also be used to predict the amplitude of unstable pressure fluctuations.
To accomplish this task, Silva et al. [55] propose to perform simulations for
each amplitude of acoustic oscillations that is characterised by its own Flame
Transfer Function (FTF). The value of acoustic oscillations amplitude that
corresponds to zero growth rate is considered as the amplitude of saturated
oscillations. The procedure requires performing a set of several simulations
with different FTFs. On the contrary, using the time-domain analysis unstable
frequencies and their amplitudes are computed straightforwardly.
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Figure 1.18: Different types of analysis [9].

Moreover, a reliable analysis in the frequency domain requires knowledge
of the heat release response to acoustic and stoichiometry perturbations not
only on various real but also on different imaginary frequencies. In order to
calculate the FTF dependence on the real and imaginary frequencies, first the
FTF dependence on the real frequencies is computed either experimentally or
numerically performing periodic excitation. Then, the time-domain represen-
tation of the FTF – the Unit Impulse Response (UIR) is calculated from the
FTF depending on the real frequencies (see Fig. 1.18). Another way of the
UIR numerical calculation is using a broadband excitation and a Wiener-Hopf
inversion for the UIR reconstruction. Afterwards, the FTF dependence on
both the real and imaginary frequencies can be calculated from the UIR.

It is possible to assume that imaginary parts of complex frequencies ωimag
are small and perform the frequency-domain analysis taking the first FTF (ωreal)
(see Fig. 1.18). This is done for example in various numerical tools which solve
Helmholtz equation. So-called state-space models [56] use the last FTF (ωreal+
iωimag) to perform stability analysis in the frequency domain. The taX net-
work model [57], the Ta3 network model [42, 45], and the Green’s function
approach [47, 58, 59] are examples of state-space model. Meanwhile, in time-
domain simulations, the UIR from the second step is taken and simulations
are straightforward.

Flame Transfer Function modelling

Lastly, thermoacoustic analyses can be differentiated in the way the heat re-
lease response to acoustic excitations (or excitations of equivalence ratio) is
inserted either in a network model or in a CA solver.

1. The easiest way is to model the unsteady heat release as a compact
element – a point in an acoustic network model or a thin sheet in a CA
solver. This is usually an acceptable assumption since the flame length
is much lower than the wavelength of low frequencies of interest. The
FTF can be modelled with Crocco’s n− τ model [60]

FTF (ω) = n(ω)e−iωτ(ω), (1.5)

where n is the interaction index, i is the imaginary unit, ω is the angular
frequency, and τ is the time delay. This FTF representation is called
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”Global FTF”. Once the FTF is computed either experimentally or
numerically, the dependencies of n and τ on ω are known. Then, one
frequency is considered and simulations in a network model or a CA
solver are performed with n and τ specific for the considered frequency
to determine the stability of the thermoacoustic system at this frequency.
This procedure is repeated for each frequency of interest. It is possible to
use this approach both in network model [30] analysis and in CA/CAA
analyses [61]. Despite its simplicity, the drqwback of this method is the
requirement of performing a large number of simulations.

2. Kim et al. [48] proposed to use several unsteady heat releases in the
network model. For this objective they divided the flame zone in several
sections and measured the interaction index n and the time delay τ (see
Eq. 1.5) for each zone for the frequencies of interest. Then, unsteady
heat release is presented in the network model as the set of compact
elements each with its own n(ω) and τ(ω). This FTF representation is
called ”Local FTFs”. Kim et al. [48] reported that they had obtained
better agreement of the experimental data with the local FTFs than with
the global FTF when the flame length had been larger than 10% of the
wavelength of the unstable acoustic mode. When the flame was within
10% of the wavelength of the acoustic mode, the usage of the local FTFs
and the global FTF gave the same result [48].

3. An approach similar to the previous one was implemented in CA solvers
by various researchers [52, 62, 13]. The idea is to obtain the distribution
of the fluid particle flight time from the fuel injection point to different
points at the flame from CFD calculations. The last is assumed to be
the spatial distribution of the time lag τ in Eq. 1.5. The distribution of
the interaction index n is assumed to be proportional to the distribution
of the unperturbed heat release distribution. In this way two things
are considered: the acoustic non-compactness of the flame and the fact
that different points of the flame respond to excitation with different
time delays. In this approach n and τ do not depend on frequency. Up
to now, applications of this approach took into account only one driving
mechanism of heat release oscillations – the response to equivalence ratio
excitations. Considering also another driving mechanisms would improve
the stability prediction.

4. When the flame is acoustically compact for the studied frequencies, the
previous approach can be also translated into the network model ap-
proach. This implies that the flame is considered in the network model as
a compact element but the FTF model takes into account different flight
times to different flame points [63, 64, 65, 38]. n and τ do not depend
on frequency in this approach as well. This approach of the FTF mod-
elling has several advantages with respect to the first two aprroaches: the
number of simulations is reduced and since the model parameters have
physical meaning, their change with increasing the excitation amplitude
can be traced and explained.
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The very brief description of the used method

As it can be seen, there is a large variety of approaches to investigate com-
bustion instabilities in gas turbines. To start investigating these phenomena,
first, the approach and tools that best fit certain needs have to be determined.
In this work combustion instabilities in a laboratory and an industrial setups
are investigated. The heat release response to acoustic oscillation is computed
performing URANS simulations since they give reasonable precision at low
frequencies of excitation and are faster than LES, all important reasons from
the industrial point of view. Excitation in a broad range of frequencies is done
at different amplitudes. The computed FDFs are approximated with appro-
priate distributed time-lags models. In both setups under investigation, the
cross-section dimension is small compared to the acoustic wavelength. Thus,
a network model is used to study closed-loop combustion-acoustic interaction
at low frequencies. There are a lot of works that perform thermoacoustic anal-
ysis in frequency domain using network models. There are much less works
that perform time-domain simulations. Some of them are concentrated on
simple thermoacoustic systems such as Rijke tube [54, 66], some are applied
to more complicated laboratory setups [67, 68, 69], and some to industrial test
rigs [70]. Mean flow is taken into account in the network model. Both unstable
frequencies of pressure perturbations and their amplitudes are calculated. The
approach used in this work consists of three parts, thus it is called three-step
approach.

1.6 Structure of the work

The thesis is organised as follows. The second chapter gives details on the
three-step approach. Overview of URANS method is given in section 2.1.1.
Description of the used Flame Speed Closure model is represented in sec-
tion 2.1.2. Numerical determination of the FTF is explained in section 2.1.3.
Sections 2.2.1 and 2.2.2 explain the physical meaning of parameters in dis-
tributed time-lags models for perfectly premixed and technically premixed
flames respectively. Section 2.3 describes the one-dimensional network model
used in this work.

The three-step approach is applied to a laboratory test rig with a perfectly
premixed flame in chapter 3. Description of the setup is given in section 3.1.
The Flame Describing Function of the test rig is computed in section 3.2 and
is then approximated in section 3.3 with two analytical models. Particularly,
the presented in literature distributed time-lag FTF model is extended to
the nonlinear regime, introducing a dependence of the model parameters on
the amplitude of excitation. The network model of the laboratory test rig
is presented in section 3.4.1. Results of linear simulations are presented in
section 3.4.2. Various parametric analyses are performed in this section in
order to find the ways to suppress acoustic modes associated with the flame.
Section 3.4.3 gives results of the weakly non-linear analysis. The main outcome
of this section is that the frequency of the acoustic mode associated with the
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flame strongly depends on the amplitude of the oscillations. The conclusions
of chapter 3 are discussed in section 3.5.

In chapter 4, the three-step approach is utilised to perform thermoacoustic
analysis of an industrial test rig with a technically premixed flame. The experi-
mental setup is discussed in section 4.1. The overview of a reference LES study
is given in section 4.2. Section 4.3 presents the results of URANS simulations.
In particular, the results of the unperturbed simulations are presented and dis-
cussed in section 4.3.2 and the FDF computed with URANS is presented and
discussed in section 4.3.3. Time-lag distributed models of the FTFs computed
with LES and URANS are presented in section 4.4.1. Two models of the FDF
computed with URANS are presented in sections 4.4.2 and 4.4.3. Two FDF
models based on the FTF computed with LES and the two FDF models from
sections 4.4.2 and 4.4.3 are presented in sections 4.4.4 and 4.4.5, respectively.
The hybrid FDF based on the LES FTF model and the FDF model of the lab-
oratory test rig is presented in section 4.4.6. Stability analysis of the industrial
test rig is conducted with the help of network model in section 4.5. Results of
linear analysis of the test rig are presented in section 4.5.2 and of the weakly
nonlinear analysis – in section 4.5.3. The conclusions of the thermoacoustic
investigation of the industrial test rig are presented in section 4.6.

The conclusions of the present work and indications for future investigations
are presented in chapter 5.
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Chapter 2

Description of the three-step
approach for prediction of
combustion instabilities in gas
turbines

Several of thermoacoustic systems have a longitudinal dimension larger than
the dimensions along the other directions. Acoustic study of these systems
can be concentrated only on longitudinal acoustic waves. An acoustic net-
work model is an optimum approach to study the excitation of these waves by
unsteady combustion because it is fast and accurate [43].

In order to perform closed-loop thermoacoustic analysis with a network
model, it is necessary to know the flame response to flow perturbations. To
compute the latter, unsteady CFD simulations could be run. The computed
flame response to being used in the network model must be preliminarly vali-
dated with an appropriate model.

In this work, a three-step approach for the prediction of combustion in-
stabilities is proposed. The first step is to compute the flame response to
flow excitations performing URANS simulations with the Flame Speed Clo-
sure model. Justification of using this model is given in section 2.1. The
second step is to approximate the calculated flame response with a time-lag-
distributed model. The necessity and rationalisation of using this model are
explained in section 2.2. The network model approach is introduced in sec-
tion 2.3.

2.1 FDF computation with CFD simulations

The combustion process in gas turbines is a complicated phenomenon that
includes flow turbulence, chemical reactions and heat release. There are three
main approaches to investigate numerically the dynamics of turbulent flows:

1. Direct Numerical Simulations (DNS),

2. Large Eddy Simulations (LES),
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3. Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations.

These three approaches differ by the range of turbulence scales that are re-
solved and modelled. In the DNS approach all spatial scales from the smallest
Kolmogorov scale [71] up to the largest integral scale are resolved [72]. In
the LES approach, the largest spatial scales that contain more energy are re-
solved, while the smallest and the most computationally expensive to resolve
space scales are modelled [73]. An overview of LES application to combustion
modelling is presented by Pitsch [74]. The URANS approach is the less com-
putationally expensive one because all scales of turbulence are modelled. This
makes the URANS approach preferable from an industrial point of view.

The simplest way to model heat release due to combustion is the Arrhenius
approach described, e.g. by Poinsot and Veynante [1]. It completely neglects
the influence of turbulence on combustion. This approach can be used only
when chemical time scales are much larger than the turbulent time scales. It
could be applied to supersonic combustion but is not suitable for turbulent
combustion in gas turbines.

The Eddy Break-Up (EBU) model proposed by Spalding [75], as opposed
to the Arrhenius approach, assumes that turbulent combustion is mainly gov-
erned by turbulent mixing but not by the chemistry. The justification of such
assumption is that chemical reactions happen very fast compared to turbulent
mixing. The EBU model assumes that combustion is completed at the moment
of mixing. This assumption makes this model suitable for the diffusion-driven
combustion but not for premixed combustion. To overcome this limitation,
the EBU model was coupled with the Arrhenius approach by Magnussen and
Hjertager [76]. The combined approach is often called Eddy Dissipation Model
(EDM).

Another model is the Flamelet Generated Manifold (FGM) model proposed
by van Oijen and de Goey [77]. In this approach, chemistry is incorporated
into the turbulent heat release through probability density functions. The
weak point of this model is that the parameters of the used probability density
functions are quite vague, as noticed in the comments provided by Bilger to
the work of Peters [78] (the Bilger’s comments can be found at the end of the
Peter’s article).

Another family of models uses turbulent flame speed to close the heat
release problem [79, 80, 81]. In these models, chemical calculations are enclosed
in laminar flame speed that is pre-computed with respect to CFD calculations.
These models are physically reasonable among the models that do not require
high CPU costs. The turbulent flame speed is represented through a laminar
flame speed and turbulent quantities. These models are simple, robust, and
have been extensively tested versus various experimental data. These models
were successfully used for prediction not only of steady flames [82] but also for
flame dynamics [36, 9, 83].
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2.1.1 Overview of URANS method

The numerical tool employed is OpenFOAM version 2.3.0 [84] developed by
Weller et al. [85]. The equations in this section are written in the way they
are implemented in OpenFOAM. These equations are solved in OpenFOAM
using Finite Volume Method (FVM) [86].

Averaged governing equations

In the URANS approach any quantity f (velocity, pressure, enthalpy, etc.) is
represented as the sum of its mean component f̄ and fluctuating part f ′:

f = f̄ + f ′. (2.1)

Since combustion simulations deal with flows with different density, mass-
weighted averages (or Favre averages [87]) quantities are used instead of Reynolds
averaged quantities [1]:

f̃ =
ρf

ρ̄
, (2.2)

where ρ̄ is the mean density. Any quantity is then split as

f = f̃ + f ′′, (2.3)

where f̃ ′′ = 0.
The equations to be solved are Favre-averaged equations of conservation of

mass, momentum and enthalpy

∂ρ̄

∂t
+

∂

∂xi
(ρ̄ũi) = 0, (2.4)

∂ρ̄ũi
∂t

+
∂

∂xi
(ρ̄ũiũj) = − ∂p̄

∂xj
+

∂

∂xi

(
σ̄i,j − ρ̄ũ′′i u′′j

)
, (2.5)

∂ρ̄h̃

∂t
+

∂

∂xi
(ρ̄ũih̃) +

∂ρ̄K̃

∂t
+

∂

∂xi
(ρ̄ũiK̃) =

∂p

∂t
− ∂

∂xi

(
q̄ + ρ̄ũ′′i h

′′
)
, (2.6)

where the averaged enthalpy h̃ is the sum of sensible enthalpy and chemical
enthalpy of formation. Thus, no source term due to chemical reaction is needed
in Eq. 2.6. K̃ in Eq. 2.6 is the averaged kinetic energy K̃ = 0.5ũiũi.

The viscous stress tensor σ̄ij is defined as

σ̄ij = µ̃

(
2S̃ij −

2

3

∂ũk
∂xk

δij

)
, (2.7)

with δij the Kronecker index, µ̃ = ρ̄ν̃ the mean dynamic viscosity, ν̃ the mean
kinematic viscosity, and the Favre-averaged strain-rate tensor S̃ij defined as

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (2.8)
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Reynolds stresses ρ̄ũ′′i u
′′
j in this work are closed with the SST k−ω turbu-

lence model described below.
The averaged heat flux is represented in the form

q̄ = −λ ∂T
∂xi

= −λ̃ ∂T̃
∂xi

= − µ̃

P r

∂h̃

∂xi
, (2.9)

where λ̃ is the mean thermal conductivity and Pr is the Prandtl number

Pr =
ν̃

ã
with ã the mean thermal diffusivity, ã =

λ̃

ρ̄c̃p
with c̃p the mean specific

heat capacity at constant pressure.

The turbulent heat flux ρ̄ũ′′i h
′′ is modelled using gradient assumption

ρ̄ũ′′i h
′′ = − µt

Prt

∂h̃

∂xi
, (2.10)

where µt is the turbulent viscosity computed with a turbulence model, and Prt

is the turbulent Prandtl number defined by Prt =
µ̃t
ρ̄ãt

with ãt the turbulent

thermal diffusivity.

SST k − ω turbulence model

The SST k − ω is a linear eddy viscosity turbulence model developed by
Menter [88, 89]. This model blends the freestream independence of the k − ε
model [90, 91] with the robust and accurate turbulence treatment in the near
wall region of the Wilcox k−ω model [92]. In the SST k−ω turbulence model

the Reynolds stresses ρ̄ũ′′i u
′′
j are modelled using the Boussinesq assumption:

−ρ̄ũ′′i u′′j = τij = µt

(
2S̃ij +

2

3
δij
∂ũk
∂xk

)
− 2

3
ρ̄kδij, (2.11)

where k is the Turbulent Kinetic Energy (TKE) defined as

k =
1

2

3∑
i=1

ũ′′i u
′′
i . (2.12)

The turbulent viscosity is found by solving the transport equation for the
TKE, k, and the Specific Dissipation Rate (SDR) ω:

∂(ρ̄k)

∂t
+
∂(ρ̄ũik)

∂xi
= P̃ − β∗ρ̄kω +

∂

∂xi

[
(µ̃+ σkµt)

∂k

∂xi

]
, (2.13)

∂(ρ̄ω)

∂t
+
∂(ρ̄ũiω)

∂xi
=
γρ̄

µt
P̃−βρ̄ω2+

∂

∂xi

[
(µ̃+ σωµt)

∂ω

∂xi

]
+2(1−F1)

ρ̃σω2

ω

∂k

∂xi

∂ω

∂xi
,

(2.14)
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Table 2.1: Constants of the SST k − ω model.
i σki σωi γi βi
1 0.85 0.5 5/9 0.075
2 1.0 0.856 0.44 0.0828

where the blending function F1 is defined as

F1 = tanh

{min

[
max

( √
k

β∗ωy
,
500ν

y2ω

)
,

4ρ̄σω2k

CDkωy2

]}4
 , (2.15)

where y is the distance to the nearest wall and CDkω is calculated as

CDkω = max

(
2ρ̄σω2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
; (2.16)

the constant β∗ in Eqs. 2.13-2.15 is equal to 0.09. The other constants σki,
σωi, γi, and βi in Eqs. 2.13-2.16 defined in general as φ are calculated from
constants φ1 and φ2 as

φ = φ1 + (1− F1)φ2, (2.17)

with φ1 and φ2 given in Tab. 2.1.
Finally, the turbulent viscosity is computed as

µ̃t =
0.31ρ̄k

max(0.31ω, SF2)
, (2.18)

where S is the invariant measure of the strain S =
√

2S̃ijS̃ji and F2 is a second

blending function:

F2 = tanh


[

max

(
2
√
k

β∗ωy
,
500ν

y2ω

)]2
 . (2.19)

A production limiter is used in the SST k−ω turbulence model to prevent
the build-up of turbulence in stagnation regions

P̃ = min (P, 10β∗ρ̄kω) , (2.20)

with

P = τij
∂ũi
∂xj

. (2.21)

Near wall treatment

The following conditions are used for TKE, SDR and the turbulent viscosity
at the walls. The TKE at the walls is set to zero:

kw = 0. (2.22)

43



2. Description of the three-step approach for prediction of combustion
instabilities in gas turbines

Figure 2.1: Law of the wall modelled with Eq. 2.26.

One of the benefits of using a turbulence model of the k−ω family, in par-
ticular the SST k−ω turbulence model, is the possibility of using scalable wall
functions. Such approach automatically switches from a low-Reynolds number
formulation to a wall function treatment, depending on grid density [93]

ω =
√
ω2
vis + ω2

log, (2.23)

where ωvis and ωlog are solutions for ω in the viscous and the logarithmic
near-wall regions, respectively, and are calculated as follows [84]:

ωvis =
6µ̃

ρ̄β1y2
, (2.24)

ωlog =

√
k

C0.25
µ κy

, (2.25)

where β1 = 0.075, Cµ = 0.09 and κ = 0.41 are model constants.
The boundary condition for the turbulent viscosity µt provides a condition,

based on velocity, using Spalding’s law to give a continuous µt profile to the
wall. This boundary condition is a generic wall function that uses field of
velocity u instead of TKE k and ensures that a general law for the velocity
shown in Fig. 2.1 is fulfilled:

y+ = u+ +
1

E

[
exp(κu+)− 1− κu+ − 0.5(κu+)2 − 1

6
(κu+)3

]
, (2.26)

where E = 9.8 is a constant, y+ and u+ are dimensionless distance from the
cell centre to the wall and the dimensionless velocity, calculated as follows

y+ =
yuτ ρ̄

µ̃
, (2.27)

u+ =
ũ

uτ
, (2.28)
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where uτ is the friction velocity defined as

uτ =

√
τw
ρ̄
, (2.29)

and τw is the shear stress at the wall:

τw = (µt + µ)

∣∣∣∣∂ũ∂n
∣∣∣∣ . (2.30)

2.1.2 FSC model description

In order to model the behaviour of the flame, we apply the Flame Speed Closure
(FSC) model, proposed by Lipatnikov and Chomiak [81]. Comparing to the
Turbulent Flame Closure (TFC) model developed by Karpov et al. [80], the
FSC model describes the propagation of the flame not only in the case of fully
developed turbulence but also in the limit case of the absence of turbulence.
Moreover, the FSC model takes into account that the turbulent diffusivity
and the turbulent flame speed depend on the time delay which occurs when a
fluid particle travels from the burner exit plane to the combustion zone. The
key variable in the FSC model is the progress variable b, also referred to as
normalised fuel mass fraction or normalised temperature; this is defined by

b =
Tb − T
Tb − Tu

, (2.31)

where T is the temperature at the current point, Tb and Tu are the temperatures
of the burnt and unburnt gas, respectively. Thus, b = 1 in regions of unburnt
gas and b = 0 in regions of burnt gas. The progress variable propagation is
governed by the transport equation:

∂ρ̄b̃

∂t
+∇ · (ρ̄ũb̃)−∇ ·

[
ρ̄(D +Dt,t)∇b̃

]
=

= −
S2
L,0

4(D +Dt,t)
ρu(1− b̃)b̃− ρuSt,t|∇b̃|, (2.32)

where D is the molecular diffusivity, ρu is the density of the unburnt gas, and
SL,0 is the unperturbed laminar flame speed. Dt,t and St,t are variants of the
turbulent diffusion coefficient and the turbulent flame velocity, respectively.
They are characterised by their dependence on the time tfd a fluid particle
takes to travel from the burner exit plane to the current axial position x,

tfd =
x− xfh
uFSC

, (2.33)

where xfh is the position of the burner exit plane (flame holder), and uFSC is
the axial flow velocity area-averaged over the burner exit plane at xfh .

The time-dependent coefficient of turbulent diffusion is calculated from
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Dt,t = Dt [1− exp (−tfd/tL)] , (2.34)

where Dt is the coefficient of turbulent diffusion, and tL is the Lagrangian time
scale of turbulence. Dt is given by Dt = µt/(ρSct), where Sct is the turbulent
Schmidt number. Authors of the model [81] suggest to take Sct = 0.3. Such
low value aims to increase the diffusion of the flame far from the flame holder,
meanwhile the multiplier [1− exp (−tfd/tL)] in Eq. 2.34 decreases the diffusion
close to the flame holder [94]; tL is given by tL = Dt/(u

′
turb)

2, where u′turb is
the root-mean-square of the turbulent velocity fluctuations.

The time-dependent turbulent flame velocity is calculated from

St,t = St

{
1 +

tL
tfd

[
exp(−tfd/tL)− 1

]}0.5

, (2.35)

where St is the turbulent flame speed, given by

St = 0.52(u′turb)
0.75S0.5

L,0a
−0.25
u l0.25

t , (2.36)

where au is the thermal diffusivity of the unburnt mixture and lt is the turbu-
lence length scale given by

lt = CD
(u′turb)

3

ε
, (2.37)

where CD is the model dimensionless constant and ε is the turbulence dis-
sipation rate. The authors of model [81] suggest the value for the constant
CD = 0.3.

In case of perfectly premixed flame any thermophysical quantity of the mix-
ture (enthalpy, heat capacity, viscosity, density) denoted by ψ can be calculated
through corresponding quantities of reactants and combustion products as

ψmix =
b̃

WR

ψR +
1− b̃
WP

ψP , (2.38)

where W is the molecular weight, R denotes reactants, and P denotes com-
bustion products.

For technically-premixed flame the additional transport equation for the
mixture fraction f̃t is solved

∂ρ̄f̃t
∂t

+∇ · (ρ̄ũf̃t)−∇ ·
[
ρ̄(D +Dt)∇f̃t

]
= 0. (2.39)

The mixture mass fraction of fuel, oxidizer and combustion products are
calculated as

ỸF = b̃f̃t + (1− b̃)max

(
f̃t −

1− f̃t
s

, 0

)
, (2.40)

ỸO = 1− f̃t − (f̃t − ỸF )s, (2.41)
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ỸP = 1− ỸF − ỸO, (2.42)

where s is the stoichiometric ratio defined by Eq. 1.2. In case of technically
premixed flame any thermophysical quantity of the mixture (enthalpy, heat
capacity, viscosity, density) denoted by ψ can be calculated through corre-
sponding quantities of fuel, oxidizer, and combustion products as

ψmix =
ỸF
WF

ψF +
ỸO
WO

ψO +
ỸP
WP

ψP . (2.43)

I have implemented the FSC model into the solver XiFoam of OpenFOAM
2.3.0, which is a solver for the simulation of compressible premixed/technically-
premixed combustion and which includes turbulence modelling. It uses the
compressible PIMPLE algorithm, which combines the algorithm of the PISO
(Pressure-Implicit Split-Operator) and the SIMPLE (Semi-Implicit Method for
Pressure-Linked Equations) algorithms.

The heat release rate in a particular cell, denoted here by ∆Q, is propor-
tional to the right-hand-side of Eq. 2.32,

∆Q = YFHR

[
S2
L,0

4(D +Dt,t)
ρu(1− b̃)b̃+ ρuSt,t|∇b̃|

]
, (2.44)

where HR is the lower heating value of the fuel. For the purpose of calcu-
lating the FTF or FDF, the volume integral of ∆Q over the whole domain is
calculated.

2.1.3 Numerical determination of the FTF and FDF

The dynamic response of a flame to a flow perturbation can be represented in
the frequency domain by its Flame Transfer Function (FTF), defined by

FTF (ω) =
Q̂(ω)/Q̄

ûr(ω)/ūr
; (2.45)

this is the ratio between heat release rate fluctuations Q̂(ω) (normalised with
the mean heat release rate Q̄) and the velocity fluctuation ûr(ω) at a reference
position xr upstream of the flame (normalised with the mean velocity ūr).

In general, heat release oscillations could be caused by equivalence ratio
fluctuations, as shown in Fig. 1.17. It will be shown in section 2.2 that for the
gas turbines investigated in this work it is reasonable to assume that equiva-
lence ratio fluctuations depend only on velocity fluctuations.

The FTF is a linear concept. It can be extended into the nonlinear domain
by measuring the FTF spectrum for several velocity amplitudes, thus creating
a family of curves along the frequency axis. This is called the Flame Describing
Function (FDF),

FDF (ω,A) =
Q̂(ω,A)/Q̄

ûr(ω,A)/ūr
, (2.46)
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where A is the velocity amplitude. The FDF has been shown by several re-
searchers, notably by Noiray et al. [95] to be a versatile tool for modelling
nonlinear effects, such as limit cycle oscillations.

In principle, the FTF can be computed for a given combustion system by
imposing a harmonic velocity perturbation, measuring the resulting heat re-
lease rate and calculating the ratio of relative Fourier transforms (see Eq. 2.45).
This procedure should be repeated for each frequency of interest. However,
this is time-consuming taking into account wide range of frequencies of interest.
Assuming that the combustion system is linear time invariant, it is possible
to compute the FTF with just one simulation. This is done by exciting the
velocity with a broadband signal and calculating the correlation between the
velocity at the reference point and the heat release. This method is called
Wiener-Hopf inversion and was initially applied to thermoacoustic systems by
Polifke et al. [96].

The CFD simulations give us discrete time series of the velocity ur (at a
reference position) and of the global rate of heat release Q of the flame:

ur(t0), ur(t1), ur(t2), . . . , ur(tN), (2.47a)

Q(t0), Q(t1), Q(t2), . . . , Q(tN), (2.47b)

where tn = n∆t (n = 0, 1, ...., N) are the discrete times at which results for
ur and Q are available. These results include both the mean part (denoted by
over-bar) and the perturbation (denoted by prime),

ur(t) = ūr + u′r(t) (2.48a)

Q(t) = Q̄+Q′(t). (2.48b)

The aim is to determine the FTF from this data. This is done in a 4-step
approach, following [96].

Step 1: Calculation of the mean and perturbation quantities.
The mean values are first calculated as averages over the time series,

ūr =
1

N + 1

N∑
n=0

ur(tn) (2.49a)

Q̄ =
1

N + 1

N∑
n=0

Q(tn), (2.49b)

and then obtain the perturbation quantities from

u′r(tn) = ur(tn)− ū (2.50a)

Q′(tn) = Q(tn)− Q̄ (2.50b)

In order to keep the notation simple, u′r(tn) and Q′(tn) are abbreviated by
un and Qn.
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Figure 2.2: Unit impulse (left) and causal, finite-duration response (right).

Step 2: Representation in terms of concepts from the digital signal pro-
cessing.

In the digital signal processing, the unit impulse is defined by

δn−m =

{
1 if
0 if

n = m
n 6= m

(2.51)

The flame is treated as a single-input single-output system and denote
the response to δn−m by hn−m; h is called the unit impulse response (UIR, or
Green’s function in mathematics terminology). δ and h can be used as building
blocks to represent any input and output signal in terms of a convolution. For
the flame, the velocity (input) can be writen as

un = u0δn + u1δn−1 + . . . + uNδn−N (2.52)

and the heat release (output) as

Qn = u0hn + u1hn−1 + . . . + uNhn−N . (2.53)

In the step from 2.52 to 2.53, the flame is assumed linear. Two further,
physically motivated, assumptions about the flame are made:

– It is causal (i.e. there is no response before the impulse): hn = 0 for
n < m.

– Its response has finite duration: hn = 0 for n > m+M .

These assumptions are illustrated in figure 2.2, which shows the excitation
by a unit impulse at tn = tm of the left, and the corresponding response
(nonzero only in the interval between tm and tm+M) on the right.

Equation 2.53 can then be reduced to a shorter sum,

Qn =
M∑
m=0

umhn−m =
M∑
m=0

un−mhm, n = M, . . . , N. (2.54)

Step 3: System identification to determine the UIR coefficients
The coefficients hm could in principle be determined by deconvolution,

i.e. by solving the linear Eq. 2.54; however, if the results for Qn and un are
corrupted (e.g. due to numerical noise), the results for hm will inevitably be
corrupted as well. This effect can be minimised by using an averaged form of
Eq. 2.54. To this end, the cross-correlation of u and Q is introduced
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cn =
N∑

k=M

Qk uk−n, n = 0, 1, . . . , M (2.55)

and the auto-correlation of u

Γmn =
N∑

k=M

uk−m uk−n, m, n = 0, 1, . . . , M, (2.56)

where cn is a vector with M + 1 components, and Γmn is an (M + 1)× (M + 1)
matrix. Now Eq. 2.54 is multiplied by uk−n and take the sum (average) from
k = M to N :

N∑
k=M

Qk uk−n =
N∑

k=M

M∑
m=0

uk−muk−nhm =
M∑
m=0

[
N∑

k=M

uk−m uk−n

]
hm. (2.57)

The sum on the left is the cross-correlation cn, and the sum in square
brackets is the auto-correlation Γmn, so Eq. 2.57 can be written as

cn =
M∑
m=0

Γmnhm. (2.58)

This is the Wiener-Hopf equation. It is a linear equation for the coefficients
hm of the impulse response function.

Step 4: Transform into the frequency domain.
Once Eq. 2.58 is solved, hn is transformed into the frequency domain via

the z− transform, which can be applied to a time-series, e.g. to hn, by

Z[h] =
N∑
n=0

hnz
−n. (2.59)

According to the convolution theorem for the z−transform [97], the time-
domain Eq. 2.54 corresponds to the z−domain equation

Z[Q] = Z[u] Z[h]. (2.60)

It can be, therefore, conclude that the z−transform of h is the FTF in the
z−domain. It is possible to go from the z−domain into the frequency-domain
if z = eiω∆t is chosen [98]:

ĥ(ω) =

[
M∑
n=0

hnz
−n

]
z=eiω∆t

=
M∑
n=0

hne
−iωn∆t, (2.61)

where ĥ(ω) denotes the discrete-time Fourier transform of the series hn. The
normalised form of the FTF then follows from

FTF (ω) =
Q̂(ω)/Q̄

û(ω)/ū
= ĥ(ω) (2.62)
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Figure 2.3: Scheme of a perfectly premixed thermoacoustic system.

Unfortunately, advanced methods, such as WHI can be used only in linear
cases, i.e. the response of the flame to small amplitude velocity perturbations.
Thus, in order to compute the FDF only one frequency excitation with one
amplitude per simulation have to be applied.

2.2 Analytical models for FTF

It is possible to describe a transfer function of a linear system with a rational
expression with a time lag of the form [99]:

TF (ω) =

∑N
n=0 an(iω)n∑M
m=0 bm(iω)m

e−iωτ , (2.63)

where τ is the time delay, M is the order of the transfer function; the order of
the polynomial M in the denominator is larger than the order of the polynomial
N in the numerator.

Increasing the values of M and N it is possible to achieve a very good fit
to the computed Transfer Function. This makes the transfer function model
in Eq. 2.63 suitable for linear calculations of thermoacoustic stability. It is
possible to calculate the optimum values of parameters an and bm for each
amplitude of excitation characterised by its own transfer function. However,
parameters an and bm, in general, do not have a physical meaning. This makes
the task of finding the dependence of an and bm on the amplitude of the
excitation not always possible, especially for high values of M and N . There is
a need in a simple Flame Transfer Function model with relatively small amount
of parameters that have physical meaning to make nonlinear simulations.

2.2.1 Time-lag distributed FTF model for perfectly pre-
mixed, swirl-stabilised, flames

Fluctuations of equivalence ratio are absent in perfectly premixed combustors.
Moreover, as evidenced by Strobio Chen et al. [100] entropy fluctuations gen-
erated by perfectly premixed flames are negligible. Thus, the scheme of the
perfectly premixed thermoacoustic system shown in Fig. 1.17 could be simpli-
fied to the scheme shown in Fig. 2.3. Heat release fluctuations, in this case,
become dependent only on the upstream velocity perturbations.
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Figure 2.4: Unperturbed components of the velocity before and after the
swirler.

Q̂perf prem(ω)

Q̄
=
Q̂u(ω)

Q̄
= FTFu(ω)

û(ω)

ū
, (2.64)

It is a common practice of gas turbines manufacturers to stabilise flames
in gas turbines’ combustors using swirled burners. Let us consider an axial
swirler in a constant cross-section burner duct. First, consider unperturbed
flow passing through the swirler. When the unperturbed flow goes through the
blades of a swirled burner, it changes its direction (see Fig. 2.4). The velocity
vector before the swirler consists only of the axial component ūu, tot = ūu, ax =
ūu, while the velocity vector after the swirler ūd, tot consists of axial, ūd, ax, and
tangential, ūd, tang, components. The swirler causes a pressure drop for the flow
passing through it, that is compensated by an increase in the velocity vector
magnitude. Taking into account that density before and after the swirler is
almost the same, from the conservation of mass one can recover that the axial
component of the velocity vector after the swirler remains almost the same as
before the swirler.

Now, let us consider the flow excited by an upstream perturbation u′u (see
Fig. 2.5). When such perturbation goes through the swirler, its axial com-
ponent u′d, ax remains almost as before the swirler u′u. Similarly to the mean
velocity, a perturbation of the tangential component of velocity u′d, tang is pro-
duced.

Komarek and Polifke [36] have shown that the response of perfectly pre-
mixed swirl-stabilised flame to velocity fluctuations depends on oscillations
of two components of velocity – axial and tangential – and have proposed to
write the time-lag-distributed model of the flame response to upstream velocity
fluctuations as:

FTFmod
u (ω) = e−iωτ1−0.5(ωσ1)2

+ e−iωτ2−0.5(ωσ2)2 − e−iωτ3−0.5(ωσ3)2

, (2.65)
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Figure 2.5: Mean and oscillating components of the velocity before and after
the swirler.

where τi is the time delay and σi is its standard deviation. The response of the
flame to the axial perturbations of the velocity is modelled with the parameters
τ1 and σ1. The parameters τ2, σ2, τ3 and σ3 model the response of the heat
release to the tangential perturbations of the velocity produced by a swirler.

The physical meaning of parameters τi and σi is better understood if the
frequency domain representation of the FTF is switched to its time domain
representation, i.e. to the Unit Impulse Response (UIR). The analytical form
of the UIR corresponding to the FTF of Eq. 2.65 is

UIRmod
u (t) =

1

σ1

√
2π
e
− 1

2

(
t−τ1
σ1

)2

+
1

σ2

√
2π
e
− 1

2

(
t−τ2
σ2

)2

− 1

σ3

√
2π
e
− 1

2

(
t−τ3
σ3

)2

,

(2.66)
and the instantaneous heat release is computed as the convolution of the his-
tory of velocity perturbations and the Unit Impulse Response

Q′(t) =
Q̄

ū

∫ ∞
0

UIRmod
u (t′ − t)u′(t)dt′. (2.67)

where t′ is the integration variable.

Thus, Eq. 2.66 models the response of the heat release to upstream velocity
oscillations with the help of three Gaussian functions with peaks at τi and
standard deviations σi. In particular, the first terms on the RHS of Eqs. 2.65-
2.66

UIRmod
u, ax(t) =

1

σ1

√
2π
e
− 1

2

(
t−τ1
σ1

)2

, (2.68)

FTFmod
u, ax(ω) = e−iωτ1−0.5(ωσ1)2

(2.69)
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Figure 2.6: Characteristic convective time lags in perfectly premixed swirl-
stabilised burners modelled with Eqs. 2.65-2.66.

model the response of the heat release to axial perturbations of velocity. The
pair of parameters τ1, σ1 models the time that fluid particles spend while trav-
eling from the zones where the flame is anchored to different points at the
flame (see Fig. 2.6).

The integral of the heat release response to the unit impulse of the axial
velocity perturbation modelled with Eq. 2.68,

∫∞
0
UIRmod

u, ax(t)dt, is equal to 1.
This means that the increase of the axial component of velocity will increase the
heat release by the same normalised quantity δuax/ūax = δQ/Q̄. The mixture
mass flow rate is enhanced when the axial component of velocity increases; the
increase in heat release will not influence the temperature of the burnt gases.
In other words, perturbations of velocity in perfectly premixed flames do not
create perturbations of entropy downstream of the flame.

The response of the heat release to the impulse of the tangential velocity
and the respective FTF are modelled by the second and the third terms on
the RHS of Eqs. 2.65-2.66

UIRmod
u, tang(t) =

1

σ2

√
2π
e
− 1

2

(
t−τ2
σ2

)2

− 1

σ3

√
2π
e
− 1

2

(
t−τ3
σ3

)2

, (2.70)

FTFmod
u, tang(ω) = e−iωτ2−0.5(ωσ2)2 − e−iωτ3−0.5(ωσ3)2

. (2.71)

The parameters τ2, σ2, τ3, and σ3 model the time that fluid particles spend
to travel from the swirler to the flame (see Fig. 2.6). The integral of the heat
release response to the unit impulse of the tangential velocity perturbation
modelled with Eq. 2.70,

∫∞
0
UIRmod

u, tang(t)dt, is equal to 0. This means that
the increase of the tangential component of velocity will not modify the heat
release in the quasi-steady perspective with respect to its unperturbed value.

As an example, let us consider the response of heat release to the impulse
of velocity excitation [10]. Looking at the UIR in Fig. 2.7 it can be seen that
this UIR could be modelled with Eq. 2.66. Taking into account the time step
∆t = 2.5× 10−5 s, it is possible to recover the values the of parameters in the
model: τ1 = 1.65ms, σ1 = 0.55ms, τ2 = 2.7ms, σ2 = 0.4ms, τ3 = 3.7ms, and
σ3 = 0.5ms. These values are estimated in order to reproduce qualitatively
the UIR presented in Fig. 2.7 and to estimate the order of each value in the
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Figure 2.7: UIR of the heat release to the velocity excitation [10].
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Figure 2.8: Response of the heat release to unit impulses of different compo-
nents of the velocity modelled with Eqs. 2.66, 2.68, 2.70.

model 2.66. The response of the heat release to the axial impulse of velocity,
to the tangential impulse of velocity and to the total perturbations of velocity
modelled with Eqs. 2.68, 2.70, 2.66 are shown in Fig. 2.8. The respective FTFs
are shown in Fig. 2.9.

Models 2.65-2.66 could be extended to the nonlinear regime of excitation,
assuming dependence of parameters τi and σi on the amplitude of excitation A.
A FDF model for perfectly premixed swirl-stabilised flame is presented in
Section 3.3.3.

2.2.2 Time-lag distributed FTF model for technically
premixed, swirl-stabilised, flames

Lieuwen et al. [101] have shown that in lean technically-premixed combustors
the unsteady heat release could depend not only on flow fluctuations but also
on equivalence ratio fluctuations [102]:

Q̂part prem(ω)

Q̄
= FTFu(ω)

û(ω)

ū
+ FTFφ(ω)

φ̂(ω)

φ̄
. (2.72)

Similarly to Eq. 2.64, the dependence of the heat release oscillations on
upstream equivalence ratio perturbations can be written as

Q̂φ(ω)

Q̄
= FTFφ(ω)

φ̂(ω)

φ̄
. (2.73)
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Figure 2.9: FTF of the perfectly premixed flame modelled with Eqs. 2.65, 2.69,
2.71.

Figure 2.10: Physical mechanisms through which equivalence ratio fluctuations
influence heat release fluctuations.

Cho and Lieuwen [103] have shown that the equivalence ratio fluctuations
influence the heat release through three mechanisms: heat of reaction oscilla-
tions, flame speed oscillations and flame surface area oscillations that, in turn,
are provoked by the flame speed oscillations (see Fig. 2.10).

Albayrak et al. [104] have shown analytically that the responses of the heat
release to the heat of reaction perturbation and the flame speed perturbation
provoked by the positive impulse of equivalence ratio are positive. Meanwhile,
the heat release response to the positive impulse of equivalence ratio through
the flame surface area perturbation is negative.

Let us consider the heat release response to the impulse of equivalence ratio
perturbation from the work by Huber and Polifke [10]. Observing the UIR in
Fig. 2.11 it can be seen that this UIR can be modelled similarly to Eq. 2.66:
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Figure 2.11: UIR of the heat release to the equivalence ratio perturbation [10].

UIRmod
φ (t) =

1

σ4

√
2π
e
− 1

2

(
t−τ4
σ4

)2

+
1

σ5

√
2π
e
− 1

2

(
t−τ5
σ5

)2

− 1

σ6

√
2π
e
− 1

2

(
t−τ6
σ6

)2

,

(2.74)
where parameters τ4, σ4, τ5, and σ5 model the positive heat release response
to the increase of the heat of reaction and to the increase of the flame speed
due to the positive increment of the equivalence ratio, and parameters τ6 and
σ6 model the negative heat release response to the positive increment of the
equivalence ratio through the flame area change. All the parameters τ4, σ4, τ5,
σ5, τ6, and σ6 model the time that a fluid particle spends to travel from the
point of the fuel injection to the different points at the flame (see Fig. 2.12).
The FTF model that corresponds to Eq. 2.74 is

FTFmod
φ (ω) = e−iωτ4−0.5(ωσ4)2

+ e−iωτ5−0.5(ωσ5)2 − e−iωτ6−0.5(ωσ6)2

. (2.75)

The integral of the heat release response to the unit impulse of the equiv-
alence ratio perturbation modelled with Eq. 2.74,

∫∞
0
UIRmod

φ (t)dt, is equal
to 1. This means that the increase of the equivalence ratio will increase the
heat release by the same normalised quantity δφ/φ̄ = δQ/Q̄. Because the mix-
ture mass flow rate remains the same when the equivalence ratio increases, the
increase in the heat release will influence the temperature of the burnt gases. In
other words, perturbations of equivalence ratio in technically premixed flames
create perturbations of entropy downstream of the flame.

Taking into account the time step ∆t = 2.5×10−5s, it is possible to recover
the values of parameters in the model expressed by Eq. 2.74 for the UIR shown
in Fig. 2.11: τ4 = 7.5ms, σ4 = 0.33ms, τ5 = 8.0ms, σ5 = 0.45ms, τ6 = 9.5ms,
and σ6 = 0.5ms. These values are estimated in order to reproduce qualitatively
the UIR presented in Fig. 2.11 and to estimate the order of each value in the
model 2.74. The response of the heat release to the impulse of equivalence ratio
perturbation modelled with Eq. 2.74 is shown in Fig. 2.13. The corresponding
FTF is shown in Fig. 2.14.

Many gas turbines burners are designed in such a way: the pressure drop of
the gas passing through the burner is one order of magnitude higher than the
pressure drop of the air. In a gas turbine combustion chamber equipped with
such burners, the acoustic perturbations excite oscillations of the air mass flow
through the burners, while, the gas flow remains almost unperturbed. This
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Figure 2.12: Characteristic convective time lags in technically premixed, swirl-
stabilised, burners; general case.
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Figure 2.13: Response of the heat release to the unit impulse of equivalence
ratio, modelled with Eq. 2.74.
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Figure 2.14: FTF of the heat release perturbations due to the equivalence ratio
perturbations modelled with Eq. 2.75.
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allows to make the assumption that the normalised perturbations of equiva-
lence ratio φ are equal to the normalised fluctuations of flow velocity u in the
burner and these perturbations are in antiphase to each other [105]:

φ′

φ̄
= −u

′

ū
. (2.76)

Note that Eq. 2.76 does not hold under two conditions:

• at part loads far from the base load since the fuel pressure drop is reduced;

• not acoustically compact fuel mixing section.

For such burners, it is possible to write a model for the total FTF and the
total UIR:

FTFmod
tot (ω) = FTFmod

u (ω)− FTFmod
φ (ω), (2.77)

UIRmod
tot (ω) = UIRmod

u (ω)− UIRmod
φ (ω), (2.78)

where FTFmod
u , FTFmod

φ , UIRmod
u , and UIRmod

φ are modelled with Eqs. 2.65,
2.75, 2.66, and 2.74, respectively. The fluctuations of the flame heat release Q′

for such burners depend only on the velocity fluctuations, u′r, at a reference
position r upstream of the flame

Q̂(ω)

Q̄
= FTFmod

tot (ω)
ûr(ω)

ūr
, (2.79)

Q′(t) =
Q̄

ūr

∫ ∞
0

UIRmod
tot (t′ − t)u′r(t)dt′. (2.80)

The total UIR and the total FTF are shown in Figs. 2.15 and 2.16, respec-
tively. The negative sign before the second term in model 2.78 implies that
the positive increment of velocity upstream the flame will produce the decay
of equivalence ratio as exemplified by assumption 2.76. This is why the UIR of
the heat release to the equivalence ratio perturbation modelled with Eq. 2.74
is shown in Fig. 2.15 with the opposite sign with respect to Fig. 2.13. For the
same reason, the phase of the FTF of the heat release perturbations due to
the equivalence ratio perturbations shown in Fig. 2.16 has the value π for zero
frequency and the whole phase of the FTF is shifted up on the value π with
respect to the FTF in Fig. 2.14.

At this point, the model for the FTF consists of 12 parameters and it
could be cumbersome to determine all of them. For burners that have the fuel
injection at the swirler blades (see Fig. 2.17), values of the characteristic time
delays τ4 and τ6 are close to the values of τ2 and τ3 respectively, because of
their physical meaning, and they cancel the resulting effect of each other (see
Figs. 2.17, 2.18). Thus, models 2.77, 2.78 can be further simplified to include
only 4 parameters [105, 38]

FTFmod, simpl
tot (ω) = e−iωτ1−0.5(ωσ1)2 − e−iωτ2−0.5(ωσ2)2

, (2.81)
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Figure 2.15: Response of the heat release to the unit impulse of velocity mod-
elled with Eq. 2.66, to the unit impulse of equivalence ratio modelled with
Eq. 2.74, and the total UIR modelled with the general Eq. 2.78.
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Figure 2.16: FTF of the heat release perturbations due to the velocity per-
turbations modelled with Eq. 2.65, due to the equivalence ratio perturbations
modelled with Eq. 2.75, and the total FTF modelled with the general Eq. 2.77.
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Figure 2.17: Characteristic convective time lags in technically premixed swirl-
stabilised burners with fuel injection on the blades.
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Figure 2.18: Response of the heat release to the unit impulse of velocity mod-
elled with Eq. 2.66, to the unit impulse of equivalence ratio modelled with
Eq. 2.74, the total UIR modelled with the general Eq. 2.78, and the total UIR
modelled with the simplified Eq. 2.82.

UIRmod, simpl
tot (t) =
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√
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e
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. (2.82)

The total FTF and the total UIR of the technically-premixed swirl-stabilised
burners with the fuel injection at the swirler blades modelled with Eqs. 2.81
and 2.82 are shown in Figs. 2.18 and 2.19, respectively.

The integral of the heat release response to the unit impulse of the velocity
perturbation modelled with Eq. 2.82,

∫∞
0
UIRmod, simpl

tot (t)dt, is equal to 0.
This means that the step increase of the velocity will decrease the equivalence
ratio by the same normalised quantity and these two changes together, in a
long-term perspective, will not change the heat release (see Fig. 2.19).

Let us explore the FTF modelled by Eq. 2.81 in the vicinity of ω = 0. The
value of the function in Eq. 2.81 at ω = 0 is 0. The first derivative of the
function is calculated as
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Figure 2.19: FTF of the heat release perturbations due to the velocity per-
turbations modelled with Eq. 2.65, due to the equivalence ratio perturbations
modelled with Eq. 2.75, the total FTF modelled with the general Eq. 2.77,
and the total FTF modelled with the simplified Eq. 2.81.

(
FTFmod, simpl

tot

)′
(ω) = −iτ1−0.5ωσ2

1e
−iωτ1−0.5(ωσ1)2

+iτ2−0.5ωσ2
2e
−iωτ2−0.5(ωσ2)2

.

(2.83)
Next, the value of the function in Eq. 2.83 at ω = 0 is(

FTFmod, simpl
tot

)′
(0) = (τ2 − τ1)i. (2.84)

Last, consider the first two terms of the MacLaurin series of the function
in Eq. 2.81:

FTFmod, simpl
tot (ω) ≈ FTFmod, simpl

tot (0) + ω
(
FTFmod, simpl

tot

)′
(0) =

ω(τ2 − τ1)i. (2.85)

The FTF modelled by Eq. 2.81 in the vicinity of ω = 0 is defined as ω(τ2−τ1)i.
Taking into account that τ2 > τ1 because fuel injection is positioned upstream
of the flame holder, in the vicinity of ω = 0 the phase of the FTF modelled
by Eq. 2.81 is equal to π/2. The graphical interpretation of the FTF model
(Eq. 2.81) in the complex plane is shown in Fig. 2.20 for frequencies in the
range 0–200 Hz.

Models 2.81-2.82 could be extended to the nonlinear regime of excitation
assuming dependence of parameters τi and σi on the amplitude of excita-
tion A. Several FDF models for technically premixed swirl-stabilised flame
are presented in Section 4.4.
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Figure 2.20: FTFs in the complex plane in the range of frequencies 0–200 Hz.
FTF of the heat release perturbations due to the velocity perturbations mod-
elled with Eq. 2.65, due to the velocity perturbations through equivalence ratio
perturbations modelled with Eq. 2.75, the total FTF modelled with the general
Eq. 2.77, and the total FTF modelled with the simplified Eq. 2.81.

2.3 Description of the network model approach

When the length of the setup under consideration is much larger than its di-
mensions in the other directions, acoustic modes with variations across the
cross-sectional can be neglected. This leads to plane waves in a cylindrical
combustor. The frequencies of interest for combustion instabilities in gas tur-
bines are sufficiently low that this is often a good approximation. Then, it
is possible to perform a one-dimensional low-order acoustic analysis with a
network model [42, 43, 44, 45].

2.3.1 Waves propagation in sections

The setup under investigation is divided into a set of sections with constant
cross-sectional area. Pressure, velocity, temperature and density are decom-
posed into the sum of their mean component (denoted by )̄ and their fluctuat-
ing component (denoted by ′). Mean values of pressure, velocity, temperature,
density and thermophysical properties are assumed to be constant along each
section and change only from section to section.

Perturbations of pressure, velocity and density can be represented in terms
of downstream and upstream propagating acoustic waves (characteristics):

p′(x, t) = f(x, t) + g(x, t), (2.86)

u′(x, t) =
1

ρ̄c̄s
[f(x, t)− g(x, t)] , (2.87)
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Figure 2.21: Scheme of waves propagating in a section for a low-order model.

Figure 2.22: Scheme of waves propagation between adjacent sections in a low-
order model.

ρ′(x, t) =
1

c̄2
s

[f(x, t) + g(x, t)] , (2.88)

where p is the pressure, f and g are downstream and upstream travelling
components (Riemann invariants) of acoustic waves, respectively, c̄s is the
mean speed of sound, u is the velocity, ρ is the density. The downstream
propagating Riemann invariant f at the end of a section fend at each instant
of time is equal to its value at the beginning of the section fbeg with the time

delay
Lsection
c̄s + ū

(see Fig. 2.21):

fend(t) = fbeg

(
t− Lsection

c̄s + ū

)
, (2.89)

where Lsection is the length of the section. Similarly, the upstream propagating
Riemann invariant g at the beginning of the section gbeg at each instant of time

is equal to its value at the end of the section gend with the time delay
Lsection
c̄s − ū

gbeg(t) = gend

(
t− Lsection

c̄s − ū

)
. (2.90)

2.3.2 Area changes

In order to connect oscillating variables in different sections (see Fig. 2.22),
jump conditions are to be imposed. To compute the jump conditions between
sections separated by a compact acoustic element, such as a sharp cross-section
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area change or a compact swirler, the system of linearised equations describing
conservation of mass and energy has to be written [30]. Momentum is not
conserved along area change, thus the equation of momentum conservation is
not considered. For the case of area decrease these equations are

Suρuuu = Sdρdud, (2.91)

(
γ

γ − 1

p

ρ
+
u2

2

)
u

=

(
γ

γ − 1

p

ρ
+
u2

2

)
d

+ ζdecr
u2
d

2
, (2.92)

where S is the cross-sectional area of the section, γ is the heat capacity ratio,
subscripts u and d denote upstream and downstream sections, respectively,
ζdecr is the coefficient of total pressure losses calculated with respect to the
downstream velocity by the formula proposed by Idelchik [106]

ζdecr =
1

2

(
1− Sd

Su

)0.75

. (2.93)

The linearised equation of mass is

Su(ρ
′
uūu + ρ̄uu

′
u) = Sd(ρ

′
dūd + ρ̄du

′
d). (2.94)

The linearised Bernoulli equation can initially be written as

(
γ

γ − 1

ρ̄p′ − p̄ρ′

ρ̄2
+ ūu′

)
u

=

(
γ

γ − 1

ρ̄p′ − p̄ρ′

ρ̄2
+ ūu′

)
d

+ ζdecrūdu
′
d. (2.95)

It is possible to simplify Eq. 2.95. Taking into account the density fluc-
tuations dependence on the pressure fluctuations neglecting entropy pertur-

bations, ρ′ =
1

c̄2
s

p′, the equation of state of an ideal gas written for mean

quantities, p̄ = Rρ̄T̄ , and the definition of the speed of sound for an ideal gas,
c̄2
s = γRT̄ , the first terms on the LHS and RHS of Eq. 2.95 can be expressed

as

γ

γ − 1

ρ̄p′ − p̄ρ′

ρ̄2
=

1

ρ̄
p′. (2.96)

The final form of the linearised Bernoulli equation in the case of area de-
crease expressed in terms of p′ and u′ reads:(

1

ρ̄
p′ + ūu′

)
u

=

(
1

ρ̄
p′ + ūu′

)
d

+ ζdecrūdu
′
d. (2.97)

Substituting Eqs. 2.87 and 2.88 into Eq. 2.94 and defining the Mach number

as M =
ū

c̄s
we obtain
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Su
c̄s,u

(Mu + 1)fu +
Su
c̄s,u

(Mu − 1)gu =

=
Sd
c̄s,d

(Md + 1)fd +
Sd
c̄s,d

(Md − 1)gd (2.98)

Substituting Eqs. 2.86 and 2.87 into Eq. 2.97 we obtain

1

ρ̄d
(1+Md(1+ζdecr))fd+

1

ρ̄d
(1−Md(1+ζdecr))gd =

1

ρ̄u
(1+Mu)fu+

1

ρ̄u
(1−Mu)gu

(2.99)

Reorganising the system of equations 2.98 and 2.99 and writing them in
matrix form results into

F

[
fd
gu

]
= K

[
fu
gd

]
, (2.100)

with the matrices F and K for the case of area decrease given by

Fdecr =

[
Sd
c̄s,d

(1 +Md)
Su
c̄s,u

(1−Mu)
1
ρ̄d

(1 +Md(1 + ζdecr)) − 1
ρ̄u

(1−Mu)

]
, (2.101)

Kdecr =

[
Su
c̄s,u

(1 +Mu)
Sd
c̄s,d

(1−Md)
1
ρ̄u

(1 +Mu) − 1
ρ̄d

(1−Md(1 + ζdecr))

]
. (2.102)

For the case of area increase, Bernoulli equation is(
γ

γ − 1

p

ρ
+
u2

2

)
u

− ζincr
u2
u

2
=

(
γ

γ − 1

p

ρ
+
u2

2

)
d

, (2.103)

where ζincr is the coefficient of total pressure losses calculated with respect to
the upstream velocity by the formula proposed by Idelchik [106]

ζincr =

(
1− Su

Sd

)2

. (2.104)

Following the same procedure as in the case of area decrease, one can obtain
the system of equations 2.100, where the matrices F and K are now:

Fincr =

[
Sd
c̄s,d

(1 +Md)
Su
c̄s,u

(1−Mu)
1
ρ̄d

(1 +Md) − 1
ρ̄u

(1−Mu(1− ζincr))

]
, (2.105)

Kincr =

[
Su
c̄s,u

(1 +Mu)
Sd
c̄s,d

(1−Md)
1
ρ̄u

(1 +Mu(1− ζincr)) − 1
ρ̄d

(1−Md)

]
. (2.106)
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2.3.3 Unsteady heat release

The flame in the network model approach is assumed to be compact when its
length is much shorter than the minimum length of the acoustic wave under
consideration. The unsteady heat release is placed between sections with low
and high temperatures. In this way, both mean and oscillating components
of heat release are situated at the same point. To calculate jump conditions
at the flame, the system of linearised equations of conservation of momentum
and energy (product of mass conservation equation and Bernoulli equation)
has to be solved. Assuming the same cross-sectional area in the upstream and
the downstream sections, the equations of momentum and energy conservation
are

pu + ρuu
2
u = pd + ρdu

2
d (2.107)

(
γ

γ − 1
pu+ ρ

u3

2

)
u

+
Q

S
=

(
γ

γ − 1
pu+ ρ

u3

2

)
d

. (2.108)

The linearised equations of momentum and energy conservation are

p′u + 2ρ̄uūuu
′
u + ū2

uρ
′
u = p′d + 2ρ̄dūdu

′
d + ū2

dρ
′
d, (2.109)

(
γ

γ − 1
p̄u′ +

γ

γ − 1
ūp′ +

3ρ̄ū2

2
u′ +

ū3

2
ρ′
)
u

+
Q′

S
=

=

(
γ

γ − 1
p̄u′ +

γ

γ − 1
ūp′ +

3ρ̄ū2

2
u′ +

ū3

2
ρ′
)
. (2.110)

Substituting Eqs. 2.86, 2.87 and 2.88 into Eqs. 2.109 and 2.110 we obtain

(1 + 2Mu +M2
u)fu + (1− 2Mu +M2

u)gu =

= (1 + 2Md +M2
d )fd + (1− 2Md +M2

d )gd, (2.111)

[
c̄s

γ − 1
+

γū

γ − 1
+

3ū2

2c̄s
+
ū3

2c̄2
s

]
u

fu−

−
[

c̄s
γ − 1

− γū

γ − 1
+

3ū2

2c̄s
− ū3

2c̄2
s

]
u

gu +
Q′

S
=

=

[
c̄s

γ − 1
+

γū

γ − 1
+

3ū2

2c̄s
+
ū3

2c̄2
s

]
d

fd−

−
[

c̄s
γ − 1

− γū

γ − 1
+

3ū2

2c̄s
− ū3

2c̄2
s

]
d

gd.

(2.112)

Reorganising the system of equations 2.111 and 2.112 and writing them in
matrix form results into
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J

[
fd
gu

]
= H

fugd
Q′

 , (2.113)

where the coefficients of matrices J and H are

J =

[
(1 + 2Md +M2

d ) −(1− 2Mu +M2
u)[

c̄s+γū
γ−1

+ 3ū2

2c̄s
+ ū3

2c̄2s

]
d

[
c̄s−γū
γ−1

+ 3ū2

2c̄s
− ū3

2c̄2s

]
u

]
, (2.114)

H =

[
(1 + 2Mu +M2

u) −(1− 2Md +M2
d ) 0[

c̄s+γū
γ−1

+ 3ū2

2c̄s
+ ū3

2c̄2s

]
u

[
c̄s−γū
γ−1

+ 3ū2

2c̄s
− ū3

2c̄2s

]
d

1
S

]
. (2.115)

2.3.4 Boundary conditions

At the beginning of the first section, f and g waves are related by the reflection
coefficient Rin

f1,beg = Ring1,beg, (2.116)

and at the end of the last N section g and f waves are related by the reflection
coefficient Rout

gN,end = RoutfN,end. (2.117)

In general, the reflection coefficients are complex values, i.e. can be repre-
sented in the way

Ri = |Ri|eiφrefl , (2.118)

where |Ri| is the amplitude of the reflection coefficient and φrefl is its phase.
Phase of the reflection coefficient takes into account the end correction.

2.3.5 Elements interconnection

An example of elements interconnection in a low-order network model is shown
in Fig. 2.23. Time histories of acoustic characteristics f and g are modelled
in the network model. It consists of four ducts in which propagation of waves
f and g are modelled according to Eqs. 2.89 and 2.90. The waves between
Plenum duct and Burner duct are connected according to Eqs. 2.100-2.102.
The waves between Burner duct and Combustor duct 1 are connected accord-
ing to Eqs. 2.100, 2.105 and 2.106. The waves between Combustor duct 1 and
Combustor duct 2 are connected according to Eqs. 2.113-2.115. The velocity
perturbations are computed at the end of Burner duct (the reference position)
from the acoustic invariants at this position according to Eq. 2.87. The heat
release perturbations are calculated from the velocity perturbations according
to one of the FTF or FDF models described in section 2.2. The acoustic in-
variants are connected at the inlet according to Eq. 2.116 and at the outlet
according to Eq. 2.117. The setup is perturbed at the inlet by an external
broadband excitation for the first texc time of simulations. After the excitation
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Figure 2.23: Elements interconnection in a low-order network model.

time texc, acoustic oscillations modelled by the network model either saturate
to a limit cycle or decay. The dominant frequencies of oscillations (either
growing, decaying or saturated) are computed by performing the Fast Fourier
Transform of the simulated perturbations time history.

2.4 Discussion

In this chapter, the three-step approach for prediction of combustion instabil-
ities in gas turbines is described. The first step of the approach is to calculate
the Flame Describing Function (FDF) of a setup. Both Unsteady Reynolds-
Averaged Navier-Stokes method and the Flame Speed Closure model used
to compute the FDF numerically are presented. The Wiener-Hopf inversion
method for rapid Flame Transfer Functions (FTF) calculations is presented.
Time-lag distributed FTF model for the technically-premixed swirl-stabilised
flames is presented in this chapter similarly to the FTF model for the perfectly
premixed flames presented in the literature. Furthermore, it is shown that un-
der certain conditions the FTF model for the technically-premixed flames can
be significantly simplified. At the end of this chapter, the network model
approach used further in this work is presented.
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Chapter 3

Application of the three-step
approach to a laboratory,
perfectly premixed, setup

3.1 Description of the setup

The test rig under consideration is operated under atmospheric pressure and
consist of three main parts: a plenum, a swirl stabilised burner with a central
bluff body and a combustion chamber (see Fig. 3.1). A perfectly premixed
mixture of methane and air with equivalence ratio equal to 0.77 enters the
setup. The plenum is a cylinder with diameter of 200 mm and length of
170 mm. A rigid sinter plate is placed at the beginning of the plenum. The
burner exit is represented by an annular section with an inner diameter of
16 mm and an outer diameter of 40 mm. The swirler consists of 8 blades
with the length of 30 mm, positioned 30 mm upstream of the burner exit.
The length of the burner duct is 180 mm. The combustion chamber has the
quadratic cross section of 90×90 mm2. The walls of the chamber are made from
glass to enable measurements of the flame dynamics. Combustion chamber
walls are water-cooled. In the experiments, the position of the heat release
distribution was determined by OH* chemiluminescence measurements. The
length of the combustion chamber is variable and during FTF measurements
was kept equal to 300 mm. Experiments with a combustion chamber length
of 700 mm have also been performed [9]. A perforated plate is placed at the
end of the combustion chamber in order to ensure a low reflective acoustic
boundary condition. Further details on the experimental set-up can be found
in the work by Komarek and Polifke [36].

With the length of the combustion chamber of 300 mm the setup was ther-
moacoustically stable in the experiments; with the length of the combustion
chamber of 700 mm pressure oscillations at a frequency of 101.3 Hz were mea-
sured.
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Figure 3.1: Scheme of the BRS test rig (image courtesy of Thomas Komarek).

Figure 3.2: Sector scheme of the numerical set-up of the BRS test rig.

3.2 CFD simulations

3.2.1 Numerical setup

Since the main goal of the simulations is to calculate the flame dynamics,
the effect of the plenum on the fluid dynamics in the chamber is assumed to
be negligible and the plenum is not considered in the numerical setup. The
length of the burner duct in the simulations is 160 mm. A combustor length
of 200 mm is used for the sake of computational economy of the simulations.
The heat release zone lies in the first 100 mm of the combustion chamber, as
reported by Komarek and Polifke [36]. It will be shown in the next section
that the recirculation zone lies within the computational domain. Thus, it is
shown a posteriori that the considered combustor length is enough to simulate
the behaviour of the flame. Since the structure of the set-up is periodical, just
one-quarter of the test rig has been modelled in the simulations (see Fig. 3.2).
A 3D structured mesh consisting of around 280000 cells is created using the
commercial software ANSYS R© ICEM CFDTM. The time step of the simula-
tions is 4× 10−7s to ensure an acoustic CFL number lower than 0.7.

In this investigation, the thermal power is equal to 30 kW. To avoid the de-
velopment of resonance modes, non-reflective or partially reflective boundary
conditions at the inlet and at the outlet have been employed. The waveTrans-
missive boundary condition implemented in OpenFOAM [84] is used in this
work. It is based on the work by Poinsot and Lele [107] and is expressed by
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Table 3.1: Boundary Conditions for the BRS numerical model.
Face Boundary condition Details
Inlet Velocity inlet 11.3 m/s
Outlet Pressure outlet 101325 Pa
Burner tube, swirler Adiabatic no-slip wall –
Combustor walls Isothermal no-slip wall 600 K
Bluff body tip Isothermal no-slip wall 600 K

the following equation for the pressure at the boundaries:

∂p

∂t
+ uwave

∂p

∂x
=
uwave
linf

(pinf − p), (3.1)

where uwave = u+ cs at the outlet, uwave = u− cs at the inlet, cs is the speed
of sound, linf is the distance from the boundary (outlet or inlet) at which
the pressure field p becomes equal to pinf . linf = 1 m is taken in this work
because it results in low reflection coefficients for a wide range of frequencies.
Boundary conditions for the unperturbed simulation are listed in Tab. 3.1.

Walls of the experimental setup under consideration are made of glass in
order to be able to observe the flame and they are water-cooled. The temper-
ature of the combustor walls is imposed to 600 K to take into account heat
losses, as suggested by Tay-Wo-Chong and Polifke [65].

3.2.2 Results of unperturbed simulations

First, the value of the FSC model parameter uFSC used in Eg. 2.33 is taken
equal to the velocity at the inlet of the burner tube, uFSC = 11.3 m/s. Due
to the funnelling effect the velocity of the flow between the flame holder and
the flame is larger than at the exit from the burner (see Fig. 3.3) and thus
uFSC = 18 m/s is taken in further simulations.

Fields of axial velocity, temperature and heat release in the longitudinal
cross-section obtained from unperturbed simulations are shown in Figs. 3.3,
3.4, and 3.5 respectively. It is seen from Fig. 3.3 that the inner recirculation
zone completely lies in the computational domain. It is seen from Fig. 3.4 that
the temperature of the flow in the outer recirculation zone is lower than the
adiabatic temperature of the flame.

It is illustrative to compare the distributions of heat release in experiments
and simulations along the longitudinal axis. To obtain this distribution from
our simulation we take several planes perpendicular to the longitudinal axis
in the range 0 ÷ 0.1 m from the beginning of the combustion chamber in the
axial direction. Then, the heat release is integrated over these planes and the
resulting values are plotted over the longitudinal axis (see Fig. 3.6).

The difference between experimental and numerical heat release distribu-
tions is explained by the presence of the flame both in the inner and outer
shear layers in simulation (so-called M-flame) (see Fig. 3.5). However, in the
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Figure 3.3: Axial velocity distribution from the unperturbed simulation.

Figure 3.4: Temperature distribution from the unperturbed simulation.

Figure 3.5: Normalised unperturbed heat release distribution from the simu-
lation.
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Figure 3.6: OH* chemiluminescence distribution from experiment and heat
release distribution from the simulation.

experiments the flame was observed mostly in the inner shear layer, that is
called V-flame. This is explained by the fact that the FSC model is adiabatic
and the quenching influence on heat losses [108] is not taken into account in
the FSC model.

3.2.3 FDF computations

FTF computation

A transient numerical simulation of the system is performed exciting the axial
component of velocity at the inlet of the computational domain. The signal
of excitation is composed of a sum of sine waves with random frequency in
the range 0–1 kHz and random phase. The excitation signal is normalised
in a way that three standard deviations of the signal amplitude are equal
to 10% of the mean velocity at the inlet of the computational domain (see
Fig. 3.7). The signal of the velocity excitation applied at the inlet of the
computational domain and its Fast Fourier Transform are shown in Fig. 3.7
and 3.8, respectively.

The time series ur is during the simulations the axial component of the
velocity averaged in the plane perpendicular to the z-axis situated 2 cm up-
stream of the burner exit (1 cm downstream of the swirler). The response
of the flame Q is measured in the simulations as the volumetric integral of
Eq. 2.44. After that, the mean values ūr and Q̄ of the measured ur and Q are
computed and are subtracted from the time series of ur and Q, respectively,
in order to obtain the fluctuations of the axial velocity u′r and the fluctuations
of the heat release Q′.

The simulation is run for 129 ms in real time. Longer simulation times
do not change the FTF. The duration of the Unit Impulse Response (UIR) is
assumed to be equal to 10 ms. The first 15 ms are considered as a transition
period and are neglected. Using the Wiener-Hopf inversion method described
in section 2.1.3, the Flame Transfer Function of the BRS test rig is calculated
and is shown in Fig. 3.9 together with the experimental FTF [9].
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Figure 3.7: Signal of the velocity excitation.
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Figure 3.8: Fast Fourier Transform of the excitation signal shown in Fig. 3.7.
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Figure 3.9: FTF obtained experimentally [9] and from simulations.

There is a good agreement between the experimentally obtained FTF and
that obtained from the simulations in terms of gain of the FTF in the range of
frequencies 0–220 Hz. The shift in the phase of the FTF is better understood
if we switch to the time-domain representation of the FTF - the UIR. It is
possible to calculate the coefficients hk of the UIR knowing the FTF using the
formula

hk = IR

∆t

π

π/∆t∑
ω=0

FTF (ω)eiωk∆t

 , k = 0, ..., L, (3.2)

where L is the length of the hk vector.

UIRs corresponding to the FTF obtained experimentally and from simula-
tions are shown in Fig. 3.10. The UIR calculated from CFD simulations follows
the shape of the UIR computed from the experimental data but is shorter in
time. In other words, in the CFD simulations the heat release responds ear-
lier to the velocity excitations with respect to the experiments. This can be
explained by the shifted distribution of the heat release obtained with CFD
simulations with respect to the experimental one as shown in Fig. 3.6. One
can note that the significant change in the heat release distribution shown in
Fig. 3.6 results in the not so significant change of the FTF. This question is
addressed in section 3.3.2.
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Figure 3.10: Coefficients hk computed from FTFs obtained experimentally [9]
and from simulations.

FDF computations

In order to construct the Flame Describing Function, excitation frequencies of
100 Hz, 160 Hz, 240 Hz and 320 Hz are chosen. 100 Hz, 240 Hz and 320 Hz are
local extrema of the FTF gain shown in Fig. 3.9. To ensure that the difference
of the FDF phase between 100 Hz and 240 Hz is smaller than π, the 160 Hz
is also considered. Different excitation amplitudes of velocity perturbations
are applied at the inlet of the numerical setup in order to obtain velocity
perturbations after the swirler with the amplitude of 30%, 50% and 70% for
each frequency.

The FDF obtained from the simulations is shown in Fig. 3.11. The most
significant decay of the gain of the FDF with increasing amplitude of the
velocity perturbations is observed at 100 Hz, while the most significant change
in phase of the FDF is observed at 240 Hz.

The reason for the variation of the phase of the FDF for different amplitudes
of excitation can be explained as follows.

In Fig. 3.12 the normalised velocity perturbations at the reference point
u′r/ūr and the normalised heat release perturbations Q′/Q̄ during one period
of oscillation at 240 Hz with the excitation amplitude A = max(u′r)/ūr =
70% are shown. After a quarter of the oscillation period (90◦ phase) shown
in Fig. 3.12 the heat release experiences its minimum value and after three-
quarters of the oscillation period (270◦ phase), it experiences its maximum
value. It is seen in Figs. 3.13 and 3.14 that at 180◦ and 270◦ phase the flame
enters the burner’s tube. At the same time at 180◦ phase the axial velocity
passes through its minimum values (see Fig. 3.12). Because the high-amplitude
velocity excitations are applied, around 180◦ phase the turbulent flame velocity
locally is higher than the axial component of the flow velocity. This difference
of velocities pushes the flame front behind the flame holder. Because of the
heat release presence behind the flame holder when applying high-amplitude
acoustic excitations (see Figs. 3.14 and 3.15), the flame responds earlier to
acoustic excitations in comparison to small-amplitude excitations that results
in the lower absolute value of the phase of the FDF.
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Figure 3.11: FTF (dashed line) and FDF (points) obtained from simulations.

Moreover, when high-amplitude velocity excitations are applied, the tur-
bulence of the flow in the combustor is intensified. This results in higher
turbulent flame velocity and, as a result, the shift of the heat release distri-
bution towards the swirler (see Figs. 3.13, 3.15). Results of the simulations
with high-amplitude excitation at 240 Hz are shown but similar behaviours
are observed with excitations at other frequencies. Similar flame behaviour
was also observed during LES of limit-cycle oscillations in a rocket engine [35].
Further insight on the change of the FTF phase is given in section 3.3.3.

3.3 Analytical models for the FDF

3.3.1 Rational time-lagged FTF model

The computed FTF can be approximated with a rational time-lagged (RTL)
transfer function of the form 2.63. The FTF calculated in the previous section
(see Fig. 3.11) can be approximated as sum of one second-order low pass filter
and two band-pass filters multiplied by a time-lag:

FTFmod RTL(ω) =

[
nf,1ω

2
0,1

−ω2 + 2iξ1ω0,1ω + ω2
0,1

+
3∑
j=2

2inf,jξjω0,jω

−ω2 + 2iξjω0,jω + ω2
0,j

]
e−iωτf ,

(3.3)
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Figure 3.12: Normalised perturbations of velocity at reference point u′r/ūr and
heat release Q′/Q̄ during one period of oscillations (excitation at 240 Hz with
amplitude 70%).

Table 3.2: Coefficients of the RTL FTF model (Eq. 3.3)
j nf,j ω0,j ξj
1 1.169 2160 0.461
2 1.156 1267 1.612
3 -3.232 1073 0.455

where nf,j is a dimensionless constant, ω0,1 is the cut-off frequency of the
second-order low-pass filter, ξj is the damping ratio, ω0,2 and ω0,3 are band-
pass frequencies, τf is the time delay of the model. Optimum values of the
coefficients of Eq. 3.3 are computed using least-squares method and are listed
in Tab. 3.2; the optimum time delay for the flame model is τf = 1.163 · 10−3 s.
Note that second-order low-pass filter and band-pass filters contribute signifi-
cantly to the phase of the FTF model 3.3 (see [99]). Thus, τf is not the only
parameter influencing the FTF phase. The resulting FTF model is shown in
Fig. 3.16 together with the FTF calculated from simulations.

3.3.2 Time-lag distributed FTF models

In this section the FTF model 3.4 proposed by Tay-Wo-Chong et al. [65] is
used. With respect to the original FTF model of Komarek and Polifke [36]
described by Eq. 2.65, Tay-Wo-Chong et al. [65] introduced the dimensionless
parameter a = 1.05 that gives a better agreement with the measured FTF:

FTFmod TLD(ω) = e−iωτ1−0.5[ωσ1]2 +a
(
e−iωτ2−0.5[ωσ2]2 − e−iωτ3−0.5[ωσ3]2

)
. (3.4)

Optimal values of parameters τj and σj calculated using the method of
least squares for the experimentally obtained FTF and for the FTF computed
from simulations are presented in Tab. 3.3. The corresponding model of the
FTF is shown in Fig. 3.17.
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Figure 3.13: Heat release distribution in the setup at different phases of a
period of oscillations (excitation at 240 Hz with amplitude 70%).

Table 3.3: Values of parameters τj and σj for the TLD model of the experi-
mental and numerical FTFs, ms.

τ1 σ1 τ2 σ2 τ3 σ3

Experiment 2.79 0.88 4.88 0.52 6.76 1.48
Simulations 2.43 0.93 4.40 0.73 6.25 1.33
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Figure 3.14: Heat release distribution at four instances of one period of oscilla-
tions (excitation at 240 Hz with amplitude 70%) and heat release distribution
in the setup without perturbation.
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Figure 3.15: Heat release distribution in the setup without perturbation and
heat release distribution averaged over one period of oscillations (excitation at
240 Hz with amplitude 70%).
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Figure 3.16: FTF of the BRS test rig calculated from OpenFOAM simulations
and its RTL FTF model (Eq. 3.3).
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Figure 3.17: Experimental FTF of BRS and its TLD model.
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Figure 3.18: UIR computed from the experimental FTF [9] and modelled by
Eq. 3.5.

The analytical form of the UIR corresponding to the FTF model 3.4 is

UIRmod TLD(t) =
1

σ1

√
2π
e
− 1

2

(
t−τ1
σ1

)2

+

+ a

(
1

σ2

√
2π
e
− 1

2

(
t−τ2
σ2

)2

− 1

σ3

√
2π
e
− 1

2

(
t−τ3
σ3

)2
)
. (3.5)

The UIR computed from the experimental FTF and its model 3.5 are shown
in Fig. 3.18.

To understand the influence of the heat release distribution on the FTF, we
need to recover meaning of the parameters τ1, τ2 and τ3 from section 2.2.1. The
parameter τ1 model the time that fluid particles spend while traveling from
the flame holder to the flame. Thus, τ1 ∝ xfl

ufh
, where xfl is the position of the

peak of the heat release distribution and ufh is the axial velocity at the flame
holder. Indeed, the difference between τ1 parameter in the experimental and
the numerical FTFs (see Tab. 3.3) is 15% that corresponds to the difference
of the heat release distributions shown in Fig. 3.6.

The parameters τ2 and τ3 model the time that fluid particles spend to
travel from the swirler to the flame. Thus, they can be decomposed into time
that fluid particles spend to travel from the swirler to the flame holder τsw−fh
and the time that fluid particles spend to travel from the flame holder to the
flame τj fh−fl. The first component τsw−fh is indifferent to the heat release
distribution. Thus, it is equal for both τ2 and τ3 and for both experimental
and the numerical FTFs:

τsw−fh =
Lsw−fh
ufh

=
0.03

11.3
= 2.65 · 10−3s. (3.6)

The remaining components τj fh−fl are calculated subtracting the τsw−fh from
the τj values reported in Tab. 3.3, and are reported in Tab. 3.4. The differences
between τ2 fh−fl and τ3 fh−fl parameters in the experimental and the numerical
FTFs (see Tab. 3.4) are 27% and 14% respectively. That corresponds to the
difference of the heat release distributions shown in Fig. 3.6.
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Table 3.4: Values of parameters τj fh−fl for the TLD model of the experimental
and numerical FTFs, ms.

τ2 fh−fl τ3 fh−fl
Experiment 2.23 4.11
Simulations 1.75 3.60

3.3.3 Time-lag distributed FDF model

Idea of introducing the dependence of the FTF model parameters on the am-
plitude of velocity oscillations was expressed by Heckl [47, 109] and by Li and
Morgans [54]. In both works laminar flames were discussed. Heckl [47, 109]
used extended n−τ model to describe the experimentally measured FDF. That
model does not accounts the filtering flame behaviour at high frequencies. In
the FDF model of Li and Morgans [54], the standard n−τ model was extended
by a low-pass filer. However, the relative decrease of the FTF gain is assumed
to be equal for all the frequencies that is not fully representative of the real
configuration.

In this work, the FTF model for the perfectly-premixed swirl stabilised
flames 3.4 is extended to the nonlinear regime introducing the dependence of
its parameters on the amplitude of the velocity perturbations upstream of the
flame

FDFmod TLD(ω,A) = e−iωτ1(A)−0.5[ωσ1(A)]2+

+ a
(
e−iωτ2(A)−0.5[ωσ2(A)]2 − e−iωτ3(A)−0.5[ωσ3(A)]2

)
, (3.7)

where A = max(|u′r|)/ūr is the normalised amplitude of velocity oscillations
at the reference position.

First, optimal values of parameters τj and σj are calculated for each ampli-
tude of velocity perturbations using the method of least squares. The obtained
values of parameters τj and σj for different amplitudes of perturbation are pre-
sented in Tab. 3.5 and shown in Fig. 3.20; the corresponding FDF model is
shown in Fig. 3.19. All τi decrease when increasing A. This trend is explained
by the flame shift towards the swirler when it is forced by excitation with
high amplitudes. The increase of σ2 and σ3 while increasing A is explained by
higher dispersion of the flame along the longitudinal axis when applying high-
amplitude excitation (see Fig. 3.15) with respect to the heat release distribution
when low-amplitude excitation is applied. The decrease of the parameter σ1

when increasing A can be explained by the decrease of the parameter τ1.
Second, the dependencies of τi and σi on the normalised amplitude of ve-

locity perturbations A are modelled as

τj = τj,lin(1 + ΘjA
2), (3.8)

σj = σj,lin(1 + ΣjA), (3.9)

85



3. Application of the three-step approach to a laboratory, perfectly premixed,
setup

Table 3.5: Values of parameters τj and σj for different amplitudes of pertur-
bation in simulations, ms

Amplitude τ1 σ1 τ2 σ2 τ3 σ3

10% 2.43 0.93 4.40 0.73 6.25 1.33
30% 2.47 0.92 4.18 0.73 5.71 1.81
50% 2.33 0.78 3.98 0.77 5.27 2.38
70% 1.95 0.73 3.60 0.77 3.35 2.44
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Figure 3.19: FDF of BRS setup modelled with Eq. 3.7.
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Figure 3.20: Dependencies τj(A) and σj(A) from Tab. 3.5 (points, ’Model’)
and modelled by Eqs. (3.8)-(3.9) (lines, ’2-modeled’).

where parameters τj,lin and σj,lin determine the FDF in the linear regime when
A = 0, and dimensionless parameters Θj and Σj determine the relative change
of the parameters τj and σj respectively when the excitation of A = 1 is
applied.

Quadratic dependency of τj on A is chosen because it gives smaller val-
ues of root-mean-square errors than a linear dependence. For σj(A) a linear
dependency gives the smallest root-mean-square errors. Optimal values of pa-
rameters τj,lin, Θj, σj,lin and Σj are computed using the least squares method
and are listed in Table 3.6. The resulting functions are shown in Fig. 3.20.
Note that values of τj,lin and σj,lin are close to the values of τj and σj for 10%
excitation (see Tab. 3.5).

Table 3.6: Values of parameters τj,lin, Θi, σj,lin and Σj in the TLD FDF model.
j τj,lin, ms Θj σj,lin, ms Σj

1 2.52 -0.42 0.99 -0.37
2 4.38 -0.37 0.72 0.11
3 6.37 -0.92 1.21 1.61

The physical meaning of dependencies of parameters τj and σj on A is
understood if the frequency domain representation of the FDF is switched to
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Figure 3.21: UIRs for different amplitudes of velocity excitations modelled by
Eq. (3.5).

the time domain representation, i.e. to the UIR. Eq. 3.5 models the response
of the heat release to acoustic oscillations with the help of three Gaussians
with peaks at τj and standard deviations σj.

The UIRs for different amplitudes of velocity excitation are shown in Fig. 3.21.
As it can be observed, higher velocity perturbations amplitudes cause the
flame response peaks to occur mildly earlier in time. Furthermore, the overall
response duration remains almost the same for the 4 excitation amplitudes
considered.

As it is already mentioned in section 3.2.3, high-amplitude velocity ex-
citations intensify the turbulence of the flow and shift the peak of the heat
release distribution towards the swirler (see Fig. 3.15). This causes the flame
response peaks in the UIR (see Fig. 3.21) to occur earlier in time. Moreover,
the length of the non-zero heat release distribution remains almost unchanged.
That is why the overall response duration remains almost the same for the 4
amplitudes considered.

Note that the proposed FDF model consists of only 6 parameters. The FDF
at certain excitation amplitude computed for 3 frequencies gives 6 equations
for the FDF model parameters estimation: 3 equations for the FDF gain and
3 equations for the FDF phase. From the mathematical point of view, it
is possible to find optimum model parameters knowing the FDF just at 3
frequencies. With 4 frequencies, as used in the present work, the problem of
the optimum parameters search becomes even overestimated improving the
reliability of the obtained results. Thus, using the proposed FDF model it
is possible to reduce the number of time-consuming CFD simulations for the
FDF calculation that is the advantage of this FDF model.

The calculation of the instantaneous normalised amplitude of velocity os-
cillations at the reference position A is a challenge when using the FDF in
the time domain simulations. In this work, the instantaneous value of A is
computed as the maximum value of the normalised amplitude of velocity os-
cillations max(|u′r|)/ūr in a window of time that precedes the current instant
of the simulation. This approach is robust and is computationally inexpen-
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sive. For the setup in this section the time window is taken 25 ms that allows
to compute the normalised amplitude of velocity oscillations for frequencies
higher than 20 Hz. Smaller length of the time window may be required if the
dynamics of the thermoacoustic system is very fast and the unstable frequency
of the pressure oscillations is high. Examples of A time histories for a stable
and for an unstable cases are presented in Section 3.4.3.

3.4 Network model simulations

3.4.1 Numerical setup

The network model numerical setup consists of 6 sections, 3 jump conditions
with pressure losses, one jump condition at the flame and 2 boundary condi-
tions, as shown in Fig. 3.22. The cross-section area, length and temperature of
each section are listed in Tab. 3.7. Jump matrices to connect waves between
sections are calculated using systems of Eqs. 2.100 and 2.113. The reflection
coefficient of the inlet (see Eq. 2.116) is Rinlet = 1 unless another value is spec-
ified. The outlet reflection coefficient defined in Eq. 2.117 is Routlet = −0.4
approximated from the values reported by [9], unless otherwise specified. The
total length of the combustor (sum of the lengths of Sections 5 and 6) Lc.c. is
variable. Acoustic losses at area changes between the plenum and the burner
duct and between the burner duct and the combustor are taken into account
by pressure losses coefficients ζdecr = 0.487 and ζincr = 0.756 respectively, cal-
culated by formulae 2.93 and 2.104. Acoustic losses at the swirler are taken
into account by the pressure loss coefficient ζswirler = 2.073 calculated from
the unperturbed OpenFOAM simulations. The active flame, i.e. the unsteady
heat release, in the low-order network model is positioned at xfl = 0.03 m
between Sections 5 and 6. This value corresponds to the maximum of the heat
release in the longitudinal direction in OpenFOAM simulations (see Fig. 3.6).
Time step in the network model simulations is 10−5 s that is smaller than any
acoustic time lag in any Section of the network model.

The velocity fluctuations for the unsteady heat release model are taken
between Sections 3 and 4 that corresponds to the velocity probe position in
the simulations. The instantaneous unsteady heat release is calculated as
the convolution of the history of velocity fluctuations and the Unit Impulse
Response

Q′(t) =
Q̄

ū

∫ ∞
0

UIRmod
u (t′ − t)u′(t)dt′. (3.10)

where t′ is the integration variable.
The mean temperature is the same in the first five sections. The temper-

ature gradient coincides with the position of the active flame and is situated
at the border between Sections 5 and 6. On the one hand, the temperature in
Section 6 should be equal to the adiabatic temperature of the flame (1960 K)
that is observed in the inner recirculation zone in the OpenFOAM simulations
(see Fig. 3.4). In this case the temperature gradient at the flame is modelled
correctly that is important for the stability prediction [31]. On the other hand,
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Figure 3.22: Scheme of BRS network model numerical setup.

Table 3.7: Default values of parameters imposed in the network model.
N Section Area, m2 Length, m Temperature, K
1 Plenum 3.146E−2 0.17 300
2 Burner duct 1 1.056E−3 0.135 300
3 Burner duct 2 1.056E−3 0.025 300
4 Burner duct 3 1.056E−3 0.02 300
5 Combustor 1 8.1E−3 xfl = 0.03 300
6 Combustor 2 8.1E−3 Lc.c. − xfl 1712/1930
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the value of the mean temperature in Section 6 should take into account heat
losses of the test rig. In the second case, time for the acoustic wave to travel
from the flame to the outlet and backwards is computed correctly.

The thermoacoustic analysis using a network model is computationally
inexpensive and several analyses with different values of the parameters can
be made. The first value of the temperature in Section 6, Tcomb 2=1930 K, is
taken from the work by Tay-Wo-Chong et al. [9]. This value is close to the
adiabatic temperature of the flame. Considering the case with the value of
the temperature in Section 6, 1930 K renders possible the comparison of our
results with the results of [9]. The second value of the temperature in Section 6
is Tcomb 2=1712 K. This value is the average temperature at the outlet of the
computational domain in the OpenFOAM simulation and takes into account
heat losses of the setup. The influence of the temperature in Section 6 is
addressed later in section 3.4.3.

3.4.2 Results of the linear analysis

Rational time-lag FTF model 3.3 gives the very good approximation of the
computed FTF (see Fig. 3.16). Moreover, time domain simulations with this
FTF model are two orders of magnitude faster than with the time-lag dis-
tributed model 3.4. Thus, for the linear analysis the RTD FTF model 3.3 is
used.

The temperature in Section 6 is taken equal to Tcomb 2=1930 K, to compare
the present results with the results of Tay-Wo-Chong et al. [9].

The setup is excited at the inlet for the first texc =0.1 s by a broadband
signal in the range 0÷1 kHz with maximum amplitude of 5 Pa. After 0.1 s and
until 0.3 s, the system is left to evolve by itself without external excitation.
The parameter called growth rate is calculated; it provides information about
the mode stability. It is possible to calculate the growth rate from the time
domain simulations assuming the following law for the pressure perturbations

p′(t) =
n∑
i=1

Pisin(2πfit+ φi)e
αi(t−texc), (3.11)

where fi is one of the frequencies of pressure oscillations after texc, n is the
number of the frequencies of pressure oscillations after texc, Pi is the amplitude
of pressure oscillations at fi at the time texc, φi is the phase of the pressure
oscillations at fi, αi is the growth rate of the mode fi.

The frequencies of oscillations and their growth rates are computed by
approximating time history of pressure oscillations by Eq. 3.11 using the least-
squares method. In the simulations presented in this chapter no more than two
unstable frequencies per run are detected, thus n = 2 for all simulations in the
network model in this chapter. Positive values of the growth rate parameter α
indicate that the system is unstable, and the negative values of α mean that
the system is stable.
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Figure 3.23: Dominant frequency of oscillations and its growth rate for various
lengths of the combustion chamber; xfl =0.03 m, kG = 1, τadd =0 ms.

Validation against experimental data

An unstable frequency at 101.3 Hz was detected in the experiments [9] with
a combustor length of 0.7 m. With a length of the combustor equal to 0.3 m
the setup was stable [65]. A parametric study with different values of the
combustion chamber length in the range 0.3 ÷ 1.1 m, with steps of 0.1 m, is
performed here. For values of the combustion chamber length below 0.6 m
the setup is stable (see Fig. 3.23). For combustion chamber lengths equal
or higher than 0.7 m the setup is unstable. Thus, our simulations predict
the setup with the length of combustion chamber Lc.c. = 0.3 m to be stable
and with Lc.c. = 0.7 m to be unstable as in the experiments. Particularly, it
explains why the experimental setup was stable when the FTF was computed
with Lc.c. = 0.3 m.

The computed frequency does not correspond to any of the acoustic modes
of the setup but is a ’flame intrinsic mode’ as defined by Bomberg et al. [110],
an ’Intrinsic Thermo-Acoustic (ITA)’ mode defined by Silva et al. [31] or a
’mode associated with the flame model’ as defined by Dowling and Stow [30].
The brief explanation of the ITA mode formation is given in Figure 3.24. The
heat release perturbations Q̇′ according to Eq. 2.113 produce acoustic waves
and one of them, g5, travels upstream to the junction between the combustor
and the burner tube. At this junction, according to Eq. 2.100, one part of
the acoustic wave g5 transforms into the wave g4 that travels to the reference
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velocity plane. At this plane, the acoustic wave g4 contributes to the velocity
perturbations u′r that produce heat release oscillations through the FTF. At
this point, the loop is closed; since this loop can exist even with the zero reflec-
tion coefficients [31], the acoustic mode produced as a result of this interaction
is called intrinsic. Nevertheless, it does not imply that acoustics of the setup
does not influence the frequency and the stability of the intrinsic mode. The
more detailed explanation of the ITA mode formation can be found in the work
of Bomberg et al. [110].

Figure 3.24: Scheme of formation of ITA modes.

The unstable frequency 131 Hz computed in this work with the length
of combustion chamber of 0.7 m and Tcomb 2 = 1930 K differs from the value
101.3 Hz observed in the experiment [9] with the same length of the combustor.
This is explained by the difference in the phase of the FTF in the experiment
and in our simulations and by the very high sensitivity of ITA modes frequency
to the phase of the FTF, as it is shown further.

The FSC model that is used in this work is adiabatic as well as the Turbu-
lent Flame Closure (TFC) model used by Tay-Wo-Chong et al. [9]. However,
using the FTF computed with the URANS simulations and the TFC model
predicted the BRS test rig to be unstable only with the total combustor length
equal or higher than 1 m. Thus, it can be concluded that the FSC model is
more in agreement with the experiments than the TFC model. The unstable
frequency obtained by Tay-Wo-Chong et al. [9] is also higher than the one de-
tected in experiments. It is mentioned by Tay-Wo-Chong et al. [9] that three
parameters were different for the experimental measurements and the URANS
simulations with the TFC model: the position of the maximum heat release
of unperturbed case (denoted here as xfl), the gain and the phase of the FTF
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Figure 3.25: Dominant frequency of oscillations and its growth rate for various
positions of the flame; Lc.c =0.7 m, kG = 1, τadd =0 ms.

around the unstable frequency. To investigate these aspects, parametric anal-
ysis varying the position of the unsteady heat release, the gain and the phase
of the FTF in the network model are performed. We are aware of the strong
connection between the heat release distribution and the phase of the FTF.
However, the direct effect of heat release distribution, i.e. the flame position
in the network model, and its indirect effect, i.e. the phase of the FTF, on the
stability are studied separately in this work to understand each effect.

Sensitivity to the flame position

The parameter xfl is varied in the range 0÷0.1 m with steps of 0.01 m keeping
fixed the length of the combustion chamber, Lc.c = 0.7 m, and the FTF. This
range corresponds to the heat release distribution in the longitudinal direction
(see Fig. 3.6). As it can be seen from Figure 3.25, the thermoacoustic system is
unstable for values of xfl smaller or equal to 0.04 m. When increasing the xfl
parameter, the frequency of the dominant mode of the setup slightly decreases.

Sensitivity to the gain of FTF

To study the influence of the gain and the phase of the FTF on the stability
of the setup the modified version of the model for the FTF is introduced:
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Figure 3.26: Dominant frequency of oscillations and its growth rate for various
values of the parameter kG parameter; Lc.c = 0.7 m, xfl = 0.03 m, τadd = 0 ms.

FTFmod RTL 2(ω) = kGFTFmod RTL(ω)e−iωτadd , (3.12)

where kG is the dimensionless parameter responsible for the change of the gain
of the FTF and τadd is the additional time delay responsible for the change of
the phase of the FTF.

The parameter kG is changed in the range 0.8 ÷ 1.2 with steps of 0.05. It
is seen from Fig. 3.26 that the setup is stable for values of kG lower than 1,
i.e. lower values of the gain of the FTF. This could be the main reason of
discrepancy between experimental data and the stability analysis with the
FTF calculated with the URANS simulations and the TFC model [9]. The
dominant frequency of the oscillations of the setup grows slowly when kG
increases.

Sensitivity to the phase of FTF

We vary the parameter τadd in the range −1.0 ÷ 2.0 ms in steps of 0.2 ms.
The lower limit of this range is set by the value τf . The setup is unstable for
higher values of τadd, i.e. higher absolute values of the phase of the FTF, as it
can be seen from Fig. 3.27. The dominant frequency of the oscillations decays
significantly when τadd increases. The unstable frequency 100.3 Hz corresponds
to the value of the parameter τadd = 1.6 ms. Almost the same frequency
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Figure 3.27: Dominant frequency of oscillations and its growth rate for various
values of the parameter τadd; Lc.c = 0.7 m, xfl = 0.03 m, kG = 1.

101.3 Hz was retrieved experimentally. This happens because the phase of the
FTF obtained numerically is underestimated with respect to the experimental
one. Adding an artificial time delay to the FTF obtained numerically shifts
the phase of the FTF closer to the experimental one.

Combined sensitivity to the flame length and the FTF phase

Next, the influence of the simultaneous change of the flame position in the
network model and the FTF phase on the stability is studied. The change of
the FTF phase τadd is assumed to be dependent on the change of the flame
position in the network model ∆xflame as

τadd =
∆xflame
ūr

, (3.13)

where ūr = 11.3 m/s. The length of the network model section Combustor 1
is calculated as xflame = 0.03 + ∆xflame. The dependence of the frequency
of the dominant mode and its growth rate on both the flame location in the
network model and the FTF phase are shown in Figure 3.28. ∆xflame =
0.015 ms is characterised with the unstable frequency 104.1 Hz that is close to
the frequency 101.3 Hz retrieved experimentally.
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Figure 3.28: Dominant frequency of oscillations and its growth rate for various
values of ∆xflame parameter; Lc.c = 0.7 m, kG = 1, τadd = ∆xflame/ūr.

Sensitivity to the combustion chamber length and the outlet reflec-
tion coefficient

It is important to find ways to suppress combustion instabilities at the ITA
frequencies. To accomplish this task, the parametric analysis is performed for
lengths of combustion chamber in a wider range than presented in Fig. 3.23,
for various reflection coefficients, plenum lengths and plenum cross-sectional
areas.

First, a parametric analysis is performed for length of the combustion cham-
ber in the range 0.3÷ 10 m and three values of the outlet reflection coefficient
Rout = {−0.4, 0, 0.4}. The results are presented in Fig. 3.29. For the zero
value of the outlet reflection coefficient the unstable frequency of the setup
is 117 Hz with the growth rate 83 s−1 in the whole range of the combustion
chamber lengths.

For a value of the outlet reflection coefficient Rout = −0.4 when increasing
the length of the combustion chamber from 0.3 m till 1.0 m, the unstable
frequency increases from 118 Hz to 134 Hz. As Lc.c. increases till 3.9 m,
the unstable frequency decreases to 103 Hz. In the range of the combustion
chamber lengths 0.3 ÷ 2.0 m the growth rate grows from −54 s−1 to 149 s−1.
As the length of the combustion chamber increases to 3.9 m, the growth rate
decreases to 17 s−1. For a length of the combustion chamber equal to 4.0 m
the unstable mode changes suddenly its frequency from to 103 Hz to 130 Hz.
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Figure 3.29: Dominant frequency of oscillations and its growth rate for various
combustion chamber length and three values of the outlet reflection coefficient.
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Further increase of Lc.c. up to 7.6 m results in a monotonic decrease of the
unstable frequency to 110 Hz. The growth rate increases in the range of the
combustion chamber length 4.0 ÷ 5.5 m and decreases in the range of the
combustion chamber length 5.5 ÷ 7.6 m. At Lc.c. = 7.6 m the frequency
jump occurs again. The frequency jump occurs every ∆Lc.c. = 3.6 m that
corresponds to half the wavelength of the mode at frequency 118 Hz, for a
temperature of Section 6 equal to Tcomb 2 = 1930 K.

Similar behaviour is observed for a value of the outlet reflection coefficient
Rout = 0.4. For the length of the combustion chamber from 0.3 m till 2.1 m,
the unstable frequency decreases with its growth rate. At Lc.c. = 2.2 m the
frequency jump occurs and the further increase of the combustion chamber
length results in a monotonic decrease of the dominant frequency; its growth
rate first increases and then decreases. Next frequency jumps occur at Lc.c. =
5.8 m and Lc.c. = 9.5 m with the same periodicity ∆Lc.c. = 3.6 m as for
Rout = −0.4.

The influence of the outlet reflection coefficient on the stability is studied.
Similar analyses have been done by Emmert et al. [111] for Lc.c. = 0.7 m and by
Silva et al. [112] for Lc.c. = 0.3÷0.7 m. In this work, this analysis is extended to
three other values of the combustion chamber length Lc.c. = {0.7, 2.2, 3.0} m.
The results are present in Fig. 3.30.

For Lc.c. = 0.7 m the frequency of the dominant mode decreases monotoni-
cally when increasing the value of the reflection coefficient, in particular when
the reflection coefficient changes its sign. The growth rate of the dominant
mode increases while increasing the value of the reflection coefficient in the
whole range studied Rout = −0.7 ÷ 1. The dominant mode is unstable for
Rout = −0.4÷ 1.

For Lc.c. = 2.2 m the frequency of the dominant mode increases monotoni-
cally when increasing the value of the reflection coefficient in the range Rout =
−1÷ 0.7. For values of the reflection coefficient in the range Rout = −1÷ 0.4,
the growth rate decreases. The dominant mode is stable for Rout = 0.4÷ 0.7.

For Lc.c. = 3.0 m the frequency of the dominant mode increases monotoni-
cally when increasing the value of the reflection coefficient in the whole range
Rout = −1 ÷ 1. The growth rate decreases for negative values of the outlet
reflection coefficients and increases for positive values. The dominant mode is
unstable in the whole range of outlet reflection coefficients.

It is common practice to decrease the absolute value of the reflection co-
efficient to suppress combustion instabilities. However, as shown in Fig. 3.30,
this technique generally does not work with ITA modes and some cases could
even lead to an increase of the growth rate of the ITA mode.

Sensitivity to the plenum length and the inlet reflection coefficient

Next, a parametric analysis is performed for a length of the plenum in the range
0.1÷10 m and three values of the inlet reflection coefficient Rin = {−1, 0, 1}.
To eliminate the influence of the combustion chamber acoustics, the outlet
reflection coefficient was taken to vanish, i.e. Rout = 0. Results are presented
in Fig. 3.31. For a zero value of the inlet reflection coefficient the unstable
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Figure 3.30: Dominant frequency of oscillations and its growth rate for various
values of the outlet reflection coefficient and three combustion chamber lengths.
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Figure 3.31: Dominant frequency of oscillations and its growth rate for various
plenum lengths and three values of the inlet reflection coefficient; Rout = 0.

frequency of the setup is 112 Hz with a growth rate equal to 39 s−1 in the
whole range of plenum lengths. This means that for both inlet and outlet
anechoic conditions (Rin = 0 and Rout = 0) the setup is unstable.

For Rin = 1 in the range of plenum lengths 0.1 ÷ 2.6 m the unstable fre-
quency decreases from 119 Hz to 107 Hz; its growth rate decreases from 91 s−1

to 24 s−1. At Lpl = 2.7 m the dominant frequency jumps to 128 Hz. Further
increase of the plenum length up to 5.8 m results in the monotonic decrease
of the dominant frequency; its growth rate first increases and then decreases.
Next jumps occur for plenum lengths of 5.8 m and 9 m. The periodicity of
frequency jump occurrence is ∆Lpl =3.2 m. This length corresponds to the
acoustic wavelength at the frequency 112 Hz at the temperature of Section 1
equal to Tpl = 300 K.

Similar behaviour is observed for Rin = −1. In the range of plenum lengths
0.1÷1.1 m the unstable frequency decreases from 109 Hz to 106 Hz; its growth
rate decreases from 47 s−1 to 16 s−1. At Lpl = 1.1 m the dominant frequency
jumps to 147 Hz. Further increase of the plenum length to 4.2 m results in the
monotonic decrease of the dominant frequency; its growth rate first increases
and then decreases. Next frequency jumps occur at Lpl = 4.3 m and 7.5 m. A
frequency jumps occurs each ∆Lpl = 3.2 m as in the case of Rin = 1.

For certain values of the plenum length and the inlet reflection coefficient
two ITA modes are unstable with close values of growth rate. In particular,
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Figure 3.32: History of pressure oscillations at the beginning of the combustor;
Rin = 1, Lpl = 5.8 m, Rout = 0.

such situation is well pronounced for the set of parameters Rin = 1, Lpl =
5.8 m, Rout = 0 (see Fig. 3.31). For this set of parameters, there are two
unstable ITA modes, one at the frequency 108 Hz with the growth rate 25 s−1

and another at a frequency of 121 Hz with growth rate equal to 23 s−1. These
unstable frequencies coexist and lead to the unusual time history of acoustic
perturbations in the time-domain simulations displayed in Fig. 3.32.

Sensitivity to the plenum cross-sectional area

Finally, a parametric analysis is performed for different values of the cross-
sectional area of the plenum, in the range Spl = 1.056 × 10−3 ÷ 10 m2. The
value Spl = 1.056 × 10−3m2 corresponds to the cross-sectional area of the
burner duct. Further increase of the plenum cross-sectional area beyond 10 m2

does not show any change of the dominant frequency nor of its growth rate.
Both the inlet and outlet reflection coefficients are set to zero. Results are
presented in Fig. 3.33. The frequency of the dominant mode decreases from
138 Hz for Spl = 1.056 × 10−3 m2 to 110 Hz for Spl = 10 m2. The growth
rate of the dominant mode increases from −168 s−1 for Spl = 1.056× 10−3 m2

to 51 s−1 for Spl = 10 m2. In particular, the setup is unstable for values of
the plenum cross-sectional area in the range Spl = 0.01 ÷ 10 m2. Thus, it is
possible to stabilise the unstable ITA mode reducing the cross-sectional area
of the plenum.

Both dominant frequency and its growth rate in Fig. 3.33 are limited by
the cases without plenum and inlet reflection coefficient Rin = −1 and Rin =
0. Dominant frequencies and their growth rates for the case without plenum
and values of the inlet reflection coefficients Rin = {−1, 0, 1} are presented
in Tab. 3.8. Table 3.8 demonstrates why the ITA modes are stable in FTF
calculation with URANS, whenever the plenum is not accounted for.
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Figure 3.33: Dominant frequency of oscillations and its growth rate for various
plenum lengths and three values of the inlet reflection coefficient; Rout = 0.

Table 3.8: Dominant frequencies and their growth rates for the case without
plenum and various inlet reflection coefficient values.

Rin = −1 Rin = 0 Rin = 1
Dominant frequency, Hz 106 138 183
growth rate, s−1 69 -181 -432

3.4.3 Results of the weakly nonlinear analysis

In this section, the acoustics of the system is assumed to be linear and the heat
release perturbations depend on the amplitude of the acoustic perturbations.
Such analysis is called weakly nonlinear.

As mentioned in the previous section, the FTF model 3.3 gives the very
good approximation of the computed FTF (see Fig. 3.16). The drawback of
this model is that it consists of 10 parameters and it is difficult to trace the
dependence of each parameter on the amplitude of the excitation. Thus, for
the nonlinear analysis FDF model 3.7 is employed.

The normalised amplitude of velocity perturbations A is needed for the
calculation of the instantaneous values of parameters τi and σi. It is unknown
before the simulation is run and is rather the output of the simulation. It is
calculated as the maximum amplitude of the normalised velocity fluctuations
between Sections 3 and 4 of the network model setup (this position corre-
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sponds to the reference position in the CFD calculations) in the last 25 ms
of simulations, as mentioned in section 3.3.3. Each time step the UIR to be
used in Eq. 3.10 is recalculated based on the current amplitude of velocity
perturbations A.

Validation of the forced response

It is worth to validate the nonlinear TLD flame model against CFD simula-
tions before validating the three-step approach against the experimental data.
For the validation of the linear TLD flame model, the CFD simulation is run
for 45 ms with the broadband small-amplitude velocity excitation as in sec-
tion 3.2.3. The resulting heat release is registered and than decomposed into
its mean value Q̄CFD and fluctuating value Q′CFD. The velocity time history
at the reference position is also recorded and then the TLD flame model imple-
mented in Simulink environment is applied to the velocity signal. As a result
of simulation in Simulink, the respective heat release perturbations Q′SIM are
calculated. The Quality of Fit (QF) parameter proposed by Jaensch and Po-
lifke [113] is used to estimate the agreement between the CFD and Simulink
simulations:

QF = 100

(
1− ||Q

′
CFD −Q′SIM ||

||Q′CFD − Q̄CFD||

)
(3.14)

For the small-amplitude broadband velocity excitation the first 15 ms of
the simulations are neglected as a transient period, thus only last 30 ms of
the simulations are compared. Heat release fluctuations computed with the
CFD simulation in OpenFOAM and calculated with Simulink modelling are
presented in Fig. 3.34. The Quality of Fit calculated by Eq. 3.14 for the linear
case is 98.81%.
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Figure 3.34: Validation of the linear response of the TLD flame model to
small-amplitude velocity excitations.

Similar procedure of QF calculation is done for the mono-frequency exci-
tation at high amplitudes. Since the flame response is deterministic both in
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Table 3.9: Quality of Fit calculated by Eq. 3.14 of the heat release modelled
with the nonlinear TLD flame model in Simulink with respect to the one
computed with OpenFOAM simulations.

Excitation amplitude 100 Hz 160 Hz 240 Hz 320Hz
30% 93.88% 97.46% 97.73% 98.59%
50% 85.88% 93.78% 97.99% 98.30%
70% 82.84% 88.31% 94.93% 94.01%

CFD simulations and in Simulink modelling, the same time histories of veloc-
ity perturbations and heat release perturbations from CFD simulations used
for the FDF calculation (see section 3.2.3) are used for the Quality of Fit com-
putation. Then, the TLD flame model implemented in Simulink environment
is applied to the velocity signal. The heat release perturbations Q′SIM are
computed and are shown in Figs. 3.35-3.38. The values of the Quality of Fit
criterion are presented in Tab. 3.9.

Values of the QF lower than 90% correspond to low-frequency high-amplitude
excitations (100 Hz 50%, 100 Hz 70%, and 160 Hz 70%) that are characterised
by heat release oscillations of the amplitude close to 100%. When such high
heat release oscillations take place, Simulink modelling predicts the positive
and negative parts of the heat release response of the same amplitude. Mean-
while, under the same conditions in CFD simulations, the positive part of the
heat release oscillation has higher amplitude and the negative part have lower
amplitude (see Figs. 3.35, 3.36). This results in lowering of the QF value. For
other cases QF criterion is higher than 90% that indicates good agreement be-
tween the TLD nonlinear flame model and the OpenFOAM CFD simulations.

Influence of the temperature downstream the flame

For each set of parameters, the simulation is run for 1.0 s, which is enough
to reach either saturation to limit cycle pressure oscillations or zero pressure
fluctuations. The setup is excited at the inlet first for texc = 0.1 s by a
broadband signal in the range 0 ÷ 1 kHz with maximum amplitude 5 Pa.
In this way perturbations are introduced in the numerical model. After 0.1 s
and until 1.0 s the system is left to evolve by itself without external excitations.
The maximum amplitude of pressure oscillations is measured in the window
0.9÷ 1.0 s and is presented hereafter.

Two values of temperature in Section 6 are studied: Tcomb 2 = 1712 K and
Tcomb 2 = 1930 K. Corresponding simulations are performed and it is found
that with a combustion chamber length Lc.c. = 0.3 m the setup is stable (see
Figs. 3.39, 3.40) and with the combustion chamber length Lc.c. = 0.7 m the
setup is unstable (see Figs. 3.41, 3.42), as in experiments [65].

It is shown in Figs. 3.40 and 3.42 how the instantaneous value of A parame-
ter is computed from the time history of the normalised velocity perturbations.
It is checked that simulations with the length of the time window for A calcula-
tion equal to 5 ms instead of 25 ms give the same results. In Figs. 3.41 and 3.42
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Figure 3.35: Validation of the nonlinear response of the TLD flame model to
velocity excitations at 100 Hz; top to bottom excitation amplitudes 30%, 50%,
and 70%.

it is possible to see how the nonlinear flame model works: first perturbations
grow exponentially and then they saturate at a certain amplitude.

A parametric study with combustion chamber lengths in the range 0.3 ÷
1.0 m with steps of 0.1 m is thus performed. For values of the combustion
chamber length lower and equal to 0.6 m the setup is stable for both tem-
perature values in Section 6 (see Fig. 3.43). For values of the combustion
chamber lengths equal and higher than 0.7 m the setup is unstable for both
temperature values in Section 6. Larger temperature values after the flame are
characterised by larger pressure oscillations amplitudes (see Fig. 3.43).

Results for velocity perturbations amplitude values above 70% are not
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Figure 3.36: Validation of the nonlinear response of the TLD flame model to
velocity excitations at 160 Hz; top to bottom excitation amplitudes 30%, 50%,
and 70%.

shown in the current work since this is the maximum amplitude of the ve-
locity perturbations during the simulations of the FDF (see Fig. 3.44). Thus,
the presented results of network model simulations are consistent.

The unstable frequencies predicted by the network model simulations are
shown in Fig. 3.45 as a function of the total length of the combustion chamber.
The unstable frequencies are almost independent of the temperature after the
flame Tcomb 2.
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Figure 3.37: Validation of the nonlinear response of the TLD flame model to
velocity excitations at 240 Hz; top to bottom excitation amplitudes 30%, 50%,
and 70%.

Comparison with the FTF computed experimentally

Next, results of network model simulations with two FDFs - the one obtained
experimentally and the one obtained with CFD simulations - are compared.
Since the FDF was not measured experimentally and only the FTF is available
from experiments, the model described by Eqs. 3.7, 3.8, 3.9 is assumed for the
experimental FDF. For infinitesimal perturbations, the amplitude values of
τi,lin and σi,lin correspond to the experimental FTF by taking the parameters
τi and σi from Tab. 3.3. Then, the change of parameters τi and σi with
the amplitude is assumed to be the same as in the model of FDF computed
from CFD by taking Θi and Σi values from Tab. 3.6. It can be seen from
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Figure 3.38: Validation of the nonlinear response of the TLD flame model to
velocity excitations at 320 Hz; top to bottom excitation amplitudes 30%, 50%,
and 70%.

Fig. 3.46, that the network model simulations predict larger amplitudes of
pressure oscillations if the experimental FTF is used instead of the numerically
calculated FTF. The dominant frequency of the pressure oscillations predicted
by the network model simulations is closer to the experimental frequency when
the experimental FTF is used, compared to the numerical FTF (see Fig. 3.47).
The still existing difference in the frequency could be explained by uncertainties
in the FTF measurements and by the steep dependence of the ITA mode
frequency on the phase of the FTF. With the length of combustion chamber
Lc.c = 1 m and experimental FTF the amplitude of velocity perturbations
at the reference point exceed 70% of its mean value, thus the results are not
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Figure 3.39: Pressure perturbations at the flame with Lc.c. = 0.3 m and
Tcomb 2 = 1930 K.
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Figure 3.40: Normalised instantaneous velocity perturbations between Sec-
tions 3 and 4 of the network model setup and instantaneous A parameter with
Lc.c. = 0.3 m and Tcomb 2 = 1930 K.

Time, s
0 0.2 0.4 0.6 0.8 1

-200

-100

0

100

200
Pressure oscillations at the flame, Pa

Figure 3.41: Pressure perturbations at the flame with Lc.c. = 0.7 m and
Tcomb 2 = 1930 K.
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Figure 3.42: Normalised instantaneous velocity perturbations between Sec-
tions 3 and 4 of the network model setup and instantaneous A parameter with
Lc.c. = 0.7 m and Tcomb 2 = 1930 K.
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Figure 3.43: Amplitude of pressure perturbations at the flame for different
Lc.c. and Tcomb 2.
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Figure 3.44: Normalised amplitude of velocity perturbations after the swirler
for different Lc.c. and Tcomb 2.
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Figure 3.45: Dominant frequency of pressure perturbations at the flame for
different Lc.c. and Tcomb 2.
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Figure 3.46: Amplitude of pressure perturbations at the flame in network
model simulations with the FTF obtained experimentally and using the FTF
obtained from numerical simulations with Tcomb 2 = 1930 K.

considered reliable (and are not presented).

Linear versus weakly nonlinear analysis

Finally, the linear analysis is performed with network model simulations in
time domain with the FTF obtained numerically. In this set of simulations
the FDF does not depend on the amplitude of the velocity perturbations before
the flame, i.e. we have set the parameters Θi = 0 and Σi = 0. In this set of
calculations, there is no limit amplitude of pressure oscillations because they
grow (or decay) exponentially. Only cases with values of Lc.c. = 0.7 ÷ 1.0 m
that are unstable, as was already shown in Fig. 3.43, are considered. With
Lc.c. = 0.7 m, when the non-linear simulation saturates at small-amplitude
acoustic oscillations (see Figs. 3.43, 3.44), the linear and non-linear analyses
predict the same frequency of oscillations (see Fig. 3.48). In the non-linear
analysis, while increasing the parameter Lc.c. the amplitudes of oscillations
grow (see Figs. 3.43, 3.44), the phase of the FDF changes (see Fig. 3.11); this
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Figure 3.47: Dominant frequency of pressure perturbations at the flame ob-
tained using the FTF obtained experimentally and using the FTF obtained
from numerical simulations with Tcomb 2 = 1930 K.
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Figure 3.48: Unstable frequency of pressure perturbations at the flame ob-
tained using the FTF and using the FDF obtained numerically with Tcomb 2 =
1930 K.

results in the changing of the frequency of oscillations (see Fig. 3.48). However,
in the linear analysis the phase of the FTF remains the same and the predicted
unstable frequency depends very weakly on the stability parameter Lc.c..

3.5 Discussion

In this chapter, the three-step approach has been applied to the BRS test
rig and it is shown that the proposed approach can be used successfully for
the stability analysis. The unstable frequency computed in the simulations
corresponds to the unstable frequency observed in the experiments which is
not a pure acoustic mode of the system but is an Intrinsic Thermo-Acoustic
mode. For conditions when the test rig was unstable in experiments, the
stability analysis described in this work also predicts the setup to be unstable.
The discrepancy in the calculated frequency with the experimental data is
explained by the heat losses not accounted for by the FSC model.
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The dependence of the frequency of the dominant mode and its growth rate
on the outlet and inlet reflection coefficients, on the length of the combustion
chamber, on the length of the plenum, and on the cross-sectional area of the
plenum are studied. The strong dependence of the frequency of the ITA mode
and its growth rate on these parameters is revealed. It is demonstrated that
the usual technique to decrease the absolute value of the reflection coefficient
could make the ITA mode even more unstable. The decrease of the plenum
cross-section could be recommended as a method to suppress the unstable ITA
mode.

The nonlinear dynamics of the setup is studied performing weakly nonlinear
analysis: the acoustics is assumed to be linear and the heat release dependence
on the velocity oscillations amplitude is taken into account. The dependence
of the amplitude of pressure oscillations on the temperature downstream the
flame is revealed. Simulations in the network model with two Flame Describing
Function (FDF) models are conducted: the first FDF model is calculated with
URANS simulations; the second FDF model is based on the FTF computed
experimentally and the dependence of the model parameters on the amplitude
are taken from the first FDF model. The unstable frequency calculated with
the network model simulations and the FDF model 2 is closer to the exper-
imentally observed frequency, compared to the case when the FDF model 1
is used. The still present difference in the frequency could be explained by
uncertainties in the FTF measurements and by the strong dependence of the
ITA mode frequency on the FTF. It is further shown that the frequency of
the unstable ITA mode depends strongly on the amplitude of the acoustic
perturbations.
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Chapter 4

Application of the three-step
approach to an industrial,
technically premixed, setup

4.1 Description of the setup

In this section, an atmospheric single-burner test rig developed by Ansaldo
Energia (AEN) and Centro Combustione Ambiente equipped with one full-
scale AEN gas turbine burner is discussed. The test rig is characterised by
two cylindrical volumes, the plenum and the combustion chamber, connected
to each other by the burner. A schematic view of the experimental setup
utilised for the thermo-acoustic experimental campaign is shown in Fig. 4.1.
A thick layer of refractory material is interposed between the chamber walls
and the external liner to make the test rig adiabatic. Previous calculations [13]
showed that the setup is well insulated.

The air supply of the setup is not co-axial with the plenum (see Fig. 4.1),
nevertheless the length of the plenum is sufficient to homogenise the flow field
and avoid non-uniformities at the inlet of the burner. During the experimental
session, it is possible to control air and fuel mass flow rate, as well as air
temperature and length of the plenum and the chamber. The lengths of the

Figure 4.1: Scheme of the industrial test rig [11].
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Figure 4.2: Multi-perforated outlet disk.

plenum and of the combustion chamber can be continuously varied in order to
tune the frequency at which combustion instabilities occur. Additionally, it is
possible to change the outlet geometry with different configurations, such as a
single outlet or multi-perforated disk, as shown in Fig. 4.2, to obtain different
acoustic downstream boundary conditions.

The flame is stabilised by the burner swirler, area expansion between the
burner and the combustion chamber, and by the bluff-body in the burner.
The burner consists of diagonal and axial passages and the centre cooled bluff-
body (see Fig. 4.3). Swirler blades are installed both in the diagonal and axial
passages of the burner. Injection of the fuel in the diagonal passage of the
burner is organised through the holes in the blades. Fuel is injected in the
axial passage just upstream of the swirler blades. At the exit of the burner,
an air-cooled Cylindrical Burner Outlet (CBO) is located. CBO changes the
heat release distribution and can be used to modify the burner FTF and, as a
result, stability of the engine [114].

The test rig is equipped with several measurement systems able to collect
data both for on-line monitoring and off-line data analysis. In the standard
set-up, the following information is gathered:

• static pressure for oxidizer air and gas;

• emissions level (CO, NOX , UHC) and O2, CO2 in the exhaust gases;

• the temperature of oxidizer air, exhaust gas and chamber shell;

• flame video;

• pressure loss ∆p across the burner, particularly useful for the evaluation
of the flame shape;
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Figure 4.3: Schematic view of an industrial gas turbine test burner [12].

• 7 measurements of ∆p along the combustion chamber to detect the
pressure distribution.

Along one side of the cylindrical combustion chamber, a row of thermocou-
ples and ∆p transducers have been placed in order to provide the thermal and
pressure profiles of the flame. These data are particularly important for the
comparison of experimental results with the numerical simulations. Moreover,
a dedicated hardware to measure acoustic pressure waves is present. A set of 3
microphones in the plenum and 7 pressure transducers in the combustion cham-
ber are used. Thanks to these devices, the acoustic pressure field in these two
volumes is reconstructed by using the Multi-Microphone-Method [115, 116].
Finally, an optical transducer equipped with an interferometric filter centred
on the CH∗ radical emission wavelength is installed to monitor chemilumines-
cence oscillations. This type of flame light emission is usually assumed to be
directly proportional to heat release [115].

Experimental sessions have been carried out in order to acoustically char-
acterise the full-scale industrial burner at scaled base load conditions in an
atmospheric test-rig. In addition to the low sampling rate probes used to
check the general behaviour of the plant and the burner, a high sampling rate
system providing the operator FFT of pressure and optical transducers is con-
tinuously monitored to detect humming phenomena. The pressure transducers
have the sampling rate of 10 kilo samples per second, and thus, measured FFTs
have a bandwidth of 5 kHz. Self-excited combustion instabilities were observed
during the experimental campaign. Figure 4.4 shows the FFT signal of two
pressure transducers when humming is occurring. A peak is clearly standing
above the noise at a well defined frequency, as well as its harmonics.

The pressure transducers are used in combination with the optical trans-
ducer in order to monitor both pressure and heat release oscillations. In the
examined configuration, the optical transducer has shown a good ability in
detecting heat release oscillations before pressure transducers detection of the
pressure fluctuations. Consistently with this observation, during the exper-

117



4. Application of the three-step approach to an industrial, technically
premixed, setup

Figure 4.4: Typical FFT of two pressure transducers during a humming phe-
nomenon.

Figure 4.5: Optical transducer and pressure transducer signals, logarithmic
scale, arbitrary units (A.U.). Left Y axis refers to the optical transducer signal
while the right Y axis refers to the pressure transducer signal.

imental campaign, the onset of instabilities was observed first with optical
transducer and later with pressure transducers. Figure 4.5 shows a compari-
son between the optical signal of the optical transducer and the first pressure
probe of the combustion chamber in logarithmic scale (the left Y axis corre-
sponds to the optical transducer and the right Y axis corresponds to the pres-
sure transducer). Heat release and pressure oscillations are reported against
the Strouhal number St, which is calculated taking the inner diameter of the
combustion chamber and the average velocity at the exit of the burner as the
reference length and velocity, respectively. In graphs and tables, frequencies
are reported in terms of the Strouhal number.

St =
fLref
Uref

, (4.1)

where f is the frequency, Lref is the reference length and Uref is the reference
velocity.

The difference between the two dependencies shown in Fig. 4.5 are ex-
plained as follows. The pressure transducers used for pressure oscillations
measurement are cooled with air in order to reduce their temperature. How-
ever, the airflow passing around the pressure transducers induce noise affecting
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the measured signal. This reduces the quality of the measurement of the outlet
reflection coefficient calculated from the acoustic wave reconstruction. More-
over, this contributes to the detection of the combustion instability onset.

The results presented in this chapter are compared to the LES calculations
performed by Rofi et al. [13]. The method used in that work is briefly outlined
in section 4.2.

The thermoacoustic stability of this setup was also examined by Laera et
al. [61, 11].

4.2 Overview of the reference LES study

4.2.1 Description of the LES software

In this work results of LES, particularly FTF, described in ref. [13] are used.
The description of the LES is provided in this section. The reactive multi-
species Navier-Stokes equations on unstructured grids are solved using the fully
compressible explicit code AVBP [117] of CERFACS. The viscous stress tensor,
the heat diffusion vector and the species molecular transport use gradient
approaches. The fluid viscosity follows the Sutherland law and the species
diffusion coefficients are obtained using a constant species Schmidt number
and diffusion velocity corrections for mass conservation [118]. A high-order
finite volume scheme is used for both time and space discretization. The
turbulent stress term is modelled by the classical Smagorinsky model [73]. A
chemical mechanism with six species (CH4, O2, CO2, CO, H2O and N2) and
three reactions:

2CH4 + 3O2 → 2CO + 4H2O,

2CO +O2 → 2CO2,

2CO2 → 2CO +O2,

(4.2)

is used [119] to model methane/air combustion. A dynamic thickened flame
model [120] is adopted to describe the iteration between the turbulence and
the chemistry. Usage of low-Mach number or ’incompressible LES’ [121] can
give the advantage of reducing the calculation time. Compressible LES are
performed in ref. [13] because in compressible LES fewer approximations are
made, thus they are believed to yield more precise results [122].

4.2.2 Description of the numerical setup

The LES computational domain is formed by a fully unstructured mesh com-
posed by 11852789 tetrahedral elements. The mesh is refined in correspon-
dence of the flame and mixing regions; the time step is 4 × 10−8 s resulting
in a Courant number equal to 0.7. In order to reduce the computational costs
and to be able to use a finer mesh in the flame region, the LES domain is
shorter than the real combustion chamber (about one-third of the real length).
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Figure 4.6: Normalised heat release; LES [13].

This assumption is considered acceptable since the recirculation zones are lo-
cated well inside the LES domain; the flame is located in the first third of
the LES domain; there is no diameter variation inside the test rig. Inlet and
outlet boundary conditions are imposed using the non-reflecting Navier-Stokes
Characteristic Boundary Condition (NSCBC) formulation to control acoustic
reflection [107]. All the other walls are set as adiabatic and modelled using a
logarithmic wall-law condition.

The field of heat release normalised by its maximum value in the longitudi-
nal cross-section obtained from unperturbed simulations is shown in Fig. 4.6.

4.2.3 FTF numerical calculation

Once LES of the reactive process is statistically converged, a specific procedure
to compute the FTF is performed. A multi-sinusoidal signal is imposed as
velocity component normal to the burner inlet. This signal is applied both
at the diagonal and the axial inlet to excite heat release oscillations. Velocity
excitation normalised by the respective mean velocities are identical in both the
diagonal and axial channels of the burner. When velocity perturbations pass
through the blades of the diagonal and axial swirlers, tangential perturbations
of velocity are produced. The frequencies imposed in the multi-sinusoidal
signal are chosen in a wide range to allow the determination of the shape of
the FTF with reasonable accuracy, focussing on the frequencies of interest of
the industrial burner.

The velocity fluctuations are recorded by numerical probes. These probes
are located both in the axial and in the diagonal passages, as shown in Fig. 4.7.
Specifically, the velocity fluctuations recorded by these probes have been nor-
malised against their own average values. The heat release fluctuations are
computed as a global value calculating the volume integral of the heat release
over the whole combustion chamber. The simulation is run for a time suffi-
cient to guarantee at least six periods of oscillations at the lowest frequency of
excitation. Frequencies are reported in terms of Strouhal number, which is cal-
culated taking the inner diameter of the combustion chamber and the average
velocity at the exit of the burner as reference length and velocity, respectively.
The FTF is calculated for each frequency imposed in the multi-sinusoidal sig-
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Figure 4.7: Schematic probes positions for the FTF calculation in the LES [13].

Figure 4.8: Scheme of the numerical setup.

nal; it is shown in Fig. 4.20 and discussed later.

4.3 URANS simulations

4.3.1 Numerical setup

The main goal of the CFD calculations in this work is to calculate the heat
release response to acoustic excitations. The influence of the plenum on the
flow field in the burner is neglected and the plenum is not considered. The
length of the combustion chamber considered in the simulations is enough
to enclose both the heat release zone and the inner recirculation zone in the
computational domain as will be shown in the next section. Only one-quarter
of the setup is simulated due to periodicity. The sketch of the computational
setup is shown in Fig. 4.8.

A 3D mesh consisting mostly of hexahedral cells is created using the com-
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Figure 4.9: Dependence of the normalised local mixture temperature on the
equivalence ratio.

mercial software ANSYS R© ICEM CFDTM. Tetrahedral cells are used in the
zone of fuel injection in the axial part of the burner and at the exit of the
axial part of the burner because of the high geometric complexity of these
regions. The computational grid consists of 2588052 cells. The time step in
the simulations is 2× 10−7s.

The walls of the numerical setup are heat insulated and, as it was shown
by Rofi et al. [13], it is possible to assume the setup is adiabatic. Thus, issues
connected to the uncounted heat losses in the FSC model observed in the
previous chapter are not expected to occur in the industrial test rig simulations.
The temperature is normalised with the temperature of the fuel-air mixture.
The normalised air temperature at the air inlets is 1.04. The normalised fuel
temperature at the fuel injections is 0.49.

Before running the simulations in OpenFOAM, the laminar flame speed
has to be calculated. In general, the laminar flame speed depends on the
equivalence ratio, temperature and pressure. The turbulent Prandtl number in
the simulations is taken equal to 1. Thus, the local temperature of the mixture
depends only on the local equivalence ratio (see Fig. 4.9). It is assumed that
small pressure non-uniformity in the combustion chamber does not influence
the laminar flame speed. Thus, the laminar flame speed depends only on the
equivalence ratio.

The dependence of the laminar flame speed on the equivalence ratio is com-
puted using the Cantera software [14]. The temperatures of the mixture for the
laminar flame speed calculations are taken according to Fig. 4.9. The resulting
dependence of the laminar flame speed on the equivalence ratio is shown in
Fig. 4.10 normalised by the laminar flame speed at φ = 1.05. The lower in-
flammability limit at the equivalence ratio (0.4) and the upper inflammability
limit at the equivalence ratio (1.85) correspond to the flammability limits of the
turbulent flames with for the considered operating temperature and pressure.
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Figure 4.10: Dependence of the normalised laminar flame speed on the equiv-
alence ratio calculated with Cantera [14] and modelled by Eq. 4.3.

The calculated laminar flame speed is approximated with the polynomial
model

SL =
6∑
j=0

Cj(φ− 1)j, (4.3)

where SL is the laminar flame speed, Cj are the model coefficients that are
different in two ranges of equivalence ratio φ = 0.4÷ 1.05 and φ = 1.05÷ 1.85.
The coefficients Cj for both ranges of equivalence ratio are computed using
the method of least squares. The laminar flame speed modelled by Eq. 4.3 is
shown in Fig. 4.10.

4.3.2 Results of unperturbed simulations

The normalised value of the model parameter uFSC used in Eg. 2.33 is taken
equal to the averaged axial component of the velocity at the exit of the burner,
uFSC = 1. Fields of normalised axial velocity, of normalised temperature and
of normalised heat release in the longitudinal cross-section obtained from un-
perturbed simulations are shown in Figs. 4.11, 4.12, and 4.13, respectively. The
heat release is normalised by its maximum value. It is seen from Fig. 4.11 that
the inner recirculation zone completely lies within the computational domain.
The normalised adiabatic temperature of the flame for the mean equivalence
ratio is 2.76. It is seen from Fig. 4.12 that the temperature of the flow in the
outer recirculation zone is lower than the adiabatic temperature of the flame.
It is explained by the fact that the laminar flame speed has zero values at the
burner outlet plane close to the CBO, see Fig. 4.14. This, in turn, results in
the presence of heat release mostly in the inner shear layer, see Fig. 4.13.

It is illustrative to compare the distributions of heat release in experiments
and simulations along the longitudinal axis. To obtain this distribution from
the simulations, several planes perpendicular to the longitudinal axis are con-
sidered from the beginning of the combustion chamber in the axial direction.
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Figure 4.11: Normalised longitudinal component of velocity; URANS simula-
tion.

Figure 4.12: Normalised temperature; URANS simulation.

Figure 4.13: Normalised heat release; URANS simulation.

Figure 4.14: Normalised laminar flame speed distribution at the CBO outlet
plane; URANS simulation.
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Figure 4.15: Heat release distributions from LES and URANS simulation.

Then, the heat release is integrated over these planes and the resulting values
are plotted versus the longitudinal axis (see Fig. 4.15).

The peaks of the two heat release distributions presented in Fig. 4.15 coin-
cide. Nevertheless, there are two main differences that could be explained by
several factors. First, the flame is present mostly in the inner shear layer in
the URANS simulation (see Fig. 4.13). However, in the LES the flame is ob-
served in both inner and outer shear layers (see Fig. 4.6). Second, a turbulent
Schmidt number of 0.3 suggested by authors of the FSC model [81, 94] may
be low and lead to the high diffusion of the flame brush that could result in
high dispersion of the heat release along the longitudinal axis (see Fig. 4.15).

Nevertheless, URANS simulations show good agreement both with exper-
imental data and LES results in terms of pressure distribution close to the
combustion chamber wall (see Fig. 4.16). Moreover, there is better agreement
in the temperature distribution close to the combustor wall between experi-
mental data and URANS results than between experimental data [61] and LES
results [13]. Thus, it is decided to proceed with the current set of parameters
to the FDF calculations.

4.3.3 FDF computations

FTF calculations

Once the URANS simulation of the combustion is statistically converged, sim-
ulations to compute the FTF is performed. A broadband signal is imposed
as the air mass flow rate at the burner inlet. This signal is applied both at
the diagonal and the axial inlet to excite heat release oscillations. Mass flow
rate excitations normalised by the respective mean values are identical in both
diagonal and axial channels of the burner. A Fast Fourier Transform of the
excitation signal is shown in Fig. 4.17. The signal is constructed in the way
that most of the excitation energy is concentrated in the low-frequency limit.
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Figure 4.16: Relative pressure distributions from experiment, LES [13], and
URANS simulation.
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Figure 4.17: Fast Fourier Transform of the excitation signal applied in the
FTF calculation with URANS.
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Figure 4.18: Normalised root mean square deviation of heat release; URANS
FTF calculation simulations.

Figure 4.19: Normalised heat release from unperturbed simulation and its root
mean square deviation from FTF calculation simulations; URANS simulations.

The root-mean-square deviation (RMSD) of the instantaneous heat release
Qj is calculated in the URANS simulations as:

QRMSD =

√√√√ 1

N

N∑
j=1

(Qj − Q̄)2, (4.4)

where N is the number of time steps in the simulations, j denotes the current
time step, Q̄ is the unperturbed heat release shown in Fig. 4.13. The heat re-
lease RMSD at the end of a simulation is shown in Fig. 4.18. The distribution
of the unperturbed heat release and the heat release RMSD in simulations of
the FTF calculation versus longitudinal axis are shown in Fig. 4.19. Distribu-
tion of QRMSD close to unperturbed value Q̄ indicates that the heat release
response with the used excitation can be considered as linear.

The velocity time series ur are recorded as the mass-averaged velocity at
the outlet of the burner (plane A-A in Fig. 4.7). The response of the flame
Q is measured in simulations as the volumetric integral of Eq. 2.44. After
that, the mean values ūr and Q̄ of measured ur and Q are computed and are
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Figure 4.20: FTFs computed with LES in AVBP [13] and with URANS in
OpenFOAM.

subtracted from series of ur and Q, respectively, in order to obtain fluctuations
of the axial velocity u′r and of the heat release Q′. The simulation is run for
16.18 normalised time units. Time is normalised with respect to the mean flow
velocity at the burner exit and the diameter of the combustion chamber. The
duration of the UIR is assumed to be equal to 1.86 normalised time units. The
first 2.91 normalised time units are considered as a transition period and are
neglected. Using the Wiener-Hopf inversion method described in section 2.1.3,
the Flame Transfer Function of the industrial test rig is calculated and is shown
in Fig. 4.20 together with the FTF computed with LES [13]. Frequencies are
reported in terms of the Strouhal number, which is calculated taking the inner
diameter of the combustion chamber and the average velocity at the exit of the
burner as reference length and velocity, respectively. Frequencies in a range of
the Strouhal number St = 0.75 ÷ 2.65 are of particular interest, thus further
analysis is concentrated on this frequency range.

The difference between the two FTFs calculated with LES and URANS
shown in Fig. 4.20 are due to the differences between the corresponding heat
release distribution (see Fig. 4.15). A more spatially distributed heat release in
the URANS simulation with respect to the LES results in lower gain and larger
phase of the FTF computed with URANS compared to those from LES. Rea-
sons of the difference between the two FTFs will be explained in section 4.4.1.
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Figure 4.21: Normalised root mean square deviation of heat release; URANS
simulations 30% excitation at frequency 1.05 St.

FDF computations

A set of simulations is run with excitation signal 30% of the mean value at
three frequencies (in terms of the Strouhal number): 1.05, 1.88, and 2.56.
These frequencies are chosen in a wide range of frequencies that permits to
determine the shape of the FDF and focused on the frequencies of interest in
this industrial burner. The simulations are run for a time to guarantee at least
four periods of oscillations after the transition period of 2.65 normalised time
units.

The RMSD of the heat release at the end of simulations with 30% excitation
at the frequency 1.05 St is shown in Fig. 4.21. The high dispersion of the heat
release RMSD means strong flame oscillations when it is excited at 1.05 St with
30% perturbation and indicates that this excitation can not be considered as
linear. The distribution of the heat release RMSD in the FTF calculation
simulations and with 30% excitation at 1.05 St versus longitudinal axis are
shown in Fig. 4.22. The distribution of QRMSD with 30% excitation closer to
the burner exit than QRMSD distribution with 10% excitation implies that heat
release responds earlier to the excitation when excitation of higher amplitude
is applied.

The FDF obtained from the simulations is shown in Fig. 4.23. For two
frequencies, 1.05 St and 1.88 St, both the FTF amplitude and the absolute
value of the FTF phase decrease when increasing the excitation amplitude. For
the frequency 2.56 St the FTF amplitude slightly increase when increasing the
excitation amplitude. The absolute value of the FTF phase at 2.56 St with
30% excitation depends on the number of 2π jumps assumed at this frequency.
One and two 2π jumps of the FTF phase at 2.56 St with 30% excitation are
considered in this work. Physical meaning of the FTF change while increasing
the excitation amplitude is discussed in the next section.
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Figure 4.22: Normalised heat release root mean square deviation from FTF cal-
culation simulations and simulations with 30% excitation at frequency 1.05 St;
URANS simulations.
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Figure 4.23: FDF computed with URANS in OpenFOAM.
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Table 4.1: Values of normalised parameters τi and σi for model of FTF calcu-
lated with LES and URANS simulation.

Simulations τ1 σ1 τ2 σ2

LES 0.37 0.18 0.69 0.11
URANS, 10%, models 1 and 2 0.71 0.24 0.86 0.17
URANS, 30%, model 1 0.37 0.12 0.41 0.14
URANS, 30%, model 2 0.51 0.17 0.68 0.21

4.4 Analytical time-lag distributed FDF mod-

els

4.4.1 FTF models

In the industrial burner discussed in this work, the pressure drop experienced
by the gas passing through the burner is an order of magnitude larger than the
pressure drop of the air. Moreover, the fuel is injected at the swirler blades
(see Fig. 4.3). Thus, the usage of the FTF model (Eq. 2.81) and the UIR
model (Eq. 2.82) is justified:

FTFmod, simpl
tot (ω) = e−iωτ1−0.5(ωσ1)2 − e−iωτ2−0.5(ωσ2)2

, (4.5)

UIRmod, simpl
tot (t) =

1

σ1

√
2π
e
− 1

2

(
t−τ1
σ1

)2

− 1

σ2

√
2π
e
− 1

2

(
t−τ2
σ2

)2

. (4.6)

Optimum values of parameters τi and σi of the FTFs modelled with Eq. 4.5
are computed approximating the FTFs calculated with LES and with URANS
using the method of least squares. Values of τi and σi normalised with respect
to the mean flow velocity at the burner exit and the diameter of the combustion
chamber are presented in Tab. 4.1. The LES FTF model is shown in Fig. 4.24.
The models of UIRs for low amplitude excitation computed with LES and
URANS are shown in Fig. 4.25.

Values of τ1 and τ2 in the URANS FTF model obtained with URANS
simulations and 10% excitation are close to each other (see Tab. 4.1). This
results in the lower maximum and minimum values of the URANS UIR with
respect to the LES UIR (see Fig. 4.25). This, in turn, results in the lower
amplitude of the URANS FTF with respect to the LES FTF (see Fig. 4.20).
Higher values of τi in the URANS FTF model with respect to t he LES FTF
model results in the higher FTF phase of the URANS FTF than in the LES
FTF.

4.4.2 FDF model 1

This model assumes that at the frequency 2.56 St with 30% excitation the
phase of the FTF has only one jump of 2π, i.e. the FTF phase at 2.56 St
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Figure 4.24: FTF computed with LES and modelled with Eq. 4.5.
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Figure 4.25: UIRs for low amplitude excitation modelled with Eq. 4.6.
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Figure 4.26: FDF computed with URANS in OpenFOAM and FDF model 1.

with 30% excitation is -4.39 rad. The FDF model 1 is shown in Fig. 4.26. The
corresponding Unit Impulse Responses are shown in Fig. 4.27.

The calculated values of the parameters τi and σi for two amplitudes of
perturbation are presented in Tab. 4.1 and shown in Fig. 4.28. Both τ1 and τ2

decrease when increasing the normalised amplitude of velocity perturbations
upstream the flame A. This trend implies that the flame is shifted towards the
burner when it is forced by excitation with high amplitudes. The decrease of
σ1 while increasing A is explained by the limit σ1 ≤ τ1/3. The decrease of σ2

with instantaneous decrease of τ2 implies that the length of the UIR becomes
shorter while increasing A (see Fig. 4.27) that does not agree with the heat
release RMSD at different amplitudes of excitation shown in Fig. 4.22. The
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Figure 4.27: UIRs modelled with Eq. 4.6 for low amplitude excitation.
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Table 4.2: Values of normalised parameters τi,lin, Θi, σi,lin and Σi for FDF
models.

FDF model τ1,lin Θ1 σ1,lin Σ1 τ2,lin Θ2 σ2,lin Σ2

1 0.88 -1.93 0.29 -1.92 1.08 -2.05 0.18 -0.77
2 0.81 -1.24 0.27 -1.23 0.94 -0.92 0.14 1.51
3 0.37 -1.93 0.18 -1.92 0.69 -2.05 0.11 -0.77
4 0.37 -1.24 0.18 -1.23 0.69 -0.92 0.11 1.51
5 0.37 -0.42 0.18 0.37 0.69 -0.42 0.11 0.37
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Figure 4.28: Dependencies τi(A) and σi(A) in FDF model 1.

dependencies of τi and σi on A are modelled as

τi(A) = τi,lin(1 + ΘiA), (4.7)

σi(A) = σi,lin(1 + ΣiA). (4.8)

The linear dependencies of τi and σi on A are chosen because only 2 am-
plitudes of excitations are computed. The values of the parameters in Eqs. 4.7
and 4.8 are presented in Tab. 4.2. The functions in Eqs. 4.7 and 4.8 for the
FDF model 1 are shown in Fig. 4.28. This FDF model has sharp dependencies
of its parameters on the excitation amplitude.

4.4.3 FDF model 2

This model assumes that at frequency 2.56 St with 30% excitation the phase
of the FTF has two jumps of 2π, i.e. the FTF phase at 2.56 St with 30%
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Figure 4.29: FDF computed with URANS in OpenFOAM and FDF model 2.

excitation is -10.68 rad. This model has larger norm of residuals with respect
to the FDF model 1; however, the FDF model 2 has more physical sense as
is shown further. The FDF model 2 is shown in Fig. 4.29. The corresponding
Unit Impulse Responses are shown in Fig. 4.30.

The calculated values of the parameters τi and σi for two amplitudes of
perturbation are presented in Tab. 4.1 and shown in Fig. 4.31. Both τ1 and
τ2 decrease when increasing A. This trend implies that the flame is shifted
towards the burner when it is forced by excitation with high amplitudes. The
decrease of σ1 while increasing A is explained by the limit σ1 ≤ τ1/3. The
increase of σ2 with the instantaneous decrease of τ2 implies that the length
of the UIR remains the same while increasing A (see Fig. 4.30) that agrees
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Figure 4.30: UIRs modelled with Eq. 4.6.
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Figure 4.31: Dependencies τi(A) and σi(A) in FDF model 2.

with the heat release RMSD at different amplitudes of excitation shown in
Fig. 4.22. The dependencies of τi and σi on the normalised amplitude of
velocity perturbations A are modelled by Eqs. 4.7 and 4.8. The calculated
values of the parameters in Eqs. 4.7 and 4.8 are presented in Tab. 4.2. The
functions in Eqs. 4.7 and 4.8 for the FDF model 2 are shown in Fig. 4.31.
This FDF model displays less sharp dependencies of its parameters on the
excitation amplitude than FDF model 1.

4.4.4 FDF model 3

In the next FDF model, the dependencies of τi and σi on the normalised
amplitude of the velocity perturbations A are modelled as

τi(A) = τi,lin(1 + ΘiA−ΘiALES), (4.9)

σi(A) = σi,lin(1 + ΣiA− ΣiALES), (4.10)

where τi,lin and σi,lin are the parameters of the LES FTF model, ALES is the
amplitude of the velocity excitation in the LES, the parameters Θi and Σi

are taken from the FDF model 1. Thus, FDF model 3 is composed of the
FTF calculated with LES [13] and the FDF model 1 computed with URANS.
The terms ΘiALES and ΣiALES are added in Eqs. 4.9 and 4.10 with respect
to Eqs. 4.7 and 4.8 in order to guarantee that for A = ALES the values of τi
and σi are equal to the values of the LES FTF model presented in Tab. 4.1.
The parameters τi,lin, Θi, σi,lin, and Σi of the FDF model 3 are presented
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in Tab. 4.2. This FDF model acts as the FTF computed with LES for low
amplitudes of velocity perturbations and has the strong dependence of the
model parameters on A as in the FDF model 1.

4.4.5 FDF model 4

This FDF model is blended from the FTF calculated with LES [13] and the
FDF model 2 computed with URANS. The blending is accomplished by assum-
ing that the dependencies τi(A) and σi(A) are modelled by Eqs. 4.9 and 4.10,
where τi,lin and σi,lin are taken from the LES FTF, Θi and Σi are taken from
the FDF model 2. The parameters τi,lin, Θi, σi,lin, and Σi of the FDF model 4
are presented in Tab. 4.2. This FDF model acts as the FTF computed with
LES for low amplitudes of velocity perturbations and has the has the depen-
dence of the model parameters on A as in the FDF model 2. The FDF model 4
has less strong dependence on the amplitude with respect to the FDF model 3.

4.4.6 FDF model 5

The next FDF model blends the FTF computed with LES for the industrial
setup and the FDF model of the laboratory test rig presented in section 3.3.3.
This is done by assuming that the dependencies τi(A) and σi(A) are modelled
by Eqs. 3.8 and 3.9

τi(A) = τi,lin(1 + ΘiA
2), (4.11)

σi(A) = σi,lin(1 + ΣiA), (4.12)

where τi,lin and σi,lin are taken from the LES FTF, Θi and Σi are taken from
the FDF model of the laboratory setup (see section 3.3.3). The parameters
τi,lin, Θi, σi,lin, and Σi of the FDF model 5 are presented in Tab. 4.2.

It is observed in the laboratory setup that while increasing the amplitude
of the velocity excitation, the peak of the heat release distribution along the
longitudinal axis is shifted towards the burner and the heat release distribution
along the longitudinal axis becomes wider, i.e. the flame length is augmented.
This means that when the amplitude of velocity perturbations upstream of the
flame increases, parameters τi are decreasing and parameters σi are increasing.

The square decay of the τi and the linear increase of the σi give smaller
norms of residuals in section 3.3.3 and are used in this FDF model as well.
When the amplitude of velocity perturbations approaches 0, values of τi and
σi modelled by Eqs. 4.11 and 4.12 approach values of the LES FTF model, i.e.
the FDF becomes the FTF computed with LES.
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Table 4.3: Values of parameters imposed in the network model of the industrial
test rig.

N Section Area, [-] Length, [-] Temperature, [-]
1 Plenum 1 0.78 1.04
2 Burner duct 1 0.15 0.015 1.04
3 Burner duct 2 0.15 0.024 1
4 Burner duct 3 0.15 0.030 1
5 Combustor 1 1 xfl = 0.1 1
6 Combustor 2 1 Lc.c. − xfl 2.76

4.5 Network model simulations

4.5.1 Numerical setup

The network model numerical setup consists of 6 regions connected by 3 jump
conditions with pressure losses, one jump condition at the flame and 2 bound-
ary conditions, as shown in Fig. 4.32. The values of the cross-sectional area
normalised against the cross-sectional area of the combustion chamber, the
lengths of the sections normalised against the reference length and the tem-
perature normalised against the mean temperature of the mixture at the burner
exit for each section are listed in Tab. 4.3. The jump matrices to connect acous-
tic waves between adjacent sections are calculated using Eqs. 2.100 and 2.113.
The reflection coefficient of the inlet is taken Rin = 1. The outlet reflection co-
efficient Rout,1 is measured experimentally using a multi-microphone technique.
Several values of the outlet reflection coefficient around the measured one are
tested in this work because of some uncertainties in this value, particularly
caused by microphones’ cooling. The normalised total length of the combus-
tor (sum of the lengths of Section 5 and Section 6) is varied in the range
Lc.c. = 0.74 ÷ 1.59 with a step ∆Lc.c. = 0.037. Acoustic losses at the area
changes between the plenum and the burner and between the burner and the
combustor are taken into account by the pressure loss coefficients ζdecr = 0.442
and ζincr = 0.718, respectively, calculated by the formulae 2.93 and 2.104. The
pressure loss coefficient at the swirler is calculated from the measurements.
The active flame, i.e. the unsteady heat release, in the low-order network
model is positioned at xfl = 0.1. The sum of the lengths of Sections 4 and 5
is equal to the maximum of the heat release in the longitudinal direction in
LES and URANS simulations (see Fig. 4.15) because the flame anchor position
corresponds to the beginning of Section 4 in the network model. The temper-
ature gradient coincides with the position of the active flame and is situated
between Sections 5 and 6. The time step in the network model simulations
is equal to 1.33 · 10−3 normalised time units that is smaller than any acoustic
time lag in any Section of the network model.

The probe of velocity fluctuations for the unsteady heat release model
is situated between Sections 3 and 4 that corresponds to the velocity probe
position in both URANS and LES. The instantaneous unsteady heat release
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Figure 4.32: Scheme of the network model numerical setup of the industrial
test rig.

is calculated as the convolution of the history of velocity fluctuations and the
Unit Impulse Response

Q′(t) =
Q̄

ū

∫ ∞
0

UIRmod, simpl
tot (t′ − t)u′(t)dt′. (4.13)

where t′ is the integration variable.

4.5.2 Results of linear analysis

For each length of the combustion chamber the simulation is run for 39.8
dimensionless time units, which is enough to observe whether the pressure
oscillations grow or decay in time. The velocity between Sections 3 and 4
is excited initially for texc = 13.3 dimensionless time units by a broadband
excitation in the range of the Strouhal number 0 ÷ 7.53. After 13.3 till 39.8
dimensionless time units the system is left to evolve by itself without external
excitations. The growth rate of the pressure perturbations at the dominant
frequency of oscillations is calculated as in section 3.4.2 – by approximating
the time history of the pressure oscillations by Eq. 3.11 recalled here:

p′(t) =
n∑
i=1

Pisin(2πfit+ φi)e
αi(t−texc) (4.14)

where fi is one of the frequencies of pressure oscillations after texc, n is the
number of the frequencies of pressure oscillations after texc, Pi is the amplitude
of pressure oscillations at fi at the time texc, φi is the phase of the pressure
oscillations at fi, αi is the growth rate of the mode fi.

The frequencies of oscillations and their growth rates are computed by
approximating the time history of pressure oscillations at the beginning of
Section 5 by Eq. 4.14 using the least-squares method. A positive value of the
growth rate parameter α indicates that the system is unstable, and the negative
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Figure 4.33: Dominant frequencies of the pressure oscillations and their growth
rates for various lengths of the combustion chamber calculated using LES FTF
model and URANS FTF model; outlet reflection coefficient Rout,1.

value of α mean that the system is stable. In the simulations presented in this
chapter either one or none unstable frequency per run is detected, thus n=1
for all simulations in the network model in this chapter.

Two FTF models are tested in this section: the LES FTF model and the
URANS FTF model for 10% excitation presented in section 4.4.1. The outlet
reflection coefficient is taken equal to the experimentally measured Rout,1.

The dominant frequencies of pressure oscillations and their growth rates
for various lengths of the combustion chamber are shown in Fig. 4.33. The fre-
quencies are normalised with respect to the mean flow velocity at the burner
exit and the diameter of the combustion chamber. The dominant frequency of
oscillations decreases with increasing length of the combustion chamber. This
subtends the acoustic nature of the modes computed in this chapter. The
frequencies calculated with the two FTF models agree well with the experi-
mentally observed frequency of the first longitudinal mode of the combustion
chamber.

Thermoacoustic instabilities are observed in the experimental campaign in
the range of combustion chamber length Lc.c. = 0.93÷1.22. Simulations in the
network model with the LES FTF model capture qualitatively the unstable
behaviour of the system and predict the setup to be unstable for the slightly
wider range of the combustion chamber length Lc.c. = 0.85÷1.30 (see Fig. 4.33).
In contrast, simulations with the URANS FTF model predict the setup to be
stable in the whole range of combustor lengths. This is due to the differences
between the FTFs computed with LES and URANS presented in Fig. 4.20.
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4.5.3 Results of weakly nonlinear analyses

It is possible to perform a weakly nonlinear analysis using the network model
and the nonlinear heat release model. Since the linear analysis with the
URANS FTF model predicts the setup to be stable for each possible value
of combustion chamber length, there is no reason to try FDF models 1 and 2
since they are both based on the URANS FTF model. FDF models 3, 4 and 5
are tested in this section.

The normalised velocity perturbations amplitude A required for the calcu-
lation of the instantaneous values of the parameters τi and σi is calculated as
the maximum normalised amplitude of the velocity fluctuations between Sec-
tions 3 and 4 of the network model setup in the last 3.32 dimensionless time
units preceding the current instant of simulation as described in sections 3.3.3
and 3.4.3. This time window allows to compute the normalised amplitude of
velocity oscillations for frequencies higher than 0.15 St. Each time step the
UIR to be used in Eq. 4.13 is recalculated based on the current amplitude of
velocity perturbations A.

The velocity between Sections 3 and 4 is excited for the first texc = 13.3 di-
mensionless time units by the broadband excitation in the range of the Strouhal
number 0÷ 7.53. After 13.3 and until 132.7 dimensionless time units the sys-
tem is left to evolve by itself without external excitations. This time is enough
to reach either saturation to a limit cycle pressure oscillations or infinitesi-
mal pressure fluctuations. The maximum amplitudes of the pressure oscilla-
tions measured in the last 13.3 dimensionless time units of simulations at the
beginning of the combustion chamber normalised by the maximum pressure
oscillations amplitude in the experiment are reported.

Network model simulations with FDF model 3

The FDF model 3 presented in section 4.4.4 is used in the network model
simulations. The outlet reflection coefficient is taken equal to the experimen-
tally measured Rout,1. The calculated unstable frequencies shown in Fig. 4.34
slightly differ with respect to the frequencies calculated in the linear analysis
with the LES FTF model (see Fig. 4.33). Simulations in the network model
with the FDF model 3 predict the setup to be unstable in the range of the
combustion chamber length Lc.c. = 0.85÷ 1.41 that is wider than the unstable
range in experiments (see Fig. 4.33). The calculated amplitudes of the pres-
sure oscillations are under-predicted by the network model simulations with
the FDF model 3 (see Fig. 4.34). This is explained by the rapid change of
the heat release response modelled with FDF model 3 when changing the am-
plitude of the velocity excitation. The maximum amplitude of the pressure
oscillations in the network model simulations corresponds to the normalised
combustor length 0.85. Meanwhile, in the experiments, the maximum pressure
oscillations amplitude was observed with the normalised combustion chamber
length 1.

The network model setup with the FDF model 3 is bistable for the combus-
tion chamber length Lc.c. = 0.85. If the excitation of 1% of the mean velocity
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Figure 4.34: Unstable frequencies and amplitudes of pressure oscillations for
various values of the combustion chamber length calculated with the network
model and the FDF model 3; outlet reflection coefficient Rout,1 measured ex-
perimentally.

upstream the flame is applied to the network model, the setup is stable and all
oscillations decrease after the excitation time texc. However, if the 15% excita-
tion is applied to the network model with the combustion chamber length equal
to Lc.c. = 0.85, the oscillations increase after the excitation time texc at the
frequency higher than the dominant frequency calculated when 1% excitation
is applied. It can be considered as a hysteresis. With the combustor length
Lc.c. = 0.89 high-amplitude pressure oscillations are observed; the decrease of
the combustion chamber length from this condition to the value Lc.c. = 0.85
leads to further pressure oscillation amplitude increase and increase of the
frequency of oscillations (the path marked with orange arrows in Fig. 4.34).
Further decrease of the combustor length to the value Lc.c. = 0.81 leads to
the stabilisation of the system and the decrease of the dominant frequency of
oscillations. Meanwhile, increasing the length of the combustion chamber from
Lc.c. = 0.81 to the value Lc.c. = 0.85 does not bring the system to the insta-
bility and the dominant frequency of oscillations decreases (the path marked
with green arrows in Fig. 4.34). Further increase of the combustor length to
the value Lc.c. = 0.89 leads to the instability.

Network model simulations with FDF model 4

The frequencies and amplitudes of pressure fluctuations calculated with the
FDF model 4 presented in section 4.4.5 are shown in Fig. 4.35. Three values of
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Figure 4.35: Unstable frequencies and amplitudes of pressure oscillations for
various values of the combustion chamber length calculated with the network
model and the FDF model 4.

the outlet reflection coefficient are considered: Rout,1, 0.94Rout,1, and 0.88Rout,1.
Simulations in the network model with the FDF model 4 predict the setup to
be unstable in the range of the combustion chamber length Lc.c. = 0.85÷ 1.33
that is wider than the unstable range in experiments (see Fig. 4.33).

The maximum amplitude of pressure oscillations in the network model
simulations with the outlet reflection coefficient Rout,1 corresponds to the nor-
malised combustor length 0.85. Meanwhile, in the experiments, the maximum
pressure oscillations amplitude was observed with the normalised combustion
chamber length 1. The maximum amplitude of the pressure oscillations cal-
culated with the network model simulations, the outlet reflection coefficient
Rout,1, and the FDF model 4 is over-predicted with respect to the experimen-
tally observed value. The decrease of the outlet reflection coefficient to the
values 0.94Rout,1 and 0.88Rout,1 leads to the shift of the maximum pressure os-
cillations amplitude to the combustor length values Lc.c. = 0.93 and Lc.c. = 1,
respectively. At the same time, decrease of the outlet reflection coefficient
leads to a more narrow unstable region in terms of the combustor length and
to the decrease of the maximum pressure oscillations amplitude

The network model setup with the FDF model 4 and the outlet reflection
coefficient Rout,1 is bistable for the combustion chamber length Lc.c. = 0.85. If
the excitation of 1% is applied to the network model, the setup is stable and
the oscillations decrease after the excitation time texc. However, if significant
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Figure 4.36: Unstable frequencies and amplitudes of pressure oscillations for
various combustion chamber lengths and outlet reflection coefficients calcu-
lated with the network model and the FDF model 5.

excitation, e.g. 15%, is applied to the network model with the combustion
chamber length equal to Lc.c. = 0.85, all oscillations increase after the exci-
tation time texc. Qualitatively the same hysteresis is observed as in the case
of usage the FDF model 4 and the outlet reflection coefficient Rout,1. With
the combustor length Lc.c. = 0.89 high-amplitude pressure oscillations are ob-
served; decrease of the combustion chamber length from this condition to the
value Lc.c. = 0.85 increases the pressure oscillation amplitude and increases the
frequency of oscillations (the path marked with orange arrows in Fig. 4.35).
Further decrease of the combustor length to the value Lc.c. = 0.81 leads to
the stabilisation of the system and the decrease of the dominant frequency of
oscillations. Meanwhile, increasing the length of the combustion chamber from
Lc.c. = 0.81 to the value Lc.c. = 0.85 does not bring the system to the insta-
bility and the dominant frequency of oscillations decreases (the path marked
with green arrows in Fig. 4.35). Further increase of the combustor length to
the value Lc.c. = 0.89 leads to the instability.

Network model simulations with FDF model 5

Last, the FDF model 5 presented in section 4.4.6 is applied to the network
model simulations. Simulations are performed for the range of combustion
chamber lengths predicted to be unstable by the linear analysis and for three
values of the outlet reflection coefficient Rout,1, 0.97Rout,1, and 0.94Rout,1. Re-
sults are presented in Fig. 4.36.

Unstable frequencies of the pressure oscillations in the weakly nonlinear
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analysis with the FDF model 5 are the same as in the linear analysis with
the LES FTF shown in Fig. 4.33. The nonlinear simulations with the FDF
model 5 capture well the trend of the experimental dependence of the pressure
oscillations amplitude on the length of the combustion chamber (see Fig. 4.36).
The simulations employing the outlet reflection coefficient reduced by 6% with
respect to the measured value yield the best match against the experimental
data points.

4.6 Discussion

In this chapter, the three-step approach is applied to an industrial test rig
equipped with an industrial gas turbine burner. The heat release response to
the velocity excitation is calculated with URANS simulations in a broad range
of frequencies for two excitation amplitudes. The heat release distribution
in the URANS simulations and the FSC model is more dispersed along the
combustion chamber than in the LES previously conducted by Rofi et al. [13]
calculations with the AVBP solver of CERFACS. It could be due to the flame
absence in the outer shear layer in URANS simulations and the high value of
the Schmidt number used in the simulations. As a result, the Flame Transfer
Function calculated with the URANS simulations does not agree with the pre-
viously conducted LES calculations. Further investigations on the FSC model
parameters are required to understand possible reasons for the disagreements.

The linear analysis in the network model with the FTF calculated in the
URANS simulations predicts the setup to be stable in the whole range of com-
bustion chamber lengths, while in experiments for a certain range of lengths
of the combustor the setup is unstable. The mismatch could be explained by
the too dispersed heat release distribution in space.

The linear analysis in the network model with the FTF calculated by Rofi et
al. [13] predicts the setup to be unstable in a slightly wider range of combustion
chamber lengths than in experiments. A possible reason for the disagreement
is the uncertainty in the measured value of the outlet reflection coefficient.

Nonlinear analyses are conducted in the network model with three hybrid
Flame Describing Function models. The first two FDFs act as the FTF com-
puted with LES in the linear regime and act as the FDFs calculated with the
URANS simulations in the nonlinear regime. The network model simulations
with the first FDF model and the reference outlet reflection coefficient un-
derestimate the maximum amplitude of the pressure oscillations in the setup
by 19% with respect to the experimental data and predict the combustor’s
length characterised by the maximum pressure oscillations amplitude to be
shifted by 15%.

The network model simulations with the second FDF model and the ref-
erence outlet reflection coefficient also predict the combustor’s length charac-
terised by the maximum amplitude of the pressure oscillations to be shifted
by 15%; however, the maximum pressure oscillations amplitude in the setup
is overestimated by 26% with respect to the experimental data. The decrease
of the outlet reflection coefficient by 12% brings the maximum pressure os-
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cillations amplitude to the length, where the maximum was observed in the
experiments; however, the amplitude of the pressure oscillations is 58% lower,
than in the experiments. In network model simulations with these FDF mod-
els, hysteresis phenomena are observed.

The third FDF model degenerates into the FTF computed with LES for
the low-amplitude excitations and inherits the FDF behaviour calculated for
the BRS setup in section 3.3.3 for the high-amplitude excitations. The network
model simulations with the third FDF model show good agreement with the
experimental data both in terms of the unstable frequency and the amplitude of
pressure oscillations. The best agreement is achieved when the outlet reflection
coefficient is reduced by 6% with respect to the measured value. In fact, the
outlet reflection coefficient can have a lower value because its measurement
was corrupted by the microphone cooling.

146



Chapter 5

Conclusions and future
investigations

Conclusions

Combustion instabilities are strong pressure oscillations occurring due to the
coupling between acoustics, combustion and flow fluctuations. They pose a
serious issue to the producers of gas turbines due to the damage they may
cause. There is urgent need to develop reliable and simple tools to predict the
onset of combustion instabilities from first principles and to find methods to
suppress them.

Performing experimental analyses is costly and precise measurement tech-
niques are required to understand the physics of the phenomenon. Conducting
CFD analyses of the whole combustion system of the setup is expensive from
the computational point view. Instead, hybrid techniques can be successfully
used to forecast the onset of combustion instabilities.

In this work a three-step approach to predict combustion instabilities is pro-
posed. The first step is to compute the response of the unsteady heat release
to acoustic excitations; this is called the Flame Describing Function (FDF)
approach. URANS simulations with the OpenFOAM software are used for
this purpose with a Flame Speed Closure model. Compressible URANS simu-
lations are employed because they yield reasonable precision for low frequency
excitations and are computationally cheaper than LES. The second step is to
approximate the computed FDF through analytic functions. The distributed
time-lag FDF model is used in this work because it consists of few parame-
ters that have physical meaning and their dependencies on the amplitude of
the excitation are easily tracked. When the pressure drop of the gas in the
burner is one order of magnitude higher than the pressure drop of the air in the
burner and the fuel injection is situated on the swirler blades, the FDF model
for technically premixed swirl-stabilised burners need fewer parameters than
the FDF model for perfectly premixed swirl stabilised burners, despite the fact
that the former displays a more complicated physics of heat release response
to acoustic excitations. The third step of the approach consists in carrying out
time-domain simulations of closed-loop combustion-acoustic interactions in a
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low-order network model. Such a model, developed in the course of the thesis,
is implemented in the MATLAB Simulink environment. Simulations in the
time domain permit to predict both unstable frequencies of combustion-driven
pressure oscillations and their amplitudes. Moreover, these simulations enable
physical insight into important mechanisms.

The three-step approach is applied to analyse the thermoacoustic stabil-
ity of a laboratory, perfectly premixed, swirl-stabilised test rig. The Flame
Transfer Function (FTF) of the setup is calculated perturbing the velocity at
the inlet of the computational domain with a broadband excitation and cal-
culating the response of the heat release. Wiener-Hopf inversion is applied to
calculate the FTF. The computed FTF differs from the experimentally calcu-
lated one because the FSC model used is adiabatic and the setup is strongly
non-adiabatic. This results in different heat release distributions between sim-
ulations and experiments and, as a result, in a mild disagreement in the FTFs’
phases. Then, the setup is perturbed with a monochromatic excitation at sev-
eral frequencies and amplitudes. As a result, the Flame Describing Function of
the setup is computed. The dependence of the FDF model parameters on the
excitation amplitude is revealed. Afterwards, both linear and weakly nonlin-
ear analyses are performed with the network model. Stability prediction of the
network model coincides with the experimentally conducted stability analysis.
The calculated unstable frequency does not coincide with the experimentally
observed one, most probably due to the disagreement in the phase of the FTF
as observed above. The unstable frequency of the setup is not a pure acoustic
mode but is an Intrinsic Thermo-Acoustic (ITA) mode. Parametric analysis
is performed to understand possible ways of suppression of the ITA mode. It
is shown that the common technique of reducing the acoustic reflection coef-
ficients at the boundaries in some conditions can make the setup even more
unstable. It is proposed to reduce the plenum cross-section as a way of sup-
pression of the ITA mode. Last, the weakly nonlinear thermoacoustic analysis
in the network model is conducted. The dependence of the frequency of the
ITA mode on the amplitude of the acoustic oscillations is shown.

The thermoacoustic stability of an industrial, technically premixed, swirl
stabilised test rig is finally analysed with the three-step approach. The re-
sults obtained in this chapter are compared to a reference LES study of the
setup. Unperturbed URANS simulation with the FSC model predicts more
dispersed heat release distribution with respect to the LES. Nevertheless, the
temperature distribution in the URANS simulation is close to the experimen-
tal one, so it is decided to perform the FDF calculations. The setup is excited
with a broadband signal and the FTF of the industrial test rig is calculated
again using Wiener-Hopf inversion. The FTF calculated with URANS differs
from the FTF calculated previously with LES, because of the disagreement in
the heat release distribution. The FDF of the setup is calculated performing
URANS simulations at one excitation amplitude and three excitation frequen-
cies. Then, several FDF models are presented. The first two models are based
on the FDF computed with URANS and differ in the way the FTF phase at
the highest excitation frequency is interpreted. The third and fourth FDF
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models are constructed from the FTF calculated previously with LES and the
FDF models 1 and 2. The fifth FDF model is a hybrid model composed from
the LES FTF for the industrial setup and the FDF calculated with URANS for
the laboratory test rig. Linear and weakly nonlinear analyses of the industrial
test rig stability are performed with the network model. The linear analy-
sis with the URANS FTF predicts the setup to be stable in the whole range
of combustor’s lengths, whereas in the experimental campaign with certain
lengths of the combustion chamber the setup is unstable. This disagreement
is due to the FTF calculated in URANS that is affected by the heat release
distribution. The linear analysis with the LES FTF predicts the setup to be
unstable in the slightly wider range of combustor’s lengths than in experi-
ments. This happens most probably due to the value of the outlet reflection
coefficient that was measured inaccurately in the experiments. The dominant
frequencies of the setup computed with both FTF models agree well with the
experimentally observed values. Network model simulations with the FDF
model 4 capture qualitatively the trend of the pressure oscillations amplitude
dependence on the combustor’s length measured experimentally. The weakly
nonlinear analysis in the network model gives good agreement when the FDF
model 5 is used and the outlet reflection coefficient is diminished by 6% with
respect to the measured value. This reflects the uncertainty inherent with such
a measurement.

Lessons learned

The following lessons are learned in the present work:

• The time-domain analysis with a low-order network model is a fertile
tool to investigate thermoacoustic instabilities in gas turbines.

• Stability of an Intrinsic Thermo-Acoustic (ITA) mode strongly depends
on the acoustic parameters of the setup: reflection coefficients, ducts’
length, and cross-sectional area of the ducts. The usual approach of com-
bustion instabilities suppression by the reduction of the absolute value of
the reflection coefficient could render the ITA mode even more unstable.
The decrease of the plenum cross-sectional area is suggested as a method
of suppression of the unstable ITA modes.

• The model for the FDF of the perfectly premixed flames is proposed.
The change of the FDF model parameters with the excitation amplitude
is supported by the analysis of the heat release distribution under exci-
tation in comparison to the unperturbed one. The strong feature of the
proposed FDF model is that the model parameters can be determined
from a small number of the CFD simulations due to the small number
of these parameters.

• The distribution of unsteady heat release component of the tested techni-
cally premixed flame due to acoustic excitations can be assumed propor-
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tional to the distribution of the unperturbed heat release distribution, in
the case of low amplitude excitation.

• Analysis of the mechanisms driving combustion instability has shown
that heat release response to acoustic perturbations of certain technically-
premixed, swirl-stabilised, burners can be modelled with just 4 parame-
ters. It is shown that time-domain analysis in the network model with
this simple flame model is able to predict both frequency and amplitude
of unstable pressure fluctuations.

Ideas for future investigations

The following ideas for future investigations have arisen in the course of the
work:

• Calculate the heat release response of the laboratory test rig to acoustic
excitation with the recent model proposed by Tay-Wo-Chong et al. [108]
that take into account heat losses.

• Perform thermoacoustic analysis of technically premixed combustion sys-
tems with tools that solve Helmholtz equation in three dimensions with
two distributed time-lag flame model, similarly to how the flame is mod-
elled in this work. Until today, in Helmholtz solver tools, technically
premixed flames are modelled through the distribution of a single time-
lag.

• Calculate heat release response to acoustic oscillations in different parts
of the industrial burner using a Multiple-Input Single-Output method.
Separate the burner duct in the network model of the industrial setup
into two parallel ducts and model the heat release response to acoustic
oscillations in different ducts of the burner.

• Further analysis on the FSC model parameters should be done for the
technically premixed setup. Also, a lower value of the lower inflamma-
bility limit should be checked. This should result in the appearance of
the heat release in the outer shear layer and the shift of the heat release
distribution closer to the one previously calculated with LES.

• The FDF computed numerically for the industrial setup is going to be
validated against the experimentally calculated FDF. Computation of
the FDF with at least one more excitation amplitude is recommended for
further improvement of the FDF model. The outlet reflection coefficient
needs to be computed with better precision.

• Entropy waves should be considered in the network model of the tech-
nically premixed burner. Both the formation of entropy waves and their
propagation should be modelled with care. First, only one of the two
mechanisms in the current FDF model is able to produce entropy waves.
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Second, entropy waves are dispersed as they travel in the flow with non-
uniform velocity field in the cross-section and they are highly diffused due
to the presence of recirculation zones in combustors with swirl burners.
The solution to both of these issues is to calculate a so-called Entropy
Transfer Function – the response of the temperature at the end of the
recirculation zones to velocity fluctuations upstream of the flame.
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