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ABSTRACT
Thermoacoustic instabilities are self-sustained oscillations that arise in combustion systems
such as domestic boilers, gas turbines, and rocket engines. These instabilities result from the
feedback between unsteady combustion, unsteady flow, and the structural dynamics of the sys-
tem, leading to undesirable vibrations that range from irritating noise to severe oscillations
capable of causing structural damage and safety risks. Due to the complexity of the underly-
ing physics, the accurate prediction, prevention, and mitigation of thermoacoustic instabilities
remain a challenge in the combustion industry.

This research work addresses this problem from three key perspectives: (1) the modelling
and prediction of thermoacoustic instabilities, (2) the impact of mean-flow uncertainties and
feedback forcings on a thermoacoustic system, and (3) the acoustic properties of passive con-
trol devices such as porous materials and acoustic liners. For the first two perspectives, we
demonstrate the application of adjoint approaches for stability analysis and sensitivity analysis
in thermoacoustics. In the last part, we show the application of the homogenization approach in
acoustic modelling.

First, a theoretical framework based on the adjoint Green’s function (AGF) is developed
to predict thermoacoustic instabilities in systems with mean flow. The adjoint method aids in
determining the AGF system of non-self-adjoint systems. This approach converts the acoustic
analogy equation with convection into an integral equation, yielding sensitivity functions that
quantify the system’s response to initial conditions, boundary conditions, and external forc-
ings. The framework is applied to two types of resonators with different boundary conditions:
a Rijke tube and a matrix burner, where control parameters include heat source position, heater
power, and tube length. The results demonstrate the model’s ability to capture key nonlinear
behaviours observed in experiments, including limit cycles, triggering phenomena, hysteresis,
and Hopf bifurcations. The analysis further reveals that mean flow velocity plays a crucial role
in stabilizing the system and alteration of bistability. Additionally, the AGF framework is ex-
tended to thermoacoustic systems with non-uniform temperature fields and stochastic forcing.
The study highlights the influence of mean temperature differences on system stability and ex-
amines the effects of white noise and pink noise. The impact of noise on the transient phase of
the instability, before saturation is reached, is examined, and noise-induced triggering phenom-
ena are found near stability margins. Pink noise is found to be more effective than white noise
in triggering instabilities, while the presence of mean flow exhibits a hindering effect.

Second, a comprehensive adjoint-based sensitivity analysis framework is demonstrated for
a low-order lumped model of a gas turbine combustor. Three types of sensitivity analyses are
carried out. The base-state sensitivity reveals how uncertainties in base flow properties, such as
the density of cold gas in the premixer, significantly impact the growth rates of the eigenmodes.
The structural sensitivity to steady feedback forcings uncovers steady control strategies such as
local mass suction and heating as effective stabilizing mechanisms. Furthermore, the structural
perturbation sensitivity examines the effect of localized feedback forcings on the perturbation
flow. The results identify Helmholtz resonators as effective stabilizers and pinpoint their optimal
placement. These insights broaden the scope of uncertainty quantification and control strategies
for premixed combustion systems.

Finally, the acoustic properties of passive control devices, such as porous materials and
acoustic liners with periodic microstructures, are examined. While classical homogenization
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methods effectively describe wave refraction inside the bulk region of porous media, they fail
to capture the reflection of acoustic waves coming from the free field at material surface faces.
To address this limitation, a homogenization approach combined with asymptotic matching is
employed, yielding an effective interface jump condition for acoustic propagation in porous ma-
terials with rigid scatterers. The results show that this interface condition effectively models the
reflection of the acoustic waves at the free-field-porous material interface for porous materials
of porosity ϕ ≥ 0.8. In another case, a homogenized model is developed to describe acoustic
propagation through a single array of rigid cylinders. The model introduces an effective domain
represented as a slab of specified thickness. Reflection and transmission coefficients are com-
puted using the upscaled model and compared with direct numerical results and experimental
measurements. The results demonstrate good agreement at lower frequencies, while discrepan-
cies increase at higher frequencies due to the decreasing wavelength, which affects the validity
of the length scale separation assumption.
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INTRODUCTION

This chapter provides an overview of the background of thermoacoustic instabilities and adjoint
methods, and a summary of selected existing literature on these subjects. Additionally, the
structure of the thesis is outlined.

1.1. THERMOACOUSTIC INSTABILITIES

Thermoacoustic instability is self-excited large-amplitude pressure oscillations in the combus-
tors of aero-engines (Eckstein and Sattelmayer, 2006), rocket engines (Summerfield, 1951;
Crocco and Cheng, 1956), gas turbines (Lieuwen, 1999), and boilers (Zhou and Meng, 2019).
It is triggered by combustion in an enclosed volume and can be across a broad range of fre-
quencies. Therefore, it is also often referred to as combustion instabilities. Since the increasing
use of carbon-free fuels, such as hydrogen and ammonia, and the use of premixed combustors
for the reduction of NOx emissions, it appears that these attempts increase the propensity of the
combustion system to thermoacoustic instabilities. Thermoacoustic instability is caused by in-
teractions between acoustic waves, combustion, and hydrodynamics, as shown in the feedback
loop depicted in Fig. 1.1. This sequence begins when the flow of the gaseous fuel mixture is dis-
turbed. The unsteady flow induces disturbances in the flame and unsteady heat release. These
heat release fluctuations generate sound waves, which in turn perturb the flow, thus closing the
feedback loop. If the acoustic oscillation resonates with the natural frequency of the enclosed
volume, it could lead to unfavourable operational issues, catastrophic structural damage, and
equipment failure (Lieuwen and Yang, 2005).

Figure 1.1: Interacting feedback loop giving rise to thermoacoustic instabilities.

In this section, the mechanism of thermoacoustic instability is described first. Then, ther-
moacoustic modelling approaches in existing literature are summarized. In the end, the control
devices for suppressing and mitigating thermoacoustic instabilities are introduced.
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1.1.1. Rayleigh criterion

In one of Lord Rayleigh’s early works (Rayleigh, 1878), he described a heat-driven oscillation
phenomenon and the condition of heat as a motive power to generate or sustain acoustic waves:

”If heat be given to the air at the moment of greatest condensation, or taken from
it at the moment of greatest rarefaction, the vibration is encouraged. On the other
hand, if heat be given at the moment of greatest rarefaction, or abstracted at the
moment of greatest condensation, the vibration is discouraged.”

This is the well-known Rayleigh criterion. This is a necessary but not sufficient condition for
instability to occur in a thermoacoustic system. Putnam and Dennis (1954) gave a prelim-
inary mathematical representation of this condition. In later works, Chu (1956) and Culick
(1987) provided explicit formulations of Rayleigh’s criterion based on the definition of acoustic
energy, applicable to a general analysis of thermoacoustic instabilities in arbitrary combustor
geometries. The mathematical formalization of the Rayleigh criterion is expressed as,∫

V

∫ T

0

p Q̇ dt dV ≥
∫
V

∫ T

0

∑
Li dt dV, (1.1)

where
∑
Li is the sum of all the loss mechanisms in the system, T is the oscillation period,

and V is the volume of the system. The integral on the left-hand side is called the Rayleigh
integral, and it states that the energy increases in the system when the acoustic pressure p and
the unsteady heat release rate Q̇ oscillate in phase. If the above inequality is satisfied, i.e., the
energy added to the system by pressure-heat feedback exceeds the sum of all energy losses in
the system, such as boundary radiation and viscous dissipation, instability is generated. The
amplitude of a small disturbance will keep growing until it reaches saturation due to nonlinear
effects, where the equality in Eq. (1.1) holds. The Rayleigh criterion has been used to diagnose
local acoustic wave amplification due to the heat-addition process (Lieuwen and Yang, 2005).

The energy norms are very important for the quantification of disturbance mechanisms,
analysing the growth and decay of the energy in small disturbances in a fluid system. Chu (1956)
proposed the Chu-norm, a positive definite energy norm for characterizing the level of energy
disturbance. In the absence of heat transfer at the boundaries, work done by boundary or body
forces, heat, and material sources of energy, this norm is a monotone, non-increasing function
of time. It is well-suited for analysing stability and energy transfer in compressible, viscous,
and heat-conductive flows. Joseph George and Sujith (2011) demonstrated that it ensures self-
adjointness of the linearized operator and avoids spurious transient energy growth, making it
suitable for analyzing thermoacoustic instability.

1.1.2. Thermoacoustic modelling

In combustion systems, the time and length scales vary in a large range. The chemical reaction
in the combustion process usually happens fast, and the flame front wrinkling is tiny, while the
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acoustic waves are typically of low frequency and have long wavelengths. Hence, the predic-
tion of thermoacoustic instability using only computational techniques is a real challenge and
expensive. A typical methodology is to separate the flame dynamics and the acoustic field. The
flame is considered to be infinitesimally short compared to the acoustic wavelength. The fast
combustion process is studied by experiments or numerical simulations. The flame dynamics
are described by the gain and phase differences between the unsteady heat release rate and the
upstream flow disturbances. Acoustic physics is usually treated with analytical models. The
flame models and the acoustic models used in thermoacoustic analysis are introduced in this
section.

Flame models

Flame transfer function

In the field of thermoacoustic instability analysis, the concept of the transfer function can be
traced back to Merk (1957), where the general transfer function of the heat source as a function
of frequency was given. The flame transfer function (FTF) has been widely used to model
flame dynamics in both analytical and practical applications because it is easy to measure by
experiments, convenient to use in analytical models, and can be combined with numerical tools.

In linear models, the acoustic fluctuations are assumed to be small compared to the mean
value. For premixed systems at constant equivalence ratio (the ratio of the actual fuel/air ratio
to the stoichiometric fuel/air ratio), the flame dynamics is described by a flame transfer function
(FTF) as follows,

F(ω) = G(ω)eiωφ =
ˆ̇Q(ω)/ ¯̇Q

û(ω)/ū
, (1.2)

where ω is the frequency of the perturbation, Q̇ is the heat release rate, and u is the acoustic
velocity fluctuation corresponding to different modes in the combustor. Theˆdenotes the Fourier
transform of fluctuations, and¯denotes the mean values. The gain of the FTF, G(ω), represents
the amplification effect of the flame on the incident acoustic flow perturbations, showing the
property as a low-pass filter (Noiray, 2007). φ is the phase lag for the unsteady heat release rate
responding to the upstream acoustic velocity. The FTF only depends on frequency and links the
ratio between the Fourier transforms of the unsteady heat release rate fluctuations and acoustic
velocity fluctuations.

The FTF is usually implemented within acoustic models as a heat release model. Summer-
field (1951) first raised the hypothesis in the modelling of a liquid fuel rocket engine that the
rate of evolution of combustion at a given instant is related to the upstream flow rate at some
time τ earlier. This time-lag τ is a crucial parameter that characterises the gas convection effect
in a system. A commonly used n− τ heat release law was introduced by Crocco (1951, 1952).
The heat release rate fluctuation is related to the upstream acoustic velocity perturbations, with
the following form in the time domain:

Q̇′(t) = nu′(t− τ), (1.3)
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where n is the coupling coefficient and ′ denotes the time-domain fluctuations. The n − τ
heat release model has been used in numerous studies on fundamental aspects of combustion
instabilities. n and τ can be constants or vary in space (Crocco and Cheng, 1956; Nicoud et al.,
2007). There are variants of n − τ heat release model that relate the unsteady heat release
rate with acoustic pressure, upstream mass flow rate disturbances (Peracchio and Proscia, 1998;
Dowling and Stow, 2003), or equivalence ratio perturbations (Lieuwen and Zinn, 1998).

A multi-time-lag model described in Polifke (2020), also known as the distributed-time-
delay (DTD) model, provided a new perspective to examine the flame dynamics in the time
domain. The response of the heat release rate, instead of happening instantly at a certain time
lag after the velocity perturbation is imposed, is spread out over an interval of time. It is defined
as the unit impulse response to the incoming velocity perturbations. The flame response can
be described as a superposition of distributions or in terms of the histogram. Gopinathan et al.
(2018) introduced a generalized coupling function that depends on the time lags to represent the
distribution of time lags causing delayed heat release rate fluctuations. DTD models capture all
key features of a typical FTF: a gain of unity at zero frequency, excess gain at low frequencies,
and low-pass filter behaviour. Compared with the n − τ model, the DTD model can better
reflect the flame dynamics in the system (Æsøy et al., 2020) and gives better prediction in
stability (Bigongiari and Heckl, 2018).

Flame describing function

The describing function is a term used in control theory to represent nonlinear systems by mak-
ing use of a family of transfer functions depending on the amplitude of the input. This concept
is also adopted for nonlinear analysis in thermoacoustic systems. The flame describing func-
tion (FDF) is basically a family of FTFs evaluated repeatedly for increasing forcing levels. The
FTF is only applicable when the initial disturbances are small. When the system experiences a
large amplitude disturbance, nonlinear effects are profound, and the amplitude effect in flame
dynamics has to be taken into account, as

F(ω,A) =
ˆ̇Q(ω,A)/ ¯̇Q

û(ω,A)/ū
, (1.4)

where A is the amplitude of acoustic velocity. In combination with an acoustic analysis, it
allowed predictions of limit cycle amplitudes, resonant frequency shifting, mode switching, in-
stability triggering, and hysteresis behaviour. Dowling (1999) developed a kinetic model for
the flame response to flow disturbance and its amplitude. It is found that for nonlinearity in the
heat release rate, the describing function analysis can give a good estimation of the limit-cycle
frequency and amplitude. Noiray et al. (2008) measured the FDF of a matrix burner, and by
combining it with an acoustic model, nonlinear dynamics observed in experiments were pre-
dicted. Durox et al. (2009) measured the FDF of the flame of different shapes: a single conical
flame, a ”V”-shaped flame, an ”M”-shaped flame, and a group of conical flames stabilized on
a perforated plate. It was shown that the gain and phase of the FDF greatly depend on the
steady-state configurations. Bourgouin et al. (2015) measured FDF in an annular combustor
with multiple matrix injectors and investigated the oscillations and limit cycles. FDF is also
extended to not only accounting for the perturbation amplitude dependence but also the fluctu-
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ations in equivalence ratio (Birbaud et al., 2008; Schuller et al., 2020).

Acoustic models

The acoustics are usually considered linear and can be modelled with analytical techniques.
Analytical approaches can provide crucial physical insights and capture significant phenomena
with a modest computational effort. The starting point for the acoustic analysis is usually the
linearized Euler equations for compressible flow, neglecting viscous and thermal dissipation
(Dowling and Stow, 2003; Rienstra and Hirschberg, 2004):

Dρ′

Dt
+ ρ̄

∂u′i
∂xi

= 0, (1.5a)

Du′i
Dt

+
1

ρ̄

∂p′

∂xi
= 0, (1.5b)

Dp′

Dt
+ γp̄

∂u′i
∂xi

= (γ − 1)q′, (1.5c)

where
D

Dt
=

∂

∂t
+ ūj

∂

∂xj
, γ is the specific heat ratio, and q′ is the heat release rate per unit

volume. Sometimes, an alternative form of the above equations (1.5), an inhomogeneous wave
equation, is used to solve for acoustic disturbances,

1

c̄2
D2p′

Dt2
− ∂2p′

∂x2i
=
γ − 1

c̄2
D2q′

Dt2
, (1.6)

with c̄ the speed of sound. A brief overview of the approaches in the existing literature to
solving the above governing equations is given below.

The travelling wave-based approach

The travelling wave-based approach is initially reported in Rayleigh (1896). In a one-dimensional
system, the Riemann invariants are exploited to decompose the flow fluctuations into upstream-
and downstream-travelling components. Crocco and Cheng (1956) demonstrate a wave-based
approach to analyse the high-frequency oscillations in a rocket combustion chamber. This
method was later extended to full acoustic networks by Dowling (1995). With the network
modelling approach, the geometry, boundary conditions, and heat-release source of the combus-
tion system are modelled as individual elements, each described by a linear transfer function,
connected by jump conditions. Evesque and Polifke (2002) applied the wave-based modelling
approach to a generic annular combustor and investigated the effect of non-identical burners as
a means of passive control. The method was also adapted by Schaefer and Polifke (2019) to
treat systems with duct elements of varying cross-sectional area and arbitrary mean tempera-
ture profiles. Ghirardo et al. (2019) focused on low-frequency acoustic modes in a can-annular
combustor, showing that the connection between neighbouring cans may trigger azimuthally-
travelling unstable modes.

The Galerkin technique
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One of the earliest applications of the Galerkin technique is reported in Zinn and Lores (1971)
to analyse nonlinear axial combustion instabilities in a liquid-fuel rocket engine. The flow dis-
turbance variables (usually pressure or acoustic velocity oscillations) are projected onto a set
of basis functions satisfying the boundary conditions. The system can then be formulated as an
eigenvalue problem. Solving the eigenvalue problem gives the complex eigenvalues containing
the linear stability information and the eigenvectors containing the amplitude information of
each mode. Balasubramanian and Sujith (2008b) used the Galerkin technique to analyse the
acoustic pressure oscillations and ensuing nonlinear dynamics in a Rijke tube. Sayadi et al.
(2014) used the Galerkin methods to approximate both the linear and nonlinear behaviour of
a Rijke tube system, providing a numerical solution for the damped system and demonstrating
phenomena such as mean-flow modulation and frequency switching. Kashinath et al. (2013)
implemented a numerically computed FDF of premixed flame in a model of an open pipe, with
damping included. They examined the fundamental acoustic mode and found the phase speed
of velocity perturbations strongly affects the nonlinear thermoacoustic behaviour of ducted pre-
mixed flames. A drawback of the Galerkin approach is that, in practice, the solutions of acoustic
flow variables are truncated and this might lead to significant errors (Dowling, 1995).

The Helmholtz solver framework

Nicoud et al. (2007) developed a numerical framework to solve Eq. (1.6) in the frequency do-
main, the inhomogeneous Helmholtz equation, neglecting the mean flow. A nonlinear eigen-
value problem can be formed from the discretized thermoacoustic system and an iterative
method is used to solve the eigenvalues and eigenvectors. Unlike the linear Galerkin approach
(Culick, 1988), the Helmholtz solver framework is not limited to particular choices of boundary
impedance and the assumption that the flame only slightly perturbs the acoustic modes. Silva
et al. (2013) combined the FDF with a linear Helmholtz solver and estimated the growth rate and
limit cycle amplitude of the acoustic perturbations in a swirled combustor. Selle et al. (2006)
combined the large-eddy simulation with the Helmholtz solver and investigated the rotating
modes in an industrial swirled combustor. They found that the transverse acoustic modes in the
combustion chamber could create a rotating motion of the flame, which leads to a self-sustained
turning mode whose features resembled hydrodynamic swirled flow.

The Green’s function approach

The Green’s function technique, originally developed by George Green to tackle electrostatic
problems (Green, 1828), has been widely used in various fields of physics and engineering,
especially in the study of wave propagation. Lighthill’s acoustic analogy benefits from the ap-
plication of the Green’s function technique (Lighthill, 1952). The Green’s function is a powerful
tool due to its computational efficiency and versatility. With the help of the Green’s function,
the acoustic disturbances can be expressed in the form of an integral equation. In unbounded
space, the Green’s function is called the free-space Green’s function, and the analytical solution
is known. In a confined system, the Green’s function satisfying certain boundary conditions is
called exact Green’s function or tailored Green’s function (Morse and Feshbach, 1953). Yang
and Morgans (2016, 2017) developed a semi-analytical model based on Green’s function for
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a short circular hole with through flow to study the vortex-sound interactions. The Green’s
function was in terms of stagnation enthalpy fluctuations. Hegde et al. (1988) established a
theoretical model based on Green’s function to study the sound field of a V-shaped flame in a
rectangular duct. Heckl et al. (2022) gave a summary of the tailored Green’s function frame-
work applications in the study of aerodynamic and thermoacoustic instabilities. Arabi and
Heckl (2025) used the tailored Green’s function approach to examine noise-induced nonlinear
effects on thermoacoustic instabilities in a combustion chamber prototype.

1.1.3. Control of thermoacoustic instabilities

There are mainly two ways to prevent thermoacoustic instabilities: (1) through the equipment
design, to avoid such instabilities in the designing stage. It is conducted through shape op-
timization, prediction of safe operation conditions, and design of certain crucial components,
such as flame stabilizers. (2) For an existing combustor experiencing such instabilities, one can
pursue feedback control strategies or acoustic liners that increase acoustic energy dissipation
in the engine so that the unwanted noise and vibration can be mitigated. A thorough review
by Zhao and Li (2015) described the use and effectiveness of various acoustic dampers such
as Helmholtz resonators, perforated liners, baffles, half- and quarter-wave tubes in aerospace
combustors.

Existing feedback control techniques and devices have been extensively studied. Raghu and
Sreenivasan (1987) examined a set of active control methods, including heat addition, force
addition, and periodic mass addition, for the suppression of pressure oscillations in a laboratory
scale pipe flow and demonstrated that the combination of mesh screens and heating coils applied
to a large combustion set-up successfully eliminated undesired pressure oscillations. Dowling
and Morgans (2005) summarized the application of feedback control to mitigate thermoacoustic
instabilities, including the development of control strategies and controller design. They also
demonstrated a case of feedback control on a full-scale combustion system. Zhao and Morgans
(2009) used Helmholtz resonators with tuned geometry to stabilize combustion systems with
multiple unstable modes, validated through numerical simulations and experiments on a Rijke
tube. Zhao and Li (2012) developed a Helmholtz resonator with oscillating volume that is
more robust and capable of stabilizing the combustion system at a faster rate than that of a
conventional Helmholtz resonator. Bellucci et al. (2005) applied a Helmholtz damper with
cooling flow entering the resonator volume to a gas turbine combustor for noise reduction.

Porous materials and micro-perforated plates are often used as noise-control devices. Gul-
laud and Nicoud (2012) studied the impact of multiperforated plates on acoustic modes in aero-
nautical gas turbine combustion chambers with a 3D Helmholtz solver and revealed that the
damping effect of the perforated plate varies with mode structure and bias flow speed. An-
other investigation by Bellucci et al. (2004) assessed the impedance of perforated plates with
a low-Mach number bias flow over a range of plate thicknesses, orifice size, and bias flow ve-
locities. Conventional porous acoustic absorbers use viscous dissipation and heat conduction at
the fluid-solid interface to reduce the acoustic energy of noise. Some specially designed acous-
tic metamaterials (Yang and Sheng, 2017), consist of microstructures that effectively damp
acoustic waves, such as micro honeycomb structures and inner Helmholtz resonators (Boutin,
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2013). Modelling methods of porous materials can be found in Allard and Atalla (2009). One
of the widely used approaches is to obtain an effective medium description of porous media
and micro-perforated panels as effective sound absorbers, via upscaling methods. Olny and
Boutin (2003) used the homogenization method to analyse acoustic wave propagation in rigid
double-porosity media saturated with fluid, revealing that macroscopic flow behaviour depends
on the permeability contrast, with low contrast leading to a generalized Darcy’s law and high
contrast causing pressure diffusion effects in micro-pores that influence material dissipation
and dynamic bulk modulus. Marigo and Maurel (2017) developed a homogenization method to
determine the effective behaviour of a periodically stratified block, incorporating discontinuity
conditions, or jump conditions, for the displacement and for the normal stress at the boundaries
of the slab.

1.2. ADJOINT METHODS

Adjoint equations are a powerful mathematical and computational tool widely used in physics,
engineering, and optimization problems. The origin of the adjoint equation traces back to de La-
grange (1763), who introduced them as a technique for reducing the order of linear differential
equations and applying them to problems such as fluid motion and vibrations. Over time, adjoint
methods have gained prominence, particularly due to their efficiency in reducing computational
costs, especially when dealing with systems with a small number of outputs for a large range
of input variables. This property makes them particularly valuable in optimization problems,
where a single objective function—often dependent on many input parameters—must be mini-
mized or maximized.

The adjoint equations are for systems with linear operators and can be derived in two ways:
either using the Lagrange-Green identity or using a Lagrange multiplier approach. For a system
with a linear operator A, its adjoint linear operator A∗ satisfy the following identity,

⟨v,Au⟩ = ⟨A∗ v,u⟩, (1.7)

where ⟨ , ⟩ denotes an inner product. The adjoint operator doesn’t have any physical meaning.
If the operator of the adjoint equation is identical to the operator of the direct system, i.e.,
A = A∗, this is a self-adjoint system. Otherwise, it is a non-self-adjoint system.

Within the context of constrained optimization, for a system governed by the state equation

F(u,g) = 0, (1.8)

with u the state vector. To find the control vector g that minimizes the cost function J(u,g),
The Lagrangian is defined as

L = J(u,g)− v · F(u,g) (1.9)

with v the vector of Lagrange multipliers. Setting the variation of the Lagrangian with respect
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to the independent variables u, g, and v respectively to zeros, this gives rise to

∂L
∂u

= 0 →
[
∂F

∂u

]⊺
v =

∂J

∂u
, (1.10a)

∂L
∂g

= 0 →
[
∂F

∂g

]⊺
v =

∂J

∂g
, (1.10b)

∂L
∂v

= 0 → F(u,g) = 0. (1.10c)

The above derivation yields the adjoint equations (1.10a), the gradient expression that defines
the optimality condition (1.10b), and (1.10c) recovers the state equation (1.8). By solving the
adjoint equation for v, one can obtain the gradient information at once for all control variables
in the vector g. This makes the adjoint equation a powerful and efficient tool for gradient
computation.

The adjoint equations can also be obtained using the identity (1.7), as follows

⟨v, ∂F
∂u

δu⟩ = ⟨
[
∂F

∂u

]⊺
v, δu⟩, (1.11)

with the inner product defined as ⟨a,b⟩ = a⊺b.
A review of the application of adjoint equations in fluid mechanics problems is reported by

Luchini and Bottaro (2014), with supplementary material which provides a detailed introduction
to the mathematical background of adjoint methods. In this section, some applications of adjoint
methods on stability and sensitivity analysis are reviewed.

1.2.1. Adjoint methods in stability analysis

One of the first reported works using the adjoint equation to solve PDE is by Green (1828), who
used Green’s function of the Poisson equation to solve electromagnetic wave fields. The un-
known function in the adjoint equation is called Green’s function in many applications. Green-
berg (1978) showed how to define the boundary conditions and the forcing term of the adjoint
system as a Dirac delta function to evaluate the value of interested variables at a target loca-
tion. Hill (1995) presented the adjoint equations for the linearized Navier-Stokes equations for
incompressible boundary layers and demonstrated that unsteady forcing near the critical layer
induces the strongest response, while boundary motion is most effective in the normal direction,
with results validated against previous analytical and numerical findings. Similarly, for com-
pressible flows, Pralits et al. (2000) analysed the sensitivity of disturbances in a compressible
boundary layer to wall and momentum forcing using adjoint parabolized stability equations.
Their findings highlighted that for compressible flow, the three-dimensional disturbances are
the most sensitive to wall forcings. Luchini and Bottaro (1998) defined the receptivity of the
Görtler instability with the aid of Green’s function. The numerical solution of Green’s function
is obtained from an adjoint problem via a backward-in-time technique. The receptivity provides
the amplitude of the nonlinear saturation stage efficiently, without repetitive computations for
every new initial disturbance.
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1.2.2. Adjoint methods in sensitivity analysis

The adjoint method is a powerful tool for optimization and control problems in complex sys-
tems, with extensive applications in hydrodynamics stability (Pralits et al., 2002; Luchini and
Bottaro, 2014; Schmid and Brandt, 2014). Compared with the traditional finite-difference ap-
proach, the adjoint method is more cost-effective in the analysis of systems that depend on
many parameters. Previous adjoint-sensitivity work can be broadly subdivided into three types
of analysis:

• To evaluate eigenvalue variations due to generic base-state modifications δU , possibly
related to uncertainties in the measurement or in the calculation of the base state. Bottaro
et al. (2003) first applied the base-state sensitivity analysis to examine the eigenvalues
of the Orr-Sommerfeld operator. They found variations (of given amplitude) of the basic
flow with the most destabilizing effect on the eigenvalues for the case of the plane Couette
flow and introduced the concept of the δU -pseudospectrum. Brandt et al. (2011) calcu-
lated the sensitivity to base-flow modifications for a flat-plate boundary layer, demon-
strating that Tollmien-Schlichting waves are highly sensitive to such changes, whereas
streamwise streak amplification remains robust due to the differing spatial structures of
optimal forcing and response.

• To find the eigenvalue changes due to feedback sources in the flow disturbances. This
is often referred to as structural sensitivity analysis. Giannetti and Luchini (2007) con-
ducted such an analysis for the case of the flow around a cylinder and identified regions
in which variations, for instance, due to truncation of the domain or grid resolution, cause
the largest eigenvalue drift.

• To evaluate the sensitivity of source terms acting on the steady equations of the base flow
in order to stabilize unstable eigenmodes. Marquet et al. (2008) calculated the sensitivity
to a steady force and gave predictions of possible passive control methods to suppress
the vortex shedding in the wake of a cylinder. Pralits et al. (2010) introduced the idea
of structural sensitivity to base-flow modifications and showed successful examples of its
application. Other steady source terms can easily be envisaged for the mass and/or energy
conservation equations. Luchini et al. (2008) conducted a structural sensitivity analysis
for finite-amplitude global modes on a periodic base flow and showed good comparison
with experiments on the flow control in the cylinder wake.

Existing literature reflects substantial endeavours towards uncertainty quantification and
sensitivity analysis in thermoacoustic systems (Orchini and Juniper, 2016; Juniper and Su-
jith, 2018), as well as shape optimization of thermoacoustic systems such as the Rijke tube, in
swirl combustors (Falco and Juniper, 2021), also using low-order models (Aguilar and Juniper,
2018). A comprehensive review of the applications of adjoints to thermoacoustic problems
has been published by Magri (2019). Mensah and Moeck (2017) applied the adjoint perturba-
tion theory to a generic annular combustor model and found the optimal damper arrangements
and the impedance design to mitigate instabilities. Magri et al. (2020) extended the original
Rayleigh criterion to arbitrary time intervals and interpreted it in the frequency domain. An ad-
joint Rayleigh criterion was also derived, which was able to provide the sensitivity information
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of stability to perturbations of the heat source. Schäfer et al. (2022) developed a hybrid adjoint
approach, exploiting the self-adjointness of duct elements and simplifying the derivation of the
adjoint system for sensitivity analysis of thermoacoustic network models. By computing the
feedback sensitivity and base-state sensitivity of an annular combustor network model, they
tuned a Helmholtz resonator to achieve passive control. Juniper (2018) applied adjoint methods
to a thermoacoustic Helmholtz solver and calculated receptivity, feedback sensitivity, and base-
state sensitivity for a Rijke tube and a rocket engine combustor. Base-state sensitivities were
calculated to evaluate the effect of base-state variables such as time delay in the heat release
model, boundary conditions, and heat release distribution. He revised the Rayleigh criterion
for linear analysis of thermoacoustic oscillations, showing that in non-self-adjoint systems, the
rate of change of energy is the integral of the injected heat-release rate multiplied by the adjoint
pressure instead of the physical pressure. Aguilar et al. (2017) calculated feedback sensitivity
and base-state sensitivities of a 1D two-segment thermoacoustic system. The base-state sensi-
tivity of reflection coefficients, time delay, and interaction index of the heat release model. In a
later study, Aguilar and Juniper (2020) optimized the combustor geometry based on the sensi-
tivity analysis of a longitudinal bluff-body combustor. They examined the eigenvalue variation
due to the steady base flow alteration by changing the combustor geometry. This is similar to
the third type of sensitivity analysis but not quite the same, because there is no steady force
introduced into the system.

The conventional adjoint sensitivity analysis is based on the direct system, i.e., the govern-
ing equations. In recent work, Ozan and Magri (2024) developed a data-driven computational
strategy using a parameter-aware echo-state network to infer adjoint sensitivities without requir-
ing explicit governing equations, demonstrating its application in thermoacoustics by accurately
predicting parameter and initial condition sensitivities, handling noisy data, and enabling insta-
bility suppression through gradient-based optimization.

1.3. THESIS STRUCTURE

The primary motivation of this work is to explore the application of adjoint methods in vari-
ous aspects of thermoacoustic studies. This gives rise to three distinct research projects, each
addressed in a separate chapter. The structure of this research work is shown in Fig. 1.2.

In Chapter 2, the adjoint Green’s function approach is developed for the purpose of mod-
elling thermoacoustic systems incorporated with the mean flow and predicting the nonlinear
dynamics. The following research questions are answered:

• How can the Green’s function framework be extended to accurately model non-self-
adjoint thermoacoustic systems that include the effects of mean flow?

• What is the influence of mean flow velocity on the onset and nonlinear behaviour of
thermoacoustic instabilities?

Chapter 3 shows a framework of adjoint-based sensitivity analysis, which is employed to
derive gradient information that can be used to evaluate uncertainties within thermoacoustic
systems and to inform strategies for their stabilization. In this chapter, the following questions
are answered:
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Figure 1.2: The structure of the thesis and the published/ongoing articles based on this work. Paper A:
Wei et al. (2024), Paper B:Wei and Arabi (2025) under review, Paper C: Wei et al. (2025), Paper D:Wei
and Bottaro (2025) ongoing.

• How can adjoint sensitivity analysis quantify the effects of base-flow uncertainties and
steady/unsteady feedback on thermoacoustic instability to inform control strategies?

• How does the critical geometry parameter (premixer length) influence the effectiveness
of the above mechanisms?

In Chapter 4, the homogenization approach is applied to model the acoustic propagation
properties of porous material with micro-periodic structures, which play a crucial role in mit-
igating thermoacoustic instabilities. The focus is on the development of effective jump con-
ditions for acoustic wave propagation across a heterogeneous thin region consisting of air and
porous material. The following questions are answered in this chapter:

• How can homogenization theory be applied to develop accurate models of acoustic wave
reflection and transmission at heterogeneous interfaces? What are the limits of validity
for these models?

In the end, Chapter 5 presents the summary of the findings from these investigations and
gives some outlooks of research in this field.





THE ADJOINT GREEN’S FUNCTION APPROACH

This chapter introduces a fundamental framework for modelling thermoacoustic instabilities
in systems with a mean flow, based on the definition of the adjoint Green’s function (AGF).
The presence of the mean flow makes the acoustic analogy equation become a non-self-adjoint
system, where the tailored Green’s function approach fails. The AGF approach transforms
the acoustic analogy equation into an integral equation, enabling a direct calculation of the
system’s response to various external forcing terms. A simple one-dimensional system is exam-
ined, consisting of a steady mean flow and a nonlinear heat source with an amplitude-dependent
time-delay heat release model. The adjoint Green’s problem gives receptivity information that
quantifies the system’s response to initial, boundary, or other forcing terms. While both adjoint-
based sensitivity analysis and the AGF approach rely on adjoint equations, the former is typi-
cally used to optimize system design and control strategies, whereas the latter provides insights
into how disturbances propagate and interact within the system. The versatility of this frame-
work is demonstrated by applying it to two resonators with different boundary conditions, two
configurations (flow duct with and without a uniform temperature field), and systems with dif-
ferent forcings. Additionally, the role of the Dirac delta function in capturing local receptivity
is highlighted, showing the effectiveness of the AGF in the prediction of thermoacoustic insta-
bilities.

The structure of this chapter is as follows: Section 2.1. gives a brief introduction to the
bifurcation theory and a summary of mean flow effects and noise-induced dynamics in ther-
moacoustic systems. Section 2.2. provides full details of the theoretical, highlighting the reci-
procity property between the direct and the adjoint Green’s functions in both the time and the
frequency domain. The theory is developed based on the tube configuration with uniform tem-
perature flow. Section 2.3. shows the application of theory for a Rijke tube case, focusing on the
bifurcation and hysteresis behaviour by varying the position of the heat source, the tube length,
and the heater power. In section 2.4., the theory is applied to an experimental matrix burner
setup, and the prediction results are compared with experiment results. Then, the theory is ex-
tended to the flow duct with a non-uniform temperature field, of which the details are provided
in section 2.5.. Furthermore, in section 2.6., we investigated the noise-induced phenomenon by
introducing different external coloured noises into the thermoacoustic system. The conclusions
and outlook of this study are given in section 2.7..

2.1. BACKGROUND

2.1.1. Bifurcation theory

In dynamical systems theory, a bifurcation refers to a sudden qualitative change in a nonlinear
system’s behaviour due to an infinitesimal variation in control parameters. When this transition
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shifts the system from a stable steady state to an oscillatory state, it is specifically known as a
Hopf bifurcation (Strogatz, 2018). There are two types of Hopf bifurcation, supercritical and
subcritical, of which the diagrams are depicted in Fig. 2.1.

Figure 2.1: Diagrams of Hopf bifurcations: supercritical bifurcation (left) and subcritical bifurcation
(right).

For a supercritical Hopf bifurcation, the system remains stable in a non-oscillatory state
until the control parameter reaches a critical threshold. When this threshold is exceeded, the
non-oscillatory state loses stability, causing the system to transition into an oscillatory state
characterized by a stable, low-amplitude limit cycle. The parameter value at which this loss of
stability occurs is referred to as the Hopf point (point A in Fig. 2.1).

For a subcritical Hopf bifurcation, the system jumps into large amplitude oscillations im-
mediately when the control parameter reaches the critical value of Hopf bifurcation point C.
Moreover, when returning to the non-oscillatory state, the control parameter must be reduced
well beyond the critical threshold. The point at which stability is regained during this reversal
process, point E in Fig. 2.1, is known as the fold point. When the value of the control parameter
lies in the range between a fold point and a Hopf bifurcation point, the system exhibits bistabil-
ity, meaning it can settle into either an oscillatory or a non-oscillatory state depending on initial
conditions. In this range, if the oscillation amplitude of the system is forced to be large enough,
the stable state can jump to an unstable state. This phenomenon is known as triggering. The
unstable limit cycle marks the stability margin for the initial excitations as well as the triggering
amplitude. The path for the system to go from a stable state to an unstable state and the path
that the system returns to a stable state from an unstable state are different. This is known as
the hysteresis phenomenon. The region formed by points B → C → D → E is called the
hysteresis region.
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2.1.2. Rijke tube

The Rijke tube is the simplest thermoacoustic system, consisting of a vertical tube with both
ends open and a heated wire mesh at a quarter to the bottom end, as shown in Fig. 2.2(a).
Once the wire mesh is heated, it causes contraction and expansion of air and consequently leads
to unsteady flow in the tube and generation of acoustic waves. The acoustic waves resonate
with the tube, and sound is generated. The Rijke tube is very useful for the investigation of
elementary mechanisms of thermoacoustic instability and its dynamics. Experiments and theory
have shown that such a thermoacoustic system exhibits bifurcations and hysteresis.

Figure 2.2: (a) Sketch of a Rijke tube. (b) Experimental setup of horizontal electric Rijke tube with a
forced mean flow, taken from Matveev (2003b).

An early review of the studies on the Rijke tube can be found in Raun et al. (1993). The
horizontal Rijke tube setup was devised by Heckl (1988, 1990) to decouple the variation of
mean flow and the heat release rate fluctuations of the electrical-heated source placed within
the tube. It has been widely used for laboratory-scale experiments to study the dynamics of
thermoacoustic instabilities, as shown in Fig. 2.2(b). Matveev and Culick (2003a) (cf. also
refs. Matveev (2003a,b)) investigated the nonlinear effects in a non-uniform temperature Rijke
tube and the balance between thermoacoustic energy and acoustic losses. Gopalakrishnan and
Sujith (2014) observed hysteresis and subcritical bifurcations in a horizontal Rijke tube setup
by varying the heater power, the mass flow rate, and the heat source position.

2.1.3. The mean flow contribution

Existing investigations on acoustics in a confined geometry using (tailored) Green’s function ap-
proach have consistently adopted the zero-Mach-number assumption, thus neglecting the mean
flow. Mean flow can, however, be important, and several analytical methods exist which allow
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for its inclusion. It was argued by Nicoud and Wieczorek (2009) that not only the heat source
but also the mean flow could enhance the non-normality of the system, favouring the possibility
of transient growth of instabilities. Stow and Dowling (2001), Orchini et al. (2022), and Polifke
et al. (2001) have used a wave-based network model by describing the acoustic field in vari-
ous combustion systems in terms of Riemann invariants, with forward- and backward-travelling
waves displaying different transport speeds.

2.1.4. The noise effects

A comprehensive summary of noise-induced dynamics in thermoacoustic systems is provided
by Kabiraj et al. (2020). Jegadeesan and Sujith (2013) conducted experiments in a ducted
non-premixed flame system and observed noise-induced triggering phenomena: when a stable
system is subject to a low amplitude noise, it evolves transiently towards an unstable limit cycle
state. It is well-established that the linearised equations describing thermoacoustic systems are
non-normal (Balasubramanian and Sujith, 2008b,a), meaning transient growth plays a signifi-
cant role in amplifying small perturbations and thus triggering instabilities under noise. Waugh
and Juniper (2011) and Waugh et al. (2011) investigated the effect of different coloured noise
on triggering thermoacoustic instabilities in a Rijke tube model. Their findings showed that
pink noise (with higher power at low frequencies) is more effective at inducing high-amplitude
oscillations than white noise (with power equally distributed across all frequencies). Blue noise
(with higher power at high frequencies) was found to be the least effective. Kabiraj et al. (2015)
experimentally investigated the noise-induced dynamics of a thermoacoustic system undergo-
ing a subcritical Hopf bifurcation and found that as the system approaches the bistable region,
the noise level required to achieve an optimal coherent response decreases, suggesting that this
behaviour could serve as a precursor to Hopf bifurcations. Additionally, Gopalakrishnan and
Sujith (2015) examined the influence of external noise on hysteresis characteristics in a hori-
zontal Rijke tube. Their results showed that increasing noise intensity reduces the width of the
hysteresis zone, while high-intensity noise can suppress both subcritical transitions and hystere-
sis. Noise-induced transition can also happen between multiple oscillatory states. Bonciolini
et al. (2017) applied system identification to a thermoacoustic system modelled by a Van-der-
Pol oscillator. The nonlinear system is driven by coloured noise mimicking stochastic forcing
by turbulence. Noiray and Schuermans (2013) performed measurements on the dynamics of
azimuthal thermoacoustic modes in gas turbine annular combustion chambers and developed
a theoretical framework through system identification. Their analysis revealed that the modes
intermittently switch between standing and rotating waves due to stochastic perturbations aris-
ing from highly turbulent, reactive flows. To the authors’ knowledge, existing models for the
prediction of noise-induced dynamics in thermoacoustic systems neglect the effects of mean
flow.
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2.2. THEORETICAL FRAMEWORK

The theoretical framework is developed for a uniform temperature flow-duct. The configuration
studied is described in section 2.2.1. The governing equations are given in section 2.2.2. and
solved for the case without forcing in section 2.2.3. The full governing equations can be solved
with minimal effort if they are converted into an integral equation. To this end, the direct
Green’s function is introduced in section 2.2.4. The adjoint Green’s function is introduced in
Section 2.2.5. and calculated in section 2.2.6. Its relationship with the direct Green’s function
is given in section 2.2.7.. The final result for the integral governing equation is shown in section
2.2.8. A by-product of the integral equation is an algebraic equation for the complex frequencies
of the thermoacoustic modes; this equation is derived in section 2.2.9.

2.2.1. The configuration considered

Our configuration is shown in Fig. 2.3. It is a one-dimensional resonator, i.e., a straight tube
of length L. The upstream end at x = 0 is described by the reflection coefficient R0, and
its downstream end at x = L is described by RL. We do not limit ourselves to idealized
boundary conditions but, in principle, allow the reflection coefficients to be complex functions
of frequency.

Figure 2.3: Schematic illustration of a flow duct with mean velocity ū, an unsteady heat source at xq,
acoustic waves with amplitudes A+, A−, B+, B− and reflection coefficients R0 and RL.

A steady uniform flow with speed ū passes through the tube and the Mach number, M =
ū/c, is assumed to be smaller than 1. The mean values of temperature (T̄ ), density (ρ̄), and
speed of sound (c) are also uniform along the tube. We also neglect viscous and thermal dis-
sipation. Since there is neither a temperature gradient nor a sudden area change in the present
simplified setting, the generation of entropy waves is not considered (Marble and Candel, 1977;
De Domenico et al., 2021).

An unsteady heat source is located at the axial position xq. This source is assumed to be
compact and described in terms of the delta function by

q(x, t) = q(t)δ(x− xq); (2.1)

q(x, t) is the rate of heat release per unit mass (local heat release rate). The time-dependent
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part, q(t), is closely related to the global heat release rate, Q(t), by

Q(t) = Sρ̄q(t), (2.2)

where S is the cross-sectional area of the tube. The rate of heat release is not independent but
coupled with the acoustic field. A generalised n-τ heat release law developed by Heckl (2015)
is used to describe this coupling,

q(t) = K [n1uq(t− τ)− n0uq(t)] , (2.3)

where uq is the acoustic velocity at the heat source. Our assumption that the mean temperature
is uniform implies that we neglect the mean heat release rate from the heat source and only
consider the fluctuating part. In this context, the parameter K is a measure of the coupling
between the heat release rate and the acoustic field. We call K the ”heater power” with units
of J kg−1. The three parameters τ (time-lag), n0 and n1 (coupling coefficients) are assumed to
depend on the non-dimensional acoustic velocity amplitude at the heat source, ϵ = A/ū, with ū
denoting the mean flow velocity and A the amplitude of uq(t), by the following expressions,

τ = τ0 + τ2ϵ
2, (2.4a)

n0 =
1

2
(g0 − g1ϵ− 1), (2.4b)

n1 =
1

2
(g0 − g1ϵ+ 1). (2.4c)

The quantities τ0, τ2, n0, n1, in Eqs. (2.4) are constants. g0 and g1 are the parameters obtained
by fitting a flame describing function (Heckl, 2015). Eq. (2.3) represents a nonlinear heat release
rate law due to the amplitude dependence of its parameters.

2.2.2. Governing equations for the acoustic field

The acoustic field resulting from the unsteady heat source in the presence of a mean flow can
be described by an acoustic analogy equation in terms of acoustic velocity potential, similar to
Eq. (1.6),

∂2ϕ

∂t2
+ 2ū

∂2ϕ

∂t∂x
− (c2 − ū2)

∂2ϕ

∂x2
= −(γ − 1)q(x, t). (2.5)

This is a PDE for the acoustic velocity potential ϕ(x, t); the heat release rate appears in the
forcing term on the right-hand side. The initial conditions represent the excitation of the heat
source acting only at the point xq, and they are given by

ϕ(x, t)

∣∣∣∣∣
t=0

= φ0δ(x− xq), (2.6)

[
∂ϕ

∂t
+ ū

∂ϕ

∂x

]
t=0

= φ′
0δ(x− xq), (2.7)

where φ0 and φ′
0 have prescribed values.

The boundary conditions at x = 0 and x = L are given in the frequency-domain by the
reflection coefficients R0(ω) and RL(ω).
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2.2.3. Natural frequencies of the unforced uniform-temperature system

The unforced version of the PDE (2.5) governs the propagation of acoustic waves up and down
the flow duct on either side of xq, where q(x, t) = 0. We transform this into the frequency
domain (assuming the time dependence e−iωt) in order to determine the wave numbers of these
waves. This gives

ω2ϕ̂+ 2ū(iω)
∂ϕ̂

∂x
+ (c2 − ū2)

∂2ϕ̂

∂x2
= 0, (2.8)

where ϕ̂(x, ω) is the frequency-domain equivalent of ϕ(x, t). Eq. (2.8) is readily solved when ϕ̂
is assumed to behave in space as eikx. Two wave numbers are obtained, of the waves travelling
with and against the flow, respectively:

k+ =
ω

c+ ū
, and k− =

ω

c− ū
. (2.9)

The acoustic velocity potential can then be written as a superposition of forward and backward
travelling waves:

ϕ̂(x, ω) =

{
A+e

ik+x + A−e
−ik−x for 0 < x < xq

B+e
ik+(x−L) +B−e

−ik−(x−L) for xq < x < L,
(2.10)

where A+, A−, B+ and B− are (generally complex) amplitudes of the velocity potential, see
Fig. 2.3.

The reflection coefficients R0 and RL are used to define the boundary conditions. At x = 0
there is

R0 =
A+e

ik+x

A−e−ik−x

∣∣∣∣∣
x=0

, giving A+ = A−R0, (2.11)

and likewise at x = L,

RL =
B−e

−ik−(x−L)

B+eik+(x−L)

∣∣∣∣∣
x=L

, giving B− = B+RL. (2.12)

This reduces the number of unknown amplitudes to two, and Eq. (2.10) becomes

ϕ̂(x, ω) =

{
A−(R0e

ik+x + e−ik−x) for 0 < x < xq

B+(e
ik+(x−L) +RLe

−ik−(x−L)) for xq < x < L.
(2.13)

The natural frequencies ωn of the tube as an acoustic resonator, are obtained by considering
the case without the heat source, where the sound field in the tube is given by

ϕ̂(x, ω) = A+e
ik+x + A−e

−ik−x for 0 < x < L. (2.14)

The boundary conditions given above in terms of R0 and RL have to be satisfied, and this leads
to two homogeneous equations for A+ and A− and subsequently to the characteristic equation

−1 +R0RLe
i(k++k−)L = 0. (2.15)
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The left-hand side of the above equation is a function of ω. Thus Eq. (2.15) can be written as

F (ω) = 0, with F (ω) = −1 +R0RLe
iω 2cL

c2−ū2 . (2.16)

The solution of Eq. (2.16) gives the natural frequencies ωn of the uniform-temperature duct for
monde n = 1, 2, 3...

We note here that our acoustic field variable is the velocity potential ϕ and that in our no-
tation, R0 and RL are the reflection coefficients of ϕ. It is more common to work with the
reflection coefficients of the acoustic pressure p; these are closely related to those of the veloc-
ity potential. The linearized momentum equation in the form

p′ = −ρ̄

(
∂ϕ

∂t
+ ū

∂ϕ

∂x

)
(2.17)

allows us to express the pressure field in terms of its forward and backward travelling waves.
The result for the upstream side is

p̂(x, ω) = A+(iω − ūik+)e
ik+x + A−(iω − ūik−)e

−ik−x. (2.18)

This gives the pressure reflection coefficient as

R
(p)
0 =

A+

A−

ω − ūk+
ω + ūk−

= R0
1−M

1 +M
. (2.19)

An analogous derivation can be performed for the downstream side, and this leads to

R
(p)
L =

B−

B+

ω + ūk+
ω − ūk−

= RL
1 +M

1−M
. (2.20)

For mean flows with low Mach number M , the numerical values of R0 and R(p)
0 , as well as

RL and R(p)
L , are very similar.

2.2.4. The direct Green’s function

The direct Green’s function is a mathematical concept with a clear physical meaning. If an
impulse is emitted at time t′ from a hypothetical point source at position x′ in the tube, a sound
field is generated in the tube. This sound field is called the impulse response and is described
mathematically by the function g(x, x′, t, t′). The variable x denotes the position of an observer,
and the variable t denotes the observer’s time. The measured sound field does not depend on t
or t′ individually, but on the time elapsed since the impulse, t − t′. Here, we call g the direct
Green’s function to distinguish from the tailored Green’s function for a self-adjoint system.

In line with its physical meaning, the direct Green’s function is defined by the following
governing equations. The PDE

∂2g

∂t2
+ 2ū

∂2g

∂t∂x
− (c2 − ū2)

∂2g

∂x2
= δ(x− x′)δ(t− t′) (2.21)



23

describes the sound field generated in the tube (of unspecified end conditions). The causality
conditions

g(x, x′, t− t′) = 0 for t < t′ (2.22)
∂g

∂t
+ ū

∂g

∂x
= 0 for t < t′ (2.23)

guarantee that no sound field is generated before the source has emitted its impulse.
We also require the direct Green’s function to be ”tailored” to the tube boundaries, which

are described by the reflection coefficientsR0 andRL; however, these are given in the frequency
domain.

The Fourier transform of g(x, x′, t− t′) is ĝ(x, x′, ω), given by

ĝ(x, x′, ω) =

∫ ∞

t=−∞
g(x, x′, t− t′)eiω(t−t′)dt. (2.24)

Its governing equation is the Fourier transform of Eq. (2.21), i.e.

ω2ĝ(x, x′, ω) + 2ūiω
∂ĝ

∂x
+ (c2 − ū2)

∂2ĝ

∂x2
= −δ(x− x′). (2.25)

In analogy to Eq. (2.13), we can write down solutions for ĝ(x, x′, ω) on either side of the
heat source

ĝ(x, x′, ω) =


A−(x

′, ω)[R0 e
iω

c+ū
x + e−

iω
c−ū

x] for 0 < x < x′

B+(x
′, ω)[e

iω
c+ū

(x−L) +RLe
− iω

c−ū
(x−L)] for x′ < x < L

(2.26)

This satisfies the required boundary conditions.
Equations (2.25) and (2.26) form the governing equations for ĝ(x, x′, ω). The latter contains

the two functions A−(x
′, ω) and B+(x

′, ω), which have yet to be determined. This can be done
with a generalized function approach (see Appendix A.1.1.). The result is

ĝ(x, x′, ω) =


1

2c(iω)F (ω)
e−i(k+−k−)x′

eik+Lb(x′, ω)a(x, ω) for 0 < x < x′

1

2c(iω)F (ω)
e−i(k+−k−)x′

eik+La(x′, ω)b(x, ω) for x′ < x < L

(2.27)

where F (ω) is given by Eq. (2.16), and

a(x, ω) = R0e
ik+x + e−ik−x, (2.28)

b(x, ω) = eik+(x−L) +RLe
−ik−(x−L). (2.29)

The time-domain function, g(x, x′, t − t′), is then obtained by inverse Fourier transform
of ĝ(x, x′, ω). This requires integration in the complex ω-plane and application of the residue
theorem (see Appendix A.1.2.). The result is

g(x, x′, t− t′) = H(t− t′)
∞∑
n=1

ℜ

[
gn(x, x

′, ωn)

ωnF ′(ωn)
e−iωn(t−t′)

]
. (2.30)



24

F ′(ω) in Eq. (2.30) denotes the derivative of the function F (ω) (given by Eq. (2.16)) with
respect to ω. The other quantities in Eq. (2.30) are

gn(x, x
′, ωn) =


ψ(x′, ωn)b(x

′, ωn)a(x, ωn) for 0 < x < x′

ψ(x′, ωn)a(x
′, ωn)b(x, ωn) for x′ < x < L

(2.31)

with the functions a and b given by Eq. (2.28) and Eq. (2.29), and ψ by

ψ(x, ω) = −1

c
e

2iωū
c2−ū2

x
e−

iω
c+ū

L. (2.32)

The expression for g(x, x′, t− t′) in Eq. (2.30) features all the physical properties one would
expect from the acoustic response to an impulsive point source in a resonator. Eq. (2.30) de-
scribes a superposition of modes; n is the node number, ωn is the (generally complex) frequency

of mode n, and
gn(x, x

′, ωn)

ωnF ′(ωn)
is the corresponding mode amplitude. The Heaviside H(t − t′)

function expresses the causality of the direct Green’s function:

H(t− t′) =

{
0 for t < t′, i.e. before the impulse,
1 for t > t′, i.e. after the impulse.

(2.33)

2.2.5. The adjoint Green’s function

The full governing equations in section 2.2.2. cannot be solved analytically because they involve
a PDE with a forcing term that is coupled nonlinearly to the acoustic field. To systematically
assess the effect of forcing terms on the acoustic field, the PDE of the direct system has to be
solved repetitively for various boundary conditions and the initial conditions, and for a variety of
heat release rates, Eq. (2.1). Motivated by the tailored Green’s function approach of Heckl and
collaborators (Heckl and Howe, 2007; Heckl, 2013; Bigongiari and Heckl, 2016) for the case
without mean flow and Luchini and Bottaro (1998), our aim is to derive an integral governing
equation for the non-self-adjoint thermoacoustic system.

To this end, we perform a series of mathematical operations on Eq. (2.5):

• write it in terms of the new variables x′, t′ (instead of x, t);

• multiply it by a test function G(x′, x, t′, t) (yet to be defined);

• integrate the result with respect to t′ from the initial time 0 to a ”terminal time” Tt (yet to
be defined);

• integrate with respect to x′ over the whole length of the tube;

• shift the derivatives from ϕ to G by repeated use of integration by parts.
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This leads to (for mathematical steps, see Appendix A.2.1.)∫ Tt

t′=0

∫ L

x′=0

[
∂2G

∂t′2
+ 2ū

∂2G

∂t′∂x′
−(c2 − ū2)

∂2G

∂x′2

]
ϕ(x′, t′)dx′dt′ +BT1 +BT2 =

= −(γ − 1)

∫ Tt

t′=0

G(xq, x, t
′, t)q(t′)dt′,

(2.34)

with

BT1 =

∫ L

x′=0

[
G(
∂ϕ

∂t′
+ ū

∂ϕ

∂x′
)− ϕ(

∂G

∂t′
+ ū

∂G

∂x′
)

]Tt

t′=0

dx′, (2.35)

BT2 =

∫ Tt

t′=0

[
ū(G

∂ϕ

∂t′
− ϕ

∂G

∂t′
)− (c2 − ū2)(G

∂ϕ

∂x′
− ϕ

∂G

∂x′
)

]L
x′=0

dt′. (2.36)

The terms BT1 and BT2 in Eq. (2.35) and Eq. (2.36) are ”boundary terms”. The aim is now
to define the test function G(x′, x, t′, t) in such a way that Eq. (2.34) yields an integral equation
for the acoustic field, ϕ(x, t), as simple as possible, without unwelcome boundary terms.

The first term on the left-hand-side of Eq. (2.34) inspired us to defineG(x′, x, t′, t) to satisfy
the PDE

∂2G

∂t′2
+ 2ū

∂2G

∂t′∂x′
− (c2 − ū2)

∂2G

∂x′2
= δ(x′ − x)δ(t′ − t), (2.37)

then the double integral in Eq. (2.34) reduces to ϕ(x, t). If we further impose the terminal
conditions

G(x′, x, t′, t) = 0 at t′ = Tt, (2.38)

∂G

∂t′
+ ū

∂G

∂x′
= 0 at t′ = Tt, (2.39)

then the terms at t′ = Tt in the boundary term BT1 of Eq. (2.34) vanish. The terms at t′ = 0
can be rewritten with the initial conditions Eq. (2.6) and Eq. (2.7). Hence, integral of Eq. (2.35)
becomes

BT1 = −

[
φ′
0G(x

′, x, t′, t)− φ0(
∂G

∂t′
+ ū

∂G

∂x′
)

]
x′=xq

t′=0

. (2.40)

The boundary term BT2, given by Eq. (2.36), involves the time integral
∫ Tt

t′=0

...dt′. Here, we

are faced with the fact that the integrand contains boundary expressions at x = 0 and x = L,
which are given in the frequency (and not in the time) domain. The acoustic field is not defined
for times before the initial conditions act, so there is

ϕ(x′, t′) = 0 for t′ < 0. (2.41)

Similarly, G(x′, x, t′, t) is not defined for times beyond the terminal time Tt, so there is

G(x′, x, t′, t) = 0 for t′ > Tt. (2.42)
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This allows us to extend the integration limits in Eq. (2.36) from
∫ Tt

t′=0

to
∫ ∞

t′=−∞
and subse-

quently use Fourier transforms. Appendix A.3. shows the detailed calculation which leads
to

BT2 = 0. (2.43)

Using Eqs. (2.37)-(2.40) and (2.43), Eq. (2.34) becomes:

ϕ(x, t) =− (γ − 1)

∫ Tt

t′=0

G(xq, x, t
′, t)q(t′)dt′+[

φ′
0G(x

′, x, t′, t)− φ0(
∂G

∂t′
+ ū

∂G

∂x′
)

]
x′=xq

t′=0

.
(2.44)

In section 7.5 of Morse and Feshbach (1953), G(x′, x, t′, t) is referred to as the ”Green’s func-
tion of the adjoint operator”. In the present work, we call G(x′, x, t′, t) the adjoint Green’s
function (AGF). The AGF governed by Eq. (2.37) is the adjoint field of the direct system, with
an impulse source term. Note that we choose to show the derivation of the adjoint system fol-
lowing a continuous approach since we believe that it is more pedagogical, and it elucidates
the rationale behind the selection of terminal and boundary conditions in the next subsection.
The equivalent discrete adjoint approach would be feasible but requires a discretization in both
spatial and temporal domains before using Green’s identity (cf. the Supplementary Material of
Luchini and Bottaro (2014)).

2.2.6. The AGF in the frequency- and time-domain

The boundary conditions of the AGF are given in the frequency domain, so we focus for now on
the adjoint of ĝ(x, x′, ω). This adjoint function is determined by performing a series of mathe-
matical operations on the PDE, Eq. (2.25) for ĝ(x, x′, ω); these are shown in Appendix A.2.2.
The adjoint PDE turns out to be

ω2Ĝ(x, x′, ω)− 2ūiω
∂Ĝ

∂x
+ (c2 − ū2)

∂2Ĝ

∂x2
= −δ(x− x′). (2.45)

Comparison of Eq. (2.45) with Eq. (2.25) reveals that ĝ and Ĝ satisfy very similar PDEs:
they only differ by the sign of the mean velocity ū. The functional dependence of Ĝ(x, x′, ω) is
also determined in Appendix A.2.2.; the result is

Ĝ(x, x′, ω) =


Ã−(x

′, ω)[R0 e
iω

c−ū
x + e−

iω
c+ū

x] for 0 < x < x′

B̃+(x
′, ω)[e

iω
c−ū

(x−L) +RL e
− iω

c+ū
(x−L)] for x′ < x < L

(2.46)

The functions Ã−(x
′, ω) and B̃+(x

′, ω) are analogous toA−(x
′, ω) andB+(x

′, ω) in Eq. (2.26),
and they are undetermined at this stage. Ĝ(x, x′, ω) satisfies Eq. (2.45), while G(x′, x, t′, t) sat-
isfies Eq. (2.37). These two functions form a Fourier transform pair, i.e.

G(x′, x, t′, t) =
1

2π

∫ ∞

ω=−∞
Ĝ(x′, x, ω)e−iω(t−t′)dω, (2.47)
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(for details see Appendix A.4.).

2.2.7. Relationship between the adjoint and the direct Green’s function

In order to determine the formulation of the AGF, G(x′, x, t′, t), from the solution of direct
Green’s function g(x, x′, t − t′), obtained in Section 2.2.4., we need to find the relationship
between G(x′, x, t′, t) and g(x, x′, t − t′). The detailed derivation steps are shown in Ap-
pendix A.2.3. The result is

G(x′, x, t′, t) = g(x, x′, t, t′). (2.48)

This result expresses the reciprocity between the direct and adjoint Green’s function (Morse
and Feshbach, 1953). It is also called the symmetry property of Green’s functions (Greenberg,
1978). Mathematically, it demonstrates that the systems of g(x, x′, t − t′) and G(x, x′, t − t′)
are adjoint system of each other. It also notes that neither G, nor g, are self-adjoint, i.e.

g(x, x′, t− t′) ̸= g(x′, x, t′ − t), (2.49)

G(x, x′, t− t′) ̸= G(x′, x, t′ − t), (2.50)

This is a key difference to the case of a tube without mean flow. With the presence of the
convection term, the problem is no longer self-adjoint.

With the reciprocity theorem given by Eq. (2.48), and the functional dependence of g(x, x′, t−
t′) given by Eq. (2.30), the AGF G(x, x′, t− t′) is obtained simply by swapping the source po-
sition and the observer position in Eq. (2.30), as well as the source time and observer time.

The function g and G are both solutions to the same source problem, but they differ in terms
of causality. The direct Green’s function describes the evolution as time increases, starting
with the initial impulse and ending with the acoustic field measured by the observer. The AGF
describes the same process in reverse time, beginning with the acoustic field measured by the
observer and going backward in time to the initial impulse (Morse and Feshbach (1953), section
7.4). Given that the direct Green’s function is causal, we call the AGF causal in reverse time.
These properties are expressed in terms of the following equations:

g(x, x′, t− t′) = 0 for t < t′

(causality of the direct Green’s function)
(2.51)

G(x′, x, t′ − t) = 0 for t > t′

(causality in reverse time of the AGF)
(2.52)

2.2.8. Integral equation for the acoustic field

It remains to fix the terminal time Tt. According to Eq. (2.52), G = 0 for all times t > t′.
Therefore the integrand in Eq. (2.44) is zero in the range t′ = t, ...Tt. This suggests that the
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upper integration boundary in Eq. (2.44) should be changed from Tt to t. The final version of
the integral equation for ϕ is

ϕ(x, t) =− (γ − 1)

∫ t

t′=0

G(xq, x, t
′, t)q(t′)dt′

+

[
φ′
0G(x

′, x, t′, t)− φ0(
∂G

∂t′
+ ū

∂G

∂x′
)

]
x′=xq

t′=0

.
(2.53)

The velocity at the heat source is given by uq(t) =
∂ϕ(x, t)

∂x

∣∣∣∣∣
x=xq

, and this allows us to turn

Eq. (2.53) into an integral equation for the velocity uq(t),

uq(t) =− (γ − 1)

∫ t

t′=0

∂G(x′, x, t′, t)

∂x

∣∣∣∣∣
x=xq , x′=xq

q(t′)dt′+[
φ′
0

∂G(x′, x, t′, t)

∂x
− φ0(

∂2G

∂x∂t′
+ ū

∂2G

∂x∂x′
)

]
x′=xq

t′=0
x=xq

.

(2.54)

The heat release rate q(t′) is given in terms of uq by Eq. (2.3), so Eq. (2.54) represents an
integral equation (Volterra type) for uq(t). It can be solved with a straightforward iteration pro-
cess, stepping forward in time. The strength of the approach outlined, related to the role of
G(x′, x, t′, t) as evaluation of receptivity, emerges clearly from Eqs. (2.53) and (2.54): knowl-
edge of the unique AGF (and its derivatives) is sufficient to map immediately the output, i.e.
ϕ(x, t) or uq(t), to whatever input, represented here by q(t), φ0 and φ′

0.

2.2.9. Modal analysis

Numerical solution of the integral equation Eq. (2.54) gives the time history of uq(t). Eq. (2.54)
also allows an analytical approach, which will give the frequencies of the acoustic modes driven
by the thermoacoustic feedback.

Motivated by the observation that the frequency spectrum of a thermoacoustic oscillation has
discrete peaks, we express the acoustic velocity as a sum of modes with complex frequencies
Ωm and complex amplitudes um,

uq(t) =
∞∑

m=1

(
ume

−iΩmt + u∗me
−iΩ∗

mt

)
. (2.55)

At this stage, Ωm and um are unknown; their complex conjugate is denoted by ∗. It is
possible to determine them from a series of mathematical manipulations, which are described
in Appendix A of Bigongiari and Heckl (2016). The resulting equation for Ωm (for m = 1, 2 ...)
is

(n0 − n1e
iΩmτ )

∞∑
n=1

[
Γn

i(ωn − Ωm)
− Γ∗

n

i(ω∗
n + Ωm)

]
=

2

(γ − 1)K
(2.56)



29

where

Γn =
∂ĝn(x, x

′, ω)

∂x

∣∣∣∣∣x=xq

x′=xq

. (2.57)

The real part of Ωm gives the circular frequency of modem, while the imaginary part represents
the growth rate, revealing whether mode m is stable or not.

2.3. A RIJKE TUBE CASE

The stability behavior of the first thermoacoustic eigenmode in a horizontal Rijke tube with
uniform temperature is investigated. We focus on the first mode because the flame model is
valid mainly in the low-frequency range (Heckl, 2015); as such, the results for the higher order
modes would be less reliable, and this will be shown in a later section of this chapter. The
parameters in the model are chosen from the work by Bigongiari and Heckl (2016), with a
steady mean flow included, and choose the following three control parameters: heat source
position, xq, tube length, L, and heater power, K. The values of the model parameters and
ranges of the control parameters are given in Table 2.1.

Table 2.1: Model parameters of the horizontal Rijke tube

Parameters Symbol Value Unit
Mean temperature T̄ 304 K
Sound speed c 350 m s−1

Reflection coefficient (upstream end) R0 -1
Reflection coefficient (downstream end) RL -1

Fitting parameters
of nonlinear heat release model

g0 1.4
g1 0.3
τ0 5× 10−3 s
τ2 4.4× 10−3 s

Mach number M 0, 0.1, 0.3, 0.5
Tube length L 0.4 ... 2 m
Heat source position xq 0 ... L m
Heater power K 0 ... 4× 106 J kg−1

Stability maps are created by numerically solving Eq. (2.56), which contains implicitly the
parameter ϵ = A/ū. In order to avoid numerical problems for the case without mean flow
(ū = 0), we put ū = 1 m s−1 if M = 0. Our stability maps show unstable regions, where
ℑ(Ω1) > 0, and stable regions, where ℑ(Ω1) < 0. Stable regions are depicted in blue shading,
and unstable regions are displayed in red shading, with the growth rates indicated by colour
bars. The maps highlight the dependence of the stability behaviour on the control parameter
and the dimensionless acoustic velocity fluctuation amplitude at the source, ϵ.
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2.3.1. Dependence on the position of the heat source

The stability maps based on the control parameter xq for different mean flow velocities through
the tube are shown in Fig. 2.4. The tube length is fixed at L = 2 m and the heater power is
maintained at K = 3×105 J kg−1. For purely illustrative purposes, the plots display the growth
rate with ϵ up to the rather large value of 1.5.

Figure 2.4: Stability maps of a horizontal Rijke tube; the coloured shading indicates the growth rates
given on the colour bar on the right. The control parameter is xq, the position of the heat source; L = 2 m,
K = 3× 105 J kg−1. (a) Mean flow is absent; (b) M = 0.1; (c) M = 0.3; (d) M = 0.5.

For the case M = 0, shown in Fig. 2.4(a), the system is linearly unstable if xq is anywhere
within the upstream half of the tube (0 m < xq < 1 m), and again in the range between 1.25 m
and 1.75 m within the downstream half. The points (xq, ϵ)=(1.25 m, 0) and (1.75 m, 0) are
subcritical Hopf bifurcation points. For the caseM = 0.1, shown in Fig. 2.4(b), these two points
have moved close together, reducing the linearly stable range along the xq-axis. For the cases
M = 0.3 and M = 0.5, shown in Figs. 2.4(c) and 2.4(d), respectively, the Hopf bifurcation
points have disappeared and there is linear stability for any position xq in the downstream half.
For such positions, a non-zero initial amplitude is required to trigger instability. This triggering
amplitude becomes progressively larger as M increases. Thus, the presence of a mean flow
generally stabilizes the system. This observation qualitatively agrees with the experimental
finding by Gopalakrishnan and Sujith (2014) that, at a higher mass flow rate, no instability
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occurred when xq > L/2. On the other hand, when the heat source is in the upstream half of
the duct (xq < 1 m), the stretching of the unstable region towards higher values of ϵ when M
increases results in enhanced limit cycle amplitudes.

Figure 2.5: Hysteresis effect and bistable regions in a horizontal Rijke tube with changing heat source
position 1 < xq < 2 m, L = 2 m, K = 3 × 105 J kg−1. The white part indicates the stable region and
the grey part indicates the unstable region. The blue solid arrows denote the forward bifurcation path
when the system is switched on with a small perturbation when xq = 1 m and the heat source is moved
downstream. The red dashed arrows denote the backward path when the system is switched on with a
small perturbation when xq = 2 m and the heat source is moved upstream. Bistability occurs for xq on
the left (right) of the blue (red) dashed line. (a) Mean flow is absent; (b) M = 0.1.

Figure 2.5 shows the same results for two values of M (M = 0 and M = 0.1), focusing on
the range 1 m < xq < 2 m, to highlight the presence of bistable regions and the occurrence of
hysteresis. Again, stable regions are marked in white, while unstable regions are shown in grey
(without the growth rate contours). Bistability is the phenomenon where the solution can be
either steady or oscillatory, depending on the initial condition. As Fig. 2.5(a) shows for M = 0,
there is a bistable region for xq between 1 m and 1.25 m, and another one between 1.75 m and
2 m. Let’s, for example, consider the position xq =1.1 m, which is in the bistable region. If
the initial amplitude is small enough to be in the white region, the system will oscillate with a
decaying amplitude and approach a linearly stable state. Conversely, if the initial amplitude is
large enough to be in the grey region, the oscillation amplitude will grow. It will reach a limit
at the upper edge of the grey region, and the system will subsequently oscillate in a stable limit
cycle. Fig. 2.5(b) gives equivalent results forM = 0.1. It is evident that the stability boundaries
have changed and that the bistable regions have become much larger. For example, the bistable
region now includes the point xq = 1.4 m, which was outside the bistable region for M = 0.
This prediction is consistent with papers in the literature (Matveev, 2003b; Gopalakrishnan and
Sujith, 2014; Mariappan et al., 2011), which report that a decrease in mass flow rate in a Rijke
tube reduces the width of bistable regions. The results in Fig. 2.5 also highlight the incorrect
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Figure 2.6: Time histories starting from points A and B as initial conditions, cf. Figure 2.5(b), computed
iterating in time Eq. (2.54). Mean flow with M = 0.1: (a) Point A: xq = 1.4 m, ϵ = 0.5; (b) Point B:
xq = 1.4 m, ϵ = 0.1.

conclusions one could draw when assuming zero Mach number when, in fact, the Mach number
is small but non-zero.

The presence of bistable regions is an indicator that hysteresis occurs if the control parameter
is first increased, and then decreased again. This is also illustrated in Fig. 2.5. The solid blue
curves represent the forward path, with xq increasing, and the dashed red curves represent the
backward path, with xq decreasing. In Fig. 2.5(a), in the absence of mean flow, the forward
path starts at xq = 1 m and zero initial amplitude. As the heat source is moved downstream,
this stable state persists until the position xq = 1.25 m (a subcritical Hopf bifurcation), where
a sudden transition occurs: an oscillation with growing amplitude sets in until a limit cycle
is reached. As xq is increased beyond this point, the system follows the blue path along the
top edge of the grey region. The backward path in Fig. 2.5(a) starts at the downstream end,
xq = 2 m, and zero amplitude. The system is stable until the position xq = 1.75 m is reached.
Another sudden transition occurs there through a subcritical Hopf bifurcation. A limit cycle
ensues, and as xq is decreased further, the limit cycle persists all the way to the starting position
xq = 1 m. The forward and backward paths are evidently different.

The hysteresis for M = 0.1 shown in Fig. 2.5(b) displays qualitatively the same properties,
but the overlap between the forward and backward paths has become much smaller. As the
Mach number increases, the two bistable regions become wider and eventually merge into one
(see Figs. 2.4(c),(d)). At that point, the hysteresis effect disappears. It is noted that the limit
cycle amplitude is rather large (ϵ mildly above 1 at both values of M shown in Fig. 2.5), in
agreement with Matveev and Culick (2003b) who stated that “the oscillating velocity magnitude
estimated in the vicinity of the heater tends to be stabilized near the mean flow velocity (slightly
exceeding it) in the unstable regimes”.

Figure 2.6 shows the time histories of the velocity perturbations at the initial condition
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Figure 2.7: Comparison of the first-mode eigenfrequency of the Green’s function (ω1/(2π)) and the
heat-driven frequency (Re(Ω1)/(2π)), for varying Mach number. (a, b) The heat source is fixed at
xq = 0.4 m; (c, d) the heat source is fixed at xq = 1.6 m; (a, c) small amplitude, ϵ = 0.1; (b, d) large
amplitude, ϵ = 0.8.

marked as A and B in Fig. 2.5(b), respectively. When the mean flow is absent and the heat
source is located at xq = 1.4 m, the steady state is always unstable (cf. Fig. 2.5(a)). For
the non-zero Mach number of M = 0.1, the source position xq = 1.4 m falls in a bistable
range, cf. Fig. 2.5(b). Given a large excitation amplitude, for instance, ϵ = 0.5 (point A), the
system rapidly reaches a stable limit cycle. For low excitation amplitude (point B, ϵ = 0.1) the
system decays to a steady state quite slowly. These observations, embodied by Fig. 2.6, require
time-history calculations.

Figure 2.7 illustrates the comparison between the eigenfrequencies of the Green’s function
first mode (n = 1, Eq. (2.16)), which do not vary with the amplitude of the acoustic velocity
at the flame, and the heat-driven frequencies of mode m = 1, at two values of the amplitude of
the acoustic velocity at the position of the source. When the flame is located in the upstream
half of the tube (xq = 0.4 m), for both high and low amplitudes, the heat-driven frequencies
remain slightly below the eigenfrequencies of the Green’s function; the situation is reversed
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Figure 2.8: Modal frequency variation, Re(Ω1)/(2π), as function of the heat source position, xq, for
various Mach number M . K = 3 × 105 J kg−1. Blue symbols represent the stable state of mode 1; red
symbols represent the unstable state. (a) Small amplitude, ϵ = 0.1; (b) large amplitude, ϵ = 0.8.

when the flame is in the downstream half of the tube (xq = 1.6 m). In all cases, the differ-
ences are not major and increasing the Mach number leads to a reduction of the frequencies.
As pointed out in several previous studies (Bigongiari and Heckl, 2016; Orchini et al., 2015;
Noiray, 2007; Dowling, 1999), the frequency shifts are related to thermoacoustic feedback,
which is amplitude-dependent through the heat release law, Eq. (2.3).

Figure 2.8 shows the variation of the heat-driven frequency of the first mode as a function
of the position of the heat source for different Mach numbers. Fig. 2.8(a) and (b) illustrate the
scenarios, respectively, at low (ϵ = 0.1) and high excitation amplitude (ϵ = 0.8). We observe a
consistent trend across all heat source positions: increasing the mean flow velocity reduces the
heat-driven frequency. Until M = 0.1, differences in frequencies are hardly noticeable. As the
Mach number increases, the frequency can decrease quite significantly compared to the M = 0
case, especially when the heat source is located in the downstream half of the tube. Conversely,
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Figure 2.9: Stability maps of a horizontal Rijke tube; the coloured shading denotes the growth rate given
on the colour bar on the right; xq = 0.1 m, L = 2 m. (a) Mean flow is absent; (b) M = 0.1; (c) M = 0.3;
(d) M = 0.5.

for the high amplitude case, the larger discrepancy in frequency appears when the heat source
is located in the upstream half of the tube.

2.3.2. Dependence on the coupling between velocity and heat release rate

As explained in section 2.2.1., the parameter K, the heater power, is a measure of the coupling
between the heat release rate and the acoustic field. It is worthwhile to focus on this parameter
and inspect the stability behaviour if K is varied.

The stability maps based on control parameter K for different mean flow velocities are
shown in Fig. 2.9. Eqs. (2.37) and (2.56) reveal that the variation of heater power K does
not change the solution of the AGF but affects only the complex modal frequencies Ωm. The
stability maps quantify the effect of the coupling strength on the system’s stability. The results
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displayed in Figs. 2.9 and 2.10 are in line with the hysteresis zone and the fold point observed
in the experiments by Gopalakrishnan and Sujith (2014).

Figure 2.10: Hysteresis effect and bistable regions in a horizontal Rijke tube for variable heater power
2.2 × 106 < K < 4 × 106 J kg−1, xq = 0.1 m. The white part indicates the stable region and the
grey part indicates the unstable region. The blue solid arrows denote the forward (bifurcation) path when
the system is switched on with a small perturbation when K = 2.2 × 106 J kg−1 and the heater power
gradually increases to 4 × 106 J kg−1. The red dashed arrows denote the backward (bifurcation) path
when the system is switched on with a small perturbation when K = 4 × 106 J kg−1 and the heater
power gradually decreases to 2.2× 106 J kg−1. (a) Mean flow is absent; (b) M = 0.5.

The comparison of the stability maps for M = 0, 0.1, 0.3, and 0.5 suggests that the mean
flow effect is only significant when M is sufficiently large. At a low Mach number of M =
0.1, the alteration of the stability map is negligible compared to the M = 0 case. A subcritical
Hopf bifurcation and a fold point are found (marked in Fig. 2.10), leading to sudden jumps in
the forward and backward bifurcation paths. This agrees qualitatively with several experimen-
tal observations (Matveev and Culick, 2003a; Gopalakrishnan and Sujith, 2014; Etikyala and
Sujith, 2017; Mariappan et al., 2011). As the Mach number increases, the limit cycle amplitude
grows whenK is low and the growth rate increases. At the same time, the band-shaped unstable
region when K > 3 × 106 J kg−1 becomes narrower and straighter. Fig. 2.10 focuses on the
range 2.2×106 < K < 4×106 J kg−1 for two different Mach numbers: by increasing the mean
flow, another bistable region (cf. inset in the figure for M = 0.5) is generated when K exceeds
3.94× 106 J kg−1.

Figure 2.11 shows the variation of the first-mode heat-driven frequency with K for varying
Mach numbers. Part (a) illustrates the behaviour when ϵ = 0.1, whereas in part (b) the amplitude
is larger (ϵ = 0.8). The mean-flow effect is less prominent when the oscillation amplitude is
low. For both low-amplitude and high-amplitude cases, when K is lower than 1.5× 106 J kg−1,
the frequency decreases as the Mach number increases. The reverse effect is found for the
high-amplitude case when K > 1.5× 106 J kg−1 and the mean-flow impact is more evident.
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Figure 2.11: Modal frequency variation, Re(Ω1)/(2π), as function of the heater power, K, for various
Mach numbers M . xq = 0.1 m. Blue symbols represent the stable state of mode 1; red symbols represent
the unstable state. (a) Small amplitude, ϵ = 0.1; (b) large amplitude, ϵ = 0.8.

2.3.3. Dependence on the length of the Rijke tube

From the characteristic equation (2.16), it is known that changing the tube length affects the
eigenfrequencies of the resonator (ωn) and hence alters the modal frequency of the thermoa-
coustic system (Ωm). Fig. 2.12 shows the stability maps for variations of the control parameter
L between the values of 0.4 m and 2 m.

The heat source is fixed at xq = 0.01 m and K = 3 × 105 J kg−1. The comparison of the
different stability maps highlights the effect of the Mach number. The alteration of the stabil-
ity boundaries is significant when the Mach number is relatively high. As the Mach number
increases, the unstable region where the tube length is longer is expanded and the growth rate
in the band-shaped unstable regions increases. Overall, the unstable regions are moving in the
direction of decreasing tube length as the mean flow velocity increases.
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Figure 2.12: Stability maps of a horizontal Rijke tube; the coloured shading denotes the growth rate given
on the colour bar on the right. The control parameter is L, the length of the Rijke tube; xq = 0.01 m,
K = 3× 105 J kg−1. (a) Mean flow is absent; (b) M = 0.1; (c) M = 0.3; (d) M = 0.5.
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Figure 2.13: Hysteresis effect and bistable regions in a horizontal Rijke tube with changes in the Rijke
tube length 0.4 < L < 1 m, xq = 0.01 m, K = 3×105 J kg−1. The white part indicates the stable region
and the grey part indicates the unstable region. The blue solid arrows denote the forward (bifurcation)
path when the system is switched on with a small perturbation when L = 0.4 m and the tube length
gradually increases to 1 m. The red dashed arrows denote the backward (bifurcation) path when the
system is switched on with a small perturbation when L = 1 m and tube length gradually decreases to
0.4 m. (a) Mean flow is absent; (b) M = 0.5.

Figure 2.13 focuses on the range 0.4 m< L < 1 m and shows the bifurcation that is observed
when L is increased (solid blue curve) or decreased (dashed red curve). Fig. 2.13(a) shows this
forM = 0. The system is in the limit cycle at the starting point of the forward path (L = 0.4 m),
and as L increases, the limit cycle is maintained while its amplitude grows. Along the backward
path, several transitions occur: at L = 0.88 m and L = 0.45 m, there are transitions from a
linearly stable state to a limit cycle (subcritical Hopf bifurcation); at L = 0.56 m, the transition
is in the other direction, i.e. from limit cycle to linearly stable (supercritical Hopf bifurcation).
The bistable regions are in the ranges L = 0.45 ∼ 0.56 m and L = 0.88 ∼ 1 m. For increasing
Mach numbers, the bands of instability and hence the Hopf points move to lower L-values; this
changes the bistable regions and the transition points as shown in Fig. 2.13(b).

Figure 2.14 depicts the effect of the parameters L, M and ϵ on the oscillation frequency,
ℜ(Ω1), of the thermoacoustic mode 1. As expected, ℜ(Ω1) decreases with L; it also decreases
slightly with M , while the amplitude ϵ has no obvious effect.
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Figure 2.14: Modal frequency variation, Re(Ω1)/(2π), as function of the tube length, L, for various
Mach number M . xq = 0.01 m, K = 3 × 105 J kg−1. Blue symbols represent the stable modes; red
symbols represent the unstable modes. (a) Small amplitude, ϵ = 0.1; (b) large amplitude, ϵ = 0.8.
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2.4. A MATRIX BURNER CASE

In this section, the aim is to show, on the one hand, the versatility of the adjoint Green’s function
approach by applying it to a matrix burner test rig developed by Noiray et al. (2008), which has
different boundary conditions from the Rijke tube; on the other hand, it is shown that with
a properly measured flame describing function, the model prediction has quantitatively good
agreement with experiments.

Figure 2.15: Sketch of the matrix burner setup used in Noiray et al. (2008).

The matrix burner system, shown in Fig. 2.15, features a movable piston at the upstream
end (where the mixture of fuel and air also comes in), allowing the continuous adjustment of
the tube length. The downstream end is fitted with a perforated plate but is otherwise open.
A two-dimensional array of flamelets is anchored on the downstream side of the perforations,
forming a matrix flame just outside the tube.

Table 2.2: Model parameters to simulate Noiray et al. (2008)’s test rig.

Parameters Symbol Value Unit
Mean temperature T̄ 296 K
Sound speed c 345 m s−1

Reflection coefficient (upstream end) R0 1
Reflection coefficient (downstream end) RL -1

Fitting parameters
of nonlinear heat release model

g0 1.4
g1 0.3
τ0 0.94× 10−3 s
τ2 2.5× 10−3 s

Mach number M 0.1
Tube length L 0.1 ... 0.75 m
Heat source position xq 0.01 m to L
Heater power K 3× 105 J kg−1

Noiray (2007) measured the reflection coefficients of both ends of the matrix burner and
showed that the piston end could be approximated as a closed boundary (R0 = 1), while the
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perforated-plate-flame end had a reflection coefficient around RL = −1. Therefore, this setup
is effectively a quarter-wave resonator with a closed end and an open end. The matrix flame and
the perforated plate are considered as a single heat source element. Since the present analytical
model does not include the mean temperature jump, modelling a flame located outside the tube
(at 0.01 m from the downstream end) is expected to yield a good match with the experimental
setup. The heat release rate is modelled by Heckl (2015)’s extended time-lag law described by
Eqs. (2.3)-(2.4c), with the fitting parameters listed in Table 2.2. Also listed in Table 2.2 are all
the other parameter values we use to model Noiray’s test rig.

Figure 2.16: Comparison of heat-driven modes of a quarter-wave resonator with tube length L as the
control parameter, with experimentally measured results from Noiray et al. (2008). The gray regions
denote instability, while the white regions indicate stability. The red solid curves denote the limit-cycle
amplitudes. The green stars display the acoustic velocity amplitude measured in experiments when the
tube length is progressively increased, whereas the blue circles represent the acoustic velocity amplitude
obtained with the tube length progressively decreasing. (a) m = 1; (b) m = 2; (c) m = 3.

Figure 2.16 shows the stability maps calculated with the AGF approach of the first three
modes of the matrix burner with the tube length L as the control parameter, together with
corresponding data extracted during the limit-cycle phase of the experiments. Our stability
maps successfully capture the unstable states except for the small-amplitude limit cycle region
of mode 2 in the backward path, around L = 0.2 m. The size of the limit cycle region of mode
3 and, generally, the limit cycle amplitudes are over-predicted. This is mostly due to the heat
release model incorrectly predicting the high-frequency behaviour of the flame (Heckl, 2015),
and also because we have neglected any damping that would be present in an actual combustion
chamber.

Figure 2.17 shows the frequency of the oscillatory stable states, i.e. when ℑ(Ωm) = 0,
corresponding to the limit cycles indicated by red curves in Fig. 2.16. The agreement between
predicted and measured frequencies for all modes is very satisfactory, and this is because the
flame is very close to the downstream end of the tube, so the effect of the hot region can be
ignored.
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Figure 2.17: Comparison of heat-driven frequencies of modes m = 1, 2, 3 at the limit cycle amplitudes,
corresponding to the red solid curves in Fig. 2.16; the symbols correspond to experimental measurements
by Noiray et al. (2008).

2.5. NON-UNIFORM TEMPERATURE FLOW DUCT

In a more realistic case, besides a steady mean flow in the axial direction of the tube, we include
a temperature jump in the vicinity of the compact heat source located at x = xq. The heat source
produces a hot region around it and downstream of it. A sketch of this system is illustrated in
Fig. 2.18.

Figure 2.18: Sketch of velocity potential wave propagating in a one-dimensional flow-duct model.

We assume the temperature suddenly changes at a compact virtual plane in x = xT and the
distance ∆x = xq − xT is much smaller than the length of the duct L. The acoustic field in the
cold and hot regions are governed by Eq. (2.5), respectively. At the temperature jump interface,
the transmission and reflection coefficients of the acoustic waves coming from the upstream
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side and the downstream side are denoted as TAB, RAB and TBA, RBA, respectively.
The AGF framework for modelling this thermoacoustic system is very similar to the uniform

flow-duct case, which has been shown in the previous sections. In this section, we point out the
parts that are different for the non-uniform temperature case.

2.5.1. Reflection and transmission coefficients across a sudden jump in temperature

In the absence of mean flow, the derivation of the reflection and transmission coefficients across
the abrupt characteristic impedance change, T (p)

AB , R
(p)
AB and T (p)

BA , R
(p)
BA, is described, for example,

by Rienstra and Hirschberg (2004) and Kinsler et al. (2000). The authors thank one of the
referees for drawing particular attention to these conditions when the mean flow is present. In
this section, we outline the details of our derivation.

Figure 2.19 shows the setup when an abrupt change in temperature occurs in an infinitely
long one-dimensional tube. A steady mean flow is present in the tube, from left to right. The

Figure 2.19: Sketch of temperature jump in an infinitely long tube.

incident, reflected, and transmitted pressure wave complex amplitudes are called pi, pr, and pt,
respectively. For the convenience of derivation, the position of the temperature jump is set at
x = 0, and the reflection and transmission coefficients at the jump are defined as

R
(p)
AB =

pr
pi
, and T

(p)
AB =

pt
pi
, (2.58)

respectively.
We start with the linearised mass and momentum conservation equations for the perturba-

tions, which hold at the temperature jump:

ρ′1ū1 + u′1ρ̄1 = ρ′2ū2 + u′2ρ̄2, (2.59a)
2ρ̄1ū1u

′
1 + ρ′1ū

2
1 + p′1 = 2ρ̄2ū2u

′
2 + ρ′2ū

2
2 + p′2. (2.59b)

The disturbances can be written as

p′1 = pie
ik+1x + pre

−ik−1x, (2.60a)

p′2 = pte
ik+2x, (2.60b)

u′1 =
1

ρ̄1c1

(
pie

ik+1x − pre
−ik−1x

)
, (2.60c)

u′2 =
1

ρ̄2c2
pte

ik+2x, (2.60d)
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and ρ′j = p′j/c
2
j , with j = 1, 2.

Substituting Eqs. (2.60) into Eqs. (2.59) and using Eqs. (2.58), we obtain the following two
equations,

(M1 + 1) +R
(p)
AB(M1 − 1) =

c1
c2
T

(p)
AB (M2 + 1), (2.61a)

(M1 + 1)2 +R
(p)
AB(M1 − 1)2 = T

(p)
AB (M2 + 1)2. (2.61b)

Solving the above for the unknowns R(p)
AB and T (p)

AB yields the reflection and transmission coeffi-
cients in terms of pressure:

R
(p)
AB =

−(M1 + 1)

[
(M1 + 1)− c2

c1
(M2 + 1)

]
(M1 − 1)

[
(M1 − 1)− c2

c1
(M2 + 1)

] , (2.62a)

T
(p)
AB =

2(1 +M1)

(M2 + 1)

[
(M2 + 1)− c1

c2
(M1 − 1)

] . (2.62b)

Similarly, for the incident wave coming from the downstream direction, we obtain

R
(p)
BA =

−(M2 − 1)

[
(M2 − 1)− c1

c2
(M1 − 1)

]
(M2 + 1)

[
(M2 + 1)− c1

c2
(M1 − 1)

] , (2.63a)

T
(p)
BA =

2(1−M2)

(M1 − 1)

[
(M1 − 1)− c2

c1
(M2 + 1)

] . (2.63b)

In the limiting case of no mean flow (M1 = M2 = 0), using c1/c2 = (ρ̄2c2)/(ρ̄1c1), the
above Eqs. (2.62)-(2.63) reduce to the following form

T
(p)
AB =

2ρ̄1c1
ρ̄1c1 + ρ̄2c2

, T
(p)
BA =

2ρ̄2c2
ρ̄1c1 + ρ̄2c2

,

R
(p)
BA =

ρ̄1c1 − ρ̄2c2
ρ̄1c1 + ρ̄2c2

, R
(p)
BA =

ρ̄2c2 − ρ̄1c1
ρ̄1c1 + ρ̄2c2

.
(2.64)

Comparing Eqs. (2.64) with the results reported by Rienstra and Hirschberg (2004) and Kinsler
et al. (2000), we cannot fail to notice that our results are similar, but not identical, to those
reported. This is related to the fact that in the study of wave propagation across a contact
discontinuity in compressible flows, it is common in the acoustics literature to assume that the
disturbance velocity and pressure are continuous across the interface. These assumptions must,
however, be relaxed in the presence of variable mean densities, when the disturbance mass flux
must be imposed as continuous across the contact discontinuity. In the absence of mean flow,
this becomes ρ̄1u′1 = ρ̄2u

′
2 (rather than u′1 = u′2), and Eqs. (2.64) follow.
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Using Eqs. (2.19), we obtain the reflection and transmission coefficients across a sudden
temperature jump when a mean flow is present, in terms of the velocity potential disturbances:

RAB =
c1(M1 + 1)− c2(M2 + 1)

c1(M1 − 1)− c2(M2 + 1)
, (2.65a)

TAB =
−2c2

c1(M1 − 1)− c2(M2 + 1)
, (2.65b)

RBA =
c1(M1 − 1)− c2(M2 − 1)

c1(M1 − 1)− c2(M2 + 1)
, (2.65c)

TBA =
−2c1

c1(M1 − 1)− c2(M2 + 1)
. (2.65d)

The above coefficients (2.65) are used in the present work.

2.5.2. Natural frequencies of a flow-duct with non-uniform temperature

Similar to the derivation of Eq. (2.16), the natural frequencies of flow-duct with a temperature
jump solely depend on the geometry and physical properties of the setup, without considering
the additional sources, as shown in Fig. 2.20.

Figure 2.20: Sketch of the flow duct with non-uniform temperature without the presence of the heat
source.

The general solution of acoustic velocity potential can then be written as a superposition of
forward and backward travelling waves:

ϕ̂(x, ω) =

{
A+e

ik+1x + A−e
−ik−1x for 0 < x < xT

B+e
ik+2x +B−e

−ik−2x for xT < x < L,
(2.66)

where A+, A−, B+ and B− are (generally complex) amplitudes of the velocity potential. The
wave numbers are different for hot and cold regions because of the non-uniform temperature.
The reflection coefficients R0 and RL are used to define the boundary conditions. At x = 0
there is

R0 =
A+e

ik+1x

A−e−ik−1x

∣∣∣∣∣
x=0

, giving A+ = A−R0, (2.67)
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and likewise at x = L,

RL =
B−e

−ik−2x

B+eik+2x

∣∣∣∣∣
x=L

, giving B− = B+RLe
i(k+2+k−2)L. (2.68)

At x = xT , the reflection coefficients, RAB and RBA, and the transmission coefficients, TAB and
TBA, give the constraints at the temperature jump,

A−e
−ik−1xT = RABA+e

ik+1xT + TBAB−e
−ik−2xT , (2.69a)

B+e
ik+2xT = RBAB−e

−ik−2xT + TABA+e
ik+1xT . (2.69b)

Equations (2.67) - (2.69) give four homogeneous equations for A+, A−, B+ and B− and leads
to the coefficient matrix

MF =


1 −R0 0 0

−eik+1xTRAB e−ik−1xT 0 −e−ik−2xTTBA

−eik+1xTTAB 0 eik+2xT −e−ik−2xTRBA

0 0 −ei(k+2+k−2)LRL 1

 (2.70)

and its determinant gives the characteristic equation

F (ω) = det(MF ) =−RLRBAe
i(L−xT )k−2−ik−1xT+ik+2L+

+R0RL (RABRBA − TABTBA) e
i(L−xT )k−2+ik+1xT+ik+2L−

−R0RABe
ixT (k+1+k+2) + e−ixT (k−1−k+2) = 0.

(2.71)

The eigenfrequencies ωn are the solutions of the characteristic equation for mode n = 1, 2, 3, ....

2.5.3. AGF of a non-uniform temperature flow duct

The solution for the direct Green’s function of the non-uniform temperature flow-duct is

g(x, x′, t− t′) = H(t− t′)
∞∑
n=1

Re
[
ĝn(x, x

′, ωn)e
−iωn(t−t′)

]
. (2.72)

with

ĝn(x, x
′, ωn) = − 2π TBA

ū2ωnF ′(ωn)


η(x′, ωn)α(x, ωn) for 0 < x < xT ,

η(x′, ωn) β(x, ωn) for xT < x < x′,

β(x′, ωn) η(x, ωn) for x′ < x < L.

(2.73)

The details of derivation can be found in the Appendix A.5. With the reciprocity property,
Eq. (2.48), the AGFG(x′, x, t−t′) can be obtained. The modal amplitude of the AGF represents
the receptivity of the system to external forcings throughout the tube.
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2.5.4. Validation of linear stability prediction with a wave-based model

In this section, we validate the AGF framework against a wave-based network modelling ap-
proach by comparing the linear stability prediction of a non-uniform horizontal Rijke tube sys-
tem. Hence we drop the nonlinear amplitude dependence of the heat release law for now;
instead, we use a linear unsteady n− τ heat release law,

Q′(t) = Kn1u
′
1(t− τq). (2.74)

The parameters of the system are listed in Table 2.3.

Table 2.3: Model parameters of the non-uniform horizontal Rijke tube

Parameters Symbol Value Unit
Inlet flow Mach number M1 0.02
Cold region mean temperature T̄m1 304 K
Hot region mean temperature T̄m2 484 K
Cold region sound speed c1 349.52 m s−1

Hot region sound speed c2 441.02 m s−1

Reflection coefficient (upstream end) R0 −(1 +M1)/(1−M1)
Reflection coefficient (downstream end) RL −(1−M2)/(1 +M2)
Tube length L 2 m
Heat source position xq 0 ... L m
Heater power K 3× 105 J kg−1

Parameters of
linear heat release model

n0 0
n1 1.2
τq 2× 10−3 and 8× 10−3 s

The wave-based network modelling approach used here is adopted from Dowling and Stow
(2003) p.756-757, example 4. The tube is divided into two sections: upstream and downstream
of the compact flame sheet. The mean flow involved in the system admits entropy and vorticity
waves on the downstream side. In the one-dimensional case, the vorticity wave is neglected.
The complex eigenfrequency of disturbances is denoted as Ω. Therefore, the general solutions
of the acoustic disturbances can be formulated as,

p′j(x, t) = (A+je
−iΩ x

cj(1+Mj) + A−je
iΩ x

cj(1−Mj) )eiΩt, (2.75a)

u′j(x, t) =
1

ρ̄jcj
(A+je

−iΩ x
cj(1+Mj) − A−je

iΩ x
cj(1−Mj) )eiΩt, (2.75b)

ρ′j(x, t) =
p′j(x, t)

c2j
− Sj ρ̄j

cp
e
iΩ(t− x

ūj
)
, (2.75c)

T ′
j(x, t) =

p′j(x, t)

ρ̄jcp
+

Sjc
2
j

(γ − 1)
e
iΩ(t− x

ūj
)
. (2.75d)

cp is the specific heat capacity. The subscripts j = 1, 2 indicate the upstream and downstream
sections, respectively. A+j , A−j , and Sj are respective amplitudes of right-travelling, left-
travelling, and entropy waves. The upstream of the heat source, the flow is considered isen-
tropic, i.e. S1 = 0. Both ends of the tube are considered open, i.e.

p′1 = 0, at x = 0; and p′2 = 0, at x = L. (2.76)
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Figure 2.21: A comparison of complex eigenfrequencies obtained with adjoint Green’s function approach
(AGF) and network modeling approach (NW) with the dependence on the heat source position, xq. n1 =
1.2, M1 = 0.02. The subfigures in the upper row (a-b) show the results of the case when τq = 0.002 s.
The bottom row, (c-d), shows the result of the case when τq = 0.008 s. Subfigures (a) and (c) also show
the dependence of the fundamental natural frequency (ω1) on xq.

The sound field in the two sections is constrained and coupled with a series of jump conditions
across the compact heat source,

ρ̄1û1 + ρ̂1ū1 = ρ̄2û2 + ρ̂2ū2, (2.77a)
ρ̂1ū

2
1 + 2ρ̄1ū1û1 + p̂1 = p̂2 + ρ̂2ū

2
2 + 2ρ̄2ū2û2, (2.77b)

ρ̄1ū1Ĥ1 + ρ̄1H̄1û1 + ū1H̄1ρ̂1 + ρ̄1Q̂ = ρ̄2ū2Ĥ2 + ρ̄2û2H̄2 + ρ̂2ū2H̄2 (2.77c)

with H̄j = cpT̄j + ū2j/2 and Ĥj = cpT̂j + ūjûj the steady and unsteady enthalpy, respectively.
Eqs. (2.77) are Eqs. (10a-10c) in Dowling and Stow (2003) linearized around the mean flow
with the flow variables decomposed as p(x, t) = p̄ + p′(x, t), u(x, t) = ū + u′(x, t), ρ(x, t) =
ρ̄ + ρ′(x, t), T (x, t) = T̄ + T ′(x, t), Q(t) = Q̄ + Q′(t), and taking p′(x, t) = p̂(x) eiΩt and
similarly for u′, ρ′, T ′, and Q′.

Eqs. (2.74)-(2.77) can be formulated into matrix form M(ω)v = 0 with the unknown vector
v consisting of wave amplitudes A+j , A−j , S2, and Q̂. Solving the characteristic equation
det[M(Ω)] = 0 gives the eigenfrequencies (Ω) of the given thermoacoustic system. The real
part, Ωr, represents the angular frequency of perturbations, and the negative imaginary part,
−Ωi, represents the growth rate of perturbations.

Figure 2.21 shows that the complex eigenvalues computed with the AGF approach agree
very well with the results calculated using the wave-based network modelling approach. We
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have tested two time delays. The first time delay, τq = 0.002 s, lies in the range of 0 < τq <
T1/2, where T1 = 2π/ω1 is the oscillation period of the fundamental eigenmode. For a Rijke
tube whose time delay lies in this range, the system is unstable when the heat source is located
in the upstream half of the tube, and it is stable when the heat source lies in the downstream
half of the tube (Raun et al., 1993), as shown in Fig. 2.21(b). When τq = 0.008 s lies in the
range of T1/2 < τq < T1, the regions of stability and instability are interchanged, as shown
in Fig. 2.21(d). Fig. 2.21(a) and (c) show the comparison between the eigenfrequencies of the
Green’s function first mode (n = 1, Eq. (2.71)), which do not vary with the heat release law of
the flame, and the heat-driven frequencies of mode m = 1, at two values of time delays. It is
observed that the difference between the two frequencies is not major, and the frequency shift
is caused by the thermoacoustic feedback through the heat release law (Noiray, 2007; Orchini
et al., 2015; Dowling, 1999).

The good agreement between the heat-driven eigenfrequencies calculated by the network
modelling and the AGF approaches indicates that, although the entropy wave is not treated
explicitly in the derivation of the AGF approach, its contribution appears via the inclusion of
the heat source.

2.5.5. The open-end acoustic boundary conditions in a non-uniform flow duct

The acoustic pressure p′ is related to the velocity potential by the linearised momentum equation
in the form

p′ = −ρ̄

(
∂ϕ

∂t
+ ū

∂ϕ

∂x

)
(2.78)

In this section, the acoustic boundary conditions of the open ends in the presence of a steady
mean flow are discussed.

Upstream open-end boundary condition

For a thin-walled open-end tube, a free jet in the tube forms because of flow separation at the
edges. Due to the shape of the edges and wall thickness, the width of the formed jets varies,
described by a vena contracta factor α. This factor indicates the ratio of the free jet cross-
section to the pipe cross-section. It has been shown that, for the unflanged, sharp-edged open
pipe termination, the losses at inlet and outlet are comparable (Levine and Schwinger, 1948).
However, in this study, we assume that at the inlet of the pipe, the open edges are such that
there is no inflow separation. The pressure of the mixing flow at the inlet is equal to the ambient
pressure, giving the following open-inlet boundary condition:

R
(p)
0 = −1, i.e., R0 = −1 +M1

1−M1

. (2.79)

Downstream open-end boundary condition

In the one-dimensional Rijke tube configurations considered in this study, the pipe length is
much larger than its diameter D, and the analysis focuses on the low-frequency regime corre-
sponding to the fundamental acoustic modes. This gives the Helmholtz numberHe = kD ≪ 1.
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The system’s acoustic behaviour is dominated by plane wave propagation. Given that the Mach
number is not negligible and the flow has a significant impact on the acoustic behaviour, the
Strouhal number is St = He/M ≪ 1. In this limit, the flow condition at the open outlet of the
tube can be assumed as quasi-steady.

In the steady subsonic free jet formed at the open outlet of the tube, the pressure in the jet is
equal to the surrounding pressure (Shapiro, 1953). At low frequencies, the acoustic fluctuations
of the surrounding pressure can be neglected. In the first approximation, the pressure in the jet
is also equal to the pressure at the outlet termination. Consequently, the quasi-steady assump-
tion implies that the acoustic pressure perturbation at the open outlet vanishes, leading to the
downstream boundary condition:

R
(p)
L = −1, i.e., RL = −1−M2

1 +M2

. (2.80)

It should be emphasised that this condition accounts for the absorption of acoustic energy, which
arises from vortex shedding at the free jet shear layer.

Figure 2.22: Stability maps with the control parameter being θ, the relative temperature difference.
xq = 0.1 m, the cold flow temperature is fixed as T̄m1 = 304 K. (a) M1 = 0; (b) M1 = 0.04; (c)
M1 = 0.08; (d) M1 = 0.12.
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2.5.6. Effect of non-uniform temperature field

We consider a temperature jump across the compact flame that separates the geometry into
cold and hot regions. The non-uniformity of the temperature field is described by the relative
temperature difference, defined as,

θ =
Tm2 − Tm1

Tm1

. (2.81)

The relative temperature difference θ is examined as a control parameter to assess the impact of
burnt gas temperature on the system’s stability.

Figure 2.23: Same as Fig. 2.22 for xq = 1.0 m.

We now examine the relative temperature difference θ as a control parameter to assess
the impact of burnt gas temperature on the system’s stability. Figs. 2.22 and 2.23 show the
stability maps when the heat source position is chosen as xq = 0.1 m and xq = 1.0 m,
respectively. For each case, stability maps are provided for varying mean flow velocities:
M1 = 0, 0.04, 0.08, 0.12. Fig. 2.22 shows that, when the heat source is located in the upstream
half of the flow duct, an increase of mean flow velocity significantly changes the stability be-
haviour of the system. As the mean flow velocity increases, the stable region (blue shades)
shrinks, and the growth rates in the unstable region become higher. However, when the heat
source is in the mid-to-downstream half of the tube, as shown in Fig. 2.23, the effect of mean
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Figure 2.24: Hysteresis, bistable regions, and bifurcation paths in Fig. 2.22 (a) and (c), when changing
relative temperature difference 0 < θ < 1. The white part indicates the stable region, and the grey
part indicates the unstable region. The blue solid arrows denote the forward (bifurcation) path when the
system is switched on with a small perturbation when θ = 0 and the hot region temperature gradually
increases to θ = 1. The pink dashed arrows denote the backward (bifurcation) path when the system is
switched on with a small perturbation when θ = 1 and the hot region gradually cools down to θ = 0. (a)
Mean flow is absent, M1 = 0; (b) M1 = 0.08.

flow is less significant. It is observed that the stable region expands slightly as the mean flow
velocity increases.

Figure 2.24 illustrates the same results as Fig. 2.22(a) and (c) for M1 = 0 and M1 = 0.08,
emphasising the presence of bistable regions and the occurrence of bifurcation. The stable re-
gions are depicted in white, while unstable regions are shaded in grey. The heat source position
is fixed at xq = 0.1 m. The light blue arrows show the stability behaviour path when the tem-
perature on the downstream side of the heat source gradually increases from Tm2 = Tm1 to
Tm2 = 2Tm1 while the pink dashed arrows indicate the gradual decrease from Tm2 = 2Tm1 to
Tm2 = Tm1. When the mean flow is absent, Fig. 2.24(a) shows that the system undergoes a
supercritical bifurcation as it is initialised with an infinitesimal amplitude and then heated or
cooled down. The stability behaviour follows the same path, as indicated by the blue and pink
arrows. Another unstable region of stripe shape is found, for normalised amplitude ϵ > 0.8. As
the mean flow velocity increases, the area of the stable region becomes smaller and eventually
the two unstable regions merge, as shown in Fig. 2.24(b).

To illustrate the dynamics under different mean flow velocities, two initial conditions are
selected: (θ, ϵ) = (0.5, 0.1) and (θ, ϵ) = (0.5, 0.5). These points are marked as PA1 and PB1

for M1 = 0 and correspondingly PA2 and PB2 for M1 = 0.08. Their time histories are shown
in Fig. 2.25. It is clear that both points PA1 and PB1 were in the stable region, and the system
asymptotically decays to a linearly stable state. Now, given a small mean flow, for the initial
condition at point PA2, the system amplitude grows until reaching a limit cycle state; while for
point PB2, the amplitude decays to the oscillating limit cycle state.

Figure 2.26 shows the variation of the heat-driven frequency of the first mode as a function
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Figure 2.25: Time histories of normalized acoustic velocity under different initial conditions (the relative
temperature difference θ, and the excitation amplitude ϵ), marked in Fig. 2.24. The heat source is fixed
at xq = 0.1 m; θ = 0.5. (a) PA1: ϵ = 0.1, M1 = 0; (b) PB1: ϵ = 0.5, M1 = 0; (c) PA2: ϵ = 0.1,
M1 = 0.08; (d) PB2: ϵ = 0.5, M1 = 0.08.

of the heat source position for different hot region temperatures when the mean flow velocity
is fixed at M1 = 0.04. Part (a) illustrates the results when ϵ = 0.1, whereas in part (b), the
amplitude is larger (ϵ = 0.8). It is observed that for both low-amplitude and high-amplitude
excitations, when the heat source is located in the upstream half of the tube, the increase of
θ leads to an increase in heat-driven oscillation frequencies. However, for low ϵ = 0.1, the
reverse effect is found when xq is in the downstream half of the tube: increasing θ leads to
lower heat-driven oscillation frequencies.
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Figure 2.26: Heat-driven frequency variation of fundamental mode (m = 1), Re(Ω1)/(2π), as a function
of the heat source position, xq, for various relative temperature differences, θ. M1 = 0.04. Blue symbols
represent the stable state; red symbols represent the unstable state. (a) Small amplitude, ϵ = 0.1; (b)
large amplitude, ϵ = 0.8.

2.5.7. The effect of Mach number

In this section we explore the nonlinear behaviour that emerges in thermoacoustic systems due
to changes in the heat source position and in the amplitude of the acoustic excitation velocity.

The stability maps based on the control parameter xq for different mean flow velocities
through the tube are shown in Fig. 2.27. Figure 2.28 shows the results of Fig. 2.27 (a–b)
highlighting the bifurcation path and the bistable regions. The relative temperature difference is
fixed at θ = 0.6. For the case M1 = 0, shown in Fig. 2.27(a), the system is linearly unstable for
0.23 m ≤ xq ≤ 0.88 m and 0.95 m ≤ xq ≤ 1.53 m. When the mean flow increases, the top and
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Figure 2.27: Stability maps with the control parameter being xq, the position of the heat source. θ = 0.6.
(a) absent mean flow; (b) M1 = 0.04; (c) M1 = 0.08; (d) M1 = 0.12.

bottom unstable regions when xq < 0.89 m are merged together. The linearly stable region of
the no-mean-flow case (0 m < xq < 0.23 m) disappears when the mean flow is present. In the
meantime, the linearly stable region when xq is around the middle of the tube expands. From
the growth rate values, it is observed that, generally, increasing the mean flow velocity increases
the growth rate.

As shown in Fig. 2.28(a), when the system is switched on when xq = 0 m with a small exci-
tation amplitude, the system is linearly stable. As the heat source moves toward the downstream
end, the system first experiences a supercritical bifurcation at xq = 0.22 m: the oscillations
gradually increase in amplitude as xq is varied, marked by the light-blue solid arrows. When
the system is switched on at xq = 2 m with a small excitation amplitude and moving towards
the upstream end, the system remains linearly stable until the subcritical bifurcation point at
xq = 1.53 m and suddenly jumps to a high-amplitude limit-cycle state and then follows the path
marked by the pink dashed arrow.

When a low-Mach-number mean flow is introduced into the system, as shown in Fig. 2.27(b),
M1 = 0.04, a new supercritical bifurcation point of xq = 0.89 m and a subcritical bifurcation
point xq = 0.95 m appear, as shown in Fig. 2.28(b). Two bistable regions in the range 0.90 m
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Figure 2.28: Hysteresis, bistable regions and bifurcation paths in Fig. 2.27 (a) and (b), when changing
the heat source position, 0 m < xq < 2 m. (a) Mean flow is absent, M1 = 0; (b) M1 = 0.04.

< xq <0.95 m and 1.59 m < xq <2 m emerge. As the Mach number keeps increasing, as
shown in Fig. 2.27(c-d), it is observed that the bistable regions close to the downstream end
become narrower while the bistable region of xq around the middle of the tube becomes wider.
The size of the hysteresis zone slightly decreases as the mean flow velocity increases. These
observations are in broad agreement with experimental findings by Gopalakrishnan and Sujith
(2014), indicating that an increase in the mass flow rate eventually leads to a reduction of the
hysteresis zone when xq > 0.89 m and an expansion of the unstable zone when xq < 0.89 m.

Figure 2.29 shows the time histories of the normalized acoustic velocity at the heat source
for different initial conditions, marked in Fig. 2.28 as PA, PB, PC , PD. The first type of be-
haviour appears when the system is given a small perturbation, and the initial condition is
located in an unstable region. The amplitude of uq grows until saturation and remains in an
oscillatory state with a relatively high amplitude. Fig. 2.29 (a) shows an example for point PA,
(xq, ϵ) = (0.5 m, 10−6). The second type of behaviour occurs when the system is excited at a
high amplitude, and the initial state is located in a stable region. The amplitude will decay until
it reaches the closest limit cycle state, as shown in Fig. 2.29(b) for point PB, (xq, ϵ) = (0.5 m,
0.6) or until the amplitude gradually dies out, as shown in Fig. 2.29(c) for point PC , (xq, ϵ) =
(1.6 m, 0.1). The third type of behaviour is when the system is excited at a high amplitude, and
the initial state is located in an unstable region. The amplitude will keep growing until it reaches
the saturation state, the limit cycle. An example is shown in Fig. 2.29(d) for point PD, (xq, ϵ) =
(1.6 m, 0.1), M1 = 0. The comparison of subfigures (c) and (d) confirms the observation that a
mean flow can reduce the bistable region for xq close to the downstream end.
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Figure 2.29: Time histories of normalized acoustic velocity under different initial conditions (the heat
source position xq, and the excitation amplitude ϵ), marked in Fig. 2.28. (a) PA: xq = 0.5 m, ϵ = 10−6,
M1 = 0.04, an unstable state with small excitation; (b) PB: xq = 0.5 m, ϵ = 0.6, M1 = 0.04, amplitude
decaying to an oscillatory stable state; (c) PC : xq = 1.6 m, ϵ = 0.1, M1 = 0, gradually decaying to a
stable stationary state; (d) PD: xq = 1.6 m, ϵ = 0.1, M1 = 0.04, relatively large excitation amplitude
growing to a limit cycle state.
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2.6. NOISE-INDUCED DYNAMICS

In previous sections, we have examined the nonlinear dynamics in deterministic systems. In this
section, we use the AGF framework to investigate the effect of additive noise on the stability of
a Rijke tube with nonuniform temperature. Although white noise is frequently used as a forcing
condition in the literature, it has been demonstrated that the existing noise in the combustion
chamber has a low-pass characteristic typical of colored noise, specifically pink noise (Rajaram
and Lieuwen, 2009). Therefore, we will examine two types of noise, white and pink noise.

2.6.1. The integral governing equation

The system, including an additive noise source, is defined by the PDE,

∂2ϕ

∂t2
+ 2ūi

∂2ϕ

∂t∂x
+ (ū2i − c2i )

∂2ϕ

∂x2
= −(γ − 1)q + ξN, (2.82)

where ūi is the mean flow velocity, and ci is the speed of sound, with i = 1, 2 indicating the
cold and hot region, respectively. Besides the volumetric unsteady heat release rate generated
by the source, q(x, t), the function N(x, t) is added in Eq. (2.82) representing a random signal
that models the additive noise source in the system at the heat source position. The definition of
N is determined by the type of noise being considered. ξ is a constant number that represents
the noise level.

The integral equation for the velocity fluctuation at the heat source position is
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,

(2.83)
The first term on the right-hand side describes the contribution of the heat source to the acoustic
field. The second term quantifies the noise effect, and the last term is related to the initial
condition.

2.6.2. The external stochastic noise

Given that combustion chambers are noisy environments, we now consider two types of noise.
Although white noise is frequently used as a noise term in the literature, it has been demon-
strated that the existing noise in the combustion chamber has a low-pass characteristic typical
of colored noise, specifically pink noise (Rajaram and Lieuwen, 2009). Therefore, we will ex-
amine both white and pink noise in this study. Both types of noise have Gaussian distributions
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Figure 2.30: Characterization of noise signals. Left column: pink noise; right column: white noise. (a-b)
Noise signals; (c-d) averaged power spectral density; (e-f) relative probability of amplitude values.

and are generated within the amplitude range [-0.1, 0.1]. The noise level is determined by the
parameter β, a coefficient of the distribution function.

It is important to note that the noise intensity parameter β defined in Arabi and Heckl (2025)
is not directly equivalent to the parameter ξ used in the present study. In their work, the govern-
ing PDE incorporates a factor of 1/(c22 − ū22), compared to the PDE used in the present work,
which propagates through the solutions of the Green’s functions. As a result, the sensitivity
to stochastic forcing in the current study is lower than that observed in their framework. The
relationship between the two noise intensity parameters is given by β = ξ/(c22 − ū22).

Figure 2.30 illustrates the characteristics of white and pink noise signals, N(t). Both types
of noise are generated using built-in functions in MATLAB (2024) and have Gaussian distribu-
tions within the amplitude range [-0.1, 0.1]. Both noise signals have a time-averaged value of
zero. The left column illustrates the features of pink noise, including a sample of noise signals
in the time domain, the averaged power spectral density (PSD) that presents the energy distri-
bution across frequencies, and the relative probability of different amplitude values within the
noise signal. White noise (right column in Fig. 2.30) is distinguished by its uniform energy
distribution across all frequencies, as reflected in its relatively flat PSD. In contrast, pink noise
exhibits a spectrum where the power spectral density is inversely proportional to the frequency.
This characteristic means that as the frequency increases, the power decreases. In the frequency
range of the fundamental mode studied in this work (60–140 Hz), the acoustic energies carried
by these two noise types are of comparable values.
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2.6.3. Noise effect on the transition time

Figure 2.31: Effect of noise on reducing saturation time. Top row, white noise; bottom row: pink noise.
Subfigures (a) and (c) are the time histories of normalized acoustic velocity; (b) and (d) are the time
histories of envelope amplitude in logarithmic scale. Initial condition is chosen as point PA marked in
Fig. 2.28 (b): xq = 0.5, ϵ = 10−6. M1 = 0.04, θ = 0.6.

The transition time or saturation time refers to the duration it takes for the acoustic velocity
signal to evolve from its initial state to the limit cycle amplitude, marking the saturation of the
oscillation. Fig. 2.31 illustrates the impact of noise on the transition time. The initial condition
is selected in the unstable region, (xq, ϵ) = (0.5 m, 10−6), and we compare the time histories
for cases without noise, β = 0, and with two different levels of white noise and pink noise
β = 5, 10. When the noise is absent, the transition time to reach the saturation state for the
initial condition PA is Tsatur = 0.91 s. From Fig. 2.31(a) and (c), it is evident that both white
noise and pink noise significantly reduce the transition time for the acoustic velocity to reach
the limit cycle compared with the noise-free case. Fig. 2.31(b) and (d) present the envelope
amplitude of the corresponding signals on a logarithmic scale, derived from the absolute value
of their Hilbert transforms, |H(uq/ū2)|. The time evolution of the envelope amplitudes shows
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that the signals reach their saturation states with identical slopes, indicating that the reduction
in transition time due to noise is not related to changes in the growth rate. This is in line with
the analytical calculation results of Arabi and Heckl (2025).

Figure 2.32: Histogram of saturation time Tsatur obtained in 100 calculations with initial condition at
point PA, in the presence of: (a) white noise, β = 5; (b) pink noise, β = 5; (c) white noise, β = 10; (d)
pink noise, β = 10, respectively.

The change in transition time is due to the change in the initial state caused by the presence
of noise. Since the stochastic noise signal has negative values, in theory, it is also possible that
the noise could reduce the initial state amplitude, thereby postponing the system from reaching
the limit cycle state. However, the probability of this happening is very low. Fig. 2.32 shows the
number of occurrences of different saturation times when the system is excited with the initial
condition at PA for 100 repetitions. In our observations, postponement of saturation is never
observed. The comparison between Fig. 2.32 (a) and (b) also reveals that pink noise is more
effective than white noise in reducing the transition time to reach the limit cycle under the same
noise intensity level, despite the fact that the noise signals contain a similar amount of acoustic
energy. It is also observed that increasing the noise level, β, is more likely to increase the extent
of acceleration.
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Figure 2.33: Time histories of normalized acoustic velocity and the corresponding envelope amplitude
evolution of the system with given initial conditions: (a-b) point PN1, xq = 1.7 m, ϵ = 0.15, absent
of mean flow (M1 = 0), marked in Fig.2.28(a); (c-d) point PN2, xq = 1.73 m, ϵ = 0.15, M1 = 0.04,
marked in Fig.2.28(b). In both cases, the system is forced by pink noise with β = 3.

2.6.4. Mean-flow effect on noise-induced triggering

A stable thermoacoustic system can transition into self-sustained oscillations when exposed
to a disturbance that exceeds a critical amplitude threshold. This process is known as triggering,
and the critical amplitude threshold is referred to as the triggering amplitude. If the initial
disturbance amplitude is below this threshold, the system asymptotically returns to a stable
state. Triggering typically takes place when the system operates within the bistable region on the
stability map. Arabi and Heckl (2025) have demonstrated that pink noise can induce instability
in a horizontal Rijke tube when the mean flow is absent. In this section, we investigate the effect
of mean flow on noise-induced triggering in a thermoacoustic system. For each specified noise
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level, β, the system is initiated 100 times from the same initial condition, and the time histories
of the normalised acoustic velocity signals are computed. If triggering is not observed in any of
the trials, it is considered unlikely to occur under the given conditions.

Figure 2.34: Time histories of normalized acoustic velocity and the corresponding envelope amplitude
evolution of the system with given initial condition at point PN2, xq = 1.73 m, ϵ = 0.15, M1 = 0.04,
θ = 0.6, marked in Fig.2.28(b). The system is forced by different types of noise signals of the same
intensity β = 50. (a-b) Pink noise; (c-d) White noise.

We choose two initial conditions, PN1 (xq = 1.70 m, ϵ = 0.15, M1 = 0) and PN2 (xq =
1.73 m, ϵ = 0.15,M1 = 0.04), marked as red downward triangles in Fig.2.28. Both points are in
the bistable region and close to the stability margin, and they have the same excitation amplitude
and the same triggering amplitude, ϵ trig = 0.2, marked as the black dash-dot line in Fig. 2.33
and the following figures. For the case of PN1 where the mean flow is absent, triggering is
observed when the system is subjected to pink noise with intensity β = 3. The acoustic velocity
affected by noise initially grows to reach the triggering amplitude and causes the oscillation to
be triggered in the unstable region and grow to the limit cycle state, as illustrated in Fig. 2.33(a-
b). When M1 = 0.04, the effect of pink noise at the same level on the system is greatly
weakened. The initial growth caused by noise becomes negligible.
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For the case where a mean flow of M1 = 0.04 is present and the initial condition is set
at point PN2, the noise level β is gradually increased from 0 in increments of 5, as shown in
Figs. 2.34(a-b). Despite the noise signal having an intensity level ten times greater than that in
Figs. 2.33(c-d), the initial transient amplitude approaches the triggering amplitude at a slower
rate. This suggests that it is significantly more difficult for noise to induce instabilities in a
system with a mean flow compared to one without.

Figure 2.35: Time histories of normalized acoustic velocity, with initial condition of point PN2, xq =
1.73 m, ϵ = 0.15, M1 = 0.04, θ = 0.6, marked in Fig.2.28(b). The system is forced by different types
of noise signals of β = 20. (a) Time histories; (b) Evolution of the envelope amplitudes.

Figure 2.34(c-d) shows the system at initial condition PN2 subjected to white noise of
β = 50. The results indicate that the effect of white noise is minimal compared to pink noise.
In another example, shown in Fig. 2.35, even when the noise level is insufficient to trigger in-
stabilities, the residual noise in the system subjected to pink noise is noticeably stronger than
that in the system influenced by white noise. This difference is attributed to pink noise carrying
more energy at lower frequencies. In this study, the focus is on the fundamental mode (m = 1)
of the thermoacoustic system, which has modal frequencies ranging from 80 to 120 Hz. This
characteristic makes the fundamental mode more responsive to pink noise than to white noise.
Furthermore, the heat release model employed in the analysis reflects the flame’s behaviour as
a low-pass filter (Noiray, 2007; Ducruix et al., 2000; Heckl, 2015), which enhances the impact
of pink noise on the system dynamics.

2.7. CONCLUSIONS

This work has introduced an analytical framework utilizing the AGF to investigate self-excited
oscillations within a generalized thermoacoustic system. The system incorporates mean flow
and accounts for feedback interactions between the acoustic field and a heat source. The gov-
erning equation of the system has the form of the acoustic analogy equation, with a convective



66

term and a heat source described by a generalized time-lag heat release law. A key aspect of the
theory is the transformation of the governing partial differential equation of a non-self-adjoint
system into an integral equation utilizing the Lagrange-Green’s identity. The resulting integral
equation provides extensive flexibility to find solutions to the system; without modifications in
the AGF and without further derivations, we can easily assess the effect of changes in the initial
conditions or various external forcings. Another benefit is that the integral equation yields both
time-domain and frequency-domain results for multiple modes. The integral equation is also
used to derive an algebraic equation for the thermoacoustic eigenfrequencies. The theory is
validated against a widely used wave-based network modelling approach. The extended AGF
framework was applied to analyse a horizontal Rijke tube system with non-uniform mean flow,
paying special attention to the acoustic conditions at the contact discontinuity and at the open
ends of the duct.

The reciprocity relation between direct and adjoint Green’s functions is demonstrated. The
direct Green’s function describes the acoustic field generated by an impulsive point source,
while the AGF marches backward in time, revealing the system’s receptivity to forcing terms,
as well as initial conditions. Exploiting this relationship, we derive an analytical solution for
the AGF and demonstrate the application of the AGF framework in different thermoacoustic
configurations. The results provide key insights into:

• Stability and nonlinear dynamics: The AGF model successfully identifies Hopf bifurca-
tions, hysteresis phenomena, and bistable regions, with robustness in systems of different
boundary conditions. A laboratory matrix burner with a closed-end has been modelled,
and stability predictions and frequency variation of the first three modes obtained with the
AGF approach have shown good agreement with experimental measurements. For a Ri-
jke tube, taking different control parameters, such as heat source position, heater power,
and tube length, reveals rich nonlinear dynamics qualitatively agreed with those observed
in experiments.

• Mean flow convection effects: Mean flow convection plays a crucial role in thermoacous-
tic systems with non-uniform temperature fields. As the mean flow velocity increases, the
growth rate of the system under the same initial condition increases. When the relative
mean temperature difference and the heat source location serve as the control parameters,
the instability region changes, and the bistable region shifts even when a mean flow of
a small velocity is introduced. For a stochastic system, the existence of the mean flow
hinders the noise-induced triggering.

• Impact of temperature jump: The relative difference in downstream and upstream mean
temperatures across the compact flame strongly affects heat-driven oscillation frequencies
and the stability behaviour. When the heat source is located in the upstream half of the
tube, the influence is more pronounced. An increased temperature difference leads to
higher oscillation frequencies. When the heat source is located in the mid-to downstream
half of the tube, the opposite effect is observed for oscillation frequencies.

• Influence of additive noise: Both white noise and pink noise can change the transient
phase by reducing or increasing the time required for acoustic disturbances to reach the
limit-cycle amplitude. In general, a reduction is very likely to take place. This occurs
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through the alteration of disturbance amplitude rather than through a modification of the
transient growth rate. Additionally, noise-induced triggering is observed, with pink noise
being more effective than white noise of the same intensity. The presence of even small
mean flow velocities in the system significantly reduces noise-induced effects compared
to systems without mean flow.

In summary, this study provides a comprehensive AGF framework and presents new in-
sights into the complex interplay of temperature fields, mean flow, and additive noise in a one-
dimensional thermoacoustic system prototype. By addressing these critical aspects, the find-
ings reported here contribute to a better understanding of thermoacoustic stability mechanisms,
which are crucial for improving instability predictions and developing control strategies.





ADJOINT-BASED SENSITIVITY ANALYSIS

The aim of this chapter is to show, for a prototypical thermoacoustic system, the application of
all three types of adjoint sensitivity analysis listed in section 1.2.2., for the assessment of uncer-
tainties and the identification of steady and perturbation feedback passive control strategies.

The structure of the present contribution is as follows: in section 3.1., details of the lumped
model of the combustor reported in the literature are given. Linear stability analysis yields the
eigenspectrum, highlighting some discrepancies with the literature, particularly with respect
to the amplification rate of the eigenmodes. In section 3.2., we investigate the reasons for
these discrepancies, relating them to base-flow uncertainties by applying the adjoint base-state
sensitivity analysis. In sections 3.3. and 3.4., we aim to find optimal control strategies to
mitigate thermoacoustic instabilities with a focus on the two most unstable eigenmodes. In
section 3.3., the sensitivity to structural modifications in the base flow is evaluated against
variations in the flame position within the combustor. In section 3.4., we apply the structural
sensitivity analysis to evaluate the eigenvalue drift due to feedback forcings in the disturbance
field. Section 3.5. summarizes the main conclusions of this work.

3.1. THE 1-D PREMIXED COMBUSTOR MODEL

3.1.1. General description

The prototypical thermoacoustic system examined in this work is the quasi-one-dimensional
combustor reported in Dowling and Stow (2003), displayed in Fig. 3.1. The simplified com-
bustor geometry is based on the assumption of sufficiently low oscillation frequencies in the
combustor so that radial modes are cut off, and only plane waves transport acoustic energy.

Figure 3.1: Sketch (not-to-scale) of the one-dimensional three-duct combustor geometry, with notations
and boundary conditions. The positions of the ducts’ intersections are x = l1 and x = l2 (where the
compact flame is also located); the outlet of the system is at x = l3.



70

Table 3.1: Geometrical parameters of the three-duct combustor.

Section Length Cross-sectional Area
Plenum L1 1.7 m a1 0.0129 m2

Premixer L2 0.0345 m a2 0.00142 m2

Combustion Chamber L3 1.0 m a3 0.00385 m2

The system consists of a plenum, a premix duct, and a combustion chamber, modelled
as three straight ducts connected by discontinuities where jump conditions must be enforced.
The area changes, and the unsteady heat source (modelling the flame) are short enough to be
considered acoustically compact. The compact flame is located at the outlet of the premixer.
The combustor has a choked inlet to model the flow supplied by a centrifugal blower and an
open outlet as the burned gases are discharged into an open space or another large plenum. The
dimensions of the system are given in Table 3.1.

3.1.2. The low-order modelling approach

The simple combustion system in Fig. 3.1 is treated with the lumped approach described by
Dowling and Stow (2003). The flow is described by a set of equations, including governing
equations, boundary conditions, and jump conditions, with the ideal gas assumption. The equa-
tions are linearized around the base flow; thus, in each duct, the flow variables are decomposed
into a mean steady value plus a perturbation, viz. p(x, t) = p̄+ p′(x, t), u(x, t) = ū+ u′(x, t),
ρ(x, t) = ρ̄ + ρ′(x, t), T (x, t) = T̄ + T ′(x, t), Q(x, t) = Q̄ + Q′(x, t), where Q is the heat re-
lease rate generated by the flame. The base flow parameters, denoted as q̄ = (ρ̄j, ūj, p̄j, T̄j, Q̄),
are considered uniform and steady in each duct. The independent perturbation variables are
denoted as q′ = (ρ′j, u

′
j, p

′
j) with j = 1, 2, 3 representing each duct.

In the combustion chamber section, the mean temperature is the same as the flame temper-
ature Tf , and the mean pressure is the ambient pressure. At the area-increasing intersection,
x = l2, the Borda-Carnot equation is used; at the sudden contraction in x = l1, the flow is
assumed to behave isentropically. The set of equations used to find the base state, B(q̄) = 0, is
given in Appendix B.1.

In each section of the system (denoted by j = 1, 2, 3), the perturbations are governed by
differential equations representing the conservation of mass, momentum, and energy:

∂ρ′j
∂t

+ ūj
∂ρ′j
∂x

+ ρ̄j
∂u′j
∂x

= 0, (3.1a)

ρ̄j
∂u′j
∂t

+ ρ̄jūj
∂u′j
∂x

+
∂p′j
∂x

= 0, (3.1b)

∂p′j
∂t

+ ūj
∂p′j
∂x

+ γp̄j
∂u′j
∂x

= 0. (3.1c)

In the system above no summation is intended over the j index. A wave decomposition is intro-
duced for the perturbation variables; pressure, density, and velocity fluctuations in the frequency
domain (q′(x, t) = q̂(x)eiωt) are decoupled as forward and backward travelling acoustic waves
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plus an entropy wave convected by the mean flow:

p̂j = A+je
ik+jx + A−je

ik−jx, (3.2a)

ρ̂j =
1

c̄2j
A+je

ik+jx +
1

c̄2j
A−je

ik−jx − 1

c̄2j
Aeje

ik0jx, (3.2b)

ûj = − k+j

ρ̄jα+j

A+je
ik+jx − k−j

ρ̄jα−j

A−je
ik−jx, (3.2c)

where k±j = − ω

ūj ± c̄j
, k0j = − ω

ūj
, and α±j = ω + ūjk±j .

At the area-decreasing intersection, the flow can be assumed as isentropic. With mass and
energy conservation equations, the jump conditions at x = l1 read,

a1 (ρ̄1û1 + ρ̂1ū1) = a2 (ρ̄2û2 + ρ̂2ū2) , (3.3a)

γ
ρ̂1
ρ̄1

− p̂1
p̄1

= γ
ρ̂2
ρ̄2

− p̂2
p̄2
, (3.3b)

Ĥ1 = CpT̂1 + ū1û1 = Ĥ2 = CpT̂2 + ū2û2, (3.3c)

where H = CpT + 1
2
u2 is the stagnation enthalpy per unit mass and Cp the specific heat at

constant pressure, assumed constant. The specific heat ratio is denoted by γ = Cp/Cv.
At x = l2, where the area increases, the mass, energy, and momentum conservation apply:

a2 (ρ̄2û2 + ρ̂2ū2) = a3 (ρ̄3û3 + ρ̂3ū3) , (3.4a)
a2ρ̂2ū

2
2 + 2a2ρ̄2ū2û2 = a3 (p̂3 − p̂2) + a3ρ̂3ū

2
3 + 2a3ρ̄3ū3û3, (3.4b)

a2

(
ρ̄2ū2Ĥ2 + ρ̄2û2H̄2 + ρ̂2ū2H̄2

)
= a3

(
ρ̄3ū3Ĥ3 + ρ̄3H̄3û3 + ū3H̄3ρ̂3 − Q̂

)
. (3.4c)

Note that the heat released by the compact flame is introduced in the jump condition. This
might differ from what Dowling and Stow (2003) did, since it is not clear from their paper
whether the area change, from a2 to a3, and the energy source term Q were treated in one step
(at the x = l2 interface) or in two successive steps. In any event, we have modelled the problem
in two ways: one is the fully coupled approach embodied by equations (3.4) above, and the
second considers two steps (and two separate sets of equations) with the area change first, and
the heat release term immediately downstream. The results of the two models are close to one
another, and also close to those by Dowling and Stow (2003), but not identical. We have thus
decided to maintain only the fully coupled approach above.

The fluctuating heat release rate generated by an unsteady flame is governed by a time-
delayed model correlated with the mass flow rate in the premixer section:

Q̂ = −κQ̄
ˆ̇m2

¯̇m2

e−iωτ , (3.5)

where τ = 0.006 s is the time delay, and the coefficient κ acts as an unsteady flame switcher,
with its value ranging from 0 to 1 (Dowling and Stow, 2003).

Choked inlets usually model a compressor exit, where the mass and energy flow rates are
nearly constant. An open outlet can be approximated with a zero-pressure oscillation. Hence,
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the boundary conditions are:

Choked inlet (Stow et al., 2002):
ρ̂1(0)

ρ̄1
+
û1(0)

ū1
= 0, (3.6a)

p̂1(0) = c̄21ρ̂1(0), (3.6b)

Open outlet: p̂3(l3) = 0. (3.7)

Equations (3.3)-(3.7) form the direct system of perturbation flow in the combustor.
From the equation of state of ideal gases, with Rg the perfect gas constant, the first-order

linearization of T̂ yields

T̂ =
p̂/Rg − T̄ ρ̂

ρ̄
, (3.8)

so that

Ĥ =
γ

(γ − 1)ρ̄
p̂− CpT̄

ρ̄
ρ̂+ ūû. (3.9)

Figure 3.2: Comparison of the eigenvalue trajectories against literature results (Dowling and Stow, 2003),
with varying κ, from κ = 0 (no unsteady heat release at the flame) to κ = 1. The solid blue lines represent
the trajectories of the present model; the dashed red lines represent the trajectories reported in Dowling
and Stow (2003). The two most unstable eigenmodes are labelled as TA1 and TA2.
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Figure 3.3: Shapes of the pressure fluctuation eigenmodes (normalized with the respective maximum
amplitudes), in the case of heat release located at x = 1.7345 m. Above each individual frame, the
oscillation frequency computed by Dowling and Stow (2003) is indicated as fDS , while the value found
here is denoted simply by f . Red curves: mode shapes from the literature; blue curves: mode shapes
predicted by the present study. The two most unstable modes are labelled TA1 and TA2 within the
appropriate frames.

With the base flow solutions and the wave decomposition in equations (3.2), the stability of
the perturbation flow system is solved as an eigenvalue problem of the form:

A(q̄, ω)x = 0. (3.10)

The elements of the vector x are the decoupled wave amplitudes A+j , A−j , Ae j (j = 1, 2, 3)
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plus the heat release rate fluctuation Q̂; A is the coefficient matrix, as outlined below:

Heat release model (Eq. 3.5)
Mass conservation equation at x = l1 (Eq. 3.3(a))

Isentropic condition at x = l1 (Eq. 3.3(b))
Energy conservation equation at x = l1 (Eq. 3.3(c))
Mass conservation equation at x = l2 (Eq. 3.4(a))

Linear momentum conservation at x = l2 (Eq. 3.4(b))
Energy conservation equation at x = l2 (Eq. 3.4(c))

Choked inlet condition (Eq. 3.6(a))
Isentropic inlet condition (Eq. 3.6(b))

Open outlet condition (Eq. 3.7)





A+1

A−1

Ae1

A+2

A−2

Ae2

A+3

A−3

Ae3

Q̂


= 0. (3.11)

The non-zero elements of the matrix A are given in Appendix B.2.. The nonlinear eigenvalue
problem is solved by the inverse iteration algorithm (Watkins, 2002); an advantage of this ap-
proach is that for each eigenmode, the left and right eigenvectors are simultaneously obtained.
Any complex ω that gives zero determinant of A is an eigenvalue of the direct system, and the
corresponding vector x is an eigenvector.

The spectrum is formed by ten eigenmodes, shown in Fig. 3.2. The spectrum shows the
trajectories of eigenvalues when the coefficient κ varies. The unsteady flame position is fixed at
l2 = 1.7345 m. The comparison of the eigenvalues and the trajectories shows that the frequen-
cies match quite closely those found by Dowling and Stow (2003), whereas the growth rates do
not. We also observe that both sets of results yield the same sign of the growth rates for nine
modes out of ten, when κ = 1.

The mode shapes of the perturbation variables can be reconstructed from the eigenvector by
the use of Eqs (3.2). The absolute values of the resonant pressure fluctuations, in the presence
of unsteady heat release, are compared with the literature results in Fig. 3.3. The eigenvalues
and the mode shapes of the modes are found to differ mildly from the results of the literature.
This could stem from differences in the values of the base flow variables, values not given in
the paper by Dowling and Stow (2003). This points to possible uncertainties in the base flow,
affecting the amplitude of the perturbations and the complex eigenvalues.

3.2. UNCERTAINTY IN BASE FLOW

Our first goal is to identify a possible source of discrepancy in the eigenvalues between our
results and those in Dowling and Stow (2003). We thus employ the adjoint base-state sensi-
tivity analysis to quantify how eigenvalues are affected by small arbitrary variations in base
flow variables q̄. The approach used here is similar to the base state sensitivity study carried
out by Aguilar et al. (2017) and Juniper (2018). However, the purposes are different. The au-
thors above have calculated the effect of system parameters, such as heat release model time
delays and reflection coefficients, with the goal of optimizing the system. Here, we aim to eval-
uate the sensitivity of generic modifications to base flow quantities. In a real physical system,
generic base flow modifications can stem from uncertainties in experimental measurements or
in numerical computations.
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3.2.1. Base-state sensitivity analysis

Introducing a small deviation δq̄ of base flow into the direct system, Eq. (3.10), causes variations
in both eigenfrequency and eigenvector, so that, upon linearization, we have

δAx+A δx = 0, (3.12)

with

δA =
∂A(q̄, ω)

∂q̄
δq̄ +

∂A(q̄, ω)

∂ω
δω, (3.13)

where q̄ denotes a component of the vector q̄, and a sum over all the components is tacitly
assumed.

Left-multiplying Eq. (3.12) by the adjoint eigenvector, y†, solution of

A∗(q̄, ω)y† = 0, (3.14)

with ∗ denoting conjugate transpose, we have:

y†∗∂A(q̄, ω)

∂q̄
x δq̄ + y†∗∂A(q̄, ω)

∂ω
x δω + y†∗A(q̄, ω)δx = 0, (3.15)

with the last term on the left-hand-side equal to zero by virtue of Eq. (3.14).
The eigenvalue drift due to a generic base flow modification can thus be written as

δω = Sq̄ δq̄, (3.16)

with the sensitivity defined, for each component of the vector q̄, by:

Sq̄ = −
y†∗∂A(q̄, ω)

∂q̄
x

y†∗∂A(q̄, ω)

∂ω
x

. (3.17)

3.2.2. Effects of fractional change of base flow on eigenvalues

We evaluate the variation of any eigenvalue due to a fractional change in the base flow parame-
ters, which can be expressed as

δω = Sq̄%
δq̄

q̄
, (3.18)

with the complex, scaled sensitivities defined by

Sq̄% = Sq̄ q̄. (3.19)

These scaled sensitivities represent the response of the given eigenvalue to a percentage change
in the respective base flow parameters.
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Figure 3.4: Sensitivity to uncertainties in different base flow variables for eigenmode TA1, as a function
of the position l2 of the compact flame. Blue curves: sensitivity of oscillation frequency (ωr/(2π) [Hz]).
Red curves: sensitivity of growth rate (−ωi [rad/s]).
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Figures 3.4 and 3.6 illustrate the sensitivities of complex eigenvalues to uncertainties in base
flow parameters q̄ for the two most unstable modes, TA1 and TA2, with oscillation frequencies
of 171 Hz and 300 Hz, respectively. We choose these two eigenmodes because they are the
two most unstable modes, and they show large discrepancies in growth rates in the eigenspec-
trum when compared to the reference results. We also examine how the sensitivities change
with varying flame positions (l2) from 1.7 m to 1.8 m, corresponding to a premixer length, L2,
varying from 0 to 0.1 m.

The sensitivities to modifications of mean pressure and mean density in the combustion
chamber (ρ̄3 and p̄3) are zero, as matrix A does not depend on them. The sensitivity results
have been validated against gradients calculated using the finite difference approach, showing
excellent agreement. A Taylor test is conducted to perform a debugging check for adjoint codes:
if the small deviation in the base flow quantity is ϵ to calculate the sensitivity with the first-order
accurate finite difference approach, then the difference of the eigenvalue drift from that obtained
with the adjoint approach ( |δωFD − δωAD| ) must increase in proportion to ϵ2 (Juniper, 2018;
Juniper and Sujith, 2018). We show in Fig. 3.5 an example of changing base flow parameter ū1.
It plots the eigenvalue drift difference for all eigenmodes against ϵ2 and shows that it is indeed
a straight line through the origin.

Figure 3.5: The difference between the eigenvalue drift of all eigenmodes, calculated from a first-order
finite difference method with step size ϵ (FD) and an adjoint approach (AD), for changing base-state
parameter ū1.

Our findings indicate that for both eigenmodes TA1 and TA2, the relative difference in os-
cillation frequencies resulting from base-flow modifications is generally negligible and signif-
icantly less pronounced than the relative difference in growth rates. As shown in Fig. 3.2, the
growth rates of modes TA1 and TA2 are overestimated by up to approximately 100 rad/s when
compared to Dowling and Stow (2003). However, when comparing oscillation frequencies, a
good agreement can be made; our uncertainty calculations confirm this observation.

Among the eleven different base flow modifications considered independently, the effect of
mean flow velocity variations in the plenum is the least significant. A change of 1% in ū1 leads
to a deviation below 0.0204 rad/s in growth rate and below 0.0011 Hz in oscillation frequencies
for mode TA1 for whatever value of l2 in the range considered; for mode TA2, a change of 1%
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Figure 3.6: Same as Figure 3.4 for eigenmode TA2.

in ū1 leads to a maximum deviation in oscillation frequency of 0.0258 Hz, and in growth rate
of 0.0281 rad/s. On the other hand, uncertainties in the mean density in the premixer section
have the most profound effect on the linear growth rates for both eigenmodes. A 1% under-
estimation of ρ̄2 yields an increase in growth rate of up to 300 rad/s for mode TA1 and up to 600
rad/s for mode TA2. The results reported also show that extending the length of the premixer
section, L2, helps reduce the influence of ρ̄1 and ρ̄2 in altering the eigenvalues.

The differences in complex eigenvalues between the present results and those from the lit-
erature stem from the combined effect of all base flow uncertainties. The sensitivities displayed
in Figs. 3.4 and 3.6 give an immediate response for each individual effect; it is the base flow
variables in the premixer (ū2, p̄2, T̄2, ρ̄2, Q̄) which hold the most profound influence. This is due
to the fact that these parameters directly affect the flame transfer function, which couples the
flow in the premixer with the unsteady heat release. The analysis just presented, thus, furnishes
indications of where flow control efforts could be directed.
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3.3. STRUCTURAL SENSITIVITY TO STEADY FEEDBACK
FORCINGS

We now assume general linear feedback forcing acting on the steady base-flow equations and
evaluate the corresponding eigenvalue drift, δω. Differently from the previous section, the
base flow variation depends on a particular choice of steady feedback process. In the previous
section, we have derived the eigenvalue drift due to arbitrary variations of the base flow. Now,
we show the expression of the eigenvalue drift caused by a particular feedback forcing in base
flow (Pralits et al., 2010).

The base flow system in compact form is

B(q̄) = 0. (3.20)

Let us assume that a small term δHB(q̄) forces the system, so that the mean flow is perturbed
by δq̄, i.e. B(q̄+ δq̄) = δHB(q̄+ δq̄). Linearization yields

∂B(q̄)

∂q̄
δq̄ = δHB(q̄). (3.21)

Here, again, summation is tacitly implied on the left-hand-side of the equation over all the
elements of the vector q̄. Since the base flow is bounded only by jump conditions and bound-
ary conditions, the feedback source term is introduced at the duct intersections, where jump
conditions hold, of the form

δHB(q̄) = δHB0 q̄ (3.22)

where δHB0 is the following coupling coefficient vector,

δHB0 = [0, 0, 0, δHM1, δHM2, δHH1, δHH2, 0, 0, 0, 0, 0, 0], (3.23)

characterizing feedback mass blowing/suction and feedback heating/cooling mechanisms pro-
portional to the upstream mass flow rate ( ¯̇m) and total enthalpy( ¯̇mH̄), respectively.

We now introduce the test variable, b†, and left-multiply it by Eq. (3.21); by summing
Eq. (3.15) it is found:

b†∗∂B(q̄)

∂q̄
δq̄ + y†∗∂A(q̄, ω)

∂q̄
x δq̄ + y†∗∂A(q̄, ω)

∂ω
x δω = b†∗δHB0q̄. (3.24)

The adjoint base flow system (given in full form in Appendix B.3.) can be formally written as

b†∗∂B(q̄)

∂q̄
= −y†∗∂A(q̄, ω)

∂q̄
x. (3.25)

Then, the eigenvalue drift stems naturally from the identity

δω = SHB0
δHB0, (3.26)

where the sensitivity of the eigenvalue to a structural forcing at the base flow level is defined
by:

SHB0
=

b†∗ q̄

y†∗∂A(q̄, ω)

∂ω
x

. (3.27)
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The structural sensitivity to the feedback forcing at the base flow level for eigenmodes TA1

and TA2 is now examined. Two types of feedback sources are considered at the combustor
intersections: steady mass blowing or suction, and steady heating or cooling. The corresponding
equations are:

ρ̄1ū1a1 − ρ̄2ū2a2 = δHM1
¯̇m, (3.28a)

ρ̄2ū2a2 − ρ̄3ū3a3 = δHM2
¯̇m, (3.28b)

ρ̄1ū1a1H̄1 − ρ̄2ū2a2H̄2 = δHH1
¯̇mH̄1, (3.28c)

ρ̄2ū2a2H̄2 + a3Q̄− ρ̄3ū3a3H̄3 = δHH2
¯̇mH̄2. (3.28d)

Figure 3.7: Sensitivity of ω to structural feedback in base flow level, for the eigenmode TA1, f =
171 [Hz], with the variation of the compact flame position (l2). Blue curves: sensitivity of angular
eigenfrequencies (ωr); Red curves: sensitivity of growth rate (−ωi).

Figures 3.7 and 3.8 show the sensitivities of angular frequency (blue curves) and growth rate
(red curves) to steady structural feedback for the two unstable eigenmodes, TA1 and TA2, re-
spectively. The sensitivities are evaluated with l2 ranging from 1.7 m to 1.8 m1. The sensitivity
results reveal that a small steady mass suction or the introduction of a steady heat release at the

1The results have been validated with the gradient calculated by the finite difference approach with percentage
differences less than O(10−3). An example of comparison between adjoint and finite difference gradient evaluation
will be shown in the next section.
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Figure 3.8: Same as Figure 3.7 for mode TA2, f = 300 [Hz].

intersections would reduce the growth rate and therefore stabilize the eigenmodes. The former
steady mechanism is achievable with regulated valves and the latter one can be obtained with
heating coils placed at the duct intersections (Raghu and Sreenivasan, 1987). For both eigen-
modes, sensitivities vary significantly with the length of the premixer, highlighting the fact that
a stabilizing or destabilizing geometric configuration for mode TA1 might produce the opposite
effect for TA2. The results confirm our observations in the previous section: variations of base
flow parameters in the premixer, produced at the 1-2 interface and propagating downstream,
resulting in the most significant changes in the two eigenvalues examined.

3.4. STRUCTURAL SENSITIVITY TO PERTURBATIONS

We now evaluate the eigenvalue response to a localized feedback source acting on the differen-
tial equations (3.1) for the perturbations.
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3.4.1. Derivation of structural sensitivity

In some previous literature (e.g. Aguilar et al. (2017)), the structural sensitivity is derived
based on a Lagrange multiplier framework. In the present work, the derivation of the structural
sensitivity follows Luchini et al. (2008) and Pralits et al. (2010) with a method based on the
Lagrange identity, also used by Magri and Juniper (2013). Note that the choice of the derivation
method does not lead to different results.

The derivation starts with the direct system in compact form:

N (ω, q̄) q̂ = 0, (3.29a)
J (ω, q̄, q̂) = 0, (3.29b)

with perturbation variable vector q̂ = (ρ̂, û, p̂); the equation J (ω, q̄, q̂) = 0 represents the jump
conditions, Eqs. (3.3)-(3.4), holding at the ducts’ intersections, and N (ω, q̄) is the differential
operator matrix defined by:

N (ω, q̄) =


iω + ū

d

dx
ρ̄
d

dx
0

0 iωρ̄+ ρ̄ū
d

dx

d

dx

0 γp̄
d

dx
iω + ū

d

dx

 . (3.30)

Now, we introduce a small structural perturbation localized in space (via a Dirac delta func-
tion δ(x− x0), x0 ̸= l1 and x0 ̸= l2), proportional to a local fluctuating quantity q̂, i.e.

δH(q̂) = δH0 q̂ δ(x− x0), (3.31)

where δH0 is the coupling coefficient matrix

δH0 =

 δMρ δMu δMp

δFρ δFu δFp

δ(Qρ + c̄2Mρ) δ(Qu + c̄2Mu) δ(Qp + c̄2Mp)

 , (3.32)

which encompasses nine different feedback mechanisms, M, F , and Q denote forcing on the
mass, momentum, and energy conservation equation, respectively. For the forcing of the energy
conservation equation, the feedback coupling coefficient δ(Qq + c̄2Mq) includes an additional
term due to the derivation process involving the mass conservation equation. The units of these
coupling coefficients are listed in Table 3.2.

Table 3.2: Units of the feedback coupling coefficients.

δMp δMu δMρ δFp δFu δFρ δQp δQu δQρ

s m−1 kg m−3 m s−1 1 kg m−2 s−1 m2 s−2 m s−1 Pa m2 s−2

Paying attention to not confuse the Dirac delta, δ(x − x0), with the δ used to denote small
variations, we express the perturbed eigenvalue problem to first order as

δN q̂+N δq̂ = δH0 q̂ δ(x− x0), (3.33a)
δJ = 0, (3.33b)
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with the boundary conditions defined as Eqs. (3.6)-(3.7). Fixing the base flow, the above takes
the form:

∂N (ω, q̄)

∂ω
δω q̂+N (ω, q̄) δq̂ = δH0 q̂ δ(x− x0), (3.34a)

∂J (ω, q̄, q̂)

∂ω
δω +

∂J (ω, q̄, q̂)

∂q̂
δq̂ = 0. (3.34b)

We left-multiply by the test variable, q̂†, and integrate in space, i.e.∫ [
q̂†∗N (ω, q̄) δq̂

]
dx+

∫ [
q̂†∗∂N (ω, q̄)

∂ω
δω q̂

]
dx+

+f̂ †∗
[
∂J (ω, q̄, q̂)

∂ω
δω +

∂J (ω, q̄, q̂)

∂q̂
δq̂

]
=

∫
q̂†∗δH0 q̂ δ(x− x0)dx.

(3.35)

We apply integration by parts, for the first term on the left-hand-side to yield the adjoint
equation:

N ∗(ω, q̄) q̂† = 0. (3.36)

The boundary terms generated from integration by parts plus the term f̂ †∗
∂J (ω, q̄, q̂)

∂q̂
δq̂ give

the boundary and jump conditions of the adjoint system. The detailed equations of the adjoint
disturbance system are listed in Section B.4.. The eigenvalue drift due to a localized structural
perturbation can finally be written as

δω = SH0 δH0, (3.37)

with the sensitivity function defined by:

SH0 =
q̂†∗(x0) q̂(x0)∫ [

q̂†∗∂N (ω, q̄)

∂ω
q̂

]
dx+ f̂ †∗

∂J (ω, q̄, q̂)

∂ω

. (3.38)

3.4.2. Validation with finite difference approach

The sensitivity results are validated with the gradient calculated with a first-order finite differ-
ence approach. With the finite difference approach, a set of jump conditions at position x0 is
added to the system:

(ūρ̂+ ρ̄û)|x0+
x0− = δMq q̂(x0), (3.39a)

(ūρ̄û+ p̂)|x0+
x0− = δFq q̂(x0), (3.39b)

(ūp̂+ γp̄û)|x0+
x0− = (δQq + c̄2δMq)q̂(x0). (3.39c)

The eigenvalue change due to each feedback disturbance can be evaluated individually at each
discrete position x0.
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Figure 3.9: Validation with first-order finite difference approach, for mass feedback forcing proportional
to pressure oscillations, with δMp = 1 × 10−7. The structural sensitivity are shown for the least stable
eigenmode TA1 for (a) growth rate and (b) oscillation frequency. The dashed lines represent the positions
of the boundaries of each duct. FD: finite difference approach; CA: continuous adjoint approach.

Suppose that the length of the combustor is discretized into n points; a first-order finite-
difference approach requires solving nonlinear eigenvalue problems at each discretized point in
the combustor and for each feedback mechanism, hence, a total number of 18n times. With the
adjoint approach, the sensitivity information is obtained by first solving the direct and adjoint
nonlinear eigenvalue problem a single time for each eigenmode. The structural sensitivity,
as a function of x0, is then evaluated n times from the direct and adjoint modes. A sample
comparison of results is displayed in Figure 3.9, highlighting the good agreement between
adjoint sensitivity results and results from the finite-difference approach. A similar agreement
is obtained for all other feedback sources. Once the adjoint system is established, the method
proposed yields sensitivity information rapidly. On the other hand, deriving adjoint equations
requires some effort.

3.4.3. The structural sensitivity of the most unstable eigenmodes

Figures 3.10 and 3.11 show the structural sensitivity defined by Eq. (3.38) for the two most
unstable eigenmodes, TA1 and TA2. We aim to identify possible feedback mechanisms in the
perturbation flow that can stabilize the system. The red curves illustrate the structural sensitivity
of the growth rate; the blue curves illustrate the structural sensitivity of the oscillation frequency.

The nine feedback mechanisms can be evaluated comparatively; mass forcing proportional
to pressure oscillations appears to have a very significant effect on the eigenvalue, for both
modes. Such an effect can be generated by a Helmholtz resonator (Zhao and Li, 2015; Dupere
and Dowling, 2005; Juniper, 2018), consisting of a cavity connected to a narrow neck or a small
opening. When acoustic waves reach the resonator, the air in the neck oscillates in and out of
the cavity, inducing mass flow disturbances. Such disturbances compress the air in the cavity,
exciting the resonant frequency of the Helmholtz resonator. When the pressure oscillations
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Figure 3.10: The structural sensitivity of eigenvalue to nine different feedback mechanisms placed at
position x0. Eigenmode TA1, f = 171 [Hz]. Blue curves: structural sensitivity of the oscillation
frequency (ωr/2π [Hz]); red curves: structural sensitivity of the growth rate (−ωi [rad/s]).

in the combustion system match the resonant frequency of the resonator, the air in the neck
oscillates, converting the acoustic energy into kinetic energy and subsequently dissipating it into
heat, thereby reducing the amplitude of the pressure oscillations. Focusing on the sensitivity of
growth rates, it can be seen that a strong stabilizing effect for the leading unstable mode can
be achieved by putting a Helmholtz resonator in the premixer or in the combustion section. In
practice, the resonator should be tuned so that the phase between the mass disturbances and the
pressure oscillations favors suppression of the instability (Raghu and Sreenivasan, 1987).

Reducing mass flow rate disturbances with a feedback term acting on the local velocity os-
cillations at the inlet of the premixer or adding a force proportional to the local pressure oscil-
lations at the outlet of the premixer also help stabilize the critical unstable eigenmodes. Active
flow control devices are available to achieve these feedback mechanisms, with actuators and
sensors specifically designed, such as synthetic jets (McManus et al., 1990) and loudspeaker-
microphone devices (Annaswamy and Ghoniem, 1995). The structural sensitivity analysis also
reveals that introducing a feedback forcing proportional to the unsteady heat release has a minor
effect on the system’s stability.
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Figure 3.11: Same as Figure 3.10 for eigenmode TA2.

3.5. CONCLUSIONS

In this study, an adjoint sensitivity analysis was applied to a prototypical thermoacoustic system.
We analyzed the eigenvalues of the system and identified the most unstable resonant modes. By
focusing on the two least stable modes, we investigated three types of sensitivities using the
adjoint method.

First, we compared our eigenvalue spectra with those in the literature and found discrep-
ancies, mainly in the growth rates of the resonant disturbances. Since we believe that these
discrepancies might be due to inconsistencies in base flow parameters, we evaluated the effect
of generic base-flow modifications on the eigenvalues; our findings indicated that the mean
densities of the cold gaseous fuel within the premixing duct had the most significant impact on
complex eigenvalues, particularly on altering growth rates. Additionally, we demonstrated that
extending the length of the premixer duct significantly reduces the sensitivity of eigenvalues to
mean density variations.

Then, we examined the use of steady forcing terms on the base flow equations to stabilize
critical eigenmodes. The sensitivity analysis indicated that steady mass reduction or introducing
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steady heat release at both ducts’ intersections can stabilize the unstable eigenmodes. The
stabilizing effect is more significant when the premixer duct is relatively short, i.e., the flame
position moves upstream.

Finally, we assessed the sensitivities of the two most unstable eigenmodes to feedback dis-
turbances. We found that mass fluctuation feedback proportional to local pressure perturbations,
achievable through a Helmholtz resonator placed in the premixer and/or the combustion cham-
ber, can have a strong effect in stabilizing the instabilities. The structural sensitivity analysis
also revealed that active control approaches, such as reduction in mass flow rate fluctuations,
proportional to velocity disturbances, and the imposition of an external force, proportional to
pressure perturbations, are viable options to modify the system’s stability.

In conclusion, even though our model problem is not very high-dimensional, our findings
highlight the effectiveness of adjoint-based sensitivity analysis in explaining and quantifying
uncertainties in a thermoacoustic system, and in suggesting effective control strategies for mit-
igating temporally growing modes.





UPSCALED MODELS FOR ACOUSTIC PROPAGATION
THROUGH RIGID POROUS MATERIAL

Porous materials are inherently heterogeneous across multiple spatial and temporal scales, pre-
senting substantial challenges for both mathematical modelling and computational simulation.
The coexistence of disparate length and time scales in such systems complicates the accurate
prediction of transport phenomena and often results in significant computational demands. To
overcome these difficulties, various upscaling techniques—such as classical homogenization
(Mei and Vernescu, 2010), volume averaging (Whitaker, 1999), and the adjoint homogeniza-
tion method (Bottaro, 2019)—have been developed to derive macroscopic models that effec-
tively encapsulate the key features of microscale physics. A comprehensive review of these
methods is provided by Battiato et al. (2019). More recent research has extended traditional
upscaling frameworks to account for boundary effects and thin porous layers. For instance, ?
introduced a one-domain averaging method to model a coupled fluid–porous system, capturing
both inertial and slip effects within a unified Darcy-like equation featuring a spatially varying
apparent permeability tensor. These macroscopic models offer a computationally efficient al-
ternative to direct pore-scale simulations, enabling the study of flow and transport processes at
larger, practical scales—such as entire devices or environmental systems. Despite advances in
computational power, fully resolved simulations of large-scale porous domains remain infeasi-
ble. Therefore, homogenization and related techniques are crucial for bridging the gap between
detailed microscale behaviour and system-level modelling, ensuring both accuracy and compu-
tational tractability in engineering, environmental, and industrial applications.

Classical homogenized models of wave propagation in porous media are typically formu-
lated for infinitely extended domains, where they effectively describe the bulk acoustic proper-
ties of the material. However, these models fall short in accurately capturing the acoustic be-
havior near the interface between air and heterogeneous porous structures. To address this lim-
itation, Marigo and Maurel (2017) developed a second-order homogenization method tailored
for periodically stratified slabs, which incorporates finite-size effects. This method improves
the predictive accuracy of wave propagation by accounting for second-order discontinuities,
thereby enhancing the representation of sub-wavelength structural features. While effective,
their approach is restricted to geometries with stratified slab configurations.

Inspired by the asymptotic matching strategy introduced by Marigo and Maurel (2016), this
chapter presents a generalized framework for modelling acoustic propagation in porous ma-
terials of finite dimensions. A prototype system composed of parallel rigid micro-cylindrical
scatterers is used to represent the porous medium. The resulting effective model depends solely
on the material’s porosity and the characteristics of the incident plane wave, offering a simpli-
fied yet robust description of the acoustic field. First, section 4.1. illustrates the limitations of
classical homogenization in capturing interface effects. Then, in Section 4.2., a combined ho-
mogenization approach with asymptotic matching is introduced to develop effective jump con-
ditions for acoustic propagation through the interface between an air domain and rigid porous
material. In Section 4.3., the homogenization approach is applied to a case where acoustic
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waves propagate through a single array of rigid inclusions. The reflection and transmission co-
efficients calculated with the model are compared with experimental measurements. In the end,
the conclusions are given in Section 4.4.

4.1. THE CLASSICAL HOMOGENIZATION MODEL

Figure 4.1 shows the field and sketch of porous material consisting of parallel rigid micro cylin-
drical acoustic scatterers. Throughout the whole domain, the acoustic field is governed by the
linearized Euler equations; taken together with the energy conservation equation and expressed
in dimensional form, they are:

ρ̄
∂u′i
∂t̃

+
∂p′

∂x̃i
= 0, (4.1a)

1

ρ̄c2s

∂p′

∂t̃
+
∂u′i
∂x̃i

= 0, (4.1b)

∂Ẽ

∂t̃
+
∂(p′u′i)

∂x̃i
= 0. (4.1c)

The isentropic condition, p′ = ρ′c2s, has been used to express the constraint of momentum
conservation. Ẽ is the acoustic energy density defined as,

Ẽ =
p′2

2ρ̄c2s
+
ρ̄u′2i
2
. (4.2)

Figure 4.1: Incident acoustic plane wave propagates through a block of porous material.

To reformulate the problem in dimensionless form, the following variables are introduced:

τ = kcst̃, Xi = kx̃i, p =
p′

∆pref
, ui =

ρ̄csu
′
i

∆pref
. (4.3)

where k = 2πf/cs is the wavenumber with f the frequency of the acoustic wave (unit Hz), and
∆pref is a chosen reference pressure, usually the ambient pressure. Eqs. (4.1) in dimensionless
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form read:
∂ui
∂τ

+
∂p

∂Xi

= 0, (4.4a)

∂p

∂τ
+
∂ui
∂Xi

= 0, (4.4b)

1

2

∂(p2 + u2i )

∂τ
+
∂(pui)

∂Xi

= 0. (4.4c)

At the solid boundary, the Neumann boundary condition applies, i.e.:

uini = 0, at Aβσ, (4.5)

with ni the unit normal vector pointing away from the β-phase, as shown in Fig. 4.4(b). We also
introduce two averaging operators: the superficial and the intrinsic averaging operators, applied
to the generic microscopic variable ψ are, respectively, defined by

Superficial averaging: ⟨ψ⟩ = 1

V

∫
Vβ

ψ dV , (4.6a)

Intrinsic averaging: ⟨ψ⟩β =
1

Vβ

∫
Vβ

ψ dV , (4.6b)

where Vβ is the volume of the fluid phase and V is the volume of the total volume. The relation
⟨ψ⟩ = ϕ ⟨ψ⟩β holds in the bulk region.

The upscaled model using the homogenization approach in the bulk porous region has been
reported in Mei and Vernescu (2010):

∂2p(0)

∂τ 2
− Cik

∂2p(0)

∂Xi∂Xk

= 0, (4.7)

with the coefficient Cik the refraction tensor dependent on the bulk unit cell solution.
When the geometry of the bulk-region unit cell is isotropic, it is Cik = C δik. This gives the

wave equation in the bulk region at order O(ϵ0) in the following form:

∂2p(0)

∂τ 2
− C ∂

2p(0)

∂X2
i

= 0. (4.8)

The above equation implies that in the bulk region of the porous material, at order O(ϵ0), the
pressure wave propagates as if the wave speed were scaled up by

√
C compared to the propa-

gation speed in the free field far away from the porous region. Therefore, in the bulk porous
region, an effective sound speed is defined as

ceff = cs
√
C. (4.9)

and a refractive index is defined as

Rik =

√
1

Cik
, for anisotropic material, (4.10a)

R =

√
1

C
, for isotropic material. (4.10b)
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For the parallel cylindrical scatterer in square unit cells, the dependence of R on porosity can
be found in Mei and Vernescu (2010). We apply the upscaled model in the porous material
and compare the solution of the pressure field with exact numerical solutions. The porous
media region contains lattices of 40 × 20 cylindrical acoustic scatterers. The fully resolved
pressure fields are solved by numerical simulations in COMSOL. The cases are run with the
exact geometry of porous media. The upscaled model is implemented within COMSOL. The
porous media are characterized by porosity ϕ. The parallel cylinders are arranged in a square
configuration with lattice constant l = 5 cm and have identical diameters of d =

√
4l(1− ϕ)/π.

The problems are two-dimensional and are solved in the frequency domain, taking the time
evolution p′ = p̂ eiωt.

Figure 4.2: Sketch of geometry and computational domain of incident wave propagating through a layer
of porous media.

Figure 4.2 shows the computational domain for the upscaled model and for simulations of
real geometry. The incident acoustic wave hits the porous media at angle θ, and the correspond-
ing wave vector of the incident wave is

k0 = (kx, ky) = (k0 cos θ, k0 sin θ). (4.11)

kx is the wave number component in x̃1 direction and ky in x̃2 direction. Periodic Floquet
boundary conditions, Eq. (4.12), are applied on the top and bottom boundaries to model infinite
periodic structures in x̃2 direction.

p̂(x̃1, x̃2) e
−ikyH = p̂(x̃1, x̃2 +H), (4.12)

where H is the vertical dimension of the computational domain.
Figures 4.3 show the comparison of the pressure field for several cases of porous material

with varying porosities, subject to incident plane waves at different frequencies and incident
angles. The highest frequency of incident waves examined is 340 Hz. Its wavelength, λ = 20l,
ensures the separation of length scales. In these figures, it can be observed that the refraction
of wave propagation within the porous material is well captured, indicating that the bulk region
upscaled model is able to reproduce the general behaviour of wave transmission in the porous
medium. However, it is also apparent that on the left side of the porous material and within
the material itself, the pressure field is poorly captured, exhibiting significant discrepancies in
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Figure 4.3: Comparison of total pressure field between the exact numerical solution and the upscaled
model solution, assuming continuity of the pressure at the fluid-porous dividing surface.
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amplitude and phase compared to the exact solutions. This limitation arises because reflec-
tive waves are generated at the interface between the free-air domain and the porous material,
and these reflected waves are not accurately modelled when relying solely on the bulk region
upscaled model. Consequently, to improve the accuracy of the pressure field predictions, par-
ticularly near the interface, it is crucial to treat the interface region with greater care. In the
next section, an interface jump condition model is introduced and implemented to enhance the
accuracy of the pressure field prediction throughout the entire domain.

4.2. EFFECTIVE JUMP CONDITIONS ACROSS INTERFACE
BETWEEN FREE FIELD AND POROUS MATERIAL

4.2.1. Development of effective jump conditions

In order to capture the impact of the porous material surface on the pressure field, we aim to
develop the jump conditions for the acoustic wave propagating through the interface of the free
field and the porous material. The whole domain is considered to be two-dimensional and is
divided into three regions: an outer free-field region, an outer bulk-porous region, and an inner
interface region.

Figure 4.4: (a) Schematics of the acoustic propagation from the free field to a bulk scatterer region; (b)
sketch of rigid cylindrical scatterers in the bulk of the porous medium with a corresponding unit cell; (c)
unit cell for the interface region. The unit normal vector n points away from the β-phase.

Figure 4.4 shows the geometry of the unit cells. The unit cell encompasses all the structural
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information in a periodic elementary volume. The periodicity of the rigid cylindrical scatterers,
l, is chosen to be the microscopic characteristic length. The wavelength of the acoustic wave is
the macroscopic characteristic length. It is assumed that separation of scales exists, ϵ = kl ≪ 1
with k being the wave number of the acoustic wave, i.e., low-frequency waves are considered.
The fluid phase is denoted by β, while the solid phase is σ; the boundary between the fluid and
the solid phase is denoted by Aβσ. The bulk-region unit cell has a total volume equal to V , while
the fluid volume is Vβ; the solid volume of a cylinder is Vσ. The unit cell for the interface region
has a fluid volume equal to Vin. The geometry is thus characterized by the porosity ϕ = Vβ/V .
The incident acoustic wave is modeled by applying a background pressure field. The incident
acoustic waves have a wave vector k0. The incident background pressure field is given as:

p̂inc = e−i(k0·X) = e−ikxX1−ikyX2 . (4.13)

We write the solutions of Eq. (4.4) in a power series expansion in each of the three regions.
In the outer free region, the solutions are only functions of macroscopic spatial coordinates, Xi,
and thus:

P = P (0)(Xi, τ) + ϵP (1)(Xi, τ) +O(ϵ2), (4.14a)

Ui = U
(0)
i (Xi, τ) + ϵU

(1)
i (Xi, τ) +O(ϵ2). (4.14b)

In the outer bulk region, the solutions are periodic along both microscopic coordinates x1
and x2, defined as xi = x̃i/l, and the slow variation of the solutions is a function of the macro-
scopic spatial coordinates, Xi. We thus write,

p = p(0)(Xi, xi, τ) + ϵp(1)(Xi, xi, τ) +O(ϵ2), (4.15a)

ui = u
(0)
i (Xi, xi, τ) + ϵu

(1)
i (Xi, xi, τ) +O(ϵ2). (4.15b)

In the inner interface region, the solutions are periodic only along microscopic direction x2.
Since the interface region is assumed to be infinitesimally thin, the slow variation of the solution
in the interface region is only a function of the macroscopic coordinate X2:

π = π(0)(X2, xi, τ) + ϵπ(1)(X2, xi, τ) +O(ϵ2), (4.16a)

vi = v
(0)
i (X2, xi, τ) + ϵv

(1)
i (X2, xi, τ) +O(ϵ2). (4.16b)

Because of the above, the chain rule in the three regions yields:

Outer free region:
∂

∂Xi

→ ∂

∂Xi

, (4.17a)

Interface region:
∂

∂Xi

→ 1

ϵ

∂

∂xi
+

∂

∂X2

δ2i, (4.17b)

Outer bulk region:
∂

∂Xi

→ 1

ϵ

∂

∂xi
+

∂

∂Xi

. (4.17c)

The three regions are related through matching conditions at X1 → 0±, corresponding to
x1 → ±x∞. Taylor expansions at X1 = 0± of the leading order solutions of Eq. (4.14) and
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Eq. (4.15) are adopted, with using Xi = ϵxi, to obtain:

P (0) = P (0)(0−, X2, τ)− ϵx∞
∂P (0)

∂X1

(0−, X2, τ) +O(ϵ2), (4.18a)

U
(0)
i = U

(0)
i (0−, X2, τ)− ϵx∞

∂U
(0)
i

∂X1

(0−, X2, τ) +O(ϵ2), (4.18b)

p(0) = p(0)(0+, X2, xi, τ) + ϵx∞
∂p(0)

∂X1

(0+, X2, xi, τ) +O(ϵ2), (4.18c)

u
(0)
i = u

(0)
i (0+, X2, xi, τ) + ϵx∞

∂u
(0)
i

∂X1

(0+, X2, xi, τ) +O(ϵ2). (4.18d)

On the left and right boundaries of the inner region unit cell, the pressure and acoustic velocity
are continuous (cf. Fig. 4.1(c)), for the leading order matching conditions to read:

P (0)(0−, X2, τ) = lim
x1→−x∞

π(0)(X2, xi, τ), (4.19a)

U
(0)
i (0−, X2, τ) = lim

x1→−x∞
v
(0)
i (X2, xi, τ), (4.19b)

lim
x1→x∞

p(0)(0+, X2, xi, τ) = lim
x1→x∞

π(0)(X2, xi, τ), (4.19c)

lim
x1→x∞

u
(0)
i (0+, X2, xi, τ) = lim

x1→x∞
v
(0)
i (X2, xi, τ). (4.19d)

Matching at order O(ϵ) yields:

P (1)(0−, X2, τ) = lim
x1→−x∞

(
π(1) + x∞

∂P (0)

∂X1

(0−, X2, τ)

)
, (4.20a)

U
(1)
i (0−, X2, τ) = lim

x1→−x∞

(
v
(1)
i + x∞

∂U
(0)
i

∂X1

(0−, X2, τ)

)
, (4.20b)

lim
x1→x∞

p(1)(0+, X2, xi, τ) = lim
x1→x∞

(
π(1) − x∞

∂p(0)

∂X1

(0+, X2, xi, τ)

)
, (4.20c)

lim
x1→x∞

u
(1)
i (0+, X2, xi, τ) = lim

x1→x∞

(
v
(1)
i − x∞

∂u
(0)
i

∂X1

(0+, X2, xi, τ)

)
. (4.20d)

Equations (4.4) in dimensionless form in the outer free region at O(ϵN), N = 0, 1 are:

∂P (N)

∂τ
+
∂U

(N)
i

∂Xi

= 0, (4.21a)

∂U
(N)
i

∂τ
+
∂P (N)

∂Xi

= 0. (4.21b)

In the inner region and outer bulk region, substituting Eqs. (4.16) and Eqs. (4.17b),(4.17c)
into Eqs. (4.4), we obtain problems up to order O(1).
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Order ϵ−1

Inner interface region:

∂v
(0)
i

∂xi
= 0, (4.22a)

∂π(0)

∂xi
= 0. (4.22b)

Outer bulk region of porous medium:

∂u
(0)
i

∂xi
= 0, (4.23a)

∂p(0)

∂xi
= 0. (4.23b)

The last equation above indicates that p(0) depends only on the macroscopic coordinates
Xi and time τ . Using the divergence theorem, integration of Eq. (4.22a) over the domain
Vβ gives∫ 1

0

v
(0)
1

∣∣∣∣∣
x∞

x1=−x∞

dx2 =

∫ 1

0

u
(0)
1 (X1 = 0+) dx2 − U

(0)
1 (X1 = 0−) = 0, (4.24)

Eq. (4.22b) shows that π(0) only depends on macroscopic spatial coordinates, i.e. π(0) is
constant in the inner-region unit cell. Hence,

π(0)(x1 = x∞)− π(0)(x1 = −x∞) = p(0)(X1 = 0+)− P (0)(X1 = 0−) = 0, (4.25)

i.e.
π(0) = p(0)(X1 = 0+) = P (0)(X1 = 0−) (4.26)

The macroscale jump conditions at order ϵ0 are denoted as

[[p]](0) = 0, (4.27a)

[[u1]]
(0) = 0. (4.27b)

At leading order, there is thus no jump in either pressure or x1-velocity across the inter-
face.

Order ϵ0

Inner interface region:

∂π(0)

∂τ
+
∂v

(1)
i

∂xi
+
∂v

(0)
i

∂X2

δi2 = 0, (4.28a)

∂v
(0)
i

∂τ
+
∂π(1)

∂xi
+
∂π(0)

∂X2

δi2 = 0, (4.28b)

v
(0)
i ni = 0, at Aβσ. (4.28c)
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Outer bulk region of porous medium:

∂p(0)

∂τ
+
∂u

(1)
i

∂xi
+
∂u

(0)
i

∂Xi

= 0, (4.29a)

∂u
(0)
i

∂τ
+
∂p(1)

∂xi
+
∂p(0)

∂Xi

= 0, (4.29b)

u
(0)
i ni = 0, at Aβσ. (4.29c)

With manipulating the equations (cf. Appendix C.1.), we get the problem for π(1) in the
inner-region unit cell as follows,

∂2π(1)

∂x2i
= 0, (4.30a)(

∂π(1)

∂xi
+
∂P (0)

∂X2

(0−, X2, τ)δ2i

)
ni = 0, at Aβσ, (4.30b)

lim
x1→+x∞

∂π(1)

∂x1
=
∂P (0)

∂X1

(0−, X2, τ), (4.30c)

lim
x1→−x∞

∂π(1)

∂x1
=
∂P (0)

∂X1

(0−, X2, τ). (4.30d)

We can see that the system for π(1) is forced by
∂P (0)

∂Xj

(0−, X2, τ). Hence, the solution for π(1)

can be written as

π(1) = aj
∂P (0)

∂Xj

(0−, X2, τ); (4.31)

substituting the above general solution (4.31) into Eqs. (4.30), the auxiliary problem for the
closure variable aj in an interface-region unit cell is

∂2aj
∂x2i

= 0, (4.32a)(
∂aj
∂xi

+ δj2δ2i

)
ni = 0, at Aβσ, (4.32b)

lim
x1→±x∞

∂aj
∂x1

= δj1, (4.32c)

aj periodic along x2. (4.32d)

In the bulk region of the porous medium, the formulation leads to an O(ϵ0) problem for p(1),
i.e.

∂2p(1)

∂x2i
= 0, (4.33a)

ni
∂p(1)

∂xi
= −ni

∂p(0)

∂Xi

, at Aβσ. (4.33b)
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Therefore, the solution of p(1) in the bulk region can be expressed as

p(1) = −sj
∂p(0)

∂Xj

. (4.34)

The elementary problem for sj in a bulk-region unit cell (cf. Fig. 4.1(b)) is

∂2sj
∂x2i

= 0, (4.35a)

∂sj
∂xi

ni = nj, at Aβσ, (4.35b)

sj periodic along x1 and x2, (4.35c)

⟨sj⟩β = 0. (4.35d)

The last condition is necessary to ensure uniqueness of s1 and s2. Solving Eq. (4.35) yields the
solution for p(1).

As solutions for p(1) and π(1) are known, the following jump conditions at order O(ϵ) can
be obtained,

[[p]](1) = Mi
∂P (0)

∂Xi

(0−, X2, τ), (4.36a)

[[u1]]
(1) = Sij

∂U
(0)
j

∂Xi

(0−, X2, τ), (4.36b)

with the coefficients

Mi =

∫ 1

0

ai

∣∣∣∣x∞

x1=−x∞

dx2 − x∞δ1i − x∞δ1j

∫ 1

0

B−1
ji

∣∣∣∣
X1=0+

dx2, (4.37a)

Sij =

 x∞(ϕ− 1) 0

−
∫
Vin

(A21) dV

∫
Vin

(1− A22) dV

 , (4.37b)

and

Aij =
∂aj
∂xi

+ δj2δ2i, (4.38a)

Bij =

 1− ∂s1
∂x1

−∂s2
∂x1

0 1

 . (4.38b)

For details of the derivation please refer to Appendix C.2..
Finally, with [[p]] = [[p]](0) + ϵ[[p]](1) +O(ϵ2), and similarly for [[u1]], the jump conditions of

the acoustic field up to second-order are

[[p]] = ϵMi
∂P (0)

∂Xi

(0−, X2, τ), (4.39a)

[[u1]] = ϵSij

∂U
(0)
j

∂Xi

(0−, X2, τ). (4.39b)
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4.2.2. Solution of auxiliary problems and coefficients

From Eqs. (4.36)-(4.38), it is obvious that the coefficients in the jump condition depend on the
solution of the auxiliary variables and the choice of interface region size x∞. In this section, we
calculate the auxiliary problems for various ϕ and x∞. Some example fields are shown in this
section, and the expressions for model coefficients dependent on the variables are given.

Bulk region vector field sj and refractive index

The auxiliary problem of sj , Eqs. (4.35), solved for the porosity range of 0.3-0.9. It gives the
solution of p(1) and the coefficient C. An example of sj field for ϕ = 0.8 is shown in Fig. 4.5.

Figure 4.5: Field of sj for ϕ = 0.8 in a bulk region unit cell. (a) s1; (b) s2

Figure 4.6: (a) Validation of refractive index R against Mei and Vernescu (2010); and (b) dependence of
effective coefficient C on porosity.

The formulation of coefficient Cik is (cf. (Mei and Vernescu, 2010) and Appendix C.3.),

Cik = ⟨∂sk
∂xj

∂si
∂xj

− 2
∂si
∂xk

+ δik⟩β. (4.40)
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Figure 4.6(a) shows validation of the refractive index against the literature result. The de-
pendence of C on the porosity is shown in Fig. 4.6(b), together with a simple and accurate
polynomial fitting:

C(ϕ) = −90.712ϕ6+360.53ϕ5−583.05ϕ4+491.59ϕ3−228.24ϕ2+56.073ϕ−5.1889. (4.41)

Interface region vector field aj and effective coefficients

The auxiliary problem of aj in the interface region, (4.32), are solved for various material
porosity ϕ and different unit cell sizes x∞. An example of the solution of aj is shown for a unit
cell of size x∞ = 5, and the porosity of the material being ϕ = 0.8.

Figure 4.7: Field of aj for ϕ = 0.8 and x∞ = 5 in an interface region unit cell.

The coefficients in Eqs. (4.37) are then evaluated for various material porosity ϕ and differ-
ent unit cell sizes x∞. The evaluation shows that M2 is trivial. Fig. 4.8 shows the dependence
of M1 on unit cell size x∞ for each fixed value of ϕ. It is clear that for a fixed porosity, M1

is linearly dependent on x∞. Hence, we assume the coefficient M1 has the expression of the
following form:

M1 = m1(ϕ)x∞ +m2(ϕ), (4.42)

with m1 and m2 functions of ϕ only and the polynomial fitting yields

m1(ϕ) =− 444.39ϕ5 + 1492.9ϕ4 − 1991.1ϕ3 + 1325.7ϕ2 − 449.34ϕ+ 65.472,

m2(ϕ) = 3.3181ϕ4 − 10.21ϕ3 + 12.263ϕ2 − 6.9251ϕ+ 1.5682.
(4.43)

The evaluation of Sij shows that S21 is trivial. S22 changes with unit cell size x∞, as shown
in Fig. 4.9. As previously, S22 can be formulated as

S22 = w1(ϕ)x∞ + w2(ϕ), (4.44)

with w1 and w2 obtained from polynomial fitting

w1(ϕ) =− 0.952ϕ3 + 1.1425ϕ2 − 0.3968ϕ+ 0.2065,

w2(ϕ) =− 0.3446ϕ4 + 0.9745ϕ3 − 1.0496ϕ2 + 0.5268ϕ− 0.1088.
(4.45)
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Figure 4.8: Dependence of M1 on porosity ϕ and interface-region unit cell size x∞.

Figure 4.9: Dependence of S22 on porosity ϕ and interface-region unit cell size x∞.

Evaluation of coefficients shows that the final interface jump conditions when x∞ = 0 are,

[[p]] = ϵm2(ϕ)
∂P (0)

∂X1

(0−, X2, τ), (4.46a)

[[u1]] = ϵ w2(ϕ)
∂U

(0)
2

∂X2

(0−, X2, τ). (4.46b)

with the dependence of coefficients m2(ϕ) and w2(ϕ) as shown in Fig. 4.10.
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Figure 4.10: Dependence of m2(ϕ) and w2(ϕ) on porosity ϕ, when x∞ = 0.

Figure 4.11: Comparison of total pressure field between the exact numerical solution and the upscaled
model solution with effective jump conditions incorporated. High porosity cases.
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4.2.3. Assessment of the validity of the interface model

To validate the proposed interface model and assess its accuracy across various porosity and
incident wave scenarios, we conducted a series of numerical simulations, using the Pressure
Acoustics module in COMSOL Multiphysics. The following subsections present detailed com-
parisons of pressure fields for representative cases. Both the jump conditions (4.46) and the
bulk-region upscaled model (4.8) are implemented in numerical simulations.

Figure 4.12: Comparison of intrinsic-averaged total pressure along x̃2 = 0. ϕ = 0.8, θ = 45◦, f0 = 340
Hz.

Figure 4.13: Comparison of intrinsic-averaged total pressure along x̃2 = 0. ϕ = 0.9, θ = 75◦, f0 = 340
Hz.

Figure 4.11 presents the comparison of the total pressure acoustic field for selected cases
with porosities ϕ = 0.8 and ϕ = 0.9, from Fig. 4.3. The results clearly show that incorporat-
ing the jump conditions at the interface enhances the accuracy of the predicted pressure field,
especially in the free field on the left-hand side and in the porous material. This shows that
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our interface model successfully captures the complex interactions at the interface. Figures
4.12 and 4.13 illustrate the intrinsic-averaged total pressure distribution along x̃2 = 0 for two
representative cases: ϕ = 0.8, θ = 45◦, f0 = 340 Hz, and ϕ = 0.9, θ = 75◦, f0 = 340 Hz.
The comparison highlights that for high-porosity materials, the total pressure predictions are
substantially more accurate when the interface jump conditions are incorporated.

Figure 4.14: Comparison of total pressure field between the exact numerical solution and the upscaled
model solution with effective jump conditions incorporated. Low porosity cases.

Figure 4.14 shows the total pressure field of two cases of low porosity: ϕ = 0.4, θ =
45◦, f0 = 200 Hz, and ϕ = 0.5, θ = 15◦, f0 = 340 Hz. The comparison reveals that the
interface model tends to mispredict the phase of the reflected waves in these low-porosity cases,
leading to poor agreement with the expected results. Consequently, this results in significantly
reduced transmission in the free-field region on the right side. The comparison of scattered
pressure along x̃2 = 0 shown in Fig. 4.15 confirm this.

Figure 4.15: Comparison of scattered pressure along x̃2 = 0. ϕ = 0.5, θ = 15◦, f0 = 340 Hz.
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In order to assess the effectiveness of the interface jump conditions, we define a global error
E as follows,

E =
1

Ltot

∫
Ltot

(
⟨p̂exact⟩β − ⟨p̂model⟩β

Amp(p̂inc)

)2

dx̃1, (4.47)

where Ltot is the horizontal dimension of the computational field, excluding the perfectly
matched layers. The intrinsic average of total pressure amplitude is evaluated in each unit
cell at the centerline of the computational field. The prediction deviation of the total pressure is
normalized by the amplitude of the incident wave, Amp(p̂inc) = 1 Pa.

Figure 4.16: Global error E dependence on the porosity ϕ and incidence angle θ. (a) f0 = 100 Hz; (b)
f0 = 340 Hz.

Figure 4.16 illustrates how the global error E depends on the porosity and incident angle θ
for incident waves at frequencies of 100 Hz and 340 Hz. The results demonstrate that the im-
plementation of the interface model yields accurate predictions of the pressure field for porous
materials with high porosity (ϕ ≥ 0.8), with the global error E < 0.05. Conversely, for materi-
als with lower porosity, the global error increases notably, suggesting that the interface model’s
performance is more sensitive to the material’s porosity than to the frequency of the incident
plane wave. The strong dependence on the size of the solid inclusions and on the distance
between neighbouring inclusions in the porous medium lies probably in the fact that homoge-
nization theory can model the behaviour in the inhomogeneous region only provided that the
wave scattered by each elementary cylinder vanishes within a distance of order l, the size of the
unit cell, from the centre of each cylinder (Hu and Chan, 2005). When the porosity is low, this
is hardly the case, and this is correlated to the rapid increase above 1 of the refractive index R,
with the solid fraction ϕs = 1− ϕ (Mei and Vernescu, 2010).

From the above comparisons, we can conclude that the interface jump condition model is
particularly well-suited for accurately modelling wave propagation in highly porous materials
across a range of incident angles and at relatively low frequencies.
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4.3. ACOUSTIC PROPAGATION THROUGH AN ARRAY
OF RIGID INCLUSIONS

In this section, an upscaled model for the inviscid propagation of acoustic waves through a
regular array of rigid circular cylinders is proposed. The experimental data used in this section is
obtained by the PhD student Charitha Vaddamani in the Marcus Wallenberg Laboratory (MWL)
for Sound and Vibration at KTH Royal Institute of Technology.

4.3.1. Development of the upscaled model

The computational domain for numerical simulation of the exact-geometry setup and the up-
scaled model is shown in Fig. 4.17. The direct numerical simulation uses the geometry from the
experimental setup (top). Radiation boundary conditions are applied to both ends of the duct
that represent anechoic terminations.

Figure 4.17: Computational domain of exact-geometry direct simulation (top), and of effective domain
implemented with the upscaled model.

Figure 4.18 shows the geometries of the investigated domain, the acoustic scatterers, and
the unit cell. The lengths l and L are the characteristic microscopic and macroscopic lengths,
respectively. The former corresponds to the periodicity of the unit cell (the center-to-center
distance of the rigid cylinders), while the latter is, for example, the wavelength of the incident
acoustic wave. To ensure the separation of scales, it exists l ≪ L, i.e. low-frequency waves are
considered. As shown in Fig. 4.18, the fluid phase is denoted by β, while the solid phase is σ;
the boundary between the fluid and the solid phase is denoted as Aβσ. The unit cell has a total
volume equal to V , while the fluid volume is Vβ; the cylinder volume is Vσ. The geometry is
characterized by the pitch ratio Dp = d/l, where d is cylinder diameter. In this problem, the
pitch ratio is fixed at Dp = 2/3, the same as the experimental setup.

Everywhere in the fluid phase, the acoustic pressure field is governed by the Helmholtz
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Figure 4.18: The geometries of an array of rigid cylinders acting as a membrane with a close-up of a
periodic, rectangular unit cell. The unit normal vector n points away from the β-phase.

equation along with the acoustically rigid boundary condition at the cylinder surface, as below

k̃2p̃+
∂2p̃

∂x̃2i
= 0, in Vβ, (4.48a)

∂p̃

∂x̃i
ni = 0, at Aβσ. (4.48b)

where ni is the vector normal to the surface Aβσ and pointing outwards the β-phase, and˜marks
the dimensional quantities. k̃ = ω/cs is the wave number of the incident acoustic wave. Fur-
thermore, continuous condition is enforced between the outer free field (denoted by superscript
O) and the inner-region (denoted by superscript I), as

p̃I(x = ±x∞) = p̃O(X = 0±). (4.49)

In this problem, the long-wave assumption is used, i.e. k̃ ∼ O(1/L). To reformulate the
problem in dimensionless form the following variables are introduced:

p =
p̃

∆p̃ref
, k = k̃L, ϵ =

l

L
, Xi = k̃

x̃i
L
. (4.50)

xi and Xi are dimensionless microscopic and macroscopic spatial variables, respectively. They
are assumed to be independent so that the chain rule allows to write

∂

∂x̃i
=

1

l

∂

∂xi
+

1

L

∂

∂Xi

. (4.51)

Equations (4.48) in dimensionless form then become

ϵ2k2p+

(
∂2p

∂x2i
+ 2ϵ

∂2p

∂xi∂Xi

+ ϵ2
∂2p

∂X2
i

)
= 0, in Vβ, (4.52a)(

∂p

∂xi
+ ϵ

∂p

∂Xi

)
ni = 0, at Aβσ; (4.52b)
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applying the power series expansions

p = p0 + ϵp1 + ϵ2p2 +O(ϵ3) (4.53)

to Eq. (4.52) and then collecting like-order terms, yields the problems which follow at different
orders.

Order ϵ0

∂2p0
∂x2i

= 0, in Vβ, (4.54a)

∂p0
∂xi

ni = 0, at Aβσ, (4.54b)

p0 = pO, at x = ±x∞. (4.54c)

From Eq. (4.54), it is simple to see that the leading order pressure, p0, depends only on
the spatial macroscale, i.e.

p0 = p0(Xi) (4.55)

Order ϵ1

∂2p1
∂x2i

= 0, in Vβ, (4.56a)

∂p1
∂xi

ni = − ∂p0
∂Xi

ni, at Aβσ, (4.56b)

p1 = 0, at x = ±x∞. (4.56c)

The solution for p1 can be expressed separating variables as

p1 = −sj
∂p0
∂Xj

; (4.57)

the closure variable sj depends only on the microscale spatial variables and stems from
the solution of the following auxiliary problem in the unit cell:

∂2sj
∂x2i

= 0, in Vβ, (4.58a)

∂sj
∂xi

ni = nj, at Aβσ, (4.58b)

sj periodic along y (4.58c)
sj = 0, at x = ±x∞. (4.58d)

Order ϵ2

k2p0 +
∂2p2
∂x2i

+ 2
∂2p1
∂xi∂Xi

+
∂2p0
∂X2

i

= 0, in Vβ, (4.59a)

∂p2
∂xi

ni = − ∂p1
∂Xi

ni, at Aβσ, (4.59b)

p1 = 0, at x = ±x∞. (4.59c)
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Taking the superficial average, (4.6a), of Eq (4.59a), we obtain the equation of leading
order pressure:

ξij
∂2p0

∂Xi∂Xj

+
k2

ϕ
p0 = 0, (4.60)

with
ξij = ⟨−2

∂si
∂xj

+
∂sj
∂xk

∂si
∂xk

+ δij⟩. (4.61)

Note that although the form of the tensor ξij is similar to Eq. (4.40), the effective tensor
for a homogeneous porous material, in the current problem, the tensor is evaluated in a
different unit cell.

4.3.2. Solution of the auxiliary problems and effective coefficients

The auxiliary problem, Eqs. (4.58), is solved in a unit cell for various choices of unit cell sizes
(x∞). An example of the solution field is shown in Fig. 4.19. The effective coefficient, tensor
ξij is evaluated using Eqs. (4.61). The evaluation reveals that ξij is a diagonal tensor. The
variations of ξ11, ξ22 respect to x∞ is shown in Fig. 4.20.

Figure 4.19: Example solution of auxiliary problem for sj . x∞ = 2.

As observed, the values of ξ11, ξ22 asymptotically reach towards 1 as the chosen size of the
unit cell becomes larger. It describes that choosing an infinitely large unit cell is not suitable as
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Figure 4.20: Dependence of ξij on the unit cell size x∞.

it gives the field as if the rigid inclusions are invisible. The choice of x∞ should be large enough
to contain the information of the evanescent pressure field in the vicinity of the rigid inclusions
and not so large that the microscopic physics is diluted.

4.3.3. Reflection and transmission coefficients

The PDE coefficient module in COMSOL Multiphysics is used to solve the Helmholtz equation
for the direct simulation case and a modified Helmholtz equation for the case implemented with
the upscaled model. The simulation implemented with the upscaled model uses an effective
domain from −2l ≤ x̃1 ≤ 3l, as shown in Fig. 4.17. The incident plane wave comes from
the left end and hits the rigid inclusion region in the normal direction. We evaluated the cases
where incident wave frequency ranges in 100 Hz ≤ f0 ≤ 2000 Hz.

We considered the rigid inclusions as a slab of thickness l and evaluated the reflection and
transmission coefficient using a transfer matrix method. The transfer matrix method relates the
acoustic pressure p̃ and the normal acoustic velocity ũ between the left- (x̃1 = 0) and right-
hand-side (x̃1 = l) surfaces of the slab, using a transfer matrix as below,(

p̃(0)

ũ(0)

)
=

(
T11 T12

T21 T22

)(
p̃(l)

ũ(l)

)
, (4.62)

where the vectors are called the state vectors.
Using the two-port theory, the acoustic pressure and velocity at x̃1 = 0 and x̃1 = l are

evaluated twice, for the incident wave coming from left end and from the right end, and the
transfer matrix can be calculated by(

T11 T12

T21 T22

)
=

(
p̃(0)1 p̃(0)2
ũ(0)1 ũ(0)2

)(
p̃(l)1 p̃(l)2
ũ(l)1 ũ(l)2

)−1

, (4.63)
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where the subscripts ”1” and ”2” represent the two measurements, respectively. Fig. 4.21 shows
the absolute values of the transfer matrix obtained by simulations. As observed, in the upscaled
model, the transfer matrix satisfies,

T11 = T22 = 1, (4.64)

which coincides with the fact that the geometry of the rigid inclusions is isotropic. For isotropic
materials, the transfer matrix has properties of reciprocity and symmetry (Song and Bolton,
2000). However, the full-geometry assessment shows different results, which implies the acous-
tic scattering is not symmetrical from both sides.

Figure 4.21: Absolute values of transfer matrix elements, comparisons of direct numerical simulation
(num), and upscaled model solution (mod).

The incident wave applied has an amplitude of 1. On the left-hand side, there is,

p̃(0) = 1 +R, (4.65)

where R is the reflection coefficient. The transmission coefficients can be calculated based on
the transfer matrix (Song and Bolton, 2000), by

T =
2eik0l

T11 + (T12/Z0) + Z0T21 + T22
, (4.66)

where Z0 is the characteristic impedance of air given by

Z0 =
1−R

ũ(0)
. (4.67)

The absolute values of R and T at various frequencies are shown in Fig. 4.22. The compar-
ison between the experimental measurements and the direct numerical simulation results shows
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the effects of dissipation in the system, such as viscosity and boundary losses. The compari-
son also shows that the agreement of the upscaled model with the experiment is good in the
lower frequency range, and the agreement is poorer as the frequency increases. This is because
the lengthscale separation condition ϵ increases up to around 0.2 as the incident wavelength
decreases.

Figure 4.22: Comparisons of reflection and transmission coefficients among experimental measurements
(exp), direct numerical simulation (num), and upscaled model solution (mod).

4.4. CONCLUSIONS

This chapter investigated the acoustic propagation properties of noise passive control devices,
such as porous materials and perforated plates, using the homogenization approach.

In the first part of the chapter, we developed an effective jump condition at the interface
between a free air region and a porous material using an asymptotic homogenization approach.
Our results demonstrated that classical homogenization, which assumes an infinitely extended
porous medium, fails to accurately model interface behaviour. By incorporating interface-
specific jump conditions, the new model significantly improved the prediction of acoustic pres-
sure fields for high-porosity materials, capturing the crucial reflection effect at the interface
region. However, for materials with lower porosity, the current model struggles to accurately
capture reflected wave behaviour, resulting in reduced accuracy and transmission. This limi-
tation is closely related to the structural configuration of the porous medium. In low-porosity
regimes, the assumptions of homogenization theory become less valid—specifically, the scat-
tered wave field from each inclusion does not decay sufficiently within the characteristic cell
size. These findings highlight the importance of considering porosity effects when applying the
interface model and motivate further refinement for low-porosity scenarios.
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In the second part, we extended the homogenization framework to a single array of rigid
cylindrical inclusions by introducing an effective slab domain of finite thickness. The resulting
upscaled model was used to calculate reflection and transmission coefficients, which were then
validated against experimental data. The model exhibited strong agreement with measurements
at low frequencies, affirming its validity within the long-wavelength regime. However, as fre-
quency increased and the wavelength approached the microstructural scale, deviations emerged
due to the breakdown of scale separation—a key assumption of homogenization approach.





SUMMARY AND OUTLOOKS

This dissertation addresses the problem of thermoacoustic instabilities from three perspectives,
mainly with adjoint methods: (1) modelling and prediction of nonlinear dynamics in thermoa-
coustic systems; (2) identification of mean-flow uncertainties and potential feedback control
approaches with adjoint-based sensitivity analysis, and (3) effective acoustic models of passive
control devices involving hierarchy length scales. The summary of findings and the outlooks of
each project are listed in this chapter.

5.1. PREDICTION OF THERMOACOUSTIC INSTABILITIES
WITH AGF APPROACH

A comprehensive theoretical framework based on the adjoint Green’s function (AGF) is devel-
oped to predict thermoacoustic instabilities in non-self-adjoint systems, specifically with mean
flow. The main findings are listed below:

• The reciprocity property of a non-self-adjoint direct Green’s function and its AGF are
derived based on the Lagrange-Green’s identity, which is later used to find the solution
of AGF analytically. The solution of the AGF represents the receptivity of the unforced
system to external forcings.

• In the cases studied, the nonlinearity of the system lies in the amplitude-dependent heat
release model. The AGF model predicts rich nonlinear dynamics of the examined sys-
tems, such as bifurcations, saturation, and hysteresis.

• The inclusion of mean flow modifies both the heat release model and the AGF, exhibiting
a stabilizing effect in thermoacoustic systems. In addition, it significantly reduces noise-
induced effects compared to systems without mean flow.

• For a flow-duct system, the boundary condition of zero-net acoustic power through the
open outlet is more accurate compared to the zero-pressure-disturbance condition.

• The mean temperature change across the compact flame strongly affects heat-driven os-
cillation frequencies. An increased temperature difference leads to higher oscillation fre-
quencies. Hysteresis behaviour is observed when the hot region temperature rises and
then decreases.

• The presence of external noise, both pink noise and white noise, can possibly reduce
the transient time needed to reach the limit cycle by changing the disturbance amplitude.
Increasing the noise level increases the possibility of the extent of reduction to transient
time.
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• Pink noise is more effective in triggering instability from an initial stable state near a
system stability margin, as compared to white noise.

The AGF framework can be potentially extended to systems with more complex geometries.
For such cases, a numerical scheme utilizing backward marching in time can be employed to
solve the AGF; thereby, calculations for direct Green’s function can be bypassed.

Additionally, the framework can be applied to systems incorporating multiple external sources
or feedback control devices. Devices such as quarter-wave resonators and Helmholtz resonators
can be modelled as an additional acoustic resonator system. The local oscillation in the ther-
moacoustic system, where the control device is applied, acts as an external forcing of the feed-
back device system. The acoustic field within the feedback devices can be modelled by the
AGF approach. In return, the acoustic oscillation from the feedback control device acts on the
thermoacoustic system. The AGF approach can enable a comprehensive treatment of the en-
tire system as a network of coupled oscillators. This perspective provides a more integrated
approach to analysing and controlling thermoacoustic instabilities in practical applications.

5.2. ADJOINT-BASED SENSITIVITY ANALYSIS FRAMEWORK

Three types of adjoint sensitivities are calculated for a gas turbine combustor prototype, focus-
ing on the two most unstable modes. The work provides a framework for explaining errors
and uncertainty quantification in a thermoacoustic system and for suggesting effective control
strategies for stabilizing unstable modes.

• Base-state sensitivity highlights how uncertainties in base flow parameters, like premixer
cold gas conditions, significantly impact the growth rates of the eigenmodes.

• Structural sensitivity to steady feedback forcings uncovers steady control strategies such
as local mass suction and heating as effective stabilizing mechanisms.

• Structural perturbation sensitivity identifies potential stabilizing feedback control devices
with small energy amplitude, and pinpoints their optimal placement.

Optimization with feedback devices can be applied based on the structural sensitivity results
with an iterative scheme.

5.3. UPSCALED MODELS OF ACOUSTIC PROPAGATION
THROUGH POROUS MATERIAL

We investigated the acoustic propagation properties of noise control devices using the homoge-
nization approach, focusing on porous materials and thin rigid inclusions.

• An effective jump condition for acoustics at the interface between free air and porous
materials successfully captures reflection effects, which are not accounted for in classical
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homogenization methods, significantly improving the prediction accuracy of the pressure
field, particularly for high porosity materials.

• An upscaled model was developed for acoustic propagation through a rigid cylinder array,
treated as a slab with a chosen thickness. The reflection and transmission coefficients of
the thin rigid inclusions were validated against experimental data, showing good agree-
ment at lower frequencies.

Future extensions of these models could incorporate thermal and viscous dissipation effects,
as well as the fluid flow in the system.



APPENDIX FOR CHAPTER 2

A.1. THE DIRECT GREEN’S FUNCTION FOR A UNIFORM-
TEMPERATURE FLOW DUCT

We consider the same flow-duct as in Fig. A.1, but replace the unsteady heat source with a
hypothetical point source, which is situated at position x′ and emits an impulsive acoustic signal
at time t′.

Figure A.1: Configuration considered for the calculation of the direct Green’s function.

The direct Green’s function is the impulse response, i.e. the acoustic field generated by the
hypothetical point source and measured by an observer at position x and time t. Its governing
equations are (2.21)-(2.23), together with the boundary conditions given in terms of the reflec-
tion coefficients R0 and RL. These equations are solved in two steps. Section A.1.1. shows the
first step, which leads to an expression of the direct Green’s function in the frequency domain.
This is transformed into the time domain in the second step, which is detailed in Section A.1.2..

A.1.1. Frequency-domain analysis

Recall the governing equation (2.25) for the direct Green’s function ĝ(x, x′, ω) in the frequency-
domain is

ω2ĝ(x, x′, ω) + 2ū(iω)
∂ĝ

∂x
+ (c2 − ū2)

∂2ĝ

∂x2
= −δ(x− x′). (A.1)

A suitable trial solution is provided by Eq. (2.26), which gives ĝ(x, x′, ω) by two expressions:
one for the region 0 < x < x′ (upstream side of the source), and one for x′ < x < L (down-
stream side). We can convert Eq. (2.26) into a single expression by using the Heaviside func-
tions H(x′ − x) and H(x− x′),

ĝ(x, x′, ω) =H(x′ − x)A−(x
′, ω)[R0e

ik+x + e−ik−x]]+

H(x− x′)B+(x
′, ω)[eik+(x−L) +RLe

−ik−(x−L)].
(A.2)



120

The differentiation, using

∂H(x− x′)

∂x
= δ(x− x′), and

∂H(x′ − x)

∂x
= −δ(x− x′), (A.3)

yields
∂ĝ

∂x
=− δ(x− x′)A−[R0e

ik+x + e−ik−x]

+H(x′ − x)A−[ik+R0e
ik+x − ik−e

−ik−x]

+ δ(x− x′)B+[e
ik+(x−L) +RLe

−ik−(x−L)]

+H(x− x′)B+[ik+e
ik+(x−L) −RLik−e

−ik−(x−L)]

(A.4)

and
∂2ĝ

∂x2
=− δ′(x− x′)A−[R0e

ik+x + e−ik−x]

− 2δ(x− x′)A−[ik+R0e
ik+x − ik−e

ik−x]

−H(x′ − x)A−[k
2
+R0e

ik+x + k2−e
−ik−x]

+ δ′(x− x′)B+[e
ik+(x−L) +RLe

−ik−(x−L)]

+ 2δ(x− x′)B+[ik+e
ik+(x−L) − ik−RLe

−ik−(x−L)]

−H(x− x′)B+[k
2
+e

ik+(x−L) + k2−RLik−e
−ik−(x−L)].

(A.5)

The expressions (A.2), (A.4) and (A.5) are substituted into Eq. (A.1). The resulting equation
contains several terms, which multiply the Heaviside functionsH(x′−x) andH(x−x′). These
terms cancel because k+ and k− satisfy

(c2 − ū2)k2± ± 2ūωk± − ω2 = 0, (A.6)

which is a consequence of the fact that k+ and k− occur in the solution of Eq. (2.8). This leaves
Eq. (A.1) now as,

δ(x− x′)

[
− 2iωūA−

(
R0e

ik+x + e−ik−x
)
+ 2iωūB+

[
eik+(x−L) +RLe

−ik−(x−L)
]

− 2(c2 − ū2)A−
(
ik+R0e

ik+x − ik−e
−ik−x

)
+ 2(c2 − ū2)B+

[
ik+e

ik+(x−L) − ik−RLe
−ik−(x−L)

] ]

+ δ′(x− x′)

[
− A−(c

2 − ū2)
(
R0e

ik+x + e−ik−x
)

+B+(c
2 − ū2)

[
eik+(x−L) +RLe

−ik−(x−L)
] ]

= −δ(x− x′).

(A.7)

It is convenient to integrate this equation now, knowing that for any smooth function h(x), the
following identities hold, ∫ +∞

−∞
δ(x− x′)h(x)dx = h(x′), (A.8)
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and ∫ +∞

−∞
δ′(x− x′)h(x)dx = −

∫ +∞

−∞
δ(x− x′)h′(x)dx = −h′(x′). (A.9)

Then

− 2iωūA−[R0e
−ik−x′

+ e−ik−x′
] + 2iωūB+[e

ik+(x′−L) +RLe
−ik−(x′−L)]

− A−(c
2 − ū2)[ik+R0e

ik+x′ − ik−e
−ik−x′

]

+B+(c
2 − ū2)[ik+e

ik+(x′−L) − ik−RLe
−ik−(x′−L)] = −1.

(A.10)

This equation can be further simplified by collecting terms with factors A− and B+, and subse-
quently collecting like exponential terms in the coefficients of A− and B+. The result is

A−

[
− eik+x′

R0 [2iωū+ (c2 − ū2)ik+]︸ ︷︷ ︸
T+

+e−ik−x′
[−2iωū+ (c2 − ū2)ik−]

]
︸ ︷︷ ︸

T−

+

B+

[
eik+(x′−L) [2iωū+ (c2 − ū2)ik+]︸ ︷︷ ︸

T+

−e−ik−(x′−L)RL [−2iωū+ (c2 − ū2)ik−]

]
︸ ︷︷ ︸

T−

= −1.

(A.11)

The terms labelled T+ and T− in Eq. (A.11) can be simplified with the definitions of k+ and
k− given in Eq. (2.9),

T+ = iω(c+ ū), T− = iω(c− ū). (A.12)

Equation (A.11) then reduces to

A−iω[−R0e
ik+x′

(c+ ū) + e−ik−x′
(c− ū)]

+B+(iω)[e
ik+(x′−L)(c+ ū)−RLe

−ik−(x′−L)(c− ū)] = −1.
(A.13)

This is a linear equation for the amplitude coefficientsA− andB+. A second equation is needed
to close the problem and retrieve the two amplitude coefficients. Since the source represented
by δ(x − x′) in Eq. (A.1) describes a one-dimensional monopole, and the pressure (and hence
the velocity potential) across such a monopole is continuous, we can impose

lim
x→x

′−
ĝ(x, x′, ω) = lim

x→x′+
ĝ(x, x′, ω). (A.14)

This leads to

A−[−R0e
ik+x′ − e−ik−x′

] +B+[e
ik+(x′−L) +RLe

−ik−(x′−L)] = 0. (A.15)

Equations (A.12) and (A.15) form a 2 × 2 set of linear equations for A− and B+; the main
determinant is

det =∣∣∣∣(iω)[−R0e
ik+x′

(c+ ū) + e−ik−x′
(c− ū)] (iω)[eik+(x′−L)(c+ ū)−RLe

−ik−(x′−L)(c− ū)]
−R0e

ik+x′ − eik−x′
eik+(x′−L) +RLe

−ik−(x′−L)

∣∣∣∣
(A.16)



122

This can be simplified to give

det = −2(iω)c e−ik−x′
eik+x′

e−ik+L[R0RLe
i(k+k−)L − 1]. (A.17)

The term in square brackets above is identical to the characteristic function F (ω) in Eq. (2.16)
and this gives

det = −2(iω)c ei(k+−k−)x′
e−ik+LF (ω). (A.18)

The fact that at the eigenfrequencies ωn of the direct Green’s function, F (ωn) = 0 will be useful
in A.1.2..

The equations for A− and B+ can now be solved with Cramer’s rule,

A− =
detA
det

, B+ =
detB
det

, (A.19)

where

detA =

∣∣∣∣−1 (iω)[eik+(x′−L)(c+ ū)−RLe
−ik−(x′−L)(c− ū)]

0 eik+(x′−L) +RLe
−ik−(x′−L)

∣∣∣∣
=− eik+(x′−L) −RLe

−ik−(x′−L)

(A.20)

detB =

∣∣∣∣(iω)[−R0e
ik+x′

(c+ ū) + e−ik−x′
(c− ū)] −1

−R0e
ik+x′ − e−ik′− 0

∣∣∣∣
=−R0e

ik+x′ − e−ik−x′
.

(A.21)

This gives

A−(x
′, ω) =

1

2ciωF (ω)
e−i(k+−k−)x′

eik+L[eik+(x′−L) +RLe
−ik−(x′−L)], (A.22)

B+ =
1

2ciωF (ω)
e−i(k+−k−)x′

eik+L[R0e
ik+x′

+ e−ik−x′
]. (A.23)

The amplitude coefficients in Eq. (2.35) are now fully determined. They can be written in a
compact form with the abbreviations (in line with Eqs. (2.28) and (2.29))

a(x′, ω) = R0e
ik+x′

+ e−ik−x′
, (A.24a)

b(x′, ω) = eik+(x′−L) +RLe
−ik−(x′−L). (A.24b)

Subsequent substitution into Eq. (2.26) yields Eq. (2.27) in the main text. The frequency-
domain direct Green’s function (2.27) is not reciprocal to itself, i.e. ĝ(x, x′, ω) ̸= ĝ(x′, x, ω),
unless k+ − k− = 0, which is valid only for the case with zero mean flow (ū = 0). The lack of
reciprocity may be surprising, but it is plausible for our flow duct: if the source is upstream of
the receiver, the emitted sound wave travels with the flow; however if the source and receiver
are swapped over, the wave has to travel against the flow.

In its most general sense, the reciprocity principle states that the response of a linear system
to a time-harmonic disturbance applied at some point by an external source is invariant with
respect to the exchange of source and receiver positions. The principle holds in many problems
in continuum mechanics, electricity, magnetism, and optics, and it has seen contributions from
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several towering figures in physics and engineering (Masoud and Stone, 2019). However, there
are cases, where this principle is broken. One example of a non-reciprocal phenomenon is that
of a linear acoustic wave travelling through a moving medium. This is because the term ū in
the governing equation is time-odd, i.e. time reversal switches its direction. As discussed by
Rasmussen et al. (2021), ”reciprocity is restored if the time-odd quantities are reversed along
with the source and receiver positions.”

A.1.2. Time domain analysis

The time-domain direct Green’s function g(x, x′, t− t′) is calculated from

g(x, x′, t− t′) =
1

2π

∫ ∞

−∞
ĝ(x, x′, ω)e−iω(t−t′)dω. (A.25)

It must satisfy causality, i.e. the response must not start before the impulse that triggered it.
Hence we have

g(x, x′, t− t′) = 0 for t− t′ < 0. (A.26)

For t − t′ > 0, i.e. after the impulse, we expect the response to be a superposition of modes
with frequencies ωn. We now proceed to calculate this response by evaluating the integral in
Eq. (A.25) with the residue theorem.

Equation (2.27) shows that ĝ(x, x′, ω) has singularities at ω = 0 and at the Green’s function
frequencies ω = ωn, therefore the integrand in Eq. (A.25) has singularities at the same frequen-
cies. Their position in the complex plane is shown in Figure A.2. For the integration path, we

Figure A.2: Singular points in in the complex ω-plane.

choose the closed curve composed of the real axis and the semi-circular arc Γ− in the lower
half-plane; this curve encloses all singular points. Application of the residue theorem gives (the
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path is traversed in the negative direction, hence the minus sign in −2πi)∫ ∞

−∞
ĝ(x, x′, ω)e−iω(t−t′)dω =

− 2πi
∞∑

n=−∞

Resωn [ĝ(x, x
′, ω)e−iω(t−t′)]

− lim
R→∞

∫
Γ−

ĝ(x, x′, ω)e−iω(t−t′)dω.︸ ︷︷ ︸
=0

(A.27)

The sum in this equation includes the term n = 0, which represents the singularity at ω0 = 0.
The integral along Γ− is zero for t − t′ > 0 because the exponential function tends to zero as
the radius of the semicircle tends to infinity,

e−iω(t−t′) = e−i(ωr+iωi)(t−t′)︸ ︷︷ ︸
bounded

eωi(t−t′) → 0 as ωi → −∞. (A.28)

It now remains to calculate the residues of ĝ(x, x′, ω)e−iω(t−t′). We introduce the abbrevia-
tion

ψ(x, ω) = −1

c
e−i(k+−k−)xe−ik+L = −1

c
e
iωx 2ū

c2−ū2 e−i ω
c+ū

L, (A.29)

and use Eq. (2.27) to write the residue term as

ĝ(x, x′, ω)e−iω(t−t′) =
i

2ωF (ω)


ψ(x′, ω)b(x′, ω)a(x, ω)e−iω(t−t′) for x < x′

ψ(x′, ω)a(x′, ω)b(x, ω)e−iω(t−t′) for x > x′.

(A.30)

The general formula for the calculation of the residue of a quotient can be applied,

Resωn =

[
P (ω)

Q(ω)

]
=
P (ωn)

Q′(ωn)
. (A.31)

with

P (ω) = i

{
ψ(x′, ω)b(x′, ω)a(x, ω)e−iω(t−t′) for x < x′

ψ(x′, ω)a(x′, ω)b(x, ω)e−iω(t−t′) for x > x′
(A.32)

Q(ω) = 2ωF (ω), (A.33)

Q′(ωn) =
dQ

dω
= [2F (ω) + 2ωF ′(ω)]ωn = 2ωnF

′(ωn). (A.34)

This gives the residue in (A.27)

Resωn [ĝ(x, x
′, ω)e−iω(t−t′)] =

iψ(x′, ωn)e
−iωn(t−t′)

2ωnF ′(ωn)

{
b(x′, ωn)a(x, ωn) for x < x′

a(x′, ωn)b(x, ωn) for x > x′
(A.35)
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This result is not valid for ω0 = 0 because ω0 is not a frequency that satisfies F (ω) = 0; its
residue therefore has to be calculated separately. This can be done by expanding the expression
ĝ(x, x′, ω)e−iω(t−t′) into a Laurent series about ω = 0; the coefficient of ω−1 will then give the
required residue.

It is important to take into account that the reflection coefficientsR0 andRL will, in general,
also depend on ω. We assume that near ω = 0, they can be approximated by

R0 = −1 + α0ω, and RL = −1 + αLω, (A.36)

where α0 and αL are complex constants that describe the end correction of an open tube end.
The four expressions F (ω), a(x, ω), b(x, ω) and ψ(x, ω) can then be expanded into Taylor
series about ω = 0 and subsequently inserted into (A.30). The resulting Laurent series has no
terms with negative powers of ω. We can, therefore, conclude that the coefficient of ω−1 is zero,
and hence, the residue at ω0 = 0 is also zero.

The remaining terms in (A.27) are then∫ ∞

−∞
ĝ(x, x′, ω)e−iω(t−t′)dω = 2π

∞∑
n=−∞
n̸=0

gn(x, x
′, ωn)

2ωnF ′(ωn)
e−iωn(t−t′), (A.37)

with

gn(x, x
′, ωn) =

{
ψ(x′, ωn)b(x

′, ωn)a(x, ωn) for x < x′

ψ(x′, ωn)a(x
′, ωn)b(x, ωn) for x > x′

(A.38)

The sum in (A.37) includes terms with positive and negative mode numbers. The latter can
be converted into terms with positive mode numbers by using

−∞∑
n=−1

gn(x, x
′, ωn)

2ωnF ′(ωn)
e−iωn(t−t′) =

∞∑
n=1

gn(x, x
′, ω−n)

2ω−nF ′(ω−n)
e−iω−n(t−t′), (A.39)

and using the fact that
ω−n = −ω∗

n, (A.40)

which can be shown from F (ωn) = 0 (Heckl, 2023); the symbol ∗ denotes the complex conju-
gate. This manipulation of equations gives

−∞∑
n=−1

gn(x, x
′, ωn)

2ωnF ′(ωn)
e−iωn(t−t′) =

[
∞∑
n=1

gn(x, x
′, ωn)

2ωnF ′(ωn)
e−iωn(t−t′)

]∗
. (A.41)

The final result for the direct Green’s function in the time domain becomes

g(x, x′, t− t′) =
∞∑
n=1

ℜ

[
gn(x, x

′, ωn)

ωnF ′(ωn)
e−iωn(t−t′)

]
. (A.42)

This result is valid for observer times after the impulse (t > t′). It can be combined with the
result for g(x, x′, t− t′) before the impulse (t < t′), which is given in Eq. (A.26), by using the
Heaviside function H(t− t′). This leads to Eq. (2.30) in the main text.
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A.2. DERIVATION OF ADJOINT GREEN’S FUNCTION

This section demonstrates the detailed mathematical steps that give some crucial equations in
the adjoint Green’s function framework in the main text.

A.2.1. Derivation of Equation (2.34)

Recall that the governing equation of the direct system, Eq. (2.5),

∂2ϕ

∂t2
+ 2ū

∂2ϕ

∂t∂x
− (c2 − ū2)

∂2ϕ

∂x2
= −(γ − 1)q(t)δ(x− xq), (A.43)

and the initial conditions (2.6) and (2.7)

ϕ(x, t)|t=0 = φ0δ(x− xq), (A.44)[
∂ϕ

∂t
+ ū

∂ϕ

∂x

]
t=0

= φ′
0δ(x− xq). (A.45)

The following mathematical operations are performed:

• write the PDE (A.43) in terms of the new variables x′, t′ (instead of x, t)

• apply the inner product of Eq. (A.43) and an arbitrary test function (or an ”adjoint vari-
able”) G(x′, x, t′, t)

• integrate the result
∫ Tt

t′=0

∫ L

x′=0
...G(x′, x, t′, t)...dt′dx′ (with Tt yet to be defined)

• shift the derivatives from ϕ to G by repeated use of integration by parts.

After the first three operations, the following result is obtained.∫ Tt

t′=0

∫ L

x′=0

∂2ϕ

∂t′2
Gdt′dx′︸ ︷︷ ︸

I1

+

2ū

∫ Tt

t′=0

∫ L

x′=0

∂2ϕ

∂t′∂x′
Gdt′dx′︸ ︷︷ ︸

I2

−

(c2 − ū2)

∫ Tt

t′=0

∫ L

x′=0

∂2g

∂x′2
Gdx′dt′︸ ︷︷ ︸

I3

=

− (γ − 1)

∫ Tt

t′=0

q(t)G(xq, x, t
′, t)dt′.

(A.46)
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The three integrals I1, I2, I3, can be rewritten with integration by parts. For I1 we get

I1 =

∫ L

x′

[
∂ϕ

∂t′
G− ∂G

∂t′

]Tt

t′=0

dx′ +

∫ L

x′

∫ Tt

t′=0

ϕ
∂2G

∂t′2
dt′dx′. (A.47)

The integral I2 can be manipulated in two different ways: integrate first with respect to t
and then x, or vice versa. The first way gives

I2 =

∫ L

x′

∫ Tt

t′=0

∂2ϕ

∂t′∂x′
G(x′, x, t′, t)dt′dx′ =∫ L

x′=0

[
∂ϕ

∂x′
G

]Tt

t′=0

dx′ −
∫ Tt

t′=0

[
ϕ
∂G

∂t′

]L
x′=0

dt′+∫ Tt

t′=0

∫ L

x′=0

ϕ
∂2G

∂t′∂x′
dx′dt′.

(A.48)

The second way gives

I2 =

∫ Tt

t′

∫ L

x′=0

∂2ϕ

∂t′∂x′
G(x′, x, t′, t)dt′dx′ =∫ Tt

t′=0

[
∂ϕ

∂t′
G

]L
x′=0

dt′ −
∫ L

x′=0

[
ϕ
∂G

∂x′

]Tt

t′=0

dx′+∫ L

x′=0

∫ Tt

t′=0

ϕ
∂2G

∂x′∂t′
dt′dx′.

(A.49)

For I3 we get

I3 =

∫ Tt

t′=0

[
∂ϕ

∂x′
− ∂G

∂x′
ϕ

]L
x′=0

dt′ +

∫ Tt

t′=0

∫ L

x′=0

ϕ
∂2G

∂x′2
dx′dt′. (A.50)

The left-hand side of (A.46) then becomes after some rearrangements

I1 + ūI2 + ūI2 − (c2 − ū2)I3 =∫ Tt

t′=0

∫ L

x′=0

[
∂2G

∂t′2
+ 2ū

∂2G

∂t′∂x′
− (c2 − ū2)

∂2G

∂x′2

]
ϕ(x′, t′)dx′dt′+

∫ L

x′=0

[
G(
∂ϕ

∂t′
+ ū

∂ϕ

∂x′
)− ϕ(

∂G

∂t′
+ ū

∂G

∂x′
)

]Tt

t′=0

dx′+

∫ Tt

t′=0

[
ū(G

∂ϕ

∂t′
− ϕ

∂G

∂t′
)− (c2 − ū2)(G

∂ϕ

∂x′
− ϕ

∂G

∂x′
)

]L
x′=0

dt′.

(A.51)

In order to obtain Eq. (2.34) in the main text, one needs to express the left-hand side of
(A.46) with the result in (A.51) and then arrange the terms in a suitable order.
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A.2.2. Derivation of Equations (2.45) and (2.46)

Our starting point is the PDE (2.21) for ĝ,

ω2ĝ(x, x′, ω) + 2ūiω
∂ĝ

∂x
+ (c2 − ū2)

∂2ĝ

∂x2
= −δ(x− x′). (A.52)

We perform the following mathematical operations:

• multiply by the test function Ĝ(x, x∗, ω)

• integrate
∫ L

x=0
...Ĝ(x, x∗, ω)...dx

• shift the derivatives from ĝ to Ĝ by repeated use of integration by parts.

The first two operations lead to

ω2

∫ L

x=0

ĝĜdx+ 2ūiω

∫ L

x=0

∂ĝ

∂x
Ĝdx︸ ︷︷ ︸

= I1

+(c2 − ū2)

∫ L

x=0

∂2ĝ

∂x2
Ĝdx︸ ︷︷ ︸

= I2

=

−
∫ L

x=0

δ(x− x′)Ĝ(x, x∗, ω)dx.︸ ︷︷ ︸
= −Ĝ(x, x∗, ω)

(A.53)

The two integrals I1 and I2 can be rewritten with integration by parts; this gives

I1 =

[
ĝĜ

]L
x=0

−
∫ L

x=0

ĝ
∂Ĝ

∂x
dx, (A.54)

I2 =

[
Ĝ
∂ĝ

∂x
− ĝ

∂Ĝ

∂x

]L
x=0

+

∫ L

x=0

ĝ
∂2Ĝ

∂x2
dx. (A.55)

We substitute these results into (A.53) and then obtain∫ L

x=0

ĝ

[
ω2Ĝ− 2ūiω

∂Ĝ

∂x
+ (c2 − ū2)

∂2Ĝ

∂x2

]
dx+BT3 = −Ĝ(x′, x∗, ω), (A.56)

with

BT3 = 2ūiω

[
ĝĜ

]L
x=0

+ (c2 − ū2)

[
Ĝ
∂ĝ

∂x

]L
x=0

(A.57)

We define Ĝ(x, x∗, ω) by the PDE

ω2Ĝ(x, x∗, ω)− 2ūiω
∂Ĝ

∂x
+ (c2 − ū2)

∂2Ĝ

∂x2
= −δ(x− x∗). (A.58)
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We further define Ĝ(x, x∗, ω) by boundary conditions, which will make the unwelcome
boundary term BT3 zero. Comparison of (A.58) and (A.52) shows that Ĝ and ĝ satisfy very
similar PDEs; they only differ by the sign of the mean flow speed ū.

ĝ is known by the expressions (2.26) on either side of the point x′,

ĝ(x, x′, ω) =

{
A−(x

′, ω)[R0e
iω

c+ū
x + e−

iω
c−ū

x] near x = 0

B+(x
′, ω)[e

iω
c+ū

(x−L) +RLe
− iω

c−ū
(x−L)] near x = L

(A.59)

We construct from (A.59) a solution for Ĝ with the following rationale:

• change the sign of ū

• assume the same reflection coefficients, R0 and RL, as for ĝ

• allow for different amplitudes (Ã− instead of A−, and B̃+ instead of B+)

The result is

Ĝ(x, x′, ω) =

Ã−(x
′, ω)

[
R0e

iω
c−ū

x + e−
iω

c+ū
x
]

near x = 0

B̃+(x
′, ω)

[
e

iω
c−ū

(x−L) +RLe
− iω

c+ū
(x−L)

]
near x = L

(A.60)

which is identical to Eq. (2.46) in the main text.
It remains to show that the boundary term BT3, (A.57), is indeed zero with this definition.

The derivatives of Eqs. (A.59) and (A.60) are

∂ĝ

∂x
(x, x′, ω) =


A−(x

′, ω)iω

[
1

c+ ū
R0e

iω
c+ū

x − 1

c− ū
e−

iω
c−ū

x

]
near x = 0

B+(x
′, ω)iω

[
1

c+ ū
e

iω
c+ū

(x−L) − 1

c− ū
RLe

− iω
c−ū

(x−L)

]
near x = L

(A.61)
and

∂Ĝ

∂x
(x, x′, ω) =


Ã−(x

′, ω)iω

[
1

c− ū
R0e

iω
c−ū

x − 1

c+ ū
e−

iω
c+ū

x

]
near x = 0

B̃+(x
′, ω)iω

[
1

c− ū
e

iω
c−ū

(x−L) − 1

c+ ū
RLe

− iω
c+ū

(x−L)

]
near x = L

(A.62)
We can now evaluate Eqs. (A.57)–(A.62) at the duct ends: x = 0 and x = L. At x = 0, we get

ĝ(0, x′, ω) = A−(x
′, ω)(R0 + 1), (A.63a)

Ĝ(0, x′, ω) = Ã−(x
′, ω)(R0 + 1), (A.63b)

∂ĝ

∂x

∣∣∣∣∣
x=0

= A−(x
′, ω)iω

[
1

c+ ū
R0 −

1

c− ū

]
, (A.63c)

∂Ĝ

∂x

∣∣∣∣∣
x=0

= Ã−(x
′, ω)iω

[
1

c− ū
R0 −

1

c+ ū

]
. (A.63d)
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Then we get for the boundary at x = 0 of the term BT3 in (A.57)

[BT3]x=0 = 2ūiω[ĝĜ]x=0 + (c2 − ū2)

[
Ĝ
∂ĝ

∂x
− ĝ

∂Ĝ

∂x

]
x=0

=

2ūiωA−(x
′, ω)Ã−(x

′, ω)(R0 + 1)2+

(c2 − ū2)A−(x
′, ω)Ã−(x

′, ω)iω

[(
1

c+ ū
R0 −

1

c− ū

)
(R0 + 1)−

(R0 + 1)

(
1

c− ū
R0 −

1

c+ ū

)]
=

A−(x
′, ω)Ã−(x

′, ω)iω(R0 + 1)

{
(2ū(R0 + 1)+

(c2 − ū2)

[
(

1

c+ ū
R0 −

1

c− ū
)− (

1

c− ū
R0 −

1

c+ ū
)

]
︸ ︷︷ ︸

= (R0 + 1)
−2ū

c2 − ū2

}
.

(A.64)

The same calculation can be done at x = L, and the result is also zero. We can conclude
that BT3 = 0, and Eq. (A.56) reduces to Eq. (2.45) in the main text.

A.2.3. Derivation of the reciprocity theorem (2.48)

The starting point is the PDE (2.21) for g(x, x′, t− t′),

∂2g

∂t2
+ 2ū

∂2g

∂t∂x
− (c2 − ū2)

∂2g

∂x2
= δ(x− x′)δ(t− t′), (A.65)

and the causality conditions (2.22) and (2.23)

g(x, x′, t− t′) = 0 for t < t′. (A.66)

We perform the following mathematical operations on Eq. (A.65)

• multiply by G(x, x∗, t, t∗)

• integrate the result with respect to x and t, i.e.
∫∞
t=−∞

∫ L

x=0
...G(x, x∗, t, t∗)...dtdx

• shift the derivatives from g to G by repeated use of integration by parts.
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The first two operations lead to

∫ ∞

t=−∞

∫ L

x=0

∂2g

∂t2
Gdtdx︸ ︷︷ ︸

I1

+2ū

∫ ∞

t=−∞

∫ L

x=0

∂2g

∂t∂x
Gdtdx︸ ︷︷ ︸

I2

−

(c2 − ū2)

∫ ∞

t=−∞

∫ L

x=0

∂2g

∂x2
Gdxdt︸ ︷︷ ︸

I3

=

∫ ∞

t=−∞

∫ L

x=0

δ(x− x′)δ(t− t′)G(x, x∗, t, t∗)dxdt.︸ ︷︷ ︸
= G(x′, x∗, t′, t∗)

(A.67)

The three integrals I1, I2, I3, can be rewritten with integration by parts. The result for I1

is

I1 =

∫ L

x=0

[
∂g

∂t
G− ∂G

∂t
g

]∞
t=−∞

dx+

∫ L

x=0

∫ ∞

t=−∞
g
∂2G

∂t2
Gdtdx (A.68)

I2 can be manipulated in two different ways: integrate first with respect to t and then x, or vice
versa. The first way gives

I2 =

∫ L

x=0

[
∂g

∂x
G

]∞
t=−∞

dx−
∫ ∞

t=−∞

[
g
∂G

∂t

]L
x=0

dt+

∫ ∞

t=−∞

∫ L

x=0

g
∂2G

∂t∂x
dxdt. (A.69)

The second way gives

Ĩ2 =

∫ ∞

t=−∞

[
∂g

∂t
G

]L
x=0

dt−
∫ L

x=0

[
g
∂G

∂x

]∞
t=−∞

dx+

∫ L

x=0

∫ ∞

t=−∞
g
∂2G

∂t∂x
dtdx. (A.70)

The result for I3 is

I3 =

∫ ∞

t=−∞

[
∂g

∂x
G− g

∂G

∂x

]L
x=0

dt+

∫ ∞

t=−∞

∫ L

x=0

g
∂2G

∂x2
dxdt. (A.71)
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The left-hand side of Eq. (A.67) then becomes

I1 + ūI2 + ūĨ2 − (c2 − ū2)I3 =∫ L

x=0

∫ ∞

t=−∞
g(x, x′, t− t′)

[
∂2G

∂t2
+ 2ū

∂2G

∂t∂x
− (c2 − ū2)

∂2G

∂x2

]
︸ ︷︷ ︸

= δ(t− t∗)δ(x− x∗)

dt dx+

∫ L

x=0

([
∂g

∂t
G− ∂G

∂t
g

]∞
t=−∞

+ ū

[
∂g

∂x
G

]∞
t=−∞

− ū

[
g
∂G

∂x

]∞
t=−∞

)
dx+

∫ ∞

t=−∞

(
− ū

[
g
∂G

∂t

]L
x=0

+ ū

[
∂g

∂t
G

]L
x=0

− (c2 − ū2)

[
∂g

∂x
G− g

∂G

∂x

]L
x=0

)
dt =

g(x∗, x′, t∗, t′) +BT4 +BT5.

(A.72)

with

BT4 =

∫ L

x=0

[
G

(
∂g

∂t
+ ū

∂g

∂x

)
− g

(
∂G

∂t
+ ū

∂G

∂x

)]∞
t=−∞

dx (A.73)

and

BT5 =

∫ ∞

t=−∞

[
ū

(
∂g

∂t
G− g

∂G

∂t

)
− (c2 − ū2)

(
∂g

∂x
G− g

∂G

∂x

)]L
x=0

dt. (A.74)

According to Eq. (A.67), this has to be equal to G(x′, x∗, t′, t∗). We will get a meaningful result
if we can show that the boundary terms BT4 and BT5 are zero. In order to determine BT4,
we use the causality condition and terminal condition. From the causality condition (A.66), we
can conclude that

g(x, x′, t− t′) = 0 for t→ −∞, (A.75)

because t′ is finite. From the terminal condition, which we extended in (2.42), we can conclude
that

G(x, x∗, t, t∗) = 0 for t→ ∞, (A.76)

because Tt is finite. As a consequence of Eqs. (A.75) and (A.76),

BT4 = 0. (A.77)

The term BT5 in Eq. (A.74) is analogous to the term BT2 in Eq. (2.36), with g in place of
ϕ. In the frequency domain, g and ϕ have the same wave numbers (k+ for forward travelling
waves; k− for backward travelling waves) and the same boundary conditions at the tube ends
x = 0, L. Hence the method applied in Section A.3. can also be applied in this case, leading to

BT5 = 0. (A.78)
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A.3. CALCULATION OF THE BOUNDARY TERM BT2

The boundary term in Eq. (2.34) is given by

BT2 =

∫ Tt

t′=0

[
ū(G

∂ϕ

∂t′
− ϕ

∂G

∂t′
)− (c2 − ū2)(G

∂ϕ

∂x′
− ϕ

∂G

∂x′
)

]L
x′=0

dt′. (A.79)

For times t′ outside the integration range, ϕ and G are not defined, so we can choose

ϕ(x′, t′) = 0 for t′ < 0, (A.80)

G(x′, x, t′, t) = 0 for t′ > Tt. (A.81)

This allows us to extend the integration limits from
∫ Tt

t′=0
to
∫∞
t′=−∞ and to make use of Fourier

transforms, with

ϕ(x′, t′) =
1

2π

∫ ∞

ω=−∞
ϕ̂(x′, ω)e−iωt′dω, (A.82)

G(x′, x, t′, t) =
1

2π

∫ ∞

ω=−∞
Ĝ(x′, x, ω̃)e−iω̃(t−t′)dω̃. (A.83)

Each of the product terms in Eq. (A.79), G
∂ϕ

∂t′
, ϕ

∂G

∂t′
, G

∂ϕ

∂x′
, ϕ

∂G

∂x′
is a double integral of

the form
∫ ∞

ω=−∞

∫ ∞

ω̃=−∞
...dω̃dω. Each integrand of these double integrals has the same time-

dependence, e−iωt′e−iω̃(t−t′) = e−iω̃te−i(ω−ω̃)t′ , which can be integrated with respect to t′.∫ ∞

t′=−∞
e−iω̃te−i(ω−ω̃)t′dt′ = e−iω̃t

∫ ∞

t′=−∞
e−i(ω−ω̃)t′dt′ = e−iω̃t2πδ(ω − ω̃). (A.84)

As a consequence of the term δ(ω − ω̃), the double integral over ω and ω̃ reduces to a single
integral over ω. This allows us to consider a single frequency component of ϕ and G when
calculating the product terms, as follows

ϕω(x
′, t′) = ϕ̃(x′, ω)e−iωt′ , (A.85)

Gω(x
′, x, t′, t) = Ĝ(x′, x, ω̃)e−iω̃(t−t′). (A.86)

We first consider the boundary at x′ = 0. Near there, recall Eq. (2.13), we have

ϕω(x
′, t′) = A−(R0e

ik+x′
+ e−ik−x′

)e−iωt′ , (A.87a)
∂ϕω

∂t′
= (−iω)A−(R0e

ik+x′
+ e−ik−x′

)e−iωt′ , (A.87b)

∂ϕω

∂x′
= A−(ik+R0e

ik+x′ − ik−e
−ik−x′

)e−iωt′ , (A.87c)
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With Eq. (2.46) near x′ = 0, we have

Gω(x
′, x, t′, t) = Ã−(x, ω)(R0e

ik−x′
+ e−ik+x′

)e−iω(t−t′), (A.88a)
∂Gω

∂t′
= (iω)Ã−(x, ω)(R0e

ik−x′
+ e−ik+x′

)e−iω(t−t′), (A.88b)

∂Gω

∂x′
= Ã−(x, ω)(ik−R0e

ik−x′ − ik+e
−ik+x′

)e−iω(t−t′). (A.88c)

Simplification of the above terms at x′ = 0 gives

ϕω(x
′, t′)|x′=0 = A−(R0 + 1)e−iωt′ , (A.89a)

∂ϕω

∂t′

∣∣∣∣∣
x′=0

= −iωA−(R0 + 1)e−iωt′ , (A.89b)

∂ϕω

∂x′

∣∣∣∣∣
x′=0

= A−(ik+R0 − ik−)e
−iωt′ . (A.89c)

and

Gω(x
′, x, t′, t)

∣∣∣∣∣
x′=0

= Ã−(x, ω)(R0 + 1)e−iω(t−t′), (A.90a)

∂Gω

∂t′

∣∣∣∣∣
x′=0

= (iω)Ã−(x, ω)(R0 + 1)e−iω(t−t′), (A.90b)

∂Gω

∂x′

∣∣∣∣∣
x′=0

= Ã−(x, ω)(ik−R0 − ik−)e
−iω(t−t′). (A.90c)

The integrand in Eq. (A.79) at x′ = 0 then becomes[
ū(Gω)

∂ϕω

∂t′
− ϕω

∂Gω

∂t′
)− (c2 − ū2)(Gω

∂ϕω

∂x′
− ϕω

∂Gω

∂x′
)

]
x′=0

=

ū[Ã−(R0 + 1)(−iω)A−(R0 + 1)− A−(R0 + 1)(iω)Ã−(R0 + 1)]e−iωt′e−iω(t−t′)−
(c2 − ū2)[Ã−(R0 + 1)A−(ik+R0 − ik−)− A−(R0 + 1)Ã−(ik−R0 − ik+)]e

−iωt′e−iω(t−t′) =

Ã−A−(R0 + 1)e−iωt[ū(−2iω)(R0 + 1)− (c2 − ū2) (ik+R0 − ik− − ik−R0 + ik+)︸ ︷︷ ︸
= (R0 + 1)(ik+ − ik−)

] =

Ã−A−(R0 + 1)2e−iωt[−2iωū− (c2 − ū2) (ik+ − ik−)︸ ︷︷ ︸
iω

−2ū

c2 − ū2

] = 0.

(A.91)
The same calculation can be done for the boundary at x′ = L, and the result is also zero. To
summarize, we have shown that

BT2 = 0, (A.92)

which confirms Eq. (2.42) in the main text.
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A.4. FOURIER TRANSFORM PAIR OF AGF

We have defined G and Ĝ in such a way that they satisfy the PDEs

∂2G

∂t′2
+ 2ū

∂2G

∂t′∂x′
− (c2 − ū2)

∂2G

∂x′2
= δ(x′ − x)δ(t′ − t) (A.93)

(see Eq. (2.37) in the main text), and

ω2Ĝ(x′, x, ω)− 2ūiω
∂Ĝ

∂x′
+ (c2 − ū2)

∂2Ĝ

∂x′2
= −δ(x′ − x). (A.94)

(see Eq. (2.45) in the main text). In order to test whether they form a Fourier transform pair, we
propose the following ”trial relationship” between these two functions

G(x′, x, t′, t) =
1

2π

∫ ∞

ω=−∞
Ĝ(x′, x, ω)e−iω(t−t′)dω. (A.95)

Then
∂G

∂t′
=

1

2π

∫ ∞

ω=−∞
iωĜ(x′, x, ω)e−iω(t−t′)dω, (A.96a)

∂2G

∂t′2
=

1

2π

∫ ∞

ω=−∞
(−ω2)Ĝ(x′, x, ω)e−iω(t−t′)dω, (A.96b)

∂2G

∂t′∂x′
=

1

2π

∫ ∞

ω=−∞
(−iω)

∂Ĝ

∂x′
e−iω(t−t′)dω, (A.96c)

∂2G

∂x′2
=

1

2π

∫ ∞

ω=−∞

∂2Ĝ

∂x′2
e−iω(t−t′)dω. (A.96d)

We multiply the PDE (A.94) by
1

2π
e−iω(t−t′) and then integrate

1

2π

∫ ∞

ω=−∞
...e−iω(t−t′)dω.

This leads to

1

2π

∫ ∞

ω=−∞
ω2Ĝ(x′, x, ω)e−iω(t−t′)dω︸ ︷︷ ︸

= −∂
2G

∂t′2

−2ū
1

2π

∫ ∞

ω=−∞
iω
∂Ĝ

∂x′
e−iω(t−t′)dω︸ ︷︷ ︸

=
∂2G

∂t′∂x′

+

(c2 − ū2)
1

2π

∫ ∞

ω=−∞

∂2Ĝ

∂x′2
e−iω(t−t′)dω︸ ︷︷ ︸

=
∂2G

∂x′2

= −δ(x′ − x)
1

2π

∫ ∞

ω=−∞
e−iω(t−t′)dω︸ ︷︷ ︸

δ(t′ − t)

.

(A.97)

We can thus rewrite the above equation as

∂2G

∂t′2
+ 2ū

∂2G

∂t′∂x′
− (c2 − ū2)

∂2G

∂x′2
= δ(x− x′)δ(t− t′); (A.98)

this agrees with (A.93), and therefore our test relationship in (A.95) has been validated. We can
conclude that G(x′, x, t′, t) and Ĝ(x′, x, ω) are indeed a Fourier transform pair.
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A.5. CALCULATION OF AGF FOR A FLOW DUCT WITH
NON-UNIFORM TEMPERATURE

In this part, we show the calculation of direct Green’s function and AGF for a duct flow with
a temperature jump in the vicinity of the heat source. The details follow Section A.1., and the
different steps are shown here. Recall the general solution of the direct Green’s function in the
frequency domain,

ĝ(x, x′, ω) =


A+e

ik+1x + A−e
−ik−1x for 0 < x < xT ,

B+e
ik+2x +B−e

−ik−2x for xT < x < x′,

C+e
ik+2x + C−e

−ik−2x for x′ < x < L.

(A.99)

Applying the interface condition and the boundary condition, there are,

A+ = A−R0, at x = 0, (A.100a)

C− = C+RLe
i(k+2+k−2)L, at x = L, (A.100b)

A−e
−ik−1xT = RABA+e

ik+1xT + TBAB−e
−ik−2xT , at x = xT , (A.100c)

B+e
ik+2xT = RBAB−e

−ik−2xT + TABA+e
ik+1xT , at x = xT . (A.100d)

The above conditions help reduce the unknowns, and Eq. (A.99) now becomes

ĝ(x, x′, ω) =


A−(x

′, ω)α(x, ω) for 0 < x < xT ,

A−(x
′, ω) β(x, ω) for xT < x < x′,

C+(x
′, ω) η(x, ω) for x′ < x < L,

(A.101)

with

α(x, ω) =R0e
ik+1x + e−ik−1x, (A.102a)

β(x, ω) =S2 e
ik+2x + S1e

−ik−2x, (A.102b)

η(x, ω) =eik+2x + S3 e
−ik−2x, (A.102c)

and

S1 =
1

TBA

(
e−ik−1xT −RABR0e

ik+1xT
)
eik−2xT , (A.103a)

S2 =
(
RBAS1e

−ik−2xT + TABR0e
ik+1xT

)
e−ik+2xT , (A.103b)

S3 = RLe
i(k+2+k−2)L. (A.103c)

We can convert Eq. (A.101) in the hot region (x > xT ) into a single expression by using the
Heaviside functions H(x′ − x) and H(x− x′),

ĝ(x, x′, ω) = H(x′ − x)A−(x
′, ω)β(x, ω) +H(x− x′)C+(x

′, ω)η(x, ω). (A.104)
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Substituting Eq. (A.104) in the governing equation (2.21), and after simplification, we have two
linear equations for the unknowns A−(x

′, ω) and C+(x
′, ω):

−A−(x
′, ω)β(x′, ω) + C+(x

′, ω)η(x′, ω) = 0, (A.105a)

(c22 − ū22)

[
C+(x

′, ω)
dη

dx

∣∣∣∣
x=x′

− A−(x
′, ω)

dβ

dx

∣∣∣∣
x=x′

]
=− 1. (A.105b)

Using Cramer’s rule, the solution of A−(x
′, ω) and C+(x

′, ω) can be calculated as

A−(x
′, ω) =

detA
det

, C+(x
′, ω) =

detC
det

(A.106)

where the determinants are (with the assumption x′ → xT )

det =

∣∣∣∣∣∣
−β(x′, ω) η(x′, ω)

−(c22 − ū22)
dβ

dx

∣∣∣∣
x=x′

(c22 − ū22)
dη

dx

∣∣∣∣
x=x′

∣∣∣∣∣∣ = 2iωū2F (ω)

TBA
, (A.107)

detA =

∣∣∣∣∣∣
0 η(x′, ω)

−1 (c22 − ū22)
dη

dx

∣∣∣∣
x=x′

∣∣∣∣∣∣ = η(x′, ω), (A.108)

detC =

∣∣∣∣∣∣
−β(x′, ω) 0

−(c22 − ū22)
dβ

dx

∣∣∣∣
x=x′

−1

∣∣∣∣∣∣ = β(x′, ω). (A.109)

The expression of ĝ(x, x′, ω) now is

ĝ(x, x′, ω) =
TBA

2iωū2F (ω)


η(x′, ω)α(x, ω) for 0 < x < xT ,

η(x′, ω) β(x, ω) for xT < x < x′,

β(x′, ω) η(x, ω) for x′ < x < L.

(A.110)

The time-domain direct Green’s function g(x, x′, t − t′) is calculated by applying the residue
theorem, and the final expression of the direct Green’s function in the time domain is

g(x, x′, t− t′) = H(t− t′)
∞∑
n=1

ℜ
[
ĝn(x, x

′, ωn)e
−iωn(t−t′)

]
, (A.111)

with

ĝn(x, x
′, ωn) = − 2π TBA

ū2ωnF ′(ωn)


η(x′, ωn)α(x, ωn) for 0 < x < xT ,

η(x′, ωn) β(x, ωn) for xT < x < x′,

β(x′, ωn) η(x, ωn) for x′ < x < L.

(A.112)

The AGF can be obtained by replacing the ū1, ū2 in the solution of the direct Green’s func-
tion with −ū1,−ū2 .



APPENDIX FOR CHAPTER 3

B.1. THE BASE FLOW SYSTEM

The equations governing the base flow, B(q̄) = 0, are listed below:

1. Ideal gas assumption in each duct:

p̄i = ρ̄iRgT̄i, (B.1)

where Rg is the perfect gas constant.

2. Mass conservation equations at the duct intersections, at x = l1 and x = l2:

¯̇m = ρ̄1ū1a1 = ρ̄2ū2a2 = ρ̄3ū3a3. (B.2)

3. Energy conservation equations at the duct intersections, at x = l1 and x = l2:

ρ̄1ū1a1H̄1 = ρ̄2ū2a2H̄2, (B.3a)
ρ̄2ū2a2H̄2 + a3Q̄ = ρ̄3ū3a3H̄3, (B.3b)

where H̄ = CpT̄ +
1

2
ū2, with Cp the specific heat capacity. The mean heat released

by the flame (Q̄) appears in the energy conservation equation at the premixer-chamber
intersection.

4. Isentropic condition at x = l1 where the cross-sectional area decreases suddenly:

p̄1/p̄2 = (ρ̄1/ρ̄2)
γ, (B.4)

with γ = Cp/Cv the specific heat ratio.

5. Conservation of linear momentum across the sudden expansion at x = l2 (also known as
Borda-Carnot equation):

ρ̄3ū
2
3a3 − ρ̄2ū

2
2a2 = a3(p̄2 − p̄3). (B.5)

6. The boundary conditions provide the following parameters of the problem:

T̄1 = 300 K, p̄3 = 101000 Pa, T̄3 = Tf = 2000 K. (B.6)

The mass flow rate across the system is

¯̇m = 0.05 kg/s; (B.7)

solving the equations above, the base flow variables attain the values listed in Table B.1.
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Table B.1: Values of the base flow variables in the three-duct combustor.

Velocity [m/s] Pressure [Pa] Temperature [K] Density [kg/m3] Heat release rate [J/(m−2)]
ū1 = 3.27 p̄1 = 1.0209× 105 T̄1 = 300 ρ̄1 = 1.1857

ū2 = 29.80 p̄2 = 1.0157× 105 T̄2 = 299.5655 ρ̄2 = 1.1814 Q̄ = 2.2334× 107

ū3 = 73.81 p̄3 = 1.0100× 105 T̄3 = 2000 ρ̄3 = 10.1760

.

B.2. NON-ZERO ELEMENTS OF MATRIX A

The non-zero elements in the matrix A are listed below:

A(1, 4) =
(−k+2 c̄

2
2 + ū2α+2)κQ̄e

ik+2l2−iωτ

α+2ρ̄2ū2 c̄22
, (B.8)

A(1, 5) =
(−k−2 c̄

2
2 + ū2α−2)κQ̄e

ik−2l2−iωτ

α−2ρ̄2ū2 c̄22
, (B.9)

A(1, 6) = −eik02l2−iωτ Q̄κ

ρ̄2 c̄22
, (B.10)

A(1, 10) = 1, (B.11)

A(2, 1) =
(−k+1 c̄

2
1 + ū1α+1) a1e

ik+1l1

α+1 c̄21
, (B.12)

A(2, 2) =
(−k−1 c̄

2
1 + ū1α−1) a1e

ik−1l1

α−1 c̄21
, (B.13)

A(2, 3) = −eik01l1ū1a1
c̄21

, (B.14)

A(2, 4) =
a2 (k+2 c̄

2
2 − ū2α+2) e

ik+2l1

α+2 c̄22
, (B.15)

A(2, 5) =
a2 (k−2 c̄

2
2 − ū2α−2) e

ik−2l1

α−2 c̄22
, (B.16)

A(2, 6) =
eik02l1ū2a2

c̄22
, (B.17)

A(3, 1) =
(−c̄21ρ̄1 + γp̄1) e

ik+1l1

c̄21ρ̄1p̄1
, (B.18)

A(3, 2) =
(−c̄21ρ̄1 + γp̄1) e

ik−1l1

c̄21ρ̄1p̄1
, (B.19)

A(3, 3) = −γe
ik01l1

c̄21ρ̄1
, (B.20)
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A(3, 4) = −(−ρ̄2 c̄22 + γp̄2) e
ik+2l1

c̄22ρ̄2p̄2
, (B.21)

A(3, 5) = −(−ρ̄2 c̄22 + γp̄2) e
ik−2l1

c̄22ρ̄2p̄2
, (B.22)

A(3, 6) =
γeik02l1

c̄22ρ̄2
, (B.23)

A(4, 1) = −
[
Cp

(
RgT̄1 − c̄21

)
α+1 + k+1Rgū1 c̄

2
1

]
eik+1l1

ρ̄1Rg c̄21α+1

, (B.24)

A(4, 2) = −
[
Cp

(
RgT̄1 − c̄21

)
α−1 + k−1Rgū1 c̄

2
1

]
eik−1l1

ρ̄1Rg c̄21α−1

, (B.25)

A(4, 3) =
Cpe

ik01l1T̄1
ρ̄1 c̄21

, (B.26)

A(4, 4) =

[
Cp

(
RgT̄2 − c̄22

)
α+2 + k+2Rgū2 c̄

2
2

]
eik+2l1

Rgρ̄2 c̄22α+2

, (B.27)

A(4, 5) =

[
Cp

(
RgT̄2 − c̄22

)
α−2 + k−2Rgū2 c̄

2
2

]
eik−2l1

Rgρ̄2 c̄22α−2

, (B.28)

A(4, 6) = −Cpe
ik02l1T̄2
ρ̄2 c̄22

, (B.29)

A(5, 4) =
(−k+2 c̄

2
2 + ū2α+2) a2e

ik+2l2

α+2 c̄22
, (B.30)

A(5, 5) =
(−k−2 c̄

2
2 + ū2α−2) a2e

ik−2l2

α−2 c̄22
, (B.31)

A(5, 6) = −eik02l2ū2a2
c̄22

, (B.32)

A(5, 7) =
a3 (k+3 c̄

2
3 − ū3α+3) e

ik+3l2

α+3 c̄23
, (B.33)

A(5, 8) =
a3 (k−3 c̄

2
3 − ū3α−3) e

ik−3l2

α−3 c̄23
, (B.34)

A(5, 9) =
eik03l2ū3a3

c̄23
, (B.35)

A(6, 4) =
[(ū22a2 + a3 c̄

2
2)α+2 − 2k+2ū2a2 c̄

2
2] e

ik+2l2

c̄22α+2

, (B.36)

A(6, 5) =
[(ū22a2 + a3 c̄

2
2)α−2 − 2k−2ū2a2 c̄

2
2] e

ik−2l2

c̄22α−2

, (B.37)
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A(6, 6) = −eik02l2ū22a2
c̄22

, (B.38)

A(6, 7) = −eik+3l2 [(ū23 + c̄23)α+3 + 2k+3ū3 c̄
2
3] a3

c̄23α+3

, (B.39)

A(6, 8) = −eik−3l2 [(ū23 + c̄23)α−3 + 2k−3ū3 c̄
2
3] a3

c̄23α−3

, (B.40)

A(6, 9) =
eik03l2ū23a3

c̄23
, (B.41)

A(7, 4) = −
a2
{[
ū2
(
CpT̄2 − H̄2

)
α+2 + c̄22k+2

(
ū22 + H̄2

)]
Rg − Cpū2 c̄

2
2α+2

}
eik+2l2

Rg c̄22α+2

,

(B.42)

A(7, 5) = −
a2
{[
ū2
(
CpT̄2 − H̄2

)
α−2 + c̄22k−2

(
ū22 + H̄2

)]
Rg − Cpū2 c̄

2
2α−2

}
eik−2l2

Rg c̄22α−2

,

(B.43)

A(7, 6) =
a2ū2

(
CpT̄2 − H̄2

)
eik02l2

c̄22
, (B.44)

A(7, 7) =
a3
{[
ū3
(
CpT̄3 − H̄3

)
α+3 + c̄23k+3

(
ū23 + H̄3

)]
Rg − Cpū3 c̄

2
3α+3

}
eik+3l2

Rg c̄23α+3

, (B.45)

A(7, 8) =
a3
{[
ū3
(
CpT̄3 − H̄3

)
α−3 + c̄23k−3

(
ū23 + H̄3

)]
Rg − Cpū3 c̄

2
3α−3

}
eik−3l2

Rg c̄23α−3

, (B.46)

A(7, 9) = −
a3ū3

(
CpT̄3 − H̄3

)
eik03l2

c̄23
, (B.47)

A(7, 10) = a3, (B.48)

A(8, 1) =
−k+1 c̄

2
1 + ū1α+1

c̄21ρ̄1α+1ū1
, (B.49)

A(8, 2) =
−k−1 c̄

2
1 + ū1α−1

c̄21ρ̄1α−1ū1
, (B.50)

A(8, 3) = − 1

c̄21ρ̄1
, (B.51)

A(9, 3) = 1, (B.52)

A(10, 7) = eik+3l3 , (B.53)

A(10, 8) = eik−3l3 . (B.54)
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B.3. THE ADJOINT BASE FLOW SYSTEM

The adjoint base flow equations (3.25) in the expanded form are:

b†∗7 a3 = −y†∗∂A
∂Q̄

x, (B.55)

ρ̄1a1

[
]b†∗6 (H̄1 + ū21) + b†∗10 + b†∗4

]
= −y†∗ ∂A

∂ū1
x, (B.56)

a2ρ̄2

[(
b†∗6 − b†∗7

)
(H̄2 + ū22) + 2ū2b

†∗
9 + b†∗4 − b†∗5

]
= −y†∗ ∂A

∂ū2
x, (B.57)

−a3ρ̄3
[
(H̄3 + ū23)b

†∗
7 − 2ū3b

†∗
9 + b†∗5

]
= −y†∗ ∂A

∂ū3
x, (B.58)

b†∗1 +
b†∗8
p̄2

= −y†∗ ∂A
∂p̄1

x, (B.59)

1

p̄22

(
b†∗9 a3 − b†∗8 p̄1

)
+ b†∗2 = −y†∗ ∂A

∂p̄2
x, (B.60)

−b†∗9 a3 + b†∗12 + b†∗3 = −y†∗ ∂A
∂p̄3

x = 0, (B.61)

− γ

ρ̄1

(
ρ̄1
ρ̄2

)γ

b†∗8 +
[
a1ū1

(
H̄1b

†∗
6 + b†∗10 + b†∗4

)
−RgT̄1b

†∗
1

]
= −y†∗ ∂A

∂ρ̄1
x, (B.62)

−a2ū2
[(
b†∗6 − b†∗7

)
H̄2 + b†∗9 ū2 +

(
b†∗4 − b†∗5

)]
− b†∗2 RgT̄2 + 2γ

(
ρ̄1
ρ̄2

)γ

b†∗8 = −y†∗ ∂A
∂ρ̄2

x,

(B.63)

−a3ū3
(
b†∗7 H̄3 − b†∗9 ū3 + b†∗5

)
− b†∗3 RgT̄3 = −y†∗ ∂A

∂ρ̄3
x = 0, (B.64)

b†∗6 Cpρ̄1ū1a1 − b†∗1 Rgρ̄1 + b†∗11 = −y†∗ ∂A
∂T̄1

x, (B.65)

Cpū2ρ̄2a2

(
b†∗6 − b†∗7

)
+ b†∗2 Rgρ̄2 = −y†∗ ∂A

∂T̄2
x, (B.66)

b†∗7 Cpρ̄3ū3a3 − b†∗3 Rgρ̄3 + b†∗13 = −y†∗ ∂A
∂T̄3

x. (B.67)
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B.4. THE ADJOINT DISTURBANCE FLOW SYSTEM

The differential equations of the adjoint disturbance flow system, Eq. (3.36) in full form are:

iω∗ρ̂† + ū
dρ̂†

dx
= 0, (B.68a)

iω∗ρ̄û† + ρ̄ūj
dû†

dx
+ ρ̄

dρ̂†

dx
+ γp̄

dp̂†

dx
= 0, (B.68b)

iω∗p̂† + ū
dp̂†

dx
+

dû†

dx
= 0, (B.68c)

where j = 1, 2, 3 indicates each section of the duct.
The boundary conditions of the adjoint system yielded from the boundary terms at x = 0

and x = l3 generated from integration by parts, are:

û†1(0) = 0, ρ̂†3(l3) = 0, ū3û
†
3(l3) + c̄23p̂

†
3(l3) = 0. (B.69)

The formulations of adjoint variables f̂ † are:

f̂ †
1 =

1

a2
[ρ̂†2(l1) + c̄22p̂

†
2(l1)], (B.70a)

f̂ †
2 =

1

γ − 1
p̄2û

†
2(l1)− ū2p̄2p̂

†
2(l1), (B.70b)

f̂ †
3 = ρ̄2û

†
2(l1), (B.70c)

f̂ †
4 =

1

a3
[ρ̂†3(l2)− ū3û

†
3(l2) +

γ − 1

2
ū23p̂

†
3(l2)], (B.70d)

f̂ †
5 =

1

a3
[û†3(l2) + (1− γ)ū3p̂

†
3(l2)], (B.70e)

f̂ †
6 =

1

a3
(γ − 1)p̂†3(l2). (B.70f)

The adjoint jump conditions are:

ū1ρ̄1[a1ρ̂
†
2(l1)− a2ρ̂

†
1(l1)] = γ(a2ū2p̄2 − a1ū1p̄1)p̂

†
2(l1), (B.71a)

a1ρ̄1

[
1

a2
ρ̂†2(l1)−

1

a1
ρ̂†1(l1)

]
+ ū1

[
ρ̄2û

†
2(l1)− ρ̄1û

†
1(l1)

]
+ a1ρ̄1

[
1

a2
c̄22p̂

†
2(l1)−

1

a1
c̄21p̂

†
1(l1)

]
= 0,

(B.71b)

p̄1û
†
1(l1) + (p̄2 − c̄21ρ̄2)

1

γ − 1
û†2(l1) + ū1p̄1p̂

†
1(l1)− ū2p̄2p̂

†
2(l1) = 0, (B.71c)

a2

[
1

a3
ρ̂†3(l2)−

1

a2
ρ̂†2(l2)

]
=
a2
a3

(ū3 − ū2)û
†
3(l2) +

[
a2
2a3

(ū3 − ū2)
2 − κQ̄

ū2ρ̄2
eiω

∗τ

]
(1− γ)p̂†3(l2),

(B.71d)
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a3ρ̂
†
2(l2)− a2ρ̂

†
3(l2) + a3ū2û

†
2(l2) + a2ū3û

†
3(l2)− 2a2ū2û

†
3(l2) + a3c̄

2
2p̂

†
2(l2)− a2c̄

2
2p̂

†
3(l2)

= (γ − 1)p̂†3(l2)

[
a2(

1

2
ū23 − 2ū2ū3 +

3

2
ū22)− a3

κQ̄

ρ̄2ū2
eiω

∗τ

]
,

(B.71e)

û†3(l2)− û†2(l2) +

[
a2
a3
γū2 + (1− γ)ū3

]
p̂†3(l2)− ū2p̂

†
2(l2) = 0. (B.71f)

With the differential equations (B.68), the adjoint variables q̂† = (p̂†, ρ̂†, û†) can be decou-
pled as follows,

p̂†j = A†
+je

ik†+jx + A†
−je

ik†−jx + A†
eje

ik†0jx, (B.72a)

ρ̂†j = −c̄2jA
†
eje

ik†0jx, (B.72b)

û†j = −
k†+j c̄

2
j

α†
+j

A†
+je

ik†+jx −
k†−c̄

2
j

α†
−j

A†
−je

ik†−jx, (B.72c)

together with the relations:

k†±j = − ω∗

ūj ± c̄j
, k†0j = −ω

∗

ūj
, α†

±j = ω∗ + ūjk
†
±j. (B.73)

Using the decoupling relation (B.72), the boundary conditions (B.69) and the jump condi-
tions (B.71) of the adjoint disturbance system can be organized in matrix form and can be solved
with the inverse iteration method. The eigenvector consists of the adjoint decoupled wave am-
plitudes (A†

+ j , A
†
− j , A

†
e j , j = 1, 2, 3 indicating each duct section). The mode shapes of the

adjoint perturbation variables can be reconstructed accordingly; they are shown in Figs. B.1
and B.2.
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Figure B.1: Absolute values of the mode shapes of the adjoint variables p̂†, û†, and ρ̂† for eigenmode
TA1. The frame on the bottom right represents the receptivity of the system to disturbances in the mass
flow rate.

Figure B.2: Same as Figure B.1 for eigenmode TA2.



APPENDIX FOR CHAPTER 4

C.1. DERIVATION OF THE PROBLEM FOR π(1)

Subtracting the time derivative of Eq. (4.22a) from the spatial derivative of Eq. (4.28b), we
obtain

∂2π(1)

∂x2i
= 0. (C.1)

Furthermore, since π(0) is only dependent on the X2 coordinate, it is

∂π(0)

∂X2

=
∂p(0)

∂X2

(0+, X2, τ) =
∂P (0)

∂X2

(0−, X2, τ). (C.2)

Using Eq. (4.28b), the time derivative of Eq. (4.28c) gives(
∂π(1)

∂xi
+
∂π(0)

∂X2

δ2i

)
ni =

(
∂π(1)

∂xi
+
∂P (0)

∂X2

(0−, X2, τ)δ2i

)
ni = 0, at Aβσ. (C.3)

From the time derivative of Eq. (4.24) and using Eqs. (4.21b) and (4.29b), it is known that

∂p(0)

∂X1

(0+, X2, τ) +
∂p(1)

∂x1
(0+, X2, xi, τ) =

∂P (0)

∂X1

(0−, X2, τ). (C.4)

Using Eqs. (4.21b), (4.28b), and (4.29b), and with account of Eq. (C.4), the time derivatives
of Eq. (4.19b) and Eq. (4.19d) lead to

lim
x1→+x∞

∂π(1)

∂x1
=
∂p(0)

∂X1

(0+, X2, τ) +
∂p(1)

∂x1
(0+, X2, xi, τ) =

∂P (0)

∂X1

(0−, X2, τ), (C.5a)

lim
x1→−x∞

∂π(1)

∂x1
=
∂P (0)

∂X1

(0−, X2, τ). (C.5b)

C.2. DERIVATION OF JUMP CONDITIONS (4.36)

Recalling Eq. (C.4), we have

∂P (0)

∂X1

(0−, X2, τ) =

(
δ1j −

∂sj
∂x1

)
∂p(0)

∂Xj

(0+, X2, τ). (C.6)

and using Eq. (C.2), we can write the pressure gradient in the free-field region as

∂P (0)

∂Xi

(0−, X2, τ) = Bij
∂p(0)

∂Xj

(0+, X2, τ) (C.7)



147

with

Bij =

 1− ∂s1
∂x1

−∂s2
∂x1

0 1

 . (C.8)

Inserting (4.31) into Eq. (4.28b) and using (C.2), we have:

∂v
(0)
i

∂τ
= −

(
∂aj
∂xi

+ δ2jδi2

)
∂P (0)

∂Xj

(0−, X2, τ) =

(
∂aj
∂xi

+ δj2δ2i

)
∂U

(0)
j

∂τ
(0−, X2, τ). (C.9)

Time integration gives
v
(0)
i = AijU

(0)
j (0−, X2, τ) + χi(X2), (C.10)

with Aij =
∂aj
∂xi

+ δj2δ2i and χi(X2) a constant vector arising from integration. Substituting

into Eq. (4.28a), using (4.21a) and (4.26), we have

∂v
(1)
i

∂xi
= (δjk − A2jδk2)

∂U
(0)
j

∂Xk

(0−, X2, τ)−
∂χi

∂X2

δi2

=
∂U

(0)
1

∂X1

(0−, X2, τ)− A21
∂U

(0)
1

∂X2

(0−, X2, τ) + (1− A22)
∂U

(0)
2

∂X2

(0−, X2, τ)−
∂χ2

∂X2

.

(C.11)
In order to determine the unknown vector χi(X2), we use the energy conservation equation
(4.4c) in the interface inner region at order O(ϵ−1)

∂π(0)

∂xi
v
(0)
i + π(0)∂v

(0)
i

∂xi
= 0, (C.12)

and at order O(ϵ0),

1

2

∂

∂τ
(π(0)2 + v

(0)2
i )+v

(1)
i

∂π(0)

∂xi
+ v

(0)
i

[
∂π(0)

∂X2

δ2i +
∂π(1)

∂xi

]
+

+π(1)∂v
(0)
i

∂xi
+ π(0)

[
∂v

(0)
i

∂X2

δ2i +
∂v

(1)
i

∂xi

]
= 0.

(C.13)

From Eq. (C.12) and using Eqs. (4.26) and (C.10), we have

∂Aij

∂xi
=
∂2aj
∂x2i

= 0, (C.14)

for any non-zero leading-order pressure field. This is always true as aj satisfies the auxiliary
problem (4.32).

From Eq. (C.13) and using Eqs. (4.26) and (C.10), the following equation holds atX1 = 0−:

1

2

∂

∂τ

[
P (0)2 + A2

ijU
(0)2
j

]
+ (AkiAij)U

(0)
j

∂P (0)

∂Xk

+ P (0)
∂U

(0)
j

∂Xk

δjk = −χiAij

(
∂U

(0)
j

∂τ
+
∂P (0)

∂Xj

)
.

(C.15)
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With Eqs. (4.21), we have

1

2

∂

∂τ

[
P (0)2 + A2

ijU
(0)2
j

]
− (AkiAij)U

(0)
j

∂U
(0)
k

∂τ
− P (0)∂P

(0)

∂τ
= 0, (C.16)

which is always satisfied for whatever χi. We can thus set χi(X2) = 0.
Integrating equation (C.11) in the inner region unit cell, and using Green’s theorem, we get

the order ϵ jump condition:

[[u1]]
(1) =

∫ 1

0

v
(1)
1

∣∣∣∣∣
x∞

x1=−x∞

dx2 − x∞
∂U

(0)
1

∂X1

(0−, X2, τ)− x∞

∫ 1

0

∂u
(0)
1

∂X1

(0+, X2, xi, τ) dx2

=(Vin − x∞)
∂U

(0)
1

∂X1

(0−, X2, τ)− x∞

∫ 1

0

∂u
(0)
1

∂X1

(0+, X2, xi, τ) dx2−

−
∫
Vin

(A21)dV
∂U

(0)
1

∂X2

(0−, X2, τ) +

∫
Vin

(1− A22)dV
∂U

(0)
2

∂X2

(0−, X2, τ).

(C.17)
Now we try to find an expression for the second term on RHS of the above equation, to

relate it to free field variables. Taking the spatial derivative of Eq.(4.29b) in the X1-direction
we have

∂2u
(0)
1

∂τ∂X1

= − ∂2p(1)

∂X1∂x1
− ∂2p(0)

∂X2
1

. (C.18)

Using Eqs. (4.34) and (4.21), the above equation is simplified to be

∂2u
(0)
1

∂τ∂X1

= − ∂

∂X1

(
B11

∂p(0)

∂X1

+B12
∂p(0)

∂X2

)
= −∂

2P (0)

∂X2
1

=
∂2U

(0)
1

∂τ∂X1

. (C.19)

Hence,

∂u
(0)
1

∂X1

=
∂U

(0)
1

∂X1

, (C.20)

and consequently, the jump condition for the acoustic velocity becomes

[[u1]]
(1) =(Vin − 2x∞)

∂U
(0)
1

∂X1

(0−, X2, τ)−
∫
Vin

(A21)dV
∂U

(0)
1

∂X2

(0−, X2, τ)+

+

∫
Vin

(1− A22)dV
∂U

(0)
2

∂X2

(0−, X2, τ),

(C.21)

noticing that Vin = 2x∞ − x∞πd
2/4, and Vin − 2x∞ = x∞(ϕ− 1).
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Using matching conditions (4.20a) and (4.20c), we also have

[[p]](1) =

(∫ 1

0

aj

∣∣∣∣x∞

x1=−x∞

dx2 − x∞δ1j

)
∂P (0)

∂Xj

(0−, X2, τ)− x∞δ1j

∫ 1

0

∂p(0)

∂Xj

(0+, X2, xi, τ) dx2

=

(∫ 1

0

aj

∣∣∣∣x∞

x1=−x∞

dx2 − x∞δ1j

)
∂P (0)

∂Xj

(0−, X2, τ)− x∞δ1j

∫ 1

0

B−1
ji

∣∣∣∣
X1=0+

dx2
∂P (0)

∂Xi

(0−, X2, τ),

=

(∫ 1

0

ai

∣∣∣∣x∞

x1=−x∞

dx2 − x∞δ1i − x∞δ1j

∫ 1

0

B−1
ji

∣∣∣∣
X1=0+

dx2

)
∂P (0)

∂Xi

(0−, X2, τ).

(C.22)
The jump conditions can be written in a more compact format as

[[p]] = Mi
∂P (0)

∂Xi

(0−, X2, τ), (C.23a)

[[u1]] = Sij

∂U
(0)
j

∂Xi

(0−, X2, τ), (C.23b)

with

Mi =

∫ 1

0

ai

∣∣∣∣x∞

x1=−x∞

dx2 − x∞δ1i − x∞δ1j

∫ 1

0

B−1
ji

∣∣∣∣
X1=0+

dx2, (C.24a)

Sij =

 x∞(ϕ− 1) 0

−
∫
Vin

(A21) dV

∫
Vin

(1− A22) dV.

 (C.24b)

C.3. WAVE EQUATION IN THE BULK REGION OF POROUS
MATERIAL

Solving the whole domain also requires solving the field in the outer bulk region at order O(ϵ0).
Recall that the solution of p(1) has been obtained as Eq. (4.34). Using the governing equations
in the bulk region at order O(ϵ0), Eqs. (4.29), and O(ϵ1):

∂p(1)

∂τ
+
∂u

(2)
i

∂xi
+
∂u

(1)
i

∂Xi

= 0, (C.25a)

∂u
(1)
i

∂τ
+
∂p(2)

∂xi
+
∂p(1)

∂Xi

= 0, (C.25b)

u
(1)
i ni = 0, at Aβσ. (C.25c)

Taking the microscopic spatial derivative of Eq. (C.25b), it is

∂2u
(1)
i

∂xi∂τ
= −∂

2p(2)

∂x2i
− ∂2p(1)

∂xi∂Xi

. (C.26)
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Substituting the above equation in the time derivative of Eq. (4.29a), we obtain

∂2p(0)

∂τ 2
− ∂2p(2)

∂x2i
− ∂2p(1)

∂xi∂Xi

+
∂2u

(0)
i

∂τ∂Xi

= 0. (C.27)

In addition, the macroscopic divergence of Eq. (4.29b) from the above equation yields,

∂2u
(0)
i

∂τ∂Xi

= − ∂2p(1)

∂Xi∂xi
− ∂2p(0)

∂X2
i

. (C.28)

In the end, we obtain a single equation for the acoustic pressure in the outer bulk porous region,
and the boundary condition at the solid scatterer surface (obtained from the inner product of ni

and Eq. (C.25b)):

∂2p(0)

∂τ 2
− ∂2p(2)

∂x2i
−2

∂2p(1)

∂xi∂Xi

− ∂2p(0)

∂X2
i

= 0, (C.29a)

∂p(2)

∂xi
ni =− ∂p(1)

∂Xi

ni, at Aβσ. (C.29b)

With Eq. (C.29b), applying the Green’s theorem in a unit cell of the bulk region, it holds that∫
Vβ

∂2p(2)

∂x2i
dV =

∫
Aβσ

∂p(2)

∂xi
ni dS =

∂2p(0)

∂Xi∂Xk

∫
Aβσ

(sk ni) dS. (C.30)

In addition, using the auxiliary governing equations (4.35), it is

0 =

∫
Vβ

(
sk
∂2si
∂x2j

)
dV =−

∫
Vβ

∂sk
∂xj

∂si
∂xj

dV +

∫
Aβσ

sk
∂si
∂xj

nj dS

=−
∫
Vβ

∂sk
∂xj

∂si
∂xj

dV +

∫
Aβσ

sknidS

(C.31)

so that ∫
Aβσ

(sk ni) dS =

∫
Vβ

(
∂sk
∂xj

∂si
∂xj

)
dV. (C.32)

Substituting Eq. (4.34) into Eq. (C.29a) and taking the intrinsic average, finally we have

∂2p(0)

∂τ 2
− Cik

∂2p(0)

∂Xi∂Xk

= 0, (C.33)

with the coefficient Cik defined by

Cik = ⟨∂sk
∂xj

∂si
∂xj

− 2
∂si
∂xk

+ δik⟩β. (C.34)

Since the geometry of the bulk-region unit cell is isotropic, it is Cik = C δik. This gives the wave
equation in the bulk region at order O(ϵ0) in the following form:

∂2p(0)

∂τ 2
− C ∂

2p(0)

∂X2
i

= 0. (C.35)
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In the free region from Eqs. (4.21), we are able to obtain a similar dimensionless wave equation
for the acoustic pressure at order O(ϵ0) as

∂2P (0)

∂τ 2
− ∂2P (0)

∂X2
i

= 0. (C.36)

Comparing the two wave equations (C.35) and (C.36), we see that in the bulk region of the
porous material, at order O(ϵ0), the pressure wave propagates as if the wave speed were scaled
up by

√
C compared to the propagation speed in the free field. Therefore, in the bulk porous

region, an effective sound speed is defined as

ceff = cs
√
C. (C.37)

The upscaled model (C.33) is equivalent to the macroscopic model obtained by Mei and
Vernescu (2010) in the frequency domain.
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Rasmussen, C., Quan, L., and Alù, A. (2021). Acoustic nonreciprocity. J. Appl. Phys.,
129:210903. https://doi.org/10.1063/5.0050775.

https://doi.org/10.1016/j.combustflame.2015.10.011
https://doi.org/10.1016/j.jsv.2022.116808
https://doi.org/10.1103/PhysRevFluids.9.103902
https://doi.org/10.1115/98-GT-269
https://doi.org/10.1016/j.pecs.2020.100845
https://doi.org/10.1017/S0022112009993764
https://doi.org/10.1017/S0022112002001301
https://doi.org/10.1121/1.1907406
https://doi.org/10.2514/6.1987-2690
https://doi.org/10.1017/S0022112009990681
https://doi.org/10.1063/5.0050775


160

Raun, R., Beckstead, M., Finlinson, J., and Brooks, K. (1993). A review of Ri-
jke tubes, Rijke burners and related devices. Prog. Energ. Combust., 19(4):313–364.
https://doi.org/10.1016/0360-1285(93)90007-2.

Rayleigh, J. W. S. B. (1896). The Theory of Sound, volume 2. Macmillan.

Rayleigh, L. (1878). The explanation of certain acoustical phenomena. Nature, 8:319–321.

Rienstra, S. W. and Hirschberg, A. (2004). An Introduction to Acoustics. Technische Univer-
siteit Eindhoven, The Netherlands.

Sayadi, T., Le Chenadec, V., Schmid, P., Richecoeur, F., and Massot, M. (2014). Thermoacous-
tic instability – a dynamical system and time domain analysis. J. Fluid Mech., 753:448–471.
https://doi.org/10.1017/jfm.2014.357.

Schaefer, F. and Polifke, W. (2019). Low-order network model of a duct with non-uniform
cross-section and varying mean temperature in the presence of mean flow. In AIAA Propul-
sion and Energy 2019 Forum, page 4376. https://doi.org/10.2514/6.2019-4376.
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