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Abstract

This experimental thesis, was done in collaboration between Professor Alessandro
Bottaro of the University of Genoa and Professor R.I. Sujith of the Indian Institute
of Technology Madras located in Chennai (India) that they gave me the opportunity
to be hosted at the IIT Madras for a period of six months from September 2014 to
February 2015.

Prof. Sujith with the collaboration of the his researcher group, does both ex-
periments and theory. He pursues both basic and applied research in the area of
Combustion Instability and Laser Diagnostics of Flow and Combustion. Sujith’s
most important scientific contribution is the discovery of the non-normal nature of
thermoacoustic interactions and its role in sub-critical transition to thermo-acoustic
instabilities.

The work, make part and has been completely supported of TANGO project
(Thermo-acoustic and Aero-acoustic Nonlinearities in Green combustors with Orifice
structures). This project has like purpose the analyse and the study of instabilities
of type Thermoacoustic and Aeroacoustic. These combustion instabilities represent
a serious problem for combustion-driven devices, such as gas turbine engines and
domestic burners. These instabilities can cause intense pressure oscillations, which in
turn causes excessive structural oscillations, fatigue and even catastrophic damage to
combustor hardware. In recent years, the development of clean combustion systems
with reduced pollution of the environment has become a priority; however, such
systems are particularly prone to combustion instabilities. There is an urgent need
to understand the physical processes that are responsible so that methods to predict
and prevent these instabilities can be developed. The research in the TANGO
network is intended to address these issues.

In the thesis work, like already watched in literature, I showed that intermittent
burst oscillations are a typical feature of turbulent flow-sound interaction, even in
the absence of combustion. These pulsations are undesirable, not only because of the
noise produced, but also because of the possibility of mechanical failures in the pipe
network (and other parts of the application systems), like already explained. We had
performed experiments on a cold-flow combustor with an in-duct orifice. Our control
parameter was the air-flow rate. We measured the pressure time history for various
air-flow rates. I then processed these time histories with some methods through the
Matlab software. From the data processing, among which, I produced recurrence
plots with the aim of investigate the intermittency phenomena and detection the
intermittency type.
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Sommario

Questo lavoro di tesi di tipo sperimentale, è stato svolto grazie alla collaborazione tra
il Professor Alessandro Bottaro per l’Università degli Studi di Genova e il Professor
R.I. Sujith per l’Indian Institute of Technology Madras situato a Chennai (India)
che mi hanno dato la possibilità di essere ospitato dall’IIT Madras per un periodo
di 6 mesi a partire dal settembre del 2014 fino a Febbraio 2015. Il Professor Sujith
con la collabolarazione del suo gruppo di ricerca, si occupa sia dal punto di vista
teorico e sia da quello sperimentale di instabilità di combustione e sia di diagnostica
del flusso con tecniche laser. Il suo principale contributo alla comunità scientifica in-
ternazionale è la scoperta della natura non-normale delle interazioni termoacustiche
ed le loro regole nella transizione sub-critica alle instabilità di questa natura.

Questo lavoro fa parte ed è stato completamente finanziato dal progetto denom-
inato TANGO (Thermo-acoustic and Aero-acoustic Nonlinearities in Green com-
bustors with Orifice structures). Il progetto si occupa delle instabilità di combus-
tione che rappresentano un problema di fondamentale importanza in molte appli-
cazioni come ad esempio nei combustori per le turbine a gas ed in molti altri sis-
temi. Queste instabilità possono causare forti oscillazioni di pressione, che posso
causare altrettanto forti sollecitazioni strutturali per fatica, con conseguente ris-
chio di drammatiche rotture strutturali dei sistemi combustivi. Negli ultimi anni, lo
sviluppo di combustori meno inquinanti è diventato fondamentale, ed il problema si è
notevolmente evidenziato dato dalla notevole presenza di instabilità di combustione
in questi sistemi. Perciò si è reso necessario capire la fisica di questi fenomeni per
prevederli ed evitare che queste instabilità si possano verificare. Nel lavoro di tesi,
come già visto in letteratura, ho osservato che queste fluttuazioni di pressione pos-
sono avvenire anche in assenza di fenomeni combustivi. Queste pulsazioni possono
portare a conseguenze indesiderabili come la generazione di fastidiosi rumori e la
possibilità di rotture strutturali per fatica, come già spiegato in precedenza. Queste
sollecitazioni che si verificano, con il flusso ”freddo” sono caratteristiche del fenomeno
dell’Intermittenza Aeroacustica, oggetto principale di questa tesi. Come illustrerò
nel dettaglio successivamente, durante il mio soggiorno a Chennai, abbiamo messo
a punto un impianto sperimentale che simulava la forma di un combustore reale, e
variando la portata d’aria siamo andati ad effettuare misure di pressione attraverso
un microfono. Durante il lavoro sperimentale abbiamo effettuato delle prove var-
iando alcuni fattori come ad esempio: la geometria dell’impianto o la posizione del
microfono. Tuttociò al fine di riprodurre il fenomeno dell’intermittenza e studiarlo
nelle migliori condizioni possibili. Per l’elaborazione dei dati ho utilizzato il software
Matlab, con il quale tra gli altri ho utilizzato alcune metodi per identificare il tipo
di intermittenza ottenuto sperimentalmente.
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1. Introduction

Low frequency acoustic pulsations in pipe networks have been observed in many
technical applications. These pulsations are undesirable not only because of the
noise produced but also because of the possibility of mechanical failures in the pipe
network. The high amplitude of the acoustic pressure fluctuations results in me-
chanical stresses that can cause fatigue failure. Lower pulsation levels can already
affect volume flow measurements or trigger vibration control equipment. Even when
the vibration and pressure pulsation levels do not endanger the system safety and
can be tolerated, they still cause additional pressure losses and reduce the efficiency.
However small these losses might seem in percentage terms, they constitute, in ab-
solute values, a significant amount of wasted energy. Forced pulsations, like the
pulsations driven by compressors, can be predicted in the design phase by numer-
ical models. A different kind of acoustic pulsations is the aeroacoustic oscillation
caused by the instability of the flow in the pipe systems. This kind of pulsations
is called self-sustained, or self-excited oscillations. Due to the nonlinearity of the
governing equations it is very difficult to predict the sound production of fluid flows.
This sound production occurs typically at high speed flows, for which nonlinear in-
ertial terms in the equation of motion are much larger than the viscous terms (high
Reynolds numbers). As sound production represents only a very minute fraction
of the energy in the flow the direct prediction of sound generation is very difficult.
This is particularly dramatic in free space and at low subsonic speeds. The fact that
the sound field is in some sense a small perturbation of the flow, can, however, be
used to obtain approximate solutions. Aeroacoustic provides such approximations
and at the same time a definition of the acoustical field as an extrapolation of an
ideal reference flow. The difference between the actual flow and the reference flow is
identified as a source of sound. This idea was introduced by Lighthill who called this
an analogy. A second key idea of Lighthill is the use of integral equations as a formal
solution. The sound field is obtained as a convolution of the Green’s function and
the sound source. The Green’s function is the linear response of the reference flow,
used to define the acoustical field, to an impulsive point source. A great advantage
of this formulation is that random errors in the sound source are averaged out by
the integration. As the source also depends on the sound field this expression is not
yet a solution of the problem. However, under free field conditions one can often
neglect this feedback from the acoustical field to the flow. In that case the integral
formulation provides a solution. When the flow is confined, the acoustical energy can
accumulate into resonant modes. Since the acoustical particle displacement velocity
can become of the same order of magnitude as the main flow velocity, the feedback
from the acoustical field to the sound sources can be very significant. This leads
to the occurrence of self-sustained oscillations which we call whistling. In spite of
the back-reaction, the ideas of the analogy will appear to remain useful (Hirschberg
& Rienstra et al. 2004). In the past, there have been many cases of birth of these
phenomena, for examples: From 1940 to 1960, Oklahoma Gas and Electric Com-
pany had problems with the safety valves installed on its boilers. Unusual noise and
vibration, coming from these valves were observed by operators. The problem arose
with all the re-heater safety valves located on a horizontal portion of the re-heat
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steam inlet line just before it enters the steam generator, and just downstream of
a pipe elbow. The vibration was so severe that within a few months several valves
failed. These problems promoted a systematic investigation of the flow induced vi-
brations in safety valves. This investigation identified the standpipes of the valves,
which form a row of closed side branches along a main pipe, as responsible for the
occurrence of pulsations. Another case there was in 2002, the steam dryer in the
boiling water reactor (BWR) of Quad Cities Unit 2 (QC2) experienced high cycle
fatigue cracks after the reactor’s maximum power was increased by approximately
17%. Repairing the dryer by using thicker plates and stronger welds did not resolve
the problem, as the dryer exhibited new cracks upon continued operation. The pres-
sure measurements on the steam dryer indicated that increasing the steam velocity
in the main steam lines (MSLs), related to the increase in the reactor power, excited
the acoustic modes in the standpipes of the safety valves, which are mounted on the
MSLs. The resonance was so strong that it not only damaged some of the valves, but
also propagated upstream in the MSLs and into the reactor dome and damaged the
steam dryer. The problem was solved by changing the standpipe geometry to avoid
the acoustic resonance at the increased rated power (Tonon, Hirschberg, Golliard &
Ziada et al. 2010).

This thesis work has purpose to investigate the Intermittency in aeroacoustic sys-
tems: it is the appearance of irregularly spaced, alternating intervals of chaotic/burst
state and steady/periodic behaviour. Such dynamical behaviour is commonly ob-
served in physical systems and has been reported previously for biochemical systems
(Lisa & Thomas 1993), binary fluid convection (Batiste et al. 2001), pH oscillators
(Straube, Flockerzi & Hauser 2006) and coupled neural oscillators (Han & Postnov
2003). The phenomenon of intermittency occurs due to dynamics in the system
and has been shown to conform to definite statistical characteristics of the lami-
nar states occurring along with bursts. In an attempt to explain the occurrence
of intermittency in physical systems, Pomeau & Manneville (1980) presented an
analytical study of dynamical models of dissipative systems. They categorized the
phenomenon of intermittency into three classes, type I, type II and type III, based
on how transition occurred at the threshold of each of the models. The system dy-
namics corresponding to each of the three classes is also associated with a particular
bifurcation scenario. Type I intermittency is associated with a saddle-node bifurca-
tion. Type II occurs due to a Hopf bifurcation and is associated with the appearance
of a quasi-periodic state. Finally, type III intermittency is associated with a reverse-
period doubling bifurcation (Okamoto, Tanaka & Naito 1998). Intermittency was
first studied in the Rayleigh–Bénard convection experiments and has been identified
as a route to turbulence in hydrodynamic flows (Bérge et al. 1980; Gollub & Benson
1980; Swinney 1983). In most observations of intermittency, the intermittent state
is followed by a chaotic regime. In the aeroacoustic system studied here, we find
the appearance of limit cycle oscillations followed by a quasi-periodic state. The
quasi-periodic oscillations then break down, leading to intermittency, indicating the
presence of a type II intermittency. To investigate the bifurcation scenario and the
associated system dynamics, we have conducted further investigations via nonlinear
time series analysis. A major part of the analysis is based on studying the recurrence
behaviour of reconstructed phase space trajectories, using recurrence plots.
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The present experimental thesis work, make part of TANGO project (Thermo-
acoustic and Aero-acoustic Nonlinearities in Green combustors with Orifice struc-
tures). This project has like purpose the analyse and the study of instabilities of
type Thermoacoustic and Aeroacoustic. In particular, the thesis is carried out at
Indian Institute of Technology Madras (IITM) at Chennai (India), in the Aerospace
department, under the supervision of the Professor Alessandro Bottaro for the Uni-
versity of Genova and Professor R. I. Sujith for IITM with the collaboration of the
his researcher group. My work will be focused on the second type, in particular
vortex shedding, which play an important role for example in combustion systems
or like I already said prematurely in many other applications.
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2. Background

2.1 Aeroacoustic
The sound / noise is a perturbation of pressure, density, temperature and velocity
that propagates in space at a high distance from point of emission. In general we
neglect the entropy changes, so the perturbation is isentropic. The choice of using
the terms sound or noise depends on who perceives them (psychoacoustics) and in
general is considered the noise less pleasant of sound. The aeroacoustic’s problem,
in engineering, is noise reduction without affecting performance of turbomachinery,
propellers, nozzles and so on.

The subject of the present work is the flow of air through a square-edged circular
orifice of finite thickness at the end of a circular duct. Audible, sharp tones, referred
to as pipe tone, are excited under certain flow and geometric conditions in this case.
Pipe tones are not produced outside a critical range of thickness of the orifice for a
range of mean flow velocity in the duct. The excited tones also jump from one mode
to the other as the flow velocity is varied over a wide range for a given geometry. The
occurrence of these tones has been attributed to the formation and periodic shedding
of vortices and their interaction with the duct resonance system. Anderson studied
this problem extensively, and attributed the excitation of audible tones to periodic
fluctuations in the jet cross-sectional area at the orifice. Audible tones are excited
even in the absence of the duct; this phenomenon is referred to as jet tone. It is
believed that the mechanism that causes the jet tone is basically the same as the one
that causes the pipe tone. The difference lies in the fact that the resonance column
of the pipe influences the jet tone to change its frequency. It is hypothesized that
the vortex shedding is influenced by the duct acoustics in such a way that a rolled
up vortex sheds at the time when the acoustic velocity changes direction against the
mean flow, as shown in the studies on pipe side branch tone. In general, it is found
that the pipe tone occurs more readily and over a larger range of flow conditions
than the jet tone. The low frequency aeroacoustic response of orifices has recently
been predicted theoretically with consideration of the Mach number dependence
of the vena contract, in terms of the scattering matrix connecting the acoustic
pressure amplitudes on either side of the orifice, which is treated as a discontinuity.
However, the region of sound production lies across the thickness of the orifice. Howe
points out that axisymmetric disturbances are generated at the upstream edge of the
orifice, which produce sound by the diffraction of the near-field pressure distribution
at the downstream edge. A number of other recent investigations related to sound
production involving vortex shedding or vorticity fluctuations have been reported
in the context of gas flows in pipe systems with closed side branches, vortex-nozzle
interactions, and sharp edged open channel ends. In these works, the vortex shedding
behaviour or vorticity variation has been simulated by means of point vortex method,
a single panel method, or the vortex blob method in the two-dimensional potential
flow framework in order to retain the simplicity in the analysis, and the Powell–Howe
approach has been adopted to predict the acoustic power generated. This requires a
good physical understanding of the nature of vorticity fluctuation under conditions
that excite high amplitude sound. In the case of the problem considered here, the
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response of the shear layer originating from the separation point at the upstream
edge of the orifice to the self-excited oscillations governs the sound production, and is
being optically investigated at this laboratory. However, as a result of this behaviour,
the near-field vortex roll-up in the free jet just downstream of the orifice is altered
by the self-excitation of high amplitude acoustic oscillations in the duct. The vortex
roll-up behaviour is almost symptomatic of the acoustic excitation inside the duct.
The focus of the presentwork, specifically, is the phenomenon of jet forking into two
trains of vortices at a certain flow Reynolds number coincident with transition of
the excited acoustic oscillations from one mode to the other. This has indeed been
reported by Anderson, but without any time-resolved visualization and correlation
with the acoustic characteristics of the pipe tone. A similar behaviour is reported
in the absence of duct acoustic resonance with a helium jet issuing out of a nozzle
into air. This is accompanied by self-excitation of jet tone.

2.1.1 Acoustic
Acoustics is defined as the science of sound (Pierce, 1989). Sound is an oscillatory
perturbation that moves away from a source and propagates through a medium. The
pressure perturbations associated with sound are small compared to the atmospheric
pressure (p′/patm << 1) and hence linear theory is good enough to study it under
most circumstances. Aeroacoustics deals with the study of the production the sound
by flows. The first normal definition of an aeroacoustic sound source was proposed
by Lighthill (1952a, 1952b). The acoustical field is defined as an extrapolation of
a linear perturbation of a reference flow in which a listener is submerged. The
difference between this linear behaviour and the actual flow is defined as the source
of sound.

The sound generation mechanisms or “sources” of sound in real life scenario is
found to be highly complex. However, such complex sources can be built up from
study of a few fundamental solutions of the wave equation (Pierce, 1989). The
simplest source is the monopole which does not have any directional nature. The
next type of source is the dipole source. This type of source occurs in the through
the orifice. The third type of source is the quadrupole source which can be viewed
as two dipoles placed near each other. A classic example of such a source is the
noise generated due to turbulence in a free jet. In general, flow noise modelling
involves all the three types of sources. An aeroacoustic source is considered to be
compact if the source is small compared to the acoustical wavelength (Howe, 1998).
For a compact source, Lighthill’s (1952a) sound source may be rewritten in terms of
vorticity as shown by Powell (1964). Sound generated by vorticity is often referred to
as “vortex sound”. Howe (1975) generalized Powell’s analogy for high Mach number
flows. In a compact aeroacoustic source, the Coriolis force density fc = −ρ(ω × ν),
is a dominant source of sound (Howe, 1998). The time average of the acoustic
source power generated by periodic oscillations for a cycle is given by the integral,
< Psource >=< −ρ

∫
ν
(ω × U)u′dν . . .

2.1.2 Acoustic field in a fully developed turbulent pipe flow
High levels of noise radiation from piping systems occur when the internal turbulent
pipe flow separates from the pipe wall due to disturbances caused by convex corners
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on the pipe surface. Flow separation in a pipe acts as an acoustic source and
generates both non propagating near field is attenuated rapidly, but the far field
disturbances (Agarwal, 1994a, 1994b). The pressure perturbation due to the near
field is attenuated rapidly, but the far field disturbances results in a propagating
internal acoustic field superposed on the fully developed turbulent wall pressure
field. The presence of a surface like an orifice causes flow separation and hence
an associated sound source. The sound thus generated could interact with the duct
resonance system leading to amplification of the disturbances. Wall pressure spectra
have a basic broad band character due to a turbulence in the flow. Narrow band
peaks are found to be superposed over the broad band spectrum. These peaks are
attributable to the duct acoustic mode with the frequencies matching the modal
cut-off frequency.

2.1.3 Pure tones and their generation
Sharp acoustic tones get excited when air flows past certain geometries. Screech in
jets with shock, cavity noise, edge tones, jet/collector interactions and howling of
ejectors are some of the examples of flow induced resonance. Screech of high speed
choked jets belong to the class of tones that do not involve an impingement surface
(Blake, 1986). The disturbance convecting in the shear layer interacts with the shock
waves and generates sound. The sound wave generated propagates upstream through
the ambient and interacts with the shear layer completing a feedback loop (Howe,
1998). In most of these problems, the shear layer plays a very important role in the
process of excitation. The frequencies of sound and the most preferred instability
waves mach. Large amplitude tones are generated due to coupling between a shear
flow and the resonant sound field that builds in the surrounding system.

The flow past two concentric circular orifices a spaced a short distance apart
generates a sharp tone popularly referred to as the hole tone. The first orifice forms
a jet, it passes through the second orifice to generate a discrete tone. Sondhauss
reported about this phenomenon for the first time in 1854 (Chanaud and Powell,
1965). He found that the tone frequency increased with increasing jet velocity
and decreased with increasing orifice spacing. The sound generated is maintained
by a feedback loop. The pressure fluctuation generated at the second hole cause
pulsations in the jet flow rate that excites axisymmetric instabilities in jet upstream.
The planar version of the hole tone is the slot tone. When the second orifice is
replaced by a wedge, the tone generated is referred to as the edge tone (Powell,
1961). The edge tone is caused by non-symmetric oscillation of the jet, and the
secondary disturbances are generated by vortex formation at the apex of the edge
alternately on either side of the wedge. Hole tone, slot tone and jet tone belong
to the general class of discrete frequency tones typified by jet-edge systems. The
jet-edge systems are hydrodynamic oscillators controlled by acoustic feedback. The
feedback mechanism is generating self-sustained oscillations involves the following
events in this mode:

1. A disturbance or instability wave is initiated at the nozzle lip.

2. The excited instability wave convects downstream growing in amplitude.
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3. A feedback disturbance is produced by the flow surface interaction as the
convecting instability (shear layer/organised vorticity fluctuations) impinges
on downstream edge.

4. The feedback disturbance propagates upstream and excites the shear layer
thereby completing the feedback loop.

Cavity tones (Rossiter, 1966) are again another class of tone generating system.
A subsonic or supersonic flow past a rectangular cavity induces acoustic oscillations.
The oscillations are caused due to an acoustic feedback. Concentrated vortices are
shed periodically in the vicinity of the upstream lip of the cavity. These vortices
travel downstream and interact with the downstream wall of the cavity and generate
acoustic pulses. These acoustic disturbances propagate upstream inside the cavity
and upon reaching the upstream end, cause the shear layer to separate and initiate
the process of shedding of a new vortex. In the case of deep cavities, the acoustic
disturbances generated gets amplified and results in standing waves in the cavity. In
this case also, it is seen that strong acoustic field is created by the interactions of the
vortices with the system resonance. It has been shown that for the ratio of acoustic
velocity to mean flow very much less than 0.1, the acoustic field only triggers the
shedding of vortices but does not affect the path of the vortex thereafter (Bruggman
et al.,1991). For those values greater than 0.4, the acoustic field not only determines
the vortex shedding but also non-linearly interacts with the vortices and affects the
path of the vortex significantly. However, it should be noted that in this case, the
vortex shedding and the path are perpendicular to the acoustic field.

Strong self-sustained oscillations occur in a whistler nozzle when acoustical en-
ergy accumulates in the standing wave of a resonator attached to the nozzle (Hirschberg
et al., 1989). The acoustical resonator imposes the oscillation frequency and the pul-
sation amplitude reaches a peak value when he flow is adjusted to meet the critical
Strouhal number condition. The coupling of two independent resonance mechanisms
viz, shear layer tone resulting from the impingement of the pipe-exit shear layer on
the collar lip and the organ pipe resonance of the duct causes acoustic excitation
(Hussain and Hasan, 1983). Selamet et al. (2002) studied the suppression of whistle
noise by the use of ramps. One of the most common example of self-sustained os-
cillations is the human whistling. Wilson et al. (1971) have shown that the human
whistling is due to a coupling between vortex shedding at the lips and the Helmholtz
resonance frequency of the mouth. The Strouhal condition for optimal whistling is
easily observed by first fixing the geometrical configuration and then gradually in-
creasing the volume flow. Above a certain velocity the whistling disappears again.
This is due to the fact that at high flow rates the vortices are convected far outside
the lips before they produce sound.

2.1.4 The technological applications
The interaction of acoustic waves with flow across an orifice is widely encountered
in the present society. In compressor stations of natural gas transport system very
complex manifolds of pipes of various cross-sections are used (Bruggeman et al.,
1991). Due to an increasing demand for gas distribution, there is a tendency to
transport gas at higher pressures. Thick orifices are used to generate pressure drop
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across the main distribution line and the destination (Durrieu et al., 2001). The
flow past pipe side branches and orifices can cause self-sustained flow instabilities
(Bruggeman et al. 1991; Hofmans et al., 2001a, 2001b; Dequand, 2001). Avoiding
such flow instabilities is not an easy task. Orifices (diaphragms) are extensively used
in car mufflers to suppress resonances in the exhaust pipe of automobiles (Hofmans
et al., 2001a).

A similar flow scenario exists inside large segmented solid rocket motors (SRMs).
Large SRM are assembled with segmented grains. The grains are terminated by a
coating of inert material to inhibit the propellant from burning from the sides. The
inhibitor burns substantially slowly when compared to the propellant. This causes
an annular ring to protrude into the port flow perpendicular to the motor axis.
The presence of a protrusion results in the establishment of shear layer instabilities,
leading o the periodic shedding of vortices. The vortex shedding phenomenon can
have a direct bearing on the SRM performance as well as affect indirectly through
interaction with the acoustic environment in the motor cavity. It is seen that the
acoustic pressure oscillations start occurring after a certain time and continue until
the end of the burn time of the rocket motor. Abrupt jump in the frequency corre-
sponding to one acoustic mode of the rocket chamber to the next higher mode is also
observed in some cases. Such shifts in frequency and their amplitudes have not been
amenable to theoretical predictions so far. Vortex shedding as a possible mechanism
for the excitation of the longitudinal acoustic modes of the combustion chamber of
the solid rocket motor was first suggested by Flandro and Jacobs (1975). A series of
papers by Kourta (1996a, 1996b, 1997) has successfully computed and shown that
the presence of surface discontinuities (inhibitors/cavities) to be the primary source
of vortex shedding driven oscillations in solid rocket motors. The mechanism was
found to be very complex and vortex pairing was detected. It was found that the
amplitudes were higher with sharp inhibitors as compared to a smooth inhibitor.
Most of the SRMs currently used are assembled with grain segments with a layer of
inhibitor separating the segments. The flow instability generated in a rocket motor
could be due to the interaction among flow, acoustics, structural (inhibitor flutter)
and combustion (propellant) processes. However, the present knowledge indicates
that the phenomenon is hydrodynamic in nature, and combustion is suspected to
play a very limited role, provided the propellant does not amplify the excited oscil-
lations further (Howe, 1998). The vortex shed at the inhibitor may interact with
the chamber acoustic longitudinal modes to excite large amplitude acoustic pressure
oscillations. The pressure oscillations by themselves may lead to an increase in pro-
pellant burning rate, resulting in an increase in mean pressure of the chamber. It
could also manifest as thrust oscillations. The frequency could match the natural
frequency of on board systems leading to failure of the system. The acoustic oscil-
lations could reach a limit cycle when the amplitude of the oscillations stabilizes at
a level at which the damping equals the driving. These persistent oscillations may
result in structural failure. The occurrence of such oscillations has so far eluded
prediction.

Dunlap and Brown (1981) performed exploratory cold flow experiments, with
a simulated SRM with chocked nozzle. These experiments led to certain quanti-
tative predictions. The possibility of generation of 5-10% pressure oscillation was
demonstrated “under proper flow conditions”. The location of the inhibitors with the
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respect to the acoustic mode shapes was varied, and its effect on the acoustic ampli-
fication was studied. In a more elaborate study Brown at al. (1981) with a cold flow
model of the Titan SRM, critically examined and confirmed periodic vortex shed-
ding as a driving mechanism for acoustic oscillations. In this study, mass addition
to the port flow due to solid propellant combustion was simulated by flow nitrogen
through a chocked porous pipe. Hot wire anemometer measurements indicated the
magnitude of the velocity fluctuations to be ten times more than that predicted
from periodic oscillation measurements of acoustic velocity based on purely classical
acoustic considerations. Vectorial resolution of the velocity oscillations was seen to
be consistent with periodically shedding vortices. Further studies by Brown et al.
(1985) focused on vortex shedding due to sudden flow area expansion at the dump
plane applicable to grain transitions in boost/sustained type SRMs and co-axial in-
let ramjet engines. These studies demonstrated that acoustic oscillations could be
eliminated by insertion of a thin plate orifice in the inlet at the dump plane.

In recent times, extensive work has been done to understand the cause of the
pressure oscillations in a solid rocket motor. Anthoine (2000) studied the aeroacous-
tics of Ariane P05 rocket motor experimentally as well as numerically and concluded
that a coupling exists between the acoustic fluctuations induced by the nozzle cavity
volume and the vortices in front of the nozzle cavity entrance. In the absence of
nozzle cavity, the pressure fluctuations were much lower in magnitude.

2.2 Fast Fourier Transform
During data analysis for identify the principal frequencies, we used the Fast Fourier
Transform through this method, can characterize the different tones that record
with the microphone and watch clearly the switching mode during the increase and
decreasing of the air flow rate.

A fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier
transform (DFT) and its inverse. Fourier analysis converts time (or space) to fre-
quency (or wavenumber) and vice versa; an FFT rapidly computes such transforma-
tions by factorizing the DFT matrix into a product of sparse (mostly zero) factors.
As a result, fast Fourier transforms are widely used for many applications in engi-
neering, science, and mathematics. The basic ideas were popularized in 1965, but
some FFTs had been previously known as early as 1805. In 1994 Gilbert Strang
described the fast Fourier transform as "the most important numerical algorithm of
our lifetime".

2.2.1 Overview
There are many different FFT algorithms involving a wide range of mathematics,
from simple complex-number arithmetic to group theory and number theory; this
article gives an overview of the available techniques and some of their general prop-
erties, while the specific algorithms are described in subsidiary articles linked below.

The DFT is obtained by decomposing a sequence of values into components of
different frequencies. This operation is useful in many fields (see discrete Fourier
transform for properties and applications of the transform) but computing it directly
from the definition is often too slow to be practical. An FFT is a way to compute the
same result more quickly: computing the DFT of N points in the naive way, using
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the definition, takes O(N2) arithmetical operations, while a FFT can compute the
same DFT in only O(N log2N) operations. The difference in speed can be enormous,
especially for long data sets where N may be in the thousands or millions. In practice,
the computation time can be reduced by several orders of magnitude in such cases,
and the improvement is roughly proportional to N log(N). This huge improvement
made the calculation of the DFT practical; FFTs are of great importance to a wide
variety of applications, from digital signal processing and solving partial differential
equations to algorithms for quick multiplication of large integers.

The best-known FFT algorithms depend upon the factorization of N, but there
are FFTs with O(N logN) complexity for all N, even for prime N. Many FFT
algorithms only depend on the fact that e−

2πi
N is an N-th primitive root of unity, and

thus can be applied to analogous transforms over any finite field, such as number-
theoretic transforms. Since the inverse DFT is the same as the DFT, but with the
opposite sign in the exponent and a 1/N factor, any FFT algorithm can easily be
adapted for it.

2.2.2 Definition and speed
An FFT computes the DFT and produces exactly the same result as evaluating
the DFT definition directly; the most important difference is that an FFT is much
faster. (In the presence of round-off error, many FFT algorithms are also much more
accurate than evaluating the DFT definition directly, as discussed below).

Let x0, . . . , xN−1 be complex numbers. The DFT is defined by the formula

Xk =
N−1∑
n=0

xne
−i2πk n

N k = 0, . . . , N − 1. (2.1)

Evaluating this definition directly requires O(N2) operations: there are N out-
puts Xk, and each output requires a sum of N terms. An FFT is any method to
compute the same results in O(N logN) operations. More precisely, all known FFT
algorithms require O(N logN) operations (technically, O only denotes an upper
bound), although there is no known proof that a lower complexity score is impossi-
ble.(Johnson & Frigo, 2007) To illustrate the savings of an FFT, consider the count
of complex multiplications and additions. Evaluating the DFT’s sums directly in-
volves N2 complex multiplications and N(N−1) complex additions (of which O(N)
operations can be saved by eliminating trivial operations such as multiplications
by 1). The well-known radix-2 Cooley–Tukey algorithm, for N a power of 2, can
compute the same result with only (N2) log2(N) complex multiplications (again,
ignoring simplifications of multiplications by 1 and similar) and N log2(N) complex
additions. In practice, actual performance on modern computers is usually domi-
nated by factors other than the speed of arithmetic operations and the analysis is a
complicated subject (see, e.g., Frigo & Johnson, 2005), but the overall improvement
from O(N2) to O(N logN) remains.
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2.2.3 Algorithms
Cooley–Tukey algorithm

By far the most commonly used FFT is the Cooley–Tukey algorithm. This is a
divide and conquer algorithm that recursively breaks down a DFT of any composite
size N = N1N2 into many smaller DFTs of sizes N1 and N2, along with O(N)
multiplications by complex roots of unity traditionally called twiddle factors (after
Gentleman and Sande, 1966). This method (and the general idea of an FFT) was
popularized by a publication of J. W. Cooley and J. W. Tukey in 1965, but it was
later discovered (Heideman, Johnson, & Burrus, 1984) that those two authors had
independently re-invented an algorithm known to Carl Friedrich Gauss around 1805
(and subsequently rediscovered several times in limited forms). The best known use
of the Cooley–Tukey algorithm is to divide the transform into two pieces of size N/2
at each step, and is therefore limited to power-of-two sizes, but any factorization
can be used in general (as was known to both Gauss and Cooley/Tukey). These
are called the radix-2 and mixed-radix cases, respectively (and other variants such
as the split-radix FFT have their own names as well). Although the basic idea is
recursive, most traditional implementations rearrange the algorithm to avoid explicit
recursion. Also, because the Cooley–Tukey algorithm breaks the DFT into smaller
DFTs, it can be combined arbitrarily with any other algorithm for the DFT, such
as those described below.

Other FFT algorithms

There are other FFT algorithms distinct from Cooley–Tukey.
Cornelius Lanczos did pioneering work on the FFS and FFT with G.C. Danielson

(1940).
ForN = N1N2 with coprime N1 and N2, one can use the Prime-Factor (Good-

Thomas) algorithm (PFA), based on the Chinese Remainder Theorem, to factorize
the DFT similarly to Cooley–Tukey but without the twiddle factors. The Rader-
Brenner algorithm (1976) is a Cooley-Tukey-like factorization but with purely imagi-
nary twiddle factors, reducing multiplications at the cost of increased additions and
reduced numerical stability; it was later superseded by the split-radix variant of
Cooley-Tukey (which achieves the same multiplication count but with fewer addi-
tions and without sacrificing accuracy). Algorithms that recursively factorize the
DFT into smaller operations other than DFTs include the Bruun and QFT algo-
rithms. (The Rader-Brenner and QFT algorithms were proposed for power-of-two
sizes, but it is possible that they could be adapted to general composite n. Bruun’s
algorithm applies to arbitrary even composite sizes). Bruun’s algorithm, in particu-
lar, is based on interpreting the FFT as a recursive factorization of the polynomial
zN − 1, here into real-coefficient polynomials of the form zM− and z2M + azM + 1.

Another polynomial viewpoint is exploited by the Winograd algorithm, which
factorizes zN − 1 into cyclotomic polynomials—these often have coefficients of 1, 0,
or -1, and therefore require few (if any) multiplications, so Winograd can be used to
obtain minimal-multiplication FFTs and is often used to find efficient algorithms for
small factors. Indeed, Winograd showed that the DFT can be computed with only
O(N) irrational multiplications, leading to a proven achievable lower bound on the
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number of multiplications for power-of-two sizes; unfortunately, this comes at the
cost of many more additions, a tradeoff no longer favorable on modern processors
with hardware multipliers. In particular, Winograd also makes use of the PFA as
well as an algorithm by Rader for FFTs of prime sizes.

Rader’s algorithm, exploiting the existence of a generator for the multiplicative
group modulo prime N, expresses a DFT of prime size n as a cyclic convolution of
(composite) size N − 1, which can then be computed by a pair of ordinary FFTs
via the convolution theorem (although Winograd uses other convolution methods).
Another prime-size FFT is due to L. I. Bluestein, and is sometimes called the chirp-z
algorithm; it also re-expresses a DFT as a convolution, but this time of the same size
(which can be zero-padded to a power of two and evaluated by radix-2 Cooley–Tukey
FFTs, for example), via the identity nk = −(k − n)2/2 + n2/2 + k2/2.

2.2.4 FFT algorithms specialized for real and/or symmetric data
In many applications, the input data for the DFT are purely real, in which case the
outputs satisfy the symmetry

XN−k = X∗k (2.2)

and efficient FFT algorithms have been designed for this situation (see e.g.
Sorensen, 1987). One approach consists of taking an ordinary algorithm (e.g. Coo-
ley–Tukey) and removing the redundant parts of the computation, saving roughly
a factor of two in time and memory. Alternatively, it is possible to express an
even-length real-input DFT as a complex DFT of half the length (whose real and
imaginary parts are the even/odd elements of the original real data), followed by
O(N) post-processing operations.

It was once believed that real-input DFTs could be more efficiently computed by
means of the discrete Hartley transform (DHT), but it was subsequently argued that
a specialized real-input DFT algorithm (FFT) can typically be found that requires
fewer operations than the corresponding DHT algorithm (FHT) for the same number
of inputs. Bruun’s algorithm (above) is another method that was initially proposed
to take advantage of real inputs, but it has not proved popular.

There are further FFT specializations for the cases of real data that have even/odd
symmetry, in which case one can gain another factor of (roughly) two in time and
memory and the DFT becomes the discrete cosine/sine transform(s) (DCT/DST).
Instead of directly modifying an FFT algorithm for these cases, DCTs/DSTs can
also be computed via FFTs of real data combined with O(N) pre/post processing.

2.2.5 Computational issues
Bounds on complexity and operation counts

A fundamental question of longstanding theoretical interest is to prove lower bounds
on the complexity and exact operation counts of fast Fourier transforms, and many
open problems remain. It is not even rigorously proved whether DFTs truly require
Ω(N log(N)) (i.e., order N log(N) or greater) operations, even for the simple case
of power of two sizes, although no algorithms with lower complexity are known. In
particular, the count of arithmetic operations is usually the focus of such questions,
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although actual performance on modern-day computers is determined by many other
factors such as cache or CPU pipeline optimization.

Following pioneering work by Winograd (1978), a tight O(N) lower bound is
known for the number of real multiplications required by an FFT. It can be shown
that only 4N − 2 log2

2N − 2 log2N − 4 irrational real multiplications are required
to compute a DFT of power of two lengthN = 2m. Moreover, explicit algorithms
that achieve this count are known (Heideman & Burrus, 1986; Duhamel, 1990).
Unfortunately, these algorithms require too many additions to be practical, at least
on modern computers with hardware multipliers.

A tight lower bound is not known on the number of required additions, although
lower bounds have been proved under some restrictive assumptions on the algo-
rithms. In 1973, Morgenstern proved an Ω(N log(N)) lower bound on the addition
count for algorithms where the multiplicative constants have bounded magnitudes
(which is true for most but not all FFT algorithms). It should be noted, however,
that Morgenstern’s result applies only to the unnormalized transform of determi-
nant NN/2, while the normalized transform (which is a complex unitary transforma-
tion) does not lend itself to these arguments. Incidentally, Morgenstern’s result also
implies that the identity transformation scaled by

√
N also requires Ω(N log(N))

operations, which is not satisfactory. In 2014, Ailon showed that any scaling of the
Fourier transform requires at least Ω(N log(N)) operations, assuming the computa-
tion is well-conditioned. The argument uses a notion of quasi-entropy of matrices,
introduced in the same work. Well-conditioned computation is important for nu-
merical stability and is hence a reasonable computational requirement.

Pan (1986) proved an Ω(N log(N)) lower bound assuming a bound on a measure
of the FFT algorithm’s "asynchronicity", but the generality of this assumption is
unclear. For the case of power of two N, Papadimitriou (1979) argued that the num-
ber N log2N of complex-number additions achieved by Cooley–Tukey algorithms is
optimal under certain assumptions on the graph of the algorithm (his assumptions
imply, among other things, that no additive identities in the roots of unity are ex-
ploited). (This argument would imply that at least 2N log2N real additions are
required, although this is not a tight bound because extra additions are required
as part of complex-number multiplications.) Thus far, no published FFT algorithm
has achieved fewer than N log2N complex-number additions (or their equivalent)
for power-of-two N.

A third problem is to minimize the total number of real multiplications and
additions, sometimes called the "arithmetic complexity" (although in this context
it is the exact count and not the asymptotic complexity that is being considered).
Again, no tight lower bound has been proven. Since 1968, however, the lowest pub-
lished count for power of two N was long achieved by the split-radix FFT algorithm,
which requires 4N log2N − 6N + 8 real multiplications and additions for N > 1.
This was recently reduced to ∼ 34

9
N log2N (Johnson and Frigo, 2007; Lundy and

Van Buskirk, 2007). A slightly larger count (but still better than split radix for
N ≥ 256) was shown to be provably optimal for N ≤ 512 under additional re-
strictions on the possible algorithms (split-radix-like flowgraphs with unit-modulus
multiplicative factors), by reduction to a Satisfiability Modulo Theories problem
solvable by brute force (Haynal & Haynal, 2011). Most of the attempts to lower
or prove the complexity of FFT algorithms have focused on the ordinary complex-
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data case, because it is the simplest. However, complex-data FFTs are so closely
related to algorithms for related problems such as real-data FFTs, discrete cosine
transforms, discrete Hartley transforms, and so on, that any improvement in one of
these would immediately lead to improvements in the others (Duhamel & Vetterli,
1990).

Accuracy and approximations

All of the FFT algorithms discussed above compute the DFT exactly (in exact
arithmetic, i.e. neglecting floating-point errors). A few "FFT" algorithms have
been proposed, however, that compute the DFT approximately, with an error that
can be made arbitrarily small at the expense of increased computations. Such algo-
rithms trade the approximation error for increased speed or other properties. For
example, an approximate FFT algorithm by Edelman et al. (1999) achieves lower
communication requirements for parallel computing with the help of a fast multi-
pole method. A wavelet-based approximate FFT by Guo and Burrus (1996) takes
sparse inputs/outputs (time/frequency localization) into account more efficiently
than is possible[citation needed] with an exact FFT. Another algorithm for approx-
imate computation of a subset of the DFT outputs is due to Shentov et al. (1995).
The Edelman algorithm works equally well for sparse and non-sparse data, since it is
based on the compressibility (rank deficiency) of the Fourier matrix itself rather than
the compressibility (sparsity) of the data. Conversely, if the data are sparse—that
is, if only K out of N Fourier coefficients are nonzero—then the complexity can be
reduced toO(K log(N) log(N/K)), and this has been demonstrated to lead to prac-
tical speedups compared to an ordinary FFT for N/K > 32 in a large-N example
(N = 222) using a probabilistic approximate algorithm (which estimates the largest
K coefficients to several decimal places).

Even the "exact" FFT algorithms have errors when finite-precision floating-point
arithmetic is used, but these errors are typically quite small; most FFT algorithms,
e.g. Cooley–Tukey, have excellent numerical properties as a consequence of the
pairwise summation structure of the algorithms. The upper bound on the relative
error for the Cooley–Tukey algorithm is O(ε logN), compared to O(εN3/2) for the
naïve DFT formula (Gentleman and Sande, 1966), where ε is the machine floating-
point relative precision. In fact, the root mean square (rms) errors are much better
than these upper bounds, being only O(ε

√
logN) for Cooley–Tukey and O(ε

√
N)

for the naïve DFT (Schatzman, 1996). These results, however, are very sensitive
to the accuracy of the twiddle factors used in the FFT (i.e. the trigonometric
function values), and it is not unusual for incautious FFT implementations to have
much worse accuracy, e.g. if they use inaccurate trigonometric recurrence formulas.
Some FFTs other than Cooley–Tukey, such as the Rader-Brenner algorithm, are
intrinsically less stable.

In fixed-point arithmetic, the finite-precision errors accumulated by FFT algo-
rithms are worse, with rms errors growing as O(

√
N) for the Cooley–Tukey algorithm

(Welch, 1969). Moreover, even achieving this accuracy requires careful attention to
scaling in order to minimize the loss of precision, and fixed-point FFT algorithms
involve rescaling at each intermediate stage of decompositions like Cooley–Tukey.

To verify the correctness of an FFT implementation, rigorous guarantees can be
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obtained in O(N log(N)) time by a simple procedure checking the linearity, impulse-
response, and time-shift properties of the transform on random inputs (Ergün, 1995).

2.3 Dynamical Systems
2.3.1 What is dynamical system?
A dynamical system is a function with an attitude. A dynamical system is doing the
same thing over and over again. A dynamical system is always knowing what you are
going to do next. The difficulty is that virtually anything that evolves over time can
be thought of as a dynamical system. So let us begin by describing mathematical
dynamical systems and then see how many physical situations are nicely modeled
by mathematical dynamical systems. A dynamical system has two parts: a state
vector which describes exactly the state of some real or hypothetical system, and a
function (i.e., a rule) which tells us, given the current state, what the state of the
system will be in the next instant of time.

State vectors

Physical systems can be described by numbers. This amazing fact accounts for
the The state vector is a numerical description of the current configuration of a
system. successful marriage between mathematics and the sciences. For example, a
ball tossed straight up can be described using two numbers: its height h above the
ground and its (upward) velocity v. Once we know these two numbers, h and v, the
fate of the ball is completely determined. The pair of numbers (h, v) is a vector
which completely describes the state of the ball and hence is called the state vector
of the system. Typically, we write vectors as columns of numbers, so more properly,
the state of this system is

[
h
v

]
It may be possible to describe the state of a system by a single number. For

example, consider a bank account opened with $100 at 6% interest compounded
annually. The state of this system at any instant in time can be described by a
single number: the balance in the account. In this case, the state vector has just
one component. On the other hand, some dynamical systems require a great many
numbers to describe. For example, a dynamical system modeling global weather
might have millions of variables accounting for temperature, pressure, wind speed,
and so on at points all around the world. Although extremely complex, the state
of the system is simply a list of numbers a vector. Whether simple or complicated,
the state of the system is a vector; typically we denote vectors by bold, lowercase
letters, such as x. (Exception: When the state can be described by a single number,
we may write x instead of x).

The next instant: discrete time

The second part of a dynamical system is a rule which tells us how the system
changes over time. In other words, if we are given the current state of the system,
the rule tells us the state of the system in the next instant. In the case of the bank
account described above, the next instant will be one year later, since interest is
paid only annually; time is discrete. That is to say, time is a sequence of separate
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chunks each following the next like beads on a string.

The next instant: continuous time

Bank accounts which change only annually or computer chips which change only
during clock cycles are examples of systems for which time is best viewed as pro-
gressing in discrete packets. Many systems, however, are better described with time
progressing smoothly. Consider our earlier example of a ball thrown straight up.
Its instantaneous status is given by its state vector x =

[
h
v

]
However, it doesn’t

make sense to ask what its state will be in the “next” instant of time—there is no
“next” instant since time advances continuously. We reflect this different perspective
on time by using the letter t (rather than Continuous time is denoted k) to denote
time. Typically t is a nonnegative real number and we start time at by t = 0. Since
we cannot write down a rule for the “next” instant of time, we instead describe how
the system is changing at any given instant.

2.3.2 Non Linear Systems
During the thesis work, we face a problems Nonlinear systems and for this reason,
the next chapter will focus on them.
The general forms for dynamical systems are:

x0 = f(x) continuous time, and

x(k + 1) = f(x(k)) discrete time.

We have closely examined the case when f is linear. In that case, we can answer
nearly any question we might consider. We can work out exact formulas for the
behavior of x(t) (or x(k)) and deduce from them the long-term behavior of the
system. There are two main behaviors: (1) the system gravitates toward a fixed
point, or (2) the system blows up. There are some marginal behaviors as well.

What is a fixed point?

The vector x is the state of the dynamical system, and the function f tells us how
A state vector that doesn’t change. the system moves. In special circumstances,
however, the system does not move. The system can be stuck (we will say fixed) in
a special state; we call these states fixed points of the dynamical system.

For example, consider the nonlinear discrete time system

x(k + 1) = [x(k)]2 − 6.

Suppose the system is in the state x(k) = 3; where will it be in the next instant?
This is easy to compute:

x(k + 1) = x(k)2 − 6 = 32 − 6 = 3.

The system is again at state x = 3. Where will it be in the next time period? Of
course, still in state 3. The value x = 3 is a fixed point of the system x(k + 1) =
x(k)2 − 6, since if we are ever in state 3 we remain there for all time. (This system
has another fixed point; try to find it.)
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Let’s consider a continuous time example:

x′ = x3 − 8

What happens if x(t) = 2? We compute that dx/dt equals x3 − 8 = 23 − 8 = 0.
Thus x(t) is neither increasing nor decreasing; in other words, it’s stuck at 2. Thus
x̃ = 2 is a fixed point of this system. (This system has no other fixed points; try to
figure out why.) Thus a fixed point of a dynamical system is a state vector x̃ with
the property that if the system is ever in the state x̃, it will remain in that state for
all time.

Stability

Not all fixed points are the same. We call some stable and others unstable. We
begin by illustrating these concepts with an example.

Let f(x) = x2 and consider the discrete time dynamical system

x(k + 1) = f(x(k)) = [x(k)]2.

In other words, we are interested in seeing what happens when we iterate the square
function. The system has two fixed points: 0 and 1 (these are the solutions to
f(x) = x, i.e., x2 = x). If you enter either 0 or 1 into your calculator and start
pressing the x2 button, you will notice something very boring: nothing happens.
Both 0 and 1 are fixed points, and the x2 function just leaves them alone. Now,
let’s put other numbers into our calculator and see what happens. First, let us start
with a number which is close to (but not equal) 0, say 0.1. If we iterate x2, we see

0.1→ 0.01→ 0.0001→ 0.0000001→ . . . .

Clearly x(k) → 0 as k → 1. It’s not hard to see why this works. If we begin with
any number x0, our iterations go

x0 → x2
0 → x4

0 → x8
0 → · · · → x2k

0 → . . .

Thus if x0 is near 0, then, clearly, x(k) → 0 as k → ∞. (How near zero must we
be? All we need is | x0 |< 1). We say that x0 is a stable or an attractive fixed point
of the system x(k + 1) = f(x(k)) because if we start the system near x0, then the
system gravitates toward x0.

Now let’s examine the other fixed point, 1. What happens if we put a number
near (but not equal to) 1 in our calculator and start iterating the x2 function. If
x0 = 1.1, we see

1.1→ 1.21→ 1.4641→ 2.1436→ 4.5950→ 21.1138→ 445.7916→ . . . .

Clearly, x(k)→ 1. If we take x0 = 0.9, we see

0.9→ 0.81→ 0.6561→ 0.4305→ 0.1853→ 0.0343→ 0.0012→ . . .

Clearly x(k) → 0. In any case, starting points near (but not equal to) 1 tend to
iterate away from 1. We call 1 an unstable fixed point of the system.
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Figure 2.1: Fixed points with three different types of stability. The fixed point on
the left is stable. The fixed point in the center is marginally stable. The fixed point
on the right is unstable.

Let us now describe three types of fixed points a system may possess.
First, a fixed point x̃ is called Stable fixed point. stable provided the following

is true: For all starting values x0 near x̃, the system not only stays near x̃ but
also x(t) → x̃ as t → ∞ [or x(k) → x̃ as k → ∞ in discrete time]. Marginally
stable (or Second, a fixed point x̃ is called marginally stable or neutral provided the
folneutral) fixed point. lowing: For all starting values x0 near x̃, the system stays
near x̃ but does not converge to x̃. Unstable fixed point. Third, a fixed point x̃ is
called unstable if it is neither stable nor marginally stable. In other words, there
are starting values x0 very near x̃ so that the system moves far away from x̃.
Figure 2.1 illustrates each of these possibilities. The fixed point on the left of the
figure is stable; all trajectories which begin near x̃ remain near, and converge to, x̃.
The fixed point in the center of the figure is marginally stable (neutral). Trajectories
which begin near x̃ stay nearby but never converge to x̃. Finally, the fixed point
on the right of the figure is unstable. There are trajectories which start near x̃ and
move far away from x̃.

2.3.3 Non Linear Systems: Periodicity and Chaos
The dissipative nonlinear systems such as fluid flows reach a random or chaotic state
when the parameter measuring nonlinearity, where Rayleigh number is large. The
change to the chaotic stage generally takes place through a sequence of transitions,
with the exact route depending on the system. It has been realized that chaotic be-
haviour not only occurs in continuous systems having an infinite number of degrees
of freedom, but also in discrete nonlinear systems having only a small number of
degrees of freedom, governed by ordinary nonlinear differential equations. In this
context, a chaotic system is defined as one in which the solution is extremely sensi-
tive to initial conditions. That is, solutions with arbitrarily close initial conditions
evolve into quite different states. Other symptoms of a chaotic system are that the
solutions are aperiodic, and that the spectrum is broadband instead of being com-
posed of a few discrete lines. Numerical integrations have recently demonstrated
that nonlinear systems governed by a finite set of deterministic ordinary differential
equations allow chaotic solutions in response to a steady forcing. This fact is in-
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teresting because in a dissipative linear system a constant forcing ultimately (after
the decay of the transients) leads to constant response, a periodic forcing leads to
periodic response, and a random forcing leads to random response. In the presence
of nonlinearity, however, a constant forcing can lead to a variable response, both
periodic and aperiodic. It has been found that transition to chaos in the solution of
ordinary nonlinear differential equations displays a certain universal behaviour and
proceeds in one of a few different ways. At the moment it is unclear whether the
transition in fluid flows is closely related to the development of chaos in the solutions
of these simple systems; this is under intense study.

Returning to dynamical systems, they do not live by fixed points alone. Exist
three possible behaviors for dynamical systems: attraction to a fixed point, diver-
gence to infinity, and (in continuous time) “cyclic” behavior. In this paragraph we
see that periodic behavior can also occur in discrete time and that another type of
behavior—chaos—is a possibility as well. What is “periodicbehavior”? A dynamical
system exhibits periodic behavior when it returns to a previously visited state. We
can write this as x(t1) = x(t1 + T ) for some T > 0. Notice that whatever trajectory
the system took from time t1 to time t1+T , the system is destined to repeat that same
path again and again because the state at time t1 +T is exactly the same as the state
at time t1. Thus we realize that x(t1) = x(t1 + T ) = x(t1 + 2T ) = x(t1 + 3T ) = . . . .
The system retakes the same steps over and over again, visiting the same states
infinitely often. A fixed point is an extreme example of periodic behavior. What
is “chaos”? We discuss this concept later, but for now we want to point out that
a system can behave in a nonperiodic and nonexplosive manner which, although
completely determined, is utterly unpredictable!

Phase Space

Very few nonlinear equations have analytical solutions. For nonlinear systems, a
typical procedure is to find a numerical solution and display its properties in a
space whose axes are the dependent variables. For example: Consider the equation
governing the motion of a simple pendulum of length l:

Ẍ +
g

l
sinx = 0

where X is the angular displacement and Ẍ(= d2X/dt2) is the angular accel-
eration. (The component of gravity parallel to the trajectory is −g sinX, which
is balanced by the linear acceleration lẌ ). The equation is nonlinear because of
the sinX term. The second-order equation can be split into two coupled first-order
equations:

Ẋ = Y

Ẏ = −g
l

sinX

Starting with some initial conditions on X and Y , one can integrate set (n ◦
2eq). The behaviour of the system can be studied by describing how the variables
Y (= Ẋ) and X vary as a function of time. For the pendulum problem, the space
whose axes are Ẋ and X is called a phasespace, and the evolution of the system is

19



Figure 2.2: Graph of a function f for a one-dimensional dynamical system. Various
fixed points are marked.

described by a trajectory in this space. The dimension of the phase space is called
the degree offreedom of the system; it equals the number of independent initial
conditions necessary to specify the system. For example, the degree of freedom for
the set previous is two.

Continuos time

One dimension: no periodicity

We begin by discussing the long-term fate of the simplest systems: continuous time
One-dimensional continuous time systems either explode or tend to fixed points.
dynamical systems in one variable, x′ = f(x). Pick an x, any x. There are three
possibilities: f(x) is zero, positive, or negative. If f(x) is zero, we know that x is a
fixed point. If f(x) is positive, then x(t) must be increasing, and if f(x) is negative,
x(t) is decreasing. Our first observation is that periodic behavior is not possible
(except for fixed Periodic behavior is not possible for one-dimensional continuous
time systems. points). Consider a state x1 which we allegedly visit at times s and
t, with s < t. This is possible if x1 is a fixed point, but otherwise we have f(x1)
either positive or negative. If f(x1) is positive, then, in the short run, the system
moves to a state x2 greater than x1. Since f is continuous, we may assume that f
is positive over the entire interval [x1, x2]. So we’re at x2 and still increasing. Now,
how can we ever return to x1? To get there, we must decrease through the interval
[x1, x2], but the equation x′ = f(x) says that x must increase throughout the same
interval. Thus it’s impossible to ever revisit the state x1. By a similar analysis, we
can never revisit a state with f(x1) < 0.

Thus the only type of recurrent behavior one-dimensional continuous systems
can exhibit is that of fixed points. Figure 2.2 shows the graph of a function f for a
one-dimensional continuous time dynamical system x′ = f(x). Several fixed points
are marked, with each somewhat different from the others.

• Fixed point #1. This is a stable fixed point; to its left the system is increasing
and to its right, decreasing.

• Fixed point #2. This is a “semistable” fixed point. To its left the system is
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Figure 2.3: An orbit approaching a periodic orbit. The trajectory starts near the
middle of the figure and spirals outward, becoming more and more like a circle.

decreasing, and so starting values less than x̃ move away from x̃. To the right
the system is also decreasing, and so the fixed point behaves like an attractor
on this side.

• Fixed point #3. This is an unstable fixed point. To its left, the system is
decreasing and to its right, increasing.

• Fixed point #4. This is another semistable fixed point, but its action is
opposite that of #2. This fixed point is an attractor on its left and a repellor
on its right.

• Fixed points #5. This is an entire interval where f(x) = 0. These fixed points
are marginally stable. Perturbing the system slightly away from one of these
fixed points neither causes the system to return to the fixed points nor to fly
away.

• Fixed point #6. This is another stable fixed point, but one where f ′(x) = 0.
Thus the linearization test of the previous chapter would fail at this fixed
point.

In conclusion, the behaviors of one-dimensional continuous dynamical systems
are rather limited. Ultimately, such a system must either gravitate toward a fixed
point or explode to infinity.

Two dimensions: the Poincaré-Bendixson theorem

One-dimensional continuous systems either converge to a fixed point or diverge to
infinity. These behaviors are exhibited by two-dimensional continuous systems as
well. However, two-dimensional systems also exhibit another behavior: periodicity.
Let x′ = f(x) be a two-dimensional continuous time dynamical system. Each state
of this system, x, is a point in the plane (the phase space) of the system. If x0 is
a fixed point of the system, then the trajectory starting at x0 is not very exciting:
The system is “stuck” at x0 and remains there for all time. Otherwise (x0 is not a
fixed point) the trajectory is a proper curve. In principle (and often in actuality)
this curve can return to x0. Suppose the first return is at time T . Now, at time T it
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Figure 2.4: Two orbits of a dynamical system cannot cross.

is as if we have started all over. Thus at time t+T we are exactly in the same state
as at time t. In other words, for any time t we have x(t + T ) = x(t). Such a curve
is called periodic, and the smallest positive number T for which x(t + T ) = x(t) is
called the period of the curve. For example, for the system[

x′1
x′2

]
=

[
0 1
−1 0

] [
x1

x2

]
we find that (for any x0 other than 0) the trajectories are periodic with period 2π.
If a dynamical system starts near, but not at, an stable fixed point x̃, we expect
the system to gravitate to x̃. Note that we expect x(t) to approach x̃; it need not
be the case that x(t) = x̃ for any t. Similarly, it is possible that a trajectory will
never exhibit periodic behavior but will approach a periodic orbit; see Figure 2.3.
A trajectory of this system begins at x0 =

[
0

0.27

]
and spirals outward approaching,

but never quite reaching, the unit circle. Thus, as time progresses, the trajectory
becomes more and more like the periodic orbit. To be more specific, let x1(t) and
x2(t) be two different trajectories of a system x′ = f(x). We say that trajectory x1

approaches trajectory x2 provided | x1(t) − x2(t + c) |→ 0 (where c is a constant)
as t → ∞. Two trajectories of a dynamical system, however, cannot cross; see
Figure 2.4. Trajectories cannot cross. Consider the point of intersection if two
trajectories actually did intersect. The trajectory of the system starting at that
point of intersection is completely determined and therefore must proceed along a
unique path. The situation in Figure 2.4 is therefore impossible. Now imagine all
the possible trajectories of a two-dimensional dynamical system drawn in a plane.
You should see a situation akin to the one depicted in Figure 2.5. Since the curves
cannot cross one another (or themselves), their behavior is greatly limited.

Essentially they can (1) bunch together toward a point, (2) zoom off toward infin-
ity, or (3) wrap more and more tightly around a simple closed curve. These intuitive
ideas are the heart The three behaviors open to of the Poincarè-Bendixson theorem,
which continuous time two-dimensional systems. states that a two-dimensional con-
tinuous time dynamical system x′ = f(x) will have one of three possible behaviors as
t→∞: It may (1) converge to a fixed point, (2) diverge to infinity, or (3) approach
a periodic orbit.
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Figure 2.5: Many different orbits of a two-dimensional dynamical system.

Figure 2.6: Starting near the unstable fixed point and approaching a stable cycle.
(The trajectory starts near the origin and spirals outward.)

23



Figure 2.7: Example: Like the system quickly becomes periodic.

Bifurcation

Bifurcation theory is the mathematical study of changes in the qualitative or topo-
logical structure of a given family, such as the integral curves of a family of vector
fields, and the solutions of a family of differential equations. Most commonly ap-
plied to the mathematical study of dynamical systems, a bifurcation occurs when a
small smooth change made to the parameter values (the bifurcation parameters) of
a system causes a sudden ’qualitative’ or topological change in its behaviour. Bi-
furcations occur in both continuous systems (described by ODEs, DDEs or PDEs),
and discrete systems (described by maps). The name "bifurcation" was first intro-
duced by Henri Poincaré in 1885 in the first paper in mathematics showing such a
behavior. Henri Poincaré also later named various types of stationary points and
classified them.

Exist differents Bifurcation Types:

• Local bifurcations, which can be analysed entirely through changes in the
local stability properties of equilibria, periodic orbits or other invariant sets as
parameters cross through critical thresholds; and

• Global bifurcations, which often occur when larger invariant sets of the system
’collide’ with each other, or with equilibria of the system. They cannot be
detected purely by a stability analysis of the equilibria (fixed points).

Local bifurcations

Period-halving bifurcations (L) leading to order, followed by period doubling bifur-
cations (R) leading to chaos.

A local bifurcation occurs when a parameter change causes the stability of an
equilibrium (or fixed point) to change. In continuous systems, this corresponds to
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the real part of an eigenvalue of an equilibrium passing through zero. In discrete
systems (those described by maps rather than ODEs), this corresponds to a fixed
point having a Floquet multiplier with modulus equal to one. In both cases, the
equilibrium is non-hyperbolic at the bifurcation point. The topological changes in
the phase portrait of the system can be confined to arbitrarily small neighbourhoods
of the bifurcating fixed points by moving the bifurcation parameter close to the
bifurcation point (hence ’local’).

More technically, consider the continuous dynamical system described by the
ODE

ẋ = f(x, λ) f : Rn × R→ Rn.

A local bifurcation occurs at (x0, λ0) if the Jacobian matrix dfx0,λ0 has an eigen-
value with zero real part. If the eigenvalue is equal to zero, the bifurcation is a
steady state bifurcation, but if the eigenvalue is non-zero but purely imaginary, this
is a Hopf bifurcation.

For discrete dynamical systems, consider the system

xn+1 = f(xn, λ) .

Then a local bifurcation occurs at (x0, λ0) if the matrix dfx0,λ0 has an eigenvalue
with modulus equal to one. If the eigenvalue is equal to one, the bifurcation is either
a saddle-node (often called fold bifurcation in maps), transcritical or pitchfork bifur-
cation. If the eigenvalue is equal to -1, it is a period-doubling (or flip) bifurcation,
and otherwise, it is a Hopf bifurcation.

Examples of local bifurcations include:

• Saddle-node (fold) bifurcation

• Transcritical bifurcation

• Pitchfork bifurcation

• Period-doubling (flip) bifurcation

• Hopf bifurcation

• Neimark (secondary Hopf) bifurcation

Global bifurcations

Global bifurcations occur when "larger" invariant sets, such as periodic orbits, collide
with equilibria. This causes changes in the topology of the trajectories in the phase
space which cannot be confined to a small neighbourhood, as is the case with local
bifurcations. In fact, the changes in topology extend out to an arbitrarily large
distance (hence "global").

Examples of global bifurcations include:

• Homoclinic bifurcation in which a limit cycle collides with a saddle point.

• Heteroclinic bifurcation in which a limit cycle collides with two or more saddle
points.
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• Infinite-period bifurcation in which a stable node and saddle point simultane-
ously occur on a limit cycle.

• Blue sky catastrophe in which a limit cycle collides with a nonhyperbolic cycle.

Global bifurcations can also involve more complicated sets such as chaotic at-
tractors (e.g. crises).

After We will see that the bifurcation type is fundamental to detection the In-
termittency type. Also, if it is very complex.

2.4 Instability as a loss multifractality
As we have seen so far, the dynamic processes happening inside a pipe with an
orifice involve the coupled nonlinear processes which cannot be described by simple
linear techniques. In this chapter, we shall introduce the framework of fractals
and multifractals in order to tackle this complexity. Using a technique known as
multifractal detrended fluctuation analysis, the deviations of the central moments
of measured fluctuations with time are computed, which can directly be related to
the fractal dimension of the time signal. It is shown that noise generated from the
aeroacoustic phenomennons are multifractal and that the onset of hydrodynamic
instability results in a loss of this multifractality. The rate of variation of central
moments decrease gradually towards zero as instability is approached, which can be
used as yet another early warning signal to impending hydrodynamic instability.

2.4.1 Fractal and Fractality
The term "fractal" is used to describe objects that have a fractional dimension
(Mandelbrot 1982). Whereas classical Euclidean geometry deals with smooth ob-
jects that have integer dimensions, structures in nature often tend to be fractals
because they are wrinkly at all levels of magnification. Measures such as length,
area or volume cannot be defined for such objects since they depend on the scale of
measurement. For instance, the length of a fractal curve increases when the ruler is
made smaller because additional details are now revealed. A logarithmic plot of the
measured length of the curve against the length of the ruler for such a curve would
then show an inverse powerlaw; i.e., a straight line with a negative slope. This slope,
which is a number between one and two, is referred to as the "fractal dimension"
of the curve. Thus, we see that such curves occupy more space than a straight line
which scales as the length of the ruler, but less space than a square which scales as
the square of the length of the ruler. The concept of fractals can also be used to
describe complex dynamics that results in fluctuations spread over multiple orders
of temporal magnitude. A fractal process is characterized by a broad-band power
spectrum with an inverse power-law, known more popularly as the 1/f spectrum
(Montroll and Schlesinger, 1982; Schlesinger, 1987) since there is here an inverse
relationship between frequency and power. Similar to a fractal curve, a fractal time
signal also has a dimension between one and two. A fractal time series also displays
a property known as "scale invariance", which means that features of the signal
look the same on many different scales of observation (seconds, minutes etc . . . ).
Mathematically, for a fractal time signal, p(ct) = p(t)/cH for some scaling c and a
constant H. Scale invariance thus relates the time series across multiple time scales.
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Such a dependence on multiple time scales results in a broad profile of responses
in the amplitude spectrum representative of details that are present at these time
scales. On the contrary, if the process can adequately be represented in terms of
one or a few discrete time scales, then the signal would have an amplitude spectrum
with discrete, narrow peaks. In the next subsection, we will show how the presence
of fractality is related to the memory of a time signal.

Statistical description of a time signal

Statistical analysis of time signals involve obtaining the distribution of their fluctua-
tions (Gaussian, Poisson, Levy etc . . . ) or representing this distribution in terms of
representative measures computed around the most likely measurement value (cen-
tral moments). Fluctuations that are fractals, but appear noise-like, differ from noise
in that they do not satisfy the statistics of classical random variables. Whereas the
central moments of a random variable are bounded in time, the central moments of a
fractal signal diverge with time at least over a short range (Mandelbrot 1974). This
can happen for instance when the measurement values represent variations both in
time and space, which makes the signal non-stationary. A signal is non-stationary,
if the central moments vary with time, or in other words, there is a variation in the
underlying distribution of data values. In the description of non-stationary time sig-
nals, classical measures such as mean or variance are not very useful since they vary
with time Instead, they are characterized by examining how the moments depend
on the time interval over which they are evaluated. For instance, the dependency of
the standard deviation of the time signal on time interval is encapsulated in a pa-
rameter called the Hurst exponent H (H. E. Hurst, 1951). It measures the amount
of correlation or the memory in a time series and is related to the fractal dimension
D of the time series as D = 2 − H (Basingthwaighte et al., 1994). The concept
of structure functions introduced by Kolmogorov (Kolmogorov, 1941; Frisch, 1995)
is a generalized version of this idea, which explores scaling relationships between
the variations in the moments of measured fluctuations and the time interval of
measurement. A time series is called persistent (anti-correlated) if a large value
is typically (i.e., with high statistical preference) followed by a large value and a
small value is followed by a small value (Kantelhardt, 2011). In other words, the
signal retains a memory of what happened in the previous time step and has an in-
creased probability of the next step being in the same direction—such signals have a
trend. For a persistent signal, the Hurst exponent H lies between 0.5 and 1 and the
strength of the trend increases as H approaches one. An anti-persistent (correlated)
time series, on the other hand, is one in which a large value is typically followed
by a small value, and a small value is followed by a large value. Such signals have
a tendency to revert to its mean value. For antipersistent signals, values of H lie
between 0 and 0.5. The strength of mean reversion increases as H approaches zero.
For time signals that are persistent or anti-persistent, fractal scaling law holds in at
least a limited range of scales (Kantelhardt, 2011). For an uncorrelated time series,
the Hurst exponent is 0.5. This is expected, since the variance of fluctuations in a
memory-less diffusion process should scale linearly with time. The Hurst exponent
also determines the scaling properties of the fractal time series. If p(t) is a fractal
time signal with Hurst exponent H, then p(ct) = p(t)/cH is another fractal signal
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with the same statistics (West et al., 2003). Algorithms that compute the Hurst
exponent are mostly based on this scaling property. This scaling behaviour typi-
cally has an upper and a lower cut-off that is dependent on the system dynamics.
Detrended fluctuation analysis (DFA) (Peng et al., 1994) provides an easy approach
to characterize fractality in a given time series data. Through an evaluation of the
structure functions, correlations in the data are sought for by computing the Hurst
exponent which can then be related to the fractal dimension of the time series.

When fractality is not more enough

Many time signals exhibit a complex scaling behaviour that cannot be accounted
for by a single fractal dimension. A full description of the scaling in such signals
involves multiple generalized Hurst exponents, resulting in interwoven subsets of
varying fractal dimension (varying Hurst exponents) producing what is termed a
‘multifractal’ behaviour (Frisch and Parisi, 1985). In other words, fluctuations in a
time signal that have different amplitudes follow different scaling rules. The method
of DFA can be expanded to explore multifractality in a time signal and the technique
is called multifractal detrended fluctuation analysis (Kantelhardt et al., 2001, 2002).
The procedure involves computing generalized Hurst exponents that describe the
scaling of central moments for various negative as well as positive orders of the
moments (q) that have been appropriately scaled. For instance, standard deviation
has an order of two and its scaling with time interval gives the Hurst exponent. For
a multifractal signal, the generalized Hurst exponents would have different values
for different orders of the moments. Through a Legendre transform, this variation
in generalized Hurst exponents at different orders can alternately be represented as
a spectrum of singularities f(α), in terms of the new variable α which is conjugate
toq. A plot of f(α) for various values of α is termed the multifractal spectrum, the
width of which provides a measure of the multifractality in the signal. An excellent
description of multifractal processes may be found in Paladin and Vulpiani (1987).

The presence of multifractality is an indication that there are multiplicative pro-
cesses involved in the transfer of energy across various time scales (Sreenivasan,
1991). Provided one accepts Taylor’s frozen flow hypothesis (Taylor, 1938), the
argument can be extended to hold for energy transfer across various spatial scales
as well. The energy transfer at turbulent flow conditions involve a multiplicative
Richardson’s cascade (Richardson, 1922) in the inertial subrange from the integral
scale down to Kolmogorov scale. The onset of instability transforms the dynamics
from one characterized by a multiplicity of scales to one dominated by a few discrete
time scales associated with the formation of large-scale coherent structures in the
flow field. It remains an interesting problem to identify how the interaction of tur-
bulence with the acoustic field of a confinement transforms such an energy transfer
across multiple time-scales to transfers that are dominated by a few time-scales. This
can happen—for instance—through an inverse cascade (Kraichnan, 1967), wherein
the energy of the smaller scales gets transferred to progressively larger scales. The
formation of large-scale coherent structures during instability possibly hints at the
presence of such an inverse cascade co-existing simultaneously with the usual direct
cascade that dissipates energy at Kolmogorov scales.
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2.4.2 Evaluation of Hurst exponents and the multifractal spectrum
In recent years the detrended fluctuation analysis (DFA) method has become a
widely used technique for the determination of (mono-) fractal scaling properties
and the detection of long-range correlations in noisy, nonstationary time series. It
has successfully been applied to diverse Lelds such as DNA sequences, heart rate
dynamics, neuron spiking, human gait, long-time weather records, cloud structure,
geology, ethnology, economics time series, and solid state physics. One reason to
employ the DFA method is to avoid spurious detection of correlations that are ar-
tifacts of nonstationarities in the time series. Many records do not exhibit a simple
monofractal scaling behavior, which can be accounted for by a single scaling ex-
ponent. In some cases, there exist crossover (time-) scales sx separating regimes
with different scaling exponents, e.g. long-range correlations on small scales s� sx
and another type of correlations or uncorrelated behavior on larger scales s � sx.
In other cases, the scaling behavior is more complicated, and different scaling ex-
ponents are required for different parts of the series. This occurs, e.g., when the
scaling behavior in the Lrst half of the series differs from the scaling behavior in
the second half. In even more complicated cases, such different scaling behavior can
be observed for many interwoven fractal subsets of the time series. In this case a
multitude of scaling exponents is required for a full description of the scaling be-
havior, and a multifractal analysis must be applied. In general, two different types
of multifractality in time series can be distinguished: (i) Multifractality due to a
broad probability density function for the values of the time series. In this case the
multifractality cannot be removed by shuffing the series. (ii) Multifractality due
to different long-range (time-) correlations of the small and large fluctuations. In
this case the probability density function of the values can be a regular distribution
with finite moments, e.g. a Gaussian distribution. The corresponding shuffled series
will exhibit nonmultifractal scaling, since all long-range correlations are destroyed
by the shuffling procedure. If both kinds of multifractality are present, the shuffled
series will show weaker multifractality than the original series. The simplest type
of multifractal analysis is based upon the standard partition function multifractal
formalism, which has been developed for the multifractal characterization of nor-
malized, stationary measures. Unfortunately, this standard formalism does not give
correct results for nonstationary time series that are affected by trends or that can-
not be normalized. Thus, in the early 1990s an improved multifractal formalism has
been developed, the wavelet transform modulus maxima (WTMM) method, which
is based on wavelet analysis and involves tracing the maxima lines in the continuous
wavelet transform over all scales. Here, we propose an alternative approach based
on a generalization of the DFA method. This multifractal DFA (MF-DFA) does
not require the modulus maxima procedure, and hence does not involve more effort
in programming than the conventional DFA (Kantelhardt, Zschiegner, Koscielny-
Bunde, Havlin, Bunde, Stanley et. al. 2002).

To estimate the Hurst exponent using detrended fluctuation analysis (DFA), the
time signal p(t) of length N is first mean-adjusted and then a cumulative deviate
series yk is obtained as:

yk =
k∑
t=1

(p(t)−m) (2.3)
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Figure 2.8: Example: A portion of the time signal (gray) and its cumulate deviate
series (black) for (a) combustion noise and (b) Gaussian white noise.

m =
1

N

N∑
t=1

p(t) (2.4)

The deviate series is then divided into a number nw of non-overlapping segments
(yi(t), i = 1, . . . , nw) of equal span w. The signal (2.9) which has been split into
non-overlapping bins. In order to remove the trends in these segments, a local linear
fit yi is made separately to each of the sections of the deviate series yi. These linear
fits are shown as dashed lines in Fig. (2.9). The detrended fluctuations are then
obtained by subtracting the polynomial fit from the deviate series. The structure
function of order q and span w, Fw

q can be obtained from the detrended fluctuations
as:

F q
w =

(
1

nw

nw∑
t=1

(√√√√ 1

w

w∑
t=1

(yi(t)− ~yi)2

)q) 1
q

(2.5)

The generalized Hurst exponents Hq are the slopes of the straight lines in a log-
log plot of the structure functions for various order exponents q for variations in the
segment width (time interval), w. The information contained in Hq for different q
can alternatively be represented as a spectrum of singularities f(α) that are related
to the slopes of the generalized Hurst exponents via a Legendre transform (Zia et
al., 2009) as follows:

τq = qHq − 1 (2.6)

α =
∂τq
∂q

(2.7)

f(α) = qα− τq (2.8)

This spectrum, represented as a plot of f(α) against α, is known as the mul-
tifractal spectrum (also called the Hölder spectrum) and provides information on
varying nature of the fractal dimension in the data.
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Figure 2.9: Example: The cumulative deviate series and its linear fit in 20 segments
from a portion of the noise signal. The deviate series yi(t) is shown in gray and the
linear fit yi and its local standard deviation are shown as black dashed lines.

2.5 Recurrence Quantification
2.5.1 Recurrence Plot
Recurrence is a fundamental property of dynamical systems, which can be exploited
to characterise the system’s behaviour in phase space .A powerful tool for their visu-
alisation and analysis called recurrence plot was introduced in the late 1980’s. The
recurrence plots theory, like the recurrence quantification analysis, which is highly
effective to detect, e. g., transitions in the dynamics of systems from time series.A
main point is how to link recurrences to dynamical invariants and unstable peri-
odic orbits. This and further evidence suggest that recurrences contain all relevant
information about a system’s behaviour. As the respective phase spaces of two sys-
tems change due to coupling, recurrence plots allow studying and quantifying their
interaction. This fact also provides us with a sensitive tool for the study of synchro-
nisation of complex systems. This theory has applications in economy, physiology,
neuroscience, earth sciences, astrophysics and engineering are shown (Marwan et al.,
2007). The technique requires reconstruction of the mathematical phase space of
evolution of the pressure fluctuations. In reconstructing an appropriate phase space,
a knowledge of the appropriate embedding dimension d0 and the optimum time lag
τopt that is used to generate the delay vectors from the measured pressure time se-
ries (of length N0) is necessary. A recurrence plot is constructed by computing the
pairwise distances between points in the phase space. Then, a matrix of recurrences
may be obtained as:

Rij = θ(ε− ‖ p′i − p′j ‖) i, j = 1, 2, . . . , N0 − d0τopt (2.9)

where θ is the Heaviside step function and ε is a threshold or the upper limit of the
distance between a pair of points in the phase space to consider them as close or
recurrent. The indices represent the various time instances when the distances are
computed and the boldface represents the vector of coordinates in the phase space.
The recurrence matrix is a symmetric matrix composed of zeros and ones and a
recurrence plot is the 2D representation of this matrix as the trajectories evolve in
time. The ones in the recurrence plot are marked with black points and represent
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Figure 2.10: Example di Recurrence plots and the corresponding unsteady pressure
signals acquired during combustion noise (top row, intermediate intermittent regime
(middle row) and combustion instability (bottom row) from the bluff-body stabilized
combustor.

those time instants when the pairwise distances are less than the threshold ε. White
points in the recurrence plot correspond to the zeros in the recurrence plot and
correspond to those instants when the pairwise distances exceed the threshold.

Figure 2.10 shows an example of the recurrence plots drawn, in Thermoacous-
tic for the pressure signals acquired during (i) combustion noise, (ii) intermittent
regime and (iii) combustion instability. In example, the time duration of the signal
was chosen to be 0.1s to highlight the diagonal lines in the recurrence plot which
would otherwise not be visible. The separation between the diagonal lines gives
the fundamental time period of oscillation during combustion instability. The black
patches represent the times when the system exhibits low amplitude chaotic oscil-
lations and white patches represent the higher amplitude periodic bursts. This is
a pattern typical of intermittent burst oscillations. The recurrence plots thus help
visually identify the route to instability in turbulent combustors. The transition
proceeds from chaos (combustion noise) to order (combustion instability) through
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an intermediate intermittent regime.
The RP is obtained by plotting the recurrence matrix, Eq. (2.9), and using

different colours for its binary entries, e.g., plotting a black dot at the coordinates
(i, j), if Ri,j ≡ 1, and a white dot, if Ri,j ≡ 0. Both axes of the RP are time axes and
show rightwards and upwards (convention). Since Ri,i ≡ 1 |Ni=1 by definition, the
RP has always a black main diagonal line, the line of identity (LOI). Furthermore,
the RP is symmetric by definition with respect to the main diagonal, i.e. Ri,j ≡
Rj,i. In order to compute an RP, an appropriate norm has to be chosen. The
most frequently used norms are the L1−norm, the L2−norm (Euclidean norm) and
theL∞−norm (Maximum or Supremum norm). Note that the neighbourhoods of
these norms have different shapes. Considering a fixed ε, the L∞−norm finds the
most, the L1−norm the least and theL2−norm an intermediate amount of neighbours.
To compute RPs, the L∞−norm is often applied, because it is computationally faster
and allows to study some features in RPs analytically.

Selection of the threshold ε

A crucial parameter of an RP is the threshold ε. Therefore, special attention has
to be required for its choice. If ε is chosen too small, there may be almost no
recurrence points and we cannot learn anything about the recurrence structure of
the underlying system. On the other hand, if ε is chosen too large, almost every
point is a neighbour of every other point, which leads to a lot of artefacts. A too
large ε includes also points into the neighbourhood which are simple consecutive
points on the trajectory. This effect is called tangential motion and causes thicker
and longer diagonal structures in the RP as they actually are. Hence, we have to find
a compromise for the value of ε. Moreover, the influence of noise can entail choosing
a larger threshold, because noise would distort any existing structure in the RP.
At a higher threshold, this structure may be preserved. Several “rules of thumb”
for the choice of the threshold ε have been advocated in the literature, e.g., a few
per cent of the maximum phase space diameter has been suggested. Furthermore,
it should not exceed 10% of the mean or the maximum phase space diameter. A
further possibility is to choose ε according to the recurrence point density of the RP
by seeking a scaling region in the recurrence point density. However, this may not
be suitable for non-stationary data. For this case it was proposed to choose ε such
that the recurrence point density is approximately 1%. Another criterion for the
choice of ε takes into account that a measurement of a process is a composition of
the real signal and some observational noise with standard deviation σ. In order to
get similar results as for the noise-free situation, ε has to be chosen such that it is
five times larger than the standard deviation of the observational noise, i.e. ε > 5σ.
This criterion holds for a wide class of processes. For (quasi-)periodic processes, the
diagonal structures within the RP can be used in order to determine an optimal
threshold. For this purpose, the density distribution of recurrence points along the
diagonals parallel to the LOI is considered (which corresponds to the diagonal-wise
defined -recurrence rate RR , Eq. ((2.14))). From such a density plot, the number of
significant peaks Np is counted. Next, the average number of neighbours Nn (2.11),
that each point has, is computed. The threshold ε should be chosen in such a way
that Np is maximal and Nn approaches Np. Therefore, a good choice of ε would be
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to minimise the quantity

β(ε) =
| Nn(ε)−Np(ε) |

Nn(ε)
(2.10)

Where:

Nn(ε) =
1

N

N∑
i,j=1

Ri,j(ε) (2.11)

This criterion minimises the fragmentation and thickness of the diagonal lines
with respect to the threshold, which can be useful for de-noising, e.g., of acoustic
signals. However, this choice of ε may not preserve the important distribution of the
diagonal lines in the RP if observational noise is present (the estimated threshold
can be underestimated). Other approaches use a fixed recurrence point density. In
order to find an ε which corresponds to a fixed recurrence point density RR (or
recurrence rate, Eq.(2.14), the cumulative distribution of the N2 distances between
each pair of vectors Pc(D) can be used. The RRth percentile is then the requested
ε. An alternative is to fix the number of neighbours for every point of the trajectory.
In this case, the threshold is actually different for each point of the trajectory, i.e.
ε = ε(−~xi) = εi. The advantage of the latter two methods is that both of them
preserve the recurrence point density and allow to compare RPs of different systems
without the necessity of normalising the time series beforehand. Nevertheless, the
choice of ε depends strongly on the considered system under study.

2.5.2 Recurrence Quantification Analysis
Simply put, recurrence plots, especially colored versions expressing recurrence dis-
tances as contour maps, are beautiful to look. With little debate, global recurrence
plots of time series and signals extant in nature captivate one’s attention. Admit-
tedly, such curious and intriguing graphical displays tend more to evoke artistic than
scientific appreciation, and rightfully so. Recalling the brief history of recurrence
analysis, recurrence plots were originally posited as qualitative tools to detect hid-
den rhythms graphically (Eckmann et al., 1987). From the outset, color was not
the key; rather the specific patterns of multi-dimensional recurrences gave hints re-
garding the underlying dynamic. Early on it was understood how important it was
to hold the radius parameter to small values so as to keep the recurrence matrix
sparse. In so doing, emphasis was placed on local recurrences that formed delicate,
lacy patterns. All of this is well and good, but the next logical step was to promote
recurrence analysis to quantitative status (Zbilut & Webber, 1992; Webber and Zbi-
lut, 1994). Instead of trusting one’s eye to “see” recurrence patterns, specific rules
had to be devised whereby certain recurrence features could be automatically ex-
tracted from recurrence plots. In so doing, problems relating to individual biases of
multiple observers and subjective interpretations of recurrence plots were categori-
cally precluded. We will highlight the fundamental rules of recurrence quantification
analysis (RQA) by employing the classic strange attractor of Hénon (1976). This
chaotic attractor is a geometrical structure (system) that derives its form (dynamic)
from the nonlinear coupling of two variables. Note in Equation (2.12) that the next
data point, Xi+1, is a nonlinear function of the previous Xi and Yi terms (the X2

i

term provides the nonlinear interaction), whereas in Equation (2.13) the next Yi+1
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is a linear function of the previous Xi term.

Xi+1 = Yi + 1.0− (1.4X2
i ) (2.12)

Yi+1 = 0.3Xi (2.13)

We seeded the coupled Hènon variables with initial zero values (e.g.,X0 = Y0 =
0.0) and iterated the system 2000 times to create a sample time series. To make sure
the dynamic settled down on its attractor, the first 1000 iterations were rejected as
transients. The next 200 iterations of the system shows the complex dynamics of
the coupled variables. Plotting Yi as a function of Xi generates the Hènon strange
attractor. It is called an attractor because dynamical points are “attracted” to
certain positions on the map and “repelled” from other positions (the white space).
The dimension of the Hénon attractor is estimated to be around 1.26 (Girault, 1991),
which is a fractal or non-integer dimension. Fractal dimensions relate more to the
mathematical concept of scaling than real-world dimensions, which must be integers
(see Liebovitch & Shehadeh, Chapter 5). During the analysis of the Recurrence
Plot, We will focus on the diagonal and vertical structures since from those stem the
seven recurrence (dependent) variables or quantifications. Because the recurrence
plot is symmetrical across the central diagonal, all quantitative feature extractions
take place within the upper triangle, excluding the long diagonal (which provides no
unique information) and lower triangle (which provides only redundant information).

The first recurrence parameter is number of suitable markers that foretell an
impending instability may be constructed by counting the number of black points
in the recurrence plot. The density of black points in a recurrence plot measures
the recurrence rate in the dynamics of the system and can be obtained as:

%RR = 100(
1

N2
i

N1∑
i,j=1

Rij) (2.14)

where N1 = N0 − d0τoptFsRij is one for a black point and zero for a white point.
The signal was sampled at a frequency Fs of 10kHz for 30s to give a value of N0 of
100,000 and was embedded in a phase space of d0 = 10 with an embedding delay
τopt = 1ms. This density of points in the recurrence plot is seen to decrease on
the approach of instability. This is expected since the number of black points in
the recurrence plot would come down as instability is reached because the pairwise
distances now exceed the threshold more often.

The second recurrence variable is %determinism (%DET). %DET measures the
proportion of recurrent points forming diagonal line structures. Diagonal line seg-
ments must have a minimum length defined by the line parameter, lest they be
excluded. The name determinism comes from repeating or deterministic patterns
in the dynamic. Periodic signals (e.g. sine waves) will give very long diagonal
lines, chaotic signals (e.g. Hénon attractor) will give very short diagonal lines, and
stochastic signals (e.g. random numbers) will Recurrence Quantification Analysis
give no diagonal lines at all (unless parameter RADIUS is set too high).

%DET = 100
number points in diagonal lines

number recurrent points
(2.15)
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The third recurrence variable is linemax (LMAX), which is simply the length of
the longest diagonal line segment in the plot, excluding the main diagonal line of
identity (i = j). This is a very important recurrence variable because it inversely
scales with the most positive Lyapunov exponent (Eckmann et al., 1987; Trulla et
al., 1996). Positive Lyapunov exponents gauge the rate at which trajectories diverge,
and are the hallmark for dynamic chaos. Thus, the shorter the linemax, the more
chaotic (less stable) the signal.

LMAX = length of longest diagonal line in recurrence plot (2.16)

The fourth recurrence variable is entropy (ENT), which is the Shannon infor-
mation entropy (Shannon, 1948) of all diagonal line lengths distributed over integer
bins in a histogram. ENT is a measure of signal complexity and is calibrated in
units of bits/bin. Individual histogram bin probabilities (Pbin) are computed for
each non-zero bin and then summed.

ENT = −
∑

(Pbin) log2(Pbin) (2.17)

The fifth and sixth recurrence variables, %laminarity (%LAM) and trapping
time (TT ), were introduced by Marwan, Wessel, Meyerfeldt, Schirdewan, and Kurths
(2002). %LAM is analogous to %DET except that it measures the percentage of
recurrent points comprising vertical line structures rather than diagonal line struc-
tures. The line parameter still governs the minimum length of vertical lines to
be included. TT , on the other hand, is simply the average length of vertical line
structures.

%LAM = 100
number points in vertical lines

numbers recurrent points
(2.18)

TT = average length of vertical lines ≥ parameter line (2.19)

Recurrence plots and recurrence quantifications are strongly dependent on the
sequential organization of the time series or data string. By contrast, standard
statistical measures such as mean and standard deviation are sequence independent.
Random shuffling of the original sequence destroys the small-scale structuring of line
segments (diagonal as well as vertical) and alters the computed recurrence variables,
but does not change the mean and standard deviation. A good analogy would be
that of Morse code. Random shuffling of the dots and dashes would not change the
percentage of dots and dashes in the code, but it would certainly alter/destroy the
encoded message!

2.6 Intermittency
In this thesis work, we will see that intermittent burst oscillations are also observed
in the combustion chamber with only cold flow. Intermittent dynamics is thus a
typical feature in the dynamics of turbulent combustors—even more so than limit
cycle oscillations. The section aims to establish that such intermittent bursts arise
naturally in systems composed of two attractors through the formation of homo-
clinic orbits in the phase space of the global system dynamics. It also aims, through
analyzing the recurrence properties of these intermittent states, to provide a sys-
tematic way to inspect the presence of such homoclinic orbits from a measured time
signal.
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The phenomenon of intermittency has received a lot of attention in the de-
scription of deterministic dynamics arising from pattern forming complex systems.
Through a study of simple dissipative dynamical systems, Pomeau and Manneville
(1980) presented three models of intermittency classified as type I-III to describe the
routes of transition from a stable periodic behaviour to chaos. Even more varieties of
intermittency were discovered later on such as chaos-chaos intermittency (Richard-
son, 1993) (eg: on-off intermittency (Ott and Sommerer, 1994) and in-out inter-
mittency (Covas et al., 2001), crisis-induced intermittency (Grebogi et al., 1987),
type-X intermittency (Price and Mullin, 1991) or type-V intermittency (Bauer et
al., 1992). There has also been a number of experimental observations (Hammer
et al., 1994; Argoul et al., 1993) of intermittent dynamics in the literature. As we
have seen so far, interaction of sound with a reacting turbulent flow provides us with
yet another dynamical system where intermittency is observed-seen as intermittent
bursts of pressure oscillations that emerge from a chaotic background.

2.6.1 Intermittency and homoclinic horbit
A homoclinic orbit is one in which the unstable manifold of a hyperbolic equilibrium
state of the system merges with its own stable manifold. Although a close associa-
tion between homoclinicity and intermittency has been shown experimentally in the
literature (Richetti et al., 1986; Herzel et al., 1991; Parthimos et al.), identification
of homoclinic orbits from a measured time series has proved a difficult task. In
Fig. (2.11), the evolution in phase space of an intermittent burst is shown for the
pressure signal acquired prior to lean blowout. The trajectory is seen to spiral out
of the center to the unstable orbit and then spirals back in through the plane of os-
cillations, which could possibly represent a homoclinic orbit. However, the existence
of such orbits cannot be concluded by a mere visual inspection of the phase space.
Therefore, we propose a new technique to infer the presence of homoclinic orbits in
the phase space of the global attractor.

The circulation time of trajectories in phase space for homoclinic orbits are
dominated by their passage time near the saddle fixed point. This time is highly
sensitive to external perturbations and the distribution of passage times for a given
initial distribution of points near the saddle point is given by the expression (Holmes,
1990):

P (T ) =
2λ∆(T )e∆2(T )

√
π(1− e−2λT )

(2.20)

where ∆(T ) = δ[(α
2

λ
)(e2λT − 1)]−1/2, λ is the unstable eigenvalue of the saddle

point, α is the noise level rms, δ is the size of the neighbourhood influenced by noise.
P (T ) is a skewed distribution with its peak value different from the mean and has an
exponential tail (Holmes, 1990) as T → ∞(P (T ) ≈ 2δ√

2π
λ3/2e−λT ). This behaviour

is independent of the details of the initial distribution (Stone and Holmes, 1991). It
is known that the distribution of the laminar phases (quiet, aperiodic regimes) for
both type-II and type-III intermittencies have an exponential tail (Klimaszewska
and Zebrowski, 2009). Inspection of the recurrence plots of the combustor pressure
signal acquired during intermittency is inconclusive; however, the detected features
correspond to type-II or type-III intermittency. As the analysis described above
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Figure 2.11: Example: the intermittent signals (a) - (b) and the corresponding
phase portraits (in 3D) are shown in (c) - (d) respectively. The evolution of burst
oscillations in phase space results in the aperiodic oscillations spiraling out into high
amplitude oscillations and then again spirals back into the low amplitude aperiodic
dynamics.

illustrates, systems exhibiting type-II or type-III intermittency are characterized by
homoclinic orbits in the underlying phase space.

The distribution of the passage time of the dynamics in low amplitude regimes
can be estimated from a recurrence plot as the frequency distribution of the verti-
cal lines (or horizontal lines since the matrix is symmetric) in the recurrence plot.
Histograms of this vertical length frequency distribution for example the two signals
were plotted in Fig. 2.11 to understand the variation of the frequency of visits as a
function of the trapping time. The histogram reveals a skewed distribution with its
peak off the mean and has an exponentially decaying tail. The presence of such an
exponential tail is thus indicative of homoclinic orbits in the system (Stone et al.,
1996). The trajectory of such a homoclinic orbit is repeatedly injected near the sta-
ble manifold of a saddle node as a result of the perturbations in the turbulent base
flow. Thus, recurrence quantification serves as an efficient tool for the inspection of
homoclinic orbits in the phase space of the system dynamics.

2.6.2 Detection of the type of intermittency with recurrence plots
Like we have already saw, one of the common routes to chaos is intermittency. In
such a state, the dynamical system switches between two different kinds of behavior
(called phases). The residence time in each of them is different and varies with
the time, so that it is impossible to foresee the moment for the next switching.
There exist several different types of intermittency (three types of intermittencies
investigated by Pomeau and Manneville, type X, V, and a group of chaos-chaos
intermittencies among them the on-off and the in-out intermittencies). Each type
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Figure 2.12: Example: Histograms of the number of visits and the duration of time
spent trapped in the low amplitude aperiodic regimes for the intermittent signals.
A skewed distribution with an exponential fall-off is visible in both the histograms
which is a distinctive feature of systems that have homoclinic orbits in the phase
space of dynamics. An exponential fit to the tail is shown as gray lines over the
histogram.

of the phenomenon is related to a different kind of bifurcation. For example, type
I intermittency occurs when the system is close to a saddle-node bifurcation, type
II is due to the Hopf bifurcation, and type III the reverse period doubling bifurca-
tion. One kind of chaos-chaos intermittency is due to crisis phenomena occurring
in the system. Thus, the recognition of the type of the intermittency observed in
the dynamical system is equivalent to determining the type of the bifurcation char-
acteristic for the dynamics of that system in the particular part of parameter space
investigated. The identification of the intermittency type is usually based on the
probability distribution of the length l of the laminar phases P (l) and the proper-
ties of the average length of the laminar phases l. Both properties have a statistical
character. Thus, to obtain them a long time series has to be examined. In practice,
often, the length of the time series is limited, so it is important to find a method
capable to recognize the type of the intermittency using short time series. In 2002
Marwan showed that it is possible to distinguish between time series with inter-
mittency and with other kinds of chaos using recurrence plots (RP) and recurrence
quantification analysis (RQA). They showed that the laminar phases of intermit-
tency correspond to horizontal (and vertical) lines on the RP and that such lines
form squares and rectangles. Occurrences of such patterns on the RP are a sign
that intermittency is present in the data. However, Marwan did not define which
kind of intermittency they had observed. It is the aim of this paper to examine the
possibility to distinguish the kind of intermittency occurring in the system given the
pattern obtained in a recurrence plot and using RQA. We examined four kinds of
intermittency: the three types of intermittency defined by Pomeau and Manneville
and the chaos-chaos intermittency induced by an interior crisis. To distinguish be-
tween the different kinds of intermittency, we extended the RQA by introducing
two parameters. With our method, we were able to determine the type of inter-
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Figure 2.13: Example: The recurrence plots of four different types of intermittencies
with measurement noise added to the time series. The noise level was 10 %. (a) Type
I intermittency; (b) type II intermittency; (c) type III intermittency; (d) chaos-chaos
intermittency

mittency even in the presence of a moderately high level of measurement noise (K.
Klimaszewska and J. J. Żebrowski et. al. 2009).

In the my work thesis has not been possible, detention with security the inter-
mittency type because with my data it is not very clear but securely in future will
be possible determine it, with a bit more work.
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3. Experimental Setup and Acquiring System

We show that intermittent burst oscillations are a typical feature of turbulent flow-
sound interaction, even in the absence of combustion. The onset of self-sustained
oscillations in a turbulent pipe flow across an orifice is investigated in a whistling
apparatus. Analysis of measured pressure fluctuations reveals that this emergence of
order from turbulence happens through an intermediate intermittent regime char-
acterized by bursts of periodic oscillations that appear in a near-random fashion
amidst the background chaotic fluctuations. The interesting feature is that these
intermittent bursts correspond to a frequency distinct from the final oscillatory state
as the boundary condition at the orifice exit undergoes a transition at the onset of
whistling.

Introduction

Pressure fluctuations in unsteady flows are classified as sound or pseudo-sound de-
pending on whether the underlying pressure field is propagating or non-propagating
(Williams, 1969). The pressure variations p′ in a sound field (acoustic waves) are
dependent on the local speed of sound c0 via p′ ∼ θ(a0c0u), where ρ0 is the mean
flow density and u refers to the typical magnitude of the local flow velocity. On
the other hand, the local variations in pressure due to a pseudo-sound field vary as
p′ ∼ θ(ρ0u

2), thus independent of the sound speed. When an unsteady flow passes
through a confinement, both forms of pressure fluctuations are induced and these
fluctuations are characterized by a multiplicity of time scales associated with local
unsteadiness and acoustic wave propagation. When one of the local hydrodynamic
time scales matches an acoustic time scale, self-sustained periodic oscillations, which
are difficult to control in practice, are established. Screech in jets with shocks, edge
tones, howling of ejectors, cavity noise, whistling in pipes (pipe tones) are some
such examples of flow-induced oscillations (Dequand, 2001). In this chapter, the
mechanism underlying the transition from a turbulence-dominated state to a state
dominated by periodic dynamics in a system without combustion will be illustrated
through experiments and theoretical arguments. This emergence of order (periodic
dynamics) from turbulence is contrary to the transitions often encountered in hydro-
dynamic flow-fields where an increase in the Reynolds number results in a transition
from periodic oscillations to turbulence (Swinney and Gollub, 1981).

3.1 Experimental Setup
Motivated by the pioneering work on pipe tones by Anderson (Anderson, 1952,
1955), we investigate the multi-scale temporal dynamics of turbulent flow-sound
interaction in an experimental setup. In Indian Institute of Technology, at the
RGDL lab of the Aerospace Department, we have installed the our setup (Fig. 3.1).
To first experiment, it is consisting of a pipe of length L = 600mm and diameter
D = 50mm terminated by a circular orifice of diameter do = 10mm and thickness
t = 5mm (Fig. 3.2), connect at another pipe of 600mm with open end.

Such a configuration is present, for instance, in automobile exhaust pipes (Hoff-
man et al., 2001), segmented solid rocket motors (SRMs) (Flandro and Jacobs,
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Figure 3.1: The setup complete installed in RGDLab at IIT Madras

Figure 3.2: Orifice of 10mm installed in the our setup
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1975) and gas transport systems (Durrieu et al., 2001; Bruggeman et al., 1991).
The pressure-driven flow, after passing through a moisture separator and a mass
flow controller (used to measure the incoming flow rates), enters the pipe through
an upstream cylindrical chamber of length Lc = 300mm and diameter dc = 300mm.
A region of strong velocity gradients (shear layer) forms at the leading edge of the
orifice and rolls up into a vortex sheet that convects downstream. It has previosuly
been conjectured that the separated shear flow produces fluctuations in the effec-
tive aerodynamic orifice area due to the growth and periodic shedding of vortices
from the orifice side walls (Anderson, 1952). These area fluctuations in turn pro-
duce variations in the pressure drop across the orifice (Anderson, 1955). When the
frequency of these variations matches one of the acoustic modes of the pipe-orifice
combination, self-sustained pipe tones or whistling is established. Later studies
have further proposed that whistling is established when the separation streamline
from the leading edge of the orifice impinges on the trailing edge (Karthik et al.,
2008). Experimental measurements were performed by systematically increasing ṁ
from 0.42g/s to 2.12g/s in steps of 0.02g/s and then decreasing back to 0.42g/s,
after the measurements were performed, focused on the first two transitions: the
first from 0.58g/s to 0.78g/s and the second from 1.17g/s to 1.42g/s in step of
0.01g/s, where ṁ is the mass flow rate of air through the duct-orifice system. The
Reynolds number, which serves as the non-dimensional control parameter, is defined
as Re = 4ṁ/(πdoµ), where µ = 1.85 × 10−5Pa · s is the dynamic viscosity of air
at the ambient condition of 26oC and 1atm. The variation in Re was in the range
2.87 × 103 ÷ 14.57 × 103 with a measurement uncertainty of 2.7%. The pressure
fluctuations generated by turbulence (pseudo-sound) decays much faster than the
radiated sound field downstream of the orifice (Lighthill, 1952, 1954). Hence, pres-
sure measurements were acquired with a transducer located 2mm to the right of the
trailing edge of the orifice, a location where the levels of the turbulent pressure field
were above the noise threshold of the transducer. A total of 316 pressure measure-
ments were performed; each pressure measurement corresponds to an acquisition for
a duration of 30s at a sampling frequency Fs of 10kHz using a free-field microphone.
Though the microphone has a resolution of 200µPa, measuring the electrical noise
prior to the experiments revealed that pressure fluctuations below ∼ 0.09Pa are not
well resolved. To obtain the amplitude of pressure P at various frequencies f , a Fast
Fourier Transform (FFT) was performed on the pressure time series with a spectral
bin size of f = 0.08Hz.
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3.2 Acquiring System
During the experiments, we have used some instruments to data capture:

Hardware:

• 2 Mass Flow Controllers (MCR Series - Mass Gas Flow Controllers Alicat
Scientific)

• Microphone Preamplifier Power Supply (Model 2221 - Larson Davis)

• Signal Conditioner

• Personal Computer installed in the experimental lab

Software:

• Flow Vision 1.1.39.0 - Alicat Scientific

• SignalExpress - National Instruments LabVIEW

• Matlab to the data processing

Figure 3.3: Schematic of the experimental setup used in the present study. The two
pipes have a length L = 600mm and diameter D = 50mm terminated by a circular
orifice of diameter do = 10mm and thickness t = 5mm. Air enters the upstream
cylindrical chamber, of length Lc = 300mm and diameter dc = 300mm, through the
opening in the left.

Before bringing the air flow rate in the setup, it passes through the mass flow
controller that we set by software Flow Vision. This instrument calibrate the flow
rate so we can check it in the real time, furtheremore show also temperature, pa-
rameter very important in the our experiment. We used the model MCR-Series
with 100 slpm like maximum value measurable (Fig. 3.4a)and it has been installed
between the compressor and the inlet of the setup. For the air flow rate superior at
100 slpm, we installed two mass flow controllers in parallel.

After that, we used to data capture one microphone: Microphone Preamplifier
Power Supply Model 2221 of the Larson Davis (Fig. 3.4b). Through it, we have
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obtained the measures of pressure. The Model 2221 provides the highly stable
DC polarization voltage required by precision microphones along with low noise
amplification enabling it to drive input and output cables as long as 500 feet. It is
rugged, lightweight and will provide up to forty hours of continuous operation (with
PRM902 Microphone Preamplifier) using six AA internal batteries. It can also
provide sufficient current to power the PRM903 Microphone Preamplifier, which
has an internal heater.

(a) Mass Flow controller (Technical Data in
appendix)

(b) Microphone Preamplifier Power Supply
Model 2221 (Technical Data in appendix)

Figure 3.4: Instruments used in the data capture

Furthermore, we have utilized a signal conditioner. It is a device that converts
one type of electronic signal into a another type of signal. Its primary use is to
convert a signal that may be difficult to read by conventional instrumentation into
a more easily read format. In performing this conversion a number of functions may
take place.

From PC, we could set the air flow rate through the software Flow Vision, visu-
alized the signal with Signal Express by Labview and at the end with Matlab, we
made the data processing.
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4. Results

During the data collection, we have done some initial experiments, to find the best
configuration to generate of Intermittency phenomena.
But not only the aero-acoustic intermittency, also more generally, we wanted in-
vestigate the multi-scale temporal dynamics of the turbulent flow-sound interaction
in the experimental setup which was previously described. In this work, we mea-
sured (using one microphone), the pressure fluctuations that generate the change of
the sound tone through small geometry variation. Furthermore, another parameter
which was varied was the air flow rate. Sound changes were also measured due to
variation of air flow rate.

For the geometry, we have changed some characteristics of the setup:

• The number of the pipes: Initially we had the setup just with the settling
chamber and one pipe with orifice at the end. We added the second pipe
because we had an increase of the phenomena.

• The position of the orifice: Initially we had put it at the end of the second
pipe, but later, we moved it to the middle of the pipes because the results
were better.

• The orifice diameter: we had tried with different diameters, in particular, we
focused on 10 and 15 millimeters, but we selected the smaller one because
it required a lesser air flow rate to obtain a clear signal. In experimental
laboratory obtain low flow rate is easier because it requires less power at
compressor.

• The position of the microphone: we have tried to take data with it at differ-
ent positions, from inside and outside the pipe (in each case 50 millimeters
from the end of the pipe), upstream and downstream at the orifice (always 50
millimeters from orifice).

For these reasons we have selected the layout, precedently described. Throughout
the experimental work, we have improved the setup and took data in the best
situation possible. During the experiment we need to bear in mind that there
are also some boundary conditions that have very influence in the measures. For
example in the our case: the atmospheric conditions (pressure and temperature)
and the noise present in experimental lab. For these reasons we have taken data
with a pressure and temperature steady (thanks to air conditioner present in the
lab) and in the night to have less noise possible. For the data processing, I used the
software MATLAB R2013a, and re-elaborate a code in MATLAB currently in use in
RGDLab write from a PhD Student of IIT Madras, Vishnu R. Unni. Furthermore,
I used two different Toolboxes:

• Espen A. F. Ihlen, "Introduction to multifractal detrended fluctuation analysis
in Matlab", John G. Holden, University of Cincinnati, USA.

• Norbert Marwan, "Cross Recurrence Plot Toolbox for Matlab", Potsdam In-
stitute for Climate Impact Research (PIK), Potsdam, Germany.
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4.1 Time Series and Fast Fourier Transform
During the data collection through the equipment (hardware and software), we have
obtained a lot of measurements of the pressure fluctuations in the sampling time
for varied air flow rates. Looking at the time series, often, it is very difficult to
understand the signal evolution in the time. Therefore, we use the Fast Fourier
Transform (2.2). Through this algorithm, we can watch the signal in frequency field
and locate the peaks that indicate the principal frequencies. From here, we can see,
very clear, the different tones present in our signal. Here, I show the time series and
the FFT of a random noise (Fig. 4.1). This corresponds to the first signal sampled
at the air flow rate of 25 slpm:

Figure 4.1: Random noise signal: there are not principal frequency

After that, we have started to increase the air flow rate and the tonal sound
appears. Fig. 4.2)shows the signal at 34 slpm. The FFT shows the different tones.
In this case, the dominant frequency is about 240 Hz.

Increasing again the air flow rate, we have arrived at 40 slpm and an intermittent
sound is observed (Fig. 4.3)). We can observe the dominant frequency start to move
towards the higher frequencies, more exactly to about 480 Hz. Furthermore, many
bursts are seen in the time series.

After that, we have an unusual phenomenon: for three different flow rate, we
have found a signal with very high frequency and very low amplitude (Fig. 4.4). We
have tried to understand this behavior, but in literature also, this problem has not
been solved. We assumed that it was mistake of measure but this hypothesis is not
possible because we have found the same behavior, always, for all experiments.

After this strange behavior, the signal starts to have bursts again but with the
main frequency higher (about 480Hz) (Fig. 4.5). On further increase of the air flow
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Figure 4.2: Time series and FFT at 34 slpm

Figure 4.3: Time series and FFT at 40 slpm where the intermittent phenomena
starts.
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Figure 4.4: Time series and FFT at 42 slpm after start the intermittent sound. We
found signal with very high frequency and very low amplitude

rate, we observe again only one characteristic tone (Fig. 4.6):

Figure 4.5: Time series and FFT at 44 slpm - bursts appear again
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Figure 4.6: Time series and FFT at 51 slpm
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In (Fig. 4.7), we observe the comparison of the time series and the FFT of 4
different signals during the first transition: the first before instability (27 slpm),
second where intermittency starts to appear with the typical bursts (40 slpm), third
when we had the unusual behavior which was explained earlier (42 slpm) and the
last one where we have again the bursts but with the dominant frequency about
480Hz (44 slpm).

Figure 4.7: Compare four different signals before, during and after the first transition

Next we compare four different signals for the second transition (Fig. 4.8):the
first signal before the transition occurs (69 slpm), the second (77 slpm) and third (78
slpm) during the transition phase and the fourth signal (93 slpm) when instability
is reached.
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Figure 4.8: Compare four different signals before, during and after the second tran-
sition

Returning back to explanation of signals singularly with gradually increase of the
flow rate, we have found the same behaviour (also after the first transition) with a
periodic signal interrupted from a range with the bursts, but in this case like another
cases, where there is the transition from one frequency to another, we did not find
unusual case with very high frequency and very low amplitude (Like in Fig. 4.4).
Like I will show in the next section, in the range of air flow rate that we used, there
are three transitions, after the third, the signal does not come back periodic but
remain almost random, even if this could be limit of our setup or acquiring system.

52



4.2 Frequency Transitions and Acoustics Amplitude
In the last section, we have seen evaluation of the pressure fluctuations on varying of
air flow rate. After that, through the software for data acquisition and processing,
we have obtained the frequency spectrum and amplitude of the acoustic pressure
oscillations. We have plotted all in Fig. 4.9:

Figure 4.9: Plot Frequency vs Air Flow Rate vs Amplitude

Here (Fig. 4.9), I indicate the points that compared in Fig. 4.7: case A corre-
spond at first, B at second, C at third and D at fourth.

4.3 Hurst Exponent
Like already explained in the section (2.4.2),in the description of non-stationary
time signals, classical measures such as mean or variance are not very useful since
they vary with time. Instead, they are characterized by examining how the moments
depend on the time interval over which they are evaluated. For instance, the depen-
dency of the standard deviation of the time signal on time interval is encapsulated in
a parameter called the Hurst exponent H (H. E. Hurst, 1951). In our experiments,
we have calculated the Hurst Exponent for every measure at the various flow rates
and obtained this evaluation (Fig. 4.10).

During the experiments, we took data with increase in the air flow rates followed
by decrease of air flow rates from the maximum reached. Comparing the curves
evaluation, I found this result (Fig. 4.11) with:

Like we expected, the curves overlap. After 100 slpm, we see a gap between
them. But, this gap could be due to different scales used in the calculation of the
Hurst exponent. During the data processing to obtain the Hurst Exponent, we
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Figure 4.10: Evaluation of Hurst Exponent

Figure 4.11: Evaluation of Hurst Exponent
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needed to change the multifractal scale on varying the air flow rate, but after the
third transition, we faced some problem in the determining the correct scales.

4.4 Multifractal Spectrum
Many time signals exhibit a complex scaling behavior that cannot be accounted
for by a single fractal dimension. A full description of the scaling in such signals
involves multiple generalized Hurst exponents, resulting in interwoven subsets of
varying fractal dimension (varying Hurst exponents) producing what is termed a
"multifractal" behavior (Frisch and Parisi, 1985). In other words, fluctuations in a
time signal that have different amplitudes follow different scaling rules. The method
of DFA can be expanded to explore multifractality in a time signal and the tech-
nique is called multifractal detrended fluctuation analysis (Kantelhardt et al., 2001,
2002). This method can be, also, an alternative to Hurst Exponent to investigate
the character of the signal and therefore find the intermittency phenomena, which
is the main purpose of the thesis work.

Here, I show the Multifractal Spectrum for some values of air flow rate. In the
first plot (Fig. 4.12), I show the spectrum during the first transition and in Fig.
4.13), the spectrum during the second transition:

Figure 4.12: Multifractal Spectrum of some point during the first transition
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Figure 4.13: Multifractal Spectrum of some point during the second transition

4.5 Investigation and identification Intermittency Type
One of the common routes to chaos is intermittency. In such a state, the dynam-
ical system switches between two different kinds of behavior called "phases". The
residence time in each of them is different and varies with time. So it is impossible
to foresee the moment for the next switching. There exists several types of inter-
mittency, of which three types of intermittencies were investigated by Pomeau and
Manneville: type X, V, and a group of chaos-chaos intermittencies among them the
on-off and the in-out intermittencies. Each type of the phenomenon is related to
a different kind of bifurcation. For example, type I intermittency occurs when the
system is close to a saddle-node bifurcation, type II is due to the Hopf bifurcation,
and type III - the reverse period doubling bifurcation. One kind of chaos-chaos inter-
mittency is due to crisis phenomena occurring in the system. Thus, the recognition
of the type of the intermittency observed in the dynamical system is equivalent to
determining the type of the bifurcation characteristic for the dynamics of that sys-
tem in the particular part of parameter space investigated. The identification of the
intermittency type is usually based on the probability distribution of the length l of
the laminar phases and the properties of the average length of the laminar phases.
Both properties have a statistical character. Thus, to obtain them a long time series
has to be examined. In practice, often, the length of the time series is limited, so
it is important to find a method capable to recognize the type of the intermittency
using short time series.
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4.5.1 Phase Space
The dynamics of the system at different operating conditions can be visualized by
reconstructing the phase space of evolution of the time signal acquired at those con-
ditions. In such a reconstruction, also known as delay-embedding, the measured time
series is converted into a set of delay vectors that have one-to-one correspondence
with one of the dynamic variables involved in the system dynamics. For example,
with our data, I can show the different phases during the second transition (Fig.
4.14). Inside itself the phase change but however include some periodic portions,
not all with the same phase.

Figure 4.14: Example of phase space during the second transition. We can see the
variation of the signal and more of a periodic behavior

We wanted to look at the phase space, to find the periodic portions of the
signal, because like already explained earlier, during intermittency this phenomenon
is recurring.

57



Figure 4.15: Intermittent signal (40 slpm) during the first transition focusing on a
portion of a signal which is periodic

Figure 4.16: Intermittent signal (44 slpm), again during the first transition with
focus on a periodic portion, in this case the portion is more little
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4.5.2 Homoclinic Orbits
The interaction of flow with sound can often lead to unsteady pressure fluctuations
that display intermittent bursts, i.e., low amplitude, aperiodic oscillations embedded
amongst higher amplitude periodic oscillations in a near-random manner. We show
that these intermittent states give rise to homoclinic orbits in the phase space.
These homoclinic orbits, which are often difficult to identify visually through phase
space reconstruction, can be discerned by quantifying the recurrence properties of
the system dynamics. We show that an exponential fall-off of the time spent by
the dynamics in the aperiodic states provides an easy way of identifying homoclinic
orbits in the underlying phase space. One purpose of the thesis work is to identify the
intermittency type in our setup. In literature there are some papers that investigate
the intermittency type through the homoclinic orbits for example V. Nair and Sujith
et al. 2013. For this reason we have tried to find them in our data:

(a) When the sound start (b) I transition

(c) Start of the II transition (d) End of the II transition

Figure 4.17: Histograms of the frequency of visits as a function of the duration of
time spent trapped in the low amplitude aperiodic regimes

From Fig. 4.17, it can be assumed that we have found the homoclinic orbits.
They are characteristic of the types II and III, therefore is reasonable think that in
our case, we have an intermittency of the II or III type. However we cannot say
with certainty with this analysis.
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4.6 Recurrence Quantification Analysis
Recurrence quantification analysis (RQA) is a method of nonlinear data analysis (cf.
chaos theory) for the investigation of dynamical systems. It quantifies the number
and duration of recurrences of a dynamical system presented by its phase space
trajectory. We have used this method to investigate one more time the evaluation
of the signal, in particular, like earlier, its periodicity.

4.6.1 Recurrence Plot
In 2002 Marwan et al. showed that it is possible to distinguish between time series
with intermittency and with other kinds of chaos using recurrence plots RP and
recurrence quantification analysis RQA. They showed that the laminar phases of
intermittency correspond to horizontal and vertical lines on the RP and that such
lines form squares and rectangles. Occurrences of such patterns on the RP are a
sign that intermittency is present in the data. However, Marwan et al. did not
define which kind of intermittency they had observed. During the data processing,
through use of the "Cross Recurrence Plot Toolbox for Matlab" by Marwan, I ob-
tained the necessary parameters (Dimension, Delay and Threshold) and plotted the
Recurrence Plot for all the time series. In this way it has been possible identify the
Intermittency. Now, I show the three different Recurrence Plots: Fig. 4.18 during
the first transition, Fig. 4.19 during the second and Fig. 4.20 during the third.
From them, we can clearly see the intermittency only in the first transition. In the
second and third we see an intermittent signal but not as pronounced as earlier.
Furthermore, K. Klimaszewska and J. J. Zebrowski et. al. 2009 used this method
to detect the Intermittency Type, but in our case, no RP respects completely the
characteristics described in the paper. However in our results, like already explained
earlier, are very interesting:

Figure 4.18: Recurrence Plot during the I transition (44 slpm)
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Figure 4.19: Recurrence Plot during the II transition (77 slpm)

Figure 4.20: Recurrence Plot during the III transition (107 slpm)

4.6.2 RQA Parameters
In order to go beyond the visual impression yielded by RPs, several measures of
complexity which quantify the small scale structures in RPs, have been proposed and
are known as recurrence quantification analysis (RQA). These measures are based on
the recurrence point density and the diagonal and vertical line structures of the RP.
A computation of these measures in small windows (sub-matrices) of the RP moving
along the LOI yields the time dependent behavior of these variables. Some studies
based on RQA measures show that they are able to identify bifurcation points,
especially chaos–order transitions. The vertical structures in the RP are related to
intermittency and laminar states. Those measures quantifying the vertical structures
enable also to detect chaos–chaos transitions (N. Marwan, M. C. Romano, M. Thiel,
J. Kurths, 2006). During the data processing: I calculated each parameter for all
the air flow rates used and made the plot: the RQA parameter on the y-axis and
the flow rates on the x-axis. Looking at the evaluation of these parameters, we can
understand the trend of the signal and see the periodicity or less of it.

61



Recurrence Rate (RR)

The simplest measure of the RQA is the recurrence rate (RR) or per cent recurrences
which is a measure of the density of recurrence points in the RP. In our case (Fig.
4.22), it is very clear. We can watch at the generation of the sound and the two
different transitions where the RR becomes smaller and there are two low peaks.
Furthermore, we can see that with the third transition: the RR has a low value and
the signal does not come back periodic as we have seen earlier.

Figure 4.21: Recurrence Rate (RR)

Determinism (DET)

The ratio of recurrence points that form diagonal structures (of at least length lmin)
to all recurrence points is introduced as a measure for determinism (or predictability)
of the system. Also in this case, from our plot (Fig: 4.22)it is possible to distinguish
clearly the transition, in particular the first, while for the second it is less clear.

Figure 4.22: Determinism (DET)
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Lmax (Lmax)

Another RQA measure considers the length Lmax of the longest diagonal line found
in the RP. Like for the RR, the transitions are very clear, indeed the measure of the
longest diagonal (Lmax) decrease very much in correspondence of them (Fig: 4.23).

Figure 4.23: Lmax (Lmax)

Laminarity (LAM)

Analogous to the definition of the determinism (4.6.2) the ratio between the recur-
rence points forming the vertical structures and the entire set of recurrence points
can be computed like Laminarity (LAM). Like in case of the RR and Lmax, The
two different transitions are very easy to locate (Fig: 4.24).

Figure 4.24: Laminarity (LAM)
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Entropy (ENT)

The measure entropy refers to the Shannon entropy of the probability to find a
diagonal line of exactly length l in the RP. This parameter, in the our case ((Fig:
4.25), has an evaluation less rigorous respect to the others, but however, we can see
clearly the first transition.

Figure 4.25: Entropy (ENT)
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5. Conclusions

The present experimental thesis work, is a part of TANGO project (Thermoacoustic
and Aero-acoustic Nonlinearities in Green combustors with Orifice structures). This
project analyzes and studies instabilities of Thermoacoustic and Aeroacoustic types.
Effectively, the combustion instabilities represent a serious problem for combustion-
driven devices, such as gas turbine engines and domestic burners. These instabilities
can cause intense pressure oscillations, which in turn causes excessive structural os-
cillations, fatigue and even catastrophic damage to combustor hardware. In recent
years, the development of clean combustion systems with reduced pollution of the
environment has become a priority; however, such systems are particularly prone to
combustion instabilities. There is an urgent need to understand the physical pro-
cesses that are responsible so that methods to predict and prevent these instabilities
can be developed. The research in the TANGO network is intended to address these
issues.

In particular, my thesis work is on aeroacoustic intermittency, explaining the low
frequency acoustic pulsations in pipe networks which have been observed in many
technical applications. These pulsations are undesirable, not only because of the
noise produced, but also because of the possibility of mechanical failures in the pipe
network (and other parts of the application systems). During the experiments, I
performed experiments on a pipe with an orifice. The control parameter was the
air-flow rate. I measured the pressure time signals for various air-flow rates. Later
I processed these time signals to identify and locate the intermittency and if it was
possible to detect the type. With this thesis we show that intermittent burst oscilla-
tions are a typical feature of turbulent flow-sound interaction, even in the absence of
combustion. The onset of self-sustained oscillations in a turbulent pipe flow across
an orifice is investigated in this whistling apparatus. Analysis of measured pressure
fluctuations reveals that this emergence of order from turbulence happens through
an intermediate intermittent regime characterized by bursts of periodic oscillations
that appear in a near-random fashion amidst the background chaotic fluctuations.
The interesting feature is that these intermittent bursts correspond to a frequency
distinct from the final oscillatory state as the boundary condition at the orifice exit
undergoes a transition at the onset of whistling.

The experimental work has permitted us to recreate the intermittency phenom-
ena in our setup in a simple manner. Like already explained, the layout has been
selected to simulate a real combustor. Obviously, the main purpose of this work is
recreate the intermittency to investigate and understand it in the real systems (com-
bustors, pipe network, valves etc...). The data captured is very interesting, because
they show clearly the phenomena that we look for. All methods used, produced the
results that expected. Indeed, I have found the flow rate where the sound starts,
the changing of the sound tones and the three transitions.

In future it will be necessary to verify the intermittency type using the methods
discussed in this work or through alternative solutions. Further, if it will be possible
to improve the setup such as refining the internal surface of the pipe. This is because
we have seen that minimal roughness or imperfections can change the sound tone
and influence the data capture inserting errors of measure. Another possible factor
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to verify is the position of the microphone. In our experiments, we tried to change
the position of it: at the exit of the orifice (5 cm far away from it), at the end of the
second pipe (always 5 cm far away from the open end) and also from outside the
setup (about 5 cm far away from the open end). The position of the microphone
is fundamental, because we needed to make attention if the pressure fluctuations
are of acoustic or hydrodynamic nature. To obtain correct measures of pressure
by microphone, we required of be in the Far Field where the acoustic velocity is
predominant on the hydrodynamic velocity and the reactive acoustic power have to
be null. With the position of the sensor very close at the orifice, there is the risk
that it does not happen.
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