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Abstract

We study the interaction of a fluid with a permeable surface by using the ho-
mogenisation theory. Thus, we are able to substitute the permeable surface
with a smooth one, at which we apply an effective slip condition, written in
terms of effective coefficients, whose numerical values directly come from the
numerical solution of microscopic problems.

We use a 3D description and consider inertia already at microscopic level, by
means of a so-called Oseen approximation, recovering the Stokes’ limit for
Reτ → 0. We characterise as well the behaviour of the microscopic parame-
ters by computing them for both spanwise and streamwise aligned cylindrical
inclusions, for several different values of porosity θ and of Reτ , for both inline
and staggered arrangements, and proposing also a fit law.

Then, we try to test our effective condition by numerically studying a macro-
scopic case (a fully developed turbulent channel flow with one permeable wall
of spanwise inclusions) and comparing our solutions with a fully-feature re-
solving DNS present in literature. However, very recently we found that our
reference presented different values of some important parameters, thus mak-
ing a quantitative comparison ineffective and leaving us with only the pos-
sibility of a qualitative one. Although we must suspend the judgment about
our solutions, some indications make us still confident about our own develop-
ment.

Finally, simulating again the same macroscopic case but with longitudinal
inclusions, we find drag-reduction with respect to the case of smooth wall and
are able to reconstruct the drag-curve.
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Chapter 1

Introduction

There are several reasons for which one may choose to investigate the motion
of a fluid near a permeable surface.

First of all, there is a fundamental reason. At the present time, the full de-
scription of the interaction that develops at the boundary wall between the
fluid and the surface itself is not clear: if one tries to apply the usual no-slip
condition for the case of such a permeable surface, experimental data are
not recovered. Over time, some ad hoc semi-empirical laws have been found
(e.g. by Navier 1823, Beavers and Joseph 1967 and Saffman 1971) to be in
good agreement with data. In our framework, instead, such laws and condi-
tions (better and better refined over time) directly come from the theoretical
framework. However, it has to be clear that we are still using a theory with
effective parameters to model the interaction, so that also this cannot be the
ultimate theory.

Secondly, the method we propose allows us to describe the motion in such a
way that it is possible to numerically investigate the problem for a reason-
ably large spatio-temporal scale and with a good resolution (mediating the
degrees of freedom of the problem), something which otherwise requires very
high computational resources with a fully-feature resolving DNS (direct nu-
merical simulation).

Finally, there are also many practical applications, mostly in the field of the
so called bio-mimetic. Indeed, among nature, rough surfaces are the majority,
as they can confer incredible properties. For example, the well known hydro-
dynamical performance of sharks results from dermal tooth-like denticles that
cover their bodies, together with their flexibility. Moreover, the plumage of
birds plays an important role in their aerodynamic characteristics. Further,
in the plant world, micro-roughness surface element may provide for the ex-
istence of superhydrophobic surfaces. Man can try to reproduce these partic-
ular properties of the natural world by developing engineering surfaces that
mimic (or that are inspired by) the natural ones. For example, the design of
passive and active flow actuation system could lead to drag reduction or to
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mitigate noise. The self cleaning ability of super-hydrophobic surfaces can be
used against the formation of bio-fueling on ships. These are only few of the
many examples we could cite. Among these, we will focus our attention on
the case of drag reduction in a turbulent flow, which is a particularly sensible
topic in aerodynamics, since it could lead to a significant economic saving for
aircraft societies.

The present thesis is organised as follows. In 1, we give an overview on biomimet-
ics and recall important concepts of fluid dynamics, such as turbulent bound-
ary layer. In 2, we present a literature review about the topic of drag-reduction
over rough surfaces, with particular regard to riblets, anisotropic permeable
substrates and one experimental result. Then, 3 and 4 are my original the-
sis project, in which we will use homogenisation theory to properly study the
motion of a fluid near a permeable surface. In order to study this configura-
tion, both microscopic and macroscopic problems will be taken into account.
In the former (3), we will characterise the effective coefficients that models
the fluid-surface interaction for a variety of cases (main numerical results are
reported in 4.2, to facilitate any consultation for future work). In the latter
(4), we will at first try to test the homogenised conditions against a fully-
feature DNS present in literature, then we will search for a drag-reducing sur-
face, aiming to optimise this reduction changing geometrical and dynamical
parameters. Finally, in 4.2 conclusions are reported.

1.1 Biomimetics

In this section we present an overview on biomimetics, with references to Lu-
minari 2018; Pauthenet 2018; Alinovi 2018; Zampogna 2018.

1.1.1 Natural Surfaces

While trying to develop synthetic surfaces, one may think that the goal is to
make them as smooth as possible, minimizing all the microscopic asperities
that are naturally present (for example, think about the incredibly smooth
sphere of silicon for the Avogadro Project, which has been a proposal to reach
a sample-independent definition of kilogram). However, this is not always
true, since rough surfaces, possibly with micro-structured asperities, can ex-
hibit incredible properties with respect to the perfectly smooth ones. This is
particularly true for the cases of natural/biological surfaces, for which mil-
lions of years of natural evolution have selected the ones that, due to casually
altered/mutated treats, allowed the owner organisms to better survive and
adapt to external conditions, thus resulting in the optimized ones for those
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specific functions. We are going to present some examples of this kind of sur-
faces. All of these studies go under the name of biomimetics (term coined by
Otto Schmitt in 1974), which means that man observes natural surfaces and
tries to take advantage from them, trying to bio-mimic or bio-adapting into
new useful technology (see the example of Velcro in fig. 1.1.1).

Figure 1.1.1: Velcro device at the microscope, where two different parts have been highlighted: (below)
a strip with tiny hooks (spacings ∼ 200µm) coupling with another strip with smaller loops (upper). Its
inventor, George de Mestral, took inspiration from some burdock seeds which were clung to his coat after a
walk in the wood. (The figure is taken from Zampogna 2018).

We have to underline that the ”microscopic” length scale through which we
are going to see and analyze the asperities is not certainly the atomic scale
nor exactly the µm; one may think to define adjective ”microscopic”, but,
generally referring to the internal scale of the medium, we can say the range
of its order of magnitude to be almost ∼ (1 ÷ 102)µm and sometimes also
∼ 1mm (depending on the actual case of interest). On the contrary, with
”macroscopic” scale we will always refer with good approximation to ∼ 1m,
as order of magnitude. Thus, it will be clear that quantum effects will not be
seen at either scales. Furthermore, the velocities involved are very much lower
than the speed of light, being the highest macroscopic velocity considered an
airplane velocity. Thus, we definitely are in the non-relativistic regime. This
enables us to use classical physics (in particular, classical fluid-dynamics)
with excellent approximation throughout our discussion.

The first example we cite is the shark skin. As one can see in figure 1.1.2, the
surface is made up by a series of overlapped flexible denticles, which can in-
teract with the flow, operating separation control during the periodic oscillat-
ing flow generated while swimming and ultimately reducing drag. Moreover,
different geometries of denticles can be found in various parts of the shark
body, since also flow conditions can differ from part to part. Many engineered
surfaces have been developed taking inspiration from the shark skin: NASA
V-shaped riblets for improving airplane fuel efficiency, others in aeronautical
and naval field, and more recently swimming suits by Speedo.

Another example is the owl, who is known for its silent flight, in order to in-
crease the chances to capture preys. Indeed, the feathers on its wings, which
can be treated as a poroelastic surface (see fig. 1.1.3), can suppress noise and
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Figure 1.1.2: Shark skin at the microscope. Note the placoid scales, or dermal teeth (denticles), which
can reduce drag. The spacing between them is ≈ (10 ÷ 100)µm, similar to the the case of drag reducing
riblets. (The figure is taken from Luminari 2018).

Figure 1.1.3: Owl feathers: note filamentous extensions (separations less than ∼ 100µm), which can
confer them a silent flight. (The figure is taken from Zampogna 2018).

enhance the lift generation. This is due to the combining effect of elasticity
and porosity, which can produce a weaker noise amplification. There are cur-
rent studies in aeroacustic aiming to characterize the problem.

Moreover, we can cite the case of the wing of the butterfly, where multiple
scales are involved: there is a first series of overlapped scales and further
zooming we can see that each scale has a complicate permeable structure (see
fig. 1.1.4). These porous structures give a boost in climbing efficiency of 30%.
Moreover, this surface was useful to produce antireflective polyethilene sheets.

Furthermore, one biological example can be made in the world of super-hydrophobic
surfaces (for which we will give a few details later). It is known that the lotus
leaf is water-repellent: water slides over them because of the low wettability
of the surface. This is due to the presence of periodic microscopic protrusions
on the surface (see fig. 1.1.5), that, capturing air pockets and changing the
contact angle of the water droplets, provoke an effective slip of the liquid,
thus reducing drag. The production of self-cleaning surfaces is bio-inspired
by the so called lotus-effect.



5

Figure 1.1.4: Electron microscopic images (SEM) of the scales of a peacock butterfly. The multiple
scales involved are porous, through which air can flow below the outer lamina, reaching the inner surface.
The spacing of the ridges in the outer lamina (separated from the inner one thanks to structures called tra-
beculae) is ∼ 1µm. (The figure is taken from Luminari 2018).

Figure 1.1.5: Lotus effect. (a) SEM image of a lotus leaf. (b) Magnification showing one of the protru-
sions that cover the surface. (c) Water drop on a lotus leaf. Note the high contact angle (defined later), that
allows to maintain a spherical shape. (The figure is taken from Luminari 2018).

Another well known effect is the gecko effect : without any kind of chemical
addictive, the gecko adhere to several kinds of surfaces, including hydropho-
bic and hydrophilic ones, thanks to the micro-structures on its foot (see fig.
1.1.6). Its synthetic counterpart are dry adhesive tapes, obviously inspired by
the natural ones.

The last example we would cite is the development of microflyers, ornithopters
or appendices inspired by wings and feathers or, more generally, by canopies
which might optimize the flight of traditional airplanes and operate an active
or passive control of the flight. So, in the future planes might be hairy (see
fig. 1.1.7), allowing to manipulate the flow by appropriately tuning the fur.
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Figure 1.1.6: Microscopic view of the feet of the gecko (level of adhesive lamellae). They are covered
with microscopic adhesive toe pads (formed by spatula-shaped setae arranged in lamellae), through which
gecko can adhere to smooth surfaces via Van der Waal’s interactions. Separations for lamellae is ≈ 200µm,
for setae is ≈ 20µm and for spatulae is ≈ 5µm. (The figure is taken from Zampogna 2018).

Figure 1.1.7: (a) Schematics of a passive canopy: an ensemble of fibres upon an impermeable wall. (b)
An airplane in the future, since a hairy surface provides better aerodynamic performances. (The figure is
taken from Pauthenet 2018).
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1.1.2 Drag Reduction

Figure 1.1.8: Drag force for two objects with different shape, separating skin friction drag from form
drag (or drag pressure drag) contribution. (a) Oblated section (streamwise body), where pressure drag is
negligible and skin friction is prevalent. (b) Circular section, with ∼ 90 % form drag and ∼ 10 % skin friction.
(The figure is taken from Alinovi 2018).

Let us think of a body moving through a fluid (fig. 1.1.8 ). The body expe-
riences a mechanical force against its motion (i.e. in the negative direction
of the vector velocity of the body) called drag force. Usually, one separates
the drag force into two main contribution: the pressure drag and the viscous
drag (or skin friction). The former is due to the pressure difference between
the front and the end side of the body, while the latter is the effective, macro-
scopic result of the microscopic interaction between the viscous fluid particles
and the body with which the fluid is in contact. The viscous forces are domi-
nant in the boundary layer, i.e. in a very thin region near the body, where the
velocity varies quickly from the surface value to the free stream value. The
decomposition is the following:∫

Aσ

[(−pI · nσ) · n‖︸ ︷︷ ︸
pressure drag

+ τ · n‖︸ ︷︷ ︸
viscous drag

]dA (1.1.1)

where p is the pressure, Aσ is the solid interface of the body where a no-slip
condition is usually applied, nσ is its outward normal unit vector, n‖ is the
unit vector parallel to the fluid direction and τ is the shear stress for an in-
compressible and newtonian fluid flow, defined as

τ = µ
(
∇u +∇Tu

)
· nσ (1.1.2)

where µ is the dynamic viscosity and u is the flow velocity vector.

Reducing drag, and in particular viscous drag, is one of the main goals in
many aerodynamic and hydrodynamic applications, since it can lead to sig-
nificantly reduce fuel consumption and, consequently, to save money (as well
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as to achieve better performances). Examples include aircraft, tankers, un-
derwater bodies, pipelines for oil and gas transport. In order to do this, there
are fundamentally two approach: active control and passive control. As far
as active control is concerned, it involves moving control surfaces, managed
by a feedback system made of sensors and actuators. Instead, the passive
method does not need an external control, and thus is financially competi-
tive. It requires a modification of the rheological properties of the fluid or an
appropriate design of the surface. The first option can be achieved by inject-
ing an appropriate second fluid in the main stream, for example polymers,
which form long chains of small molecules called micelles. An 80 % drag re-
duction is found. However, this procedure can be realised only in the case of
closed domains, such as pipelines, and the working mechanism has not been
fully understood yet. For the second option (design of the surface) one can
use riblets to modify the surface, which is our next topic.

1.1.3 Main Surfaces

Riblets

One may think that a rough surface would increase drag compared to a smooth
one. However, this is not true for cleverly designed rough surfaces, as the
ones we are going to consider. But one may still wonder why it could possi-
bly reduce drag. We can anticipate that, since the rough wall is equivalent
to a plane wall at an effective distance, the resistance to the main flow is not
automatically increased by the protusions, as one may think. In particular,
if the indentations actually damp cross-flow, and thus secondary streamwise
vortices, the resistance may even be reduced, as it is in certain conditions.
Now we describe the case of riblets.

Figure 1.1.9: Several examples of different riblets geometries. Typical spacing values are in the range
(10÷ 100)µm. (The figure is taken from Alinovi 2018).
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Figure 1.1.10: Drag curve plotted against riblets size s+. Drag optimum is for s+ ≈ 15, while there is
drag increase beyond s+ ≈ 25. Usually, the variable s+ has to be substituted with other geometrical lengths,
as we will see later. (The figure is taken from Luminari 2018).

Figure 1.1.11: Behaviour of an eddy over riblets: for (a) small riblets size the eddy does not penetrate
(drag reduction) (b) large riblets size the eddy does penetrate (drag increase). The gray area is where friction
is dominant. (The figure is taken from Luminari 2018).

Riblets are tiny streamwise-aligned surface grooves (see fig. 1.1.9 for a schematic).
They inhibit the lateral turbulent motion and smooth the fluctuations of the
cross-flow in the viscous sublayer close to the surface, aligning it along the
mean flow direction and thus reducing the turbulent momentum transfer to-
wards the surface, which in the end leads to viscous drag reduction. This
reduction correlates well with the spacing between each riblet, s+ (see fig.
1.1.10): skin friction first decreases for small s+, reaching drag optimum, and
then increases until it surpasses the smooth surface value, ultimately leading
to drag increase for large s+. This trend reflects the competition between the
obstructing lateral fluid flow and the increase of penetration of high speed
vortices inside the protrusions. In other words (with reference to fig. 1.1.11),
when the riblets are closely spaced, the turbulent vortices are pushed away
and a small local area of the surface experiences high-shear stresses (and skin
friction is reduced), whereas, when the space between them is too large, the
vortices can penetrate inside the grooves and a larger area is exposed to the
local velocity (and skin friction is increased). A large scale employment of
this technology is limited by the fact that the production and maintenance
costs surpass the economic saving from drag reduction. This is due to the
fact that the riblets size needs to be very small to work properly and that
they accumulate dust, ice and other external agents that have to be removed
after every single use.
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SHS and LIS

In order to realise a superhydrophobic surface (SHS), one has to couple the
regular micro-asperities of a surface with a gas, thus creating gaseous pockets
over which a liquid simply flows with less friction.

Figure 1.1.12: Schematics of a triple point with geometrical parameters. The phases at the triple point
are a liquid (L), a solid (S) and a gas (G). α is the contact angle, while γ is the interfacial energy, i.e the
work per unit of area required to increase the surface area of a substance in contact with another one (with
obvious meaning of the subscripts). (The figure, originally made by Bottaro, is taken from Alinovi 2018).

In this framework, a surface is classified by means of the contact angle α that
a water droplet assumes over it (fig. 1.1.12 ):

• hydrophilic: 0° < α < 90°

• hydrophobic: 90° < α < 150°

• superhydrophobic: α > 150°

The material involved are three: the surface, the liquid and the gas.

Wenzel demonstrated that, for a rough surface, the wetting angle increases as

cos(αw) = r cos(α) (1.1.3)

where αw is the effective angle on a rough surface and r is a parameter, to
be determined experimentally, that is related to the effective surface at the
interface. Since r > 1, micro-structures actually increase the hydrophobicity
of a surface, explaining the microscopical pattern geometry of the lotus leaf
(1.1.13).

If the gas is air, ultra- or super-hydrophobicity can be reached, with the drop
sitting on an air cushion.

However, the problem of SHS is that the gaseous pockets are not robust and
they can easily collapse. An alternative is to substitute the gas with oils, ob-
taining a liquid-impregnated-surface (LIS). The working mechanism is very
similar to the case of SHS: the relative slip between the two fluids leads to a
skin friction drag reduction. LIS have a more stable fluid-fluid interface and
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Figure 1.1.13: Lotus effect. (a) a water droplet on a lotus leaf. (b) electron microscope image of the
leaf top showing the microstructures that form its surface. The separations are ∼ 10µm. (The figure is taken
from Alinovi 2018).

also show interesting properties in terms of biofouling and ice-phobicity. How-
ever, drag reduction deteriorates if the oil viscosity is large with respect to
the other fluid one.

Poroelastic media

The poroelastic theory analyses an elastic porous medium containing inter-
connected fluid-saturated pores. The fluid interacts with the solid, modify-
ing its mechanical properties: it stiffens the material and, if there is a gradi-
ent of pore pressure, it applies a stress on the solid, deforming it and leading
to volumetric changes in the pores. This ultimately changes the fluid pres-
sure itself. Thus, one has to look for a relationship between solid stress and
fluid pressure. The main applications deals with hydrogeology, geomechanics,
petroleum engineering, but also with biomechanics. We are going to present
the cases of permeable surfaces and of canopies.

Permeable surfaces A permeable surface is a permeable covering with a
non negligible thickness, in contrast to riblets.

In the laminar regime, the actual slip velocity at the interface can lower the
skin friction, whereas in the turbulent case there is a net drag increase due to
the instabilities at the boundary. Let us see the mechanism. The slip veloc-
ity alters the boundary layer and, consequently, the stability condition of the
flow, producing less shear and vorticity and finally leading to the formation
of a shear layer in the front of the body, which shows a KH instability that
develops in the Von Karman street.

Regarding the change in pressure (see fig. 1.1.14), we can say that the pres-
sure increases in the back part since, as a result of the strong dissipation pro-
voked by the medium, the flow coming out from the body is laminar and very
slow.
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Figure 1.1.14: The picture shows the angular distribution of pressure for a cylinder, highlighting the
case with the porous layer (green line) and without it (black line). Note the increase of pressure in the rear
point. (The figure is taken from Luminari 2018).

Canopy flows We now mention the case of the canopy flows. They can be
seen as flows over elastic slim shapes, such as trees and aquatic vegetation.
As application we can mention the case of wind over plants, which plays a
crucial role in lots of situation, for example in the transport molecules as CO2

and nutrients.

Figure 1.1.15: Velocity profile (a,b) and spectrum (b,c) for a rough wall and a canopy flow. (a,b) Note
the difference in the eddy size and the inflection point in the canopy flow. (c,d) Note the larger peak in the
frequency of the mixing layer instability, a steeper slope in the energy cascade part and the high frequency
peaks at high frequencies. (The figure is taken from Luminari 2018).

There are clear differences in the boundary layer profile between canopy and
of the rough wall (see fig. 1.1.15). In the former there is an inflection point
that leads to KH instabilities. Furthermore, also the spectra are different,
since for a rough wall a Kolmogorov energy spectrum can be recovered, while
for canopy flow we can observe a larger peak in the frequency of the mixing
layer instability, a more abrupt slope in the energy cascade part and high fre-
quency peaks.

Canopies can also inhibit separation when there is an unpleasant pressure
gradient, as in the case of the flow over a hill.



1.2 Turbulent Boundary layer

Figure 1.2.1: Boundary layer for Laminar-Transitional-Turbulent flows. (The figure is taken from Guer-
rero 2021).

Figure 1.2.2: Law of the wall in the different regions (non-dimensional profile). (The figure is taken from
Guerrero 2021).

The velocity profile in the turbulent boundary layer (see fig. 1.2.1) has been
deeply studied, leading to a good knowledge of what happens in this thin
but important region. One usually subdivides it into different zones (see fig.
1.2.2, 1.2.3, 1.2.4). Before doing that, it is useful to define the main quanti-
ties we are going to deal with. If y is the wall normal coordinate, we render

it a-dimensional defining y+ = uτy
ν , with uτ =

√
τw
ρ the shear velocity, and

τw the wall shear stress. Furthermore, we also scale the mean velocity U with
respect to the shear velocity: u+ = U/uτ . Now, we illustrate the law of the
wall and the subdivision of the turbulent boundary layer.

13
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Figure 1.2.3: Different regions in the turbulent boundary layer. (The figure is taken from Guerrero
2021).

Figure 1.2.4: Near wall turbulence, highlighting, from (sx) to (dx), the mean velocity profile, the en-
ergy cascade, the different regions of the boundary layer and an hypothetical grid/mesh level of refinement
comparison for the different regions (near wall treatment). (The figure is taken from Guerrero 2021).

• The law of the wall, is one of the cornerstones of fluid dynamics and
turbulence modeling. Basically it describes the mean velocity distri-
bution close to the wall. It is based on the early works of Prandtl, Von
Karman, Nikuratze, and Millikan. Many other authors have derived/confirmed
the law of the wall using experimental or numerical measurements. We
will not follow the derivation, limiting ourselves to only quote the main
result. By using dimensional analysis and taking the right assumptions,
the following expression can be derived

U

uτ
= f

(yuτ
ν

)
(1.2.1)
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or, by using non-dimensional variables,

u+ = f
(
y+
)

(1.2.2)

• viscous sublayer: The viscous sublayer is the inner-region of the bound-
ary layer, very close to the wall (y+ . 5), where the flow is laminar and
viscous effects are dominant. Here the flow mean velocity is linear with
respect to the wall normal coordinate:

u+ = y+ (1.2.3)

• buffer layer: In the buffer layer (5 . y+ . 30), where the flow tran-
sitions from laminar to turbulent, no analytical laws are defined. The
viscous and inertial forces are of the same order and, in the middle of
this region, the peak production and dissipation of the turbulent energy
is known to occur.

• log-law region: The logarithmic law refers to the outer-region of the
boundary layer (30 . y+ . 300). Measurements show that, for both
internal and external flows, the streamwise velocity in the flow near the
wall varies logarithmically with distance from the surface:

u+ =
1

κ
log(y+) + C+ (1.2.4)

where κ ≈ 0.4 is the Von Karman’s constant and C+ ≈ 5. This is one
of the most famous empirically determined relationships in turbulent
flows near solid boundaries. From the non dimensional u+ vs y+ plots,
it is possible to fit a function that covers the entire laminar and turbu-
lent regimes. The most widely known velocity profile is Spalding’s law,
which is essentially a fit of the laminar, buffer and logarithmic regions
of the boundary layer:

y+ = u+ + 1
E

[
eκu

+ − 1− κu+

1! −
(κu+)

2

2! −
(κu+)

3

3! −
(κu+)

4

4!

]
1
E = e−κC

+
(1.2.5)

Here E is another a-dimensional fit constant, whose typical value is E ≈
9.

For decades, there were no mean velocity data close enough to the wall.
One of the first works to measure data very close to the wall and in the
inner region is that of Lindgren in 1965. The agreement of these mea-
surements with Spalding’s formula is excellent (see fig. 1.2.5).
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Figure 1.2.5: Comparison of Spalding’s inner law expression with pipe flow data of Lindgren, showing
an excellent agreement. (The figure is taken from Guerrero 2021).

Figure 1.2.6: Qualitative velocity profile, highlighting the different scales of motion. (The figure is taken
from Guerrero 2021).

The use of the non-dimensional velocity u+ and non-dimensional distance
from the wall y+ results in a predictable boundary layer profile for a wide
range of flows. Under standard working conditions this profile is the same.
However, under non-equilibrium conditions (production and dissipation of
turbulent kinetic energy not balanced), rough walls, porous media, buoyancy,
viscous heating, strong pressure gradients, and so on, the profile might be dif-
ferent. While the non-dimensional velocity profile is the same for many flows
(fig. 1.2.2), the physical velocity profile is different (fig. 1.2.6). This can be
explained if we take into consideration the role of the turbulent fluctuations,
as briefly indicated below.

Let us recall the definition of turbulence: unsteady, aperiodic motion in which
all transported quantities fluctuate in space and time. Every transported
quantity shows similar fluctuations (pressure, temperature, species, concen-
tration, and so on). For most applications it is impractical to account for all
these instantaneous fluctuations. Therefore, we need to somehow remove,
avoid, or filter those small scales by using models (averaging or filtering the
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Figure 1.2.7: Turbulent flow representation, where the viscous sublayer is highlighted and the flow pro-
file is the instantaneous one (i.e. it has not been averaged). (The figure is taken from Guerrero 2021).

Figure 1.2.8: Picture of two different kind of mean/averaged flow profile: (sx) laminar flow, (dx) turbu-
lent flow. (The figure is taken from Guerrero 2021).

governing equation). This gives rise to an averaged flow pattern, which is not
the actual flow pattern.

• In the laminar case (fig. 1.2.8 sx), the velocity gradient close to the
walls is small (therefore the shear stresses are lower).

• The turbulent case (fig. 1.2.8 dx) shows two regions. One thin region
close to the walls with very large velocity gradients (hence large shear
stresses) and is laminar, and a region far from the wall where the veloc-
ity profile is nearly uniform and the flow becomes turbulent (see also fig
1.2.7). Turbulence increases the wall shear stresses and enhances mix-
ing. In the illustration, the velocity profile of the turbulent case has
been averaged. In reality, random fluctuations of the velocity field and
transported quantities are present (fig. 1.2.7).

Knudsen number

A useful adimensional number is the Knudsen number Kn, defined as Kn =
λ
L , where λ is the mean free path of a fluid particle and L is a representa-
tive physical length scale. This parameter is used to determine when the
continuum hypothesis is not valid anymore (see fig. 1.2.9). Although there
is no definitive criterion, the continuum flow model starts to break down
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Figure 1.2.9: Description of the different models to correctly study a fluid-dynamical system for different
values of the Knudsen number, which can indicate when the continuum approach is not valid anymore. (The
figure is taken from Guerrero 2021).

when the Kn ≈ 0.1: the flow is rarefied and cannot be treated as a contin-
uum and different equations need to be used (Boltzmann equations). For
0.03 . Kn . 0.1 (moderately rarefied gases), the Navier-Stokes equations
are valid in the freestream, but we need to use slip conditions at the walls.
Finally, for Kn ≈ 0.03 the continuum hypothesis is valid and we can use usual
Navier-Stokes equations.



1.3 Homogenization Theory

We now give a very brief explanation of homogenisation theory, adapted by
Bottaro 2019. We will see this technique in detail in 3.

The word homogenization was probably coined by Babuska 1976, who de-
scribed it as ”the approach which studies the macrobehaviour of a medium by
its microproperties” by replacing the rapidly varying properties of a ”hetero-
geneous material” with those of ”an equivalent homogeneous one”.
A heterogeneous material is one which is composed of domains made by dif-
ferent materials or phases, such as a composite or a porous matrix.

Homogenization theory applies to different field in physics, first of all in solid
state physics, where one needs to homogenize material properties, also when
local properties have a random distribution: just think of the thermal con-
ductivity, the permeability of a porous matrix, the magnetic conductivity of
electrically conducting media, the elastic modulus of a solid.

Continuum mechanics is a prime example of homogenization; it employs ho-
mogenized coefficients, e.g. the viscosity of a fluid which characterizes mo-
mentum transport within a fluid: macroscopic quantities are employed while
ideas related to molecular interactions are left aside.

We limit our discussion to the case where a repetitive pattern of the micro-
structure of the media emerges: the goal is thus to replace the effect of the
small scale features with macroscopic effective properties, arising from the
so-called auxiliary problems defined in the microscopic domains.
Let us assume that the surface is formed by small indentations. The inden-
tations have a characteristic length scale l, much smaller than the character-
istic length scale L of the medium. Thus, the existence of these two separate
length scales renders the problem amenable to a formal asymptotic expansion
in terms of a small parameter ε ≡ l/L� 1 (multiple scale expansion), looking
for a solution up to any order of accuracy in ε.

1.3.1 Slip-condition

The problem to find the correct boundary condition for the case of a vis-
cous fluid above a solid surface interested researchers even before the Navier-
Stokes equations were derived.
Indeed, Navier himself (Navier 1823) stated that ”the molecules in the prox-
imity of solid walls can only move in the plane of the walls” and argued that
the resistance of the wall, balancing the force exerted by the fluid onto it, was
proportional to a slip velocity, founding a boundary condition that we can
write as

U = ελxUY (1.3.1)
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where Y denotes the wall-normal direction, U the wall-tangent velocity. λx,
the Navier constant, is an effective penetration depth and the subscript Y
means partial derivative respect to Y .
Stokes, instead, started using a slip condition before changing for a no slip
one.
The problem seemed to be definitely settled by Taylor, who, in a series of ex-
periments on the flow between concentric cylinders, obtained perfect agree-
ment between experimental measures and theoretical predictions using a no-
slip condition at the wall (Taylor 1923).

However, still today the no-slip condition poses problems in all the situations
where small-scale effects at the wall make the fluid-fluid or fluid-solid inter-
action non negligible. Examples of this include a liquid spreading down an
incline, the flow of rarefied gases with 0.01 . Kn . 0.1 (studied also by
Maxwell 1879) and the flow over micro-corrugated surfaces, which can be ei-
ther superhydrophobic or lubricant-impregnated. In all these cases, in order
to achieve a correct description of the fluid, the homogenization strategy, with
a conjugate microscopic/macroscopic view, is highly preferable to a pure com-
putational approach, which would require refined meshes in order to account
for all the small details. We would like to remember that in biomimetics ir-
regular surfaces, possibly with regularly microstructured porous substrates,
are the norm, not the exception.



Chapter 2

Drag reduction over rough
surfaces: literature review

In the present section, we will give some details about the study of turbulent
flow over rough surfaces, focusing on drag reduction and its optimisation.

The main references are Endrikat 2020; Chavarin et al. 2021; Luchini, Manzo,
and Pozzi 1991; Zhou et al. 2021.

2.1 Riblets

Here we consider the case of riblets, following the discussion by Endrikat 2020
and, subsequently, by Endrikat, Modesti, et al. 2020; Endrikat, Modesti, et al.
2021.

2.1.1 Skin friction

Skin-friction drag is caused by a viscous fluid rubbing against the surface, it
is proportional to the surface area and it increases while increasing velocity.
Roughly, half of the drag transport aircraft experienced in cruise conditions
results from skin-friction, making its reduction financially and environmen-
tally attractive for aeronautical and maritime applications. The skin-friction
coefficient Cf = 2

U+2
δ

is defined by the friction-scaled mean streamwise veloc-

ity U+ = U/uτ at the half-channel or boundary-layer height δ. The symbol
+ denotes viscous scaling with ν (the kinematic fluid viscosity) and friction

velocity uτ =
√
τw/ρ (with ρ the fluid density and τw the wall shear stress -

drag per unit area), such that Cf = 2τw
ρU2

δ
. Drag reduction of a riblet surface

(compared to the smooth case) is given by the relative change of the skin-

friction coefficient: DR = 1 − Cf
Cf,smooth

. However, the coefficients degrade as

Re increases. So, a Re independent parameter that quantifies drag reduc-
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tion is given by the decrease of the viscous-scaled mean streamwise veloc-
ity at matched heights in the outer layer of two flows with the same friction
Reynolds number (Reτ = δ+ = δuτ/ν): ∆U+ = U+

smooth − U+. Note that
there is drag reduction when ∆U+ < 0. For example, DR ≈ −0.1∆U+ at
Reτ = 395 (accessible through DNS) and DR ≈ −0.06∆U+ at Reτ = 50 · 103

(flight conditions).

2.1.2 Small and Large Riblets

Riblets are tiny streamwise-aligned surface grooves with spacings s ≈ (10 ÷
100)µm (as a order of magnitude) that have the potential to reduce skin-
friction drag compared to a smooth wall, by displacing turbulent motions
upwards in the boundary layer.

They are classified as passive flow-control devices, as no energy input is re-
quired to favourably alter the flow field, making them attractive for aeronau-
tical and maritime applications as well as for pipes.

Laboratory tests of riblets have reduced skin-friction drag by up to 8.2% for
Reτ < 700. The reduction goes to approximately 5.5% for flight conditions at
Reτ ≈ 48 · 103. However, at present they are not used on commercial flights
because their costs (installation and maintenance) surpasses the current drag-
reduction benefits.

We can figure the action of riblets in the following way: they displace small
turbulent eddies present in the flow upwards and out of the grooves, limiting
the mixing of streamwise momentum in the vicinity of the surface (Luchini,
Manzo, and Pozzi 1991), and thus reducing drag. We must consider sepa-
rately the case of small and large riblets, since the actual drag curve shows a
dependence on riblets size (fig. 2.1.1).

Figure 2.1.1: (a) Drag-change between a smooth and a riblet surface. (b) Near-wall portion of stream-
wise (u+

r ) and spanwise (v+
r ) Stokes flow profiles for a riblet. (The figure is taken from Endrikat 2020).
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Figure 2.1.2: Geometrical visualization of the concept of protrusion height for the streamwise (hps) and
cross-flow velocity (hpc). (The figure is taken from Luminari 2018).

Small Riblets

In more detail, in the limit of vanishingly small riblets, the mechanism through
which riblets reduce drag can be rationalised in terms of the offset in the vir-
tual origin felt by the mean flow and the virtual origin felt by the turbulent
fluctuations (Chavarin et al. 2021). Indeed, the velocity profiles appears as
if it is originated from an equivalent plane wall, located below the riblet tips
(Luchini, Manzo, and Pozzi 1991). In order to understand this concept, it can
be useful to introduce the concept of protrusion height (see fig. 2.1.2). The
protrusion height is defined as the vertical distance between the riblet top
ridge and the point of zero velocity (extrapolated from the constant velocity
gradient outside above the protrusions). For the streamwise and crossflow ve-
locities, one finds, respectively, the streamwise protrusion height hps and the
cross-flow protrusion height hpc. They can both be computed with a simple
Stokes problem over the local geometry of the grooves. Actually, the differ-
ence of two protrusion heights (hps − hpc) is related to the difference between
two virtual plane walls.

We remember that the typical size of riblets is approximately given by the
height of the viscous sub-layer, where convective terms are negligible. So
one can use the much simpler (steady) Stokes equations, rather than the full
Navier-Stokes equations.

This is why small riblets with spacings of typically less than 30 viscous units
(O(10µm) on aircraft fuselage in cruise conditions) reduce skin-friction drag
compared to a smooth wall.



24

In even more detail (see fig. 2.1.1 b), the streamwise mean-flow reaches an av-
erage depth below the riblet crest given by the longitudinal protusion height
l+U , that depends on the groove shape and size. Turbulent lateral flow is ob-
structed by the riblets and therefore only penetrates the groove to a depth
given by l+T < l+U . A reference smooth wall should be considered at the height
given by l+T for the two flows to be similar, i.e. that their total stresses match
at every height. This placement of the reference wall therefore provides the
correct measure of the drag- change ∆U+. At the height of the reference
smooth-wall, the riblet flow has the velocity U+ = l+U − l

+
T , because the slope

dU+/dz+ ≈ 1 in the viscous sublayer. The velocity difference compared to the
smooth wall flow extends into the logarithmic layer, where it describes the
drag-change ∆U+ = l+U − l

+
T .

The drag-change optimum of traditional riblet shapes was empirically shown
to scale with the viscous-scaled groove cross-section A+

g and is obtained for

riblet sizes l+g =
√
A+
g ≈ 10.7.

Large Riblets and KH instability

Figure 2.1.3: (a) Visualisation of Kelvin Helmholtz rollers above drag-increasing triangular riblets. (b)
KH rollers are absent above trapezoidal riblets of similar groove size. (The figure is taken from Endrikat
2020).

For larger riblets (l+g & 10.7), instead, drag increases and ultimately sur-
passes smooth-wall drag (for l+g & 17), because the flow in and around the
grooves becomes less dominated by viscosity as different inertial flow effects
contribute to drag.
Three main mechanisms have been proposed to explain the details of this in-
crement.
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As the spacing of triangular riblets becomes large enough for streamwise vor-
tices to descend into the groove, they sweep high-speed fluid towards an in-
creased wetted area and thus enhance skin-friction drag.

The spanwise component of streamwise vortices is deflected downward by the
riblet tips, creating secondary flows that transport momentum towards the
wall.

Furthermore, Kelvin-Helmholtz rollers (fig. 2.1.3) have been shown to aug-
ment wall-normal momentum transport towards the wall above blade riblets,
leading to increased drag. These rollers evolve around an inflection point in
the profile of mean streamwise velocity that is created between the slower
flow in the groove and the faster bulk flow above. However, KH rollers can
also appear without an inflection point, because in the limit of infinite perme-
ability, the impedance boundary condition mimics a free shear layer.
It has been observed that KH rollers becomes more significant with increasing
size of blade riblets, which coincides with the breakdown of drag reduction for
l+g & 11.

Kelvin-Helmholtz rollers are well known in free shear flows, but have also
been observed in wall-bounded flows over porous surfaces and vegetation
canopies.

2.1.3 Numerical simulations and KH instability

Figure 2.1.4: Schematic of different riblets geometries (asymmetric triangular, blade, simmetric triangu-
lar and trapezoidal). (The figure is taken from Endrikat 2020).

In order to evaluate KH instability dependence on riblets shape (fig. 2.1.4,
2.1.5), authors investigated the velocity spectrum at different scales and dif-
ferent wall-normal distances for a total of 29 configurations (seven different
shapes and various viscous-scaled size) through DNS in minimal-span chan-
nels (Ly � δ), which reduces the computational cost in exchange for un-
physical results towards the top of the domain. Indeed, changing the riblets
geometry has the potential to alter not only the wall-normal permeability of
the plane at the riblet crest, but also the mixing layer around the riblet tips
from which KH rollers develop.

Minimal-span channels and Geometry

The width Ly < δ of minimal-span channel (fig. 2.1.6) is small enough to
constrict large eddies in the flow. This leads to a significantly altered flow
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Figure 2.1.5: Drag curve against l+g for different riblets shapes. (The figure is taken from Endrikat
2020).

Figure 2.1.6: Unit cell of the computational domain of the simulation for minimal-span open channels. δ
is the half-channel height. (The figure is taken from Endrikat 2020).

field in the outer layer, but, below a critical height z+
c , average velocities (fig.

2.1.7) and turbulent statistics match experimental results (fig. 2.1.8).
Constraining the flow in the spanwise direction unphysically alters the flow in
the outer layer, while the near-wall region remains unchanged (fig. 2.1.9).

If the wavelength is L+
y & 250, turbulence in the first 30 viscous units above

the riblet crest is not affected by the channel width, and both the mean and
the turbulent flow they simulated in that region reflect the true physics of
the problem (fig. 2.1.7, 2.1.8). Therefore, their minimal-span channels with
L+
y ≈ 250 allow to investigate fluctuations due to KH rollers. Even more nar-

row domain could be used (L+
y ≈ 150), but their choice allows to better filter

fluctuations with sufficient spanwise spectral separation between KH rollers
and other near-wall turbulence. This is because KH instability affects a dis-
tinct spectral region in the flow over riblets: the lower bound for the spanwise
extent of KH rollers should be in the range 125 . λ+

y . 250, with a threshold
closer to λ+

y ≈ 250, in order to exclude turbulence from the near-wall (NW)
cycle (fig. 2.1.10). In this way, they only let fluctuations due to KH instabil-
ity pass, discarding the ones associated with the NW cycle that characterises
both the smooth and the riblets wall flaws.
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Figure 2.1.7: Unphysical results for average velocity. Note that they are present only for z+ > z+
c (ver-

tical lines). (a) Velocity profiles of smooth-walls and triangular riblets for different widths. (b) The roughness
function U+

s − U+ for the three cases. (The figure is taken from Endrikat 2020).

Figure 2.1.8: Unphysical results for turbulent fluctuations in high energy above the height z+
c . Triangu-

lar riblets with three different channel widths and corresponding smooth walls were considered. Pictures are
pre-multiplied streamwise (a, b) and spanwise (c, d) spectra of streamwise velocity against distance from the
wall with contours from light to dark. (The figure is taken from Endrikat 2020).



28

Figure 2.1.9: Pre-multiplied 2D spectra. Triangular riblets for three different channel width and corre-
sponding smooth walls were considered. As a result, velocity fluctuations close to the wall are not affected by
the spanwise constraint. (The figure is taken from Endrikat 2020).

Figure 2.1.10: Spanwise wavelengths affected by KH rollers. We use drag increasing/reducing sharp
triangular riblets and smooth walls. (a,b) Pre-multiplied 2D cospectra of Reynolds shear stress in a plane.
Open boxes near the top delimit the region of KH rollers (65 < λ+

x < 290, λ+
y > 130). (c-g) Pre-multiplied 1D

cospectra of Reynolds shear stress at different spanwise wavelengths. (h-l) Profiles of Reynolds shear stress at
different spanwise wavelengths after integrating across the λ+

x that are framed in (a,b) and shaded in (c,g).
(The figure is taken from Endrikat 2020).
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KH dependence on riblet shape

Figure 2.1.11: Flow visualization for two different riblets shape with similar size. KH rollers develop
over the triangular riblet with tip angle α = 30° (a) but not over blunt triangular riblets with α = 90° (b).
(The figure is taken from Endrikat 2020).

Endrikat 2020 revealed that drag-reducing riblets of any shape have almost
the same profile as the smooth wall, because they lack KH rollers. For larger,
drag-increasing riblets, differences emerge among riblet shapes. They found
that only large sharp-triangular and blade riblets have a KH drag penalty
and that they are absent for blunt-triangular and trapezoidal riblets of any
size (fig. 2.1.11, 2.1.12). Thus, there is a real dependence of KH rollers on the
shape of the riblets.

Furthermore, they considered a momentum integral to decompose the drag-
change, in order to quantify if and how KH rollers affect the drag characteris-
tics of a riblet surface:

∆U+ = U+
s − U+ = ∆U+

t + ∆U+
uw︸ ︷︷ ︸

∆U+
KH+∆U+

R

(2.1.1)

where

∆U+
t = U+

s

(
z+
t

)
− U+

(
z+
t

)
∆U+

uw =
∫ z+

c

z+
t

(
δ+
s −z+

δ+
s
− δ′+−z+

δ+

)
dz+ +

∫ z+
c

z+
t

(
u′w′

+
s − u′w′ − ũw̃

+
)

dz+

∆U+
KH =

∫ z+
c

z+
t

(
u′w′

+
KH,s − u′w′

+
KH

)
dz+

(2.1.2)

Here, with reference to fig. 2.1.13 z+
t is the height of the riblet tips and z+

c is
the height up to which data are representative of full-span channel flow. The
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Figure 2.1.12: KH rollers dependence on riblets shape. Profiles of streamwise velocity fluctuations
(left), Reynolds shear stress (centre) and the wall-normal transport of θ, i.e. a scalar passive quantity, the
temperature, used to visualize turbulent fluctuations (right). KH rollers strongly affect fluctuations in (a-c),
(m-o) but not in (p-r). (The figure is taken from Endrikat 2020).

Figure 2.1.13: Geometry of minimal-span (Ly � δ) open-channel with triangular riblets close up to the
surface. δ is measured from the mean-height zm and δ′ from the virtual origin for turbulence at z = 0. Riblet
tips are at zt and the groove bottom is at zb. (The figure is taken from Endrikat 2020).

subscript s stands for the smooth case. The term ∆U+
uw includes the differ-

ence of total stresses after adjusting the origin. They only considered (fluctu-
ated) Reynold stresses u′w′ and split them in spectral space into those due to

KH rollers (u′w′
+
KH) and a remainder (subscript R). ũw̃

+
are the dispersive

Reynold stresses, that are stremwise invariant for 2D riblets. δ measures the
distance between the riblet mean-height and the top of the open channel to
match the cross-sectional areas of smooth-wall and riblet channels. δ′ is the
effective half-channel height, i.e. the distance between the virtual origin and
the top of the domain. z is the wall normal direction, where the integration is
performed.

Thus, one has to find the drag-change due solely to KH rollers, namely ∆U+
KH .
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Figure 2.1.14: Profiles of Reynolds shear stress associated with Kelvin Helmholtz rollers as riblet size
increases (lighter colours). Smooth-wall profile is dashed. (The figure is taken from Endrikat 2020).

Figure 2.1.15: (a) Total drag-change. (b) Contribution of Kelvin Helmholtz rollers to the drag-change.
(The figure is taken from Endrikat 2020).

The flow over blunt triangular and trapezoidal riblets resembles that over a
smooth wall in the spectral region associated with KH rollers (fig. 2.1.14).
Therefore, there is a negligible drag change (fig. 2.1.15). For sharp triangu-
lar and blade riblets, instead, the instability contributes significantly to the
drag-change. In particular, drag penalty of KH roller is larger for sharp trian-
gular riblets than for blade riblets. Nevertheless, ∆U+

KH < ∆U+, which means
that large riblets increase drag even without KH instability. This suggests the
presence of other flow mechanism (maybe groove geometry dependent), like
dispersive stresses from secondary flows, that can also contribute to the drag-
increase.
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Two parameters for KH instability

Figure 2.1.16: Porosity/permeability (β) trend against (a) the riblets spacing and (b) the groove size.
(The figure is taken from Endrikat 2020).

Figure 2.1.17: Wall-shear stress (drag per unit plan area) accumulated from below given heights z
relative to the total wall-shear stress, for (a) a turbulent flow (b) 2D Stokes-flows. (c) Fraction of wall-shear
stress that acts only on the top 20 % of the riblets. (The figure is taken from Endrikat 2020).

Endrikat 2020 looked for two quantitative parameters:

• for every shapes, the groove area serves as a proxy for wall-normal per-
meability (which is necessary for KH to develop). This resembles the
fact that there is no KH instability for l+g . 11.

Thus, one parameter is the groove size l+g (fig. 2.1.16).

• A mixing layer with an inflection point of mean-streamwise velocity
may be created between slow flow around the roughness elements and
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the faster stream above, driving the instability. Only riblet shapes with
high momentum absorption at the riblet tips (predicted using Stokes
flow) seem to create such a mixing-layer profile. So, wall-shear stress in
the tip region describes the ability of the riblet shapes to support KH
rollers.

The other parameter is thus 2D Stokes-flow wall-shear stress in the tip
region (fig. 2.1.17).

Impermeable boundary KH rollers do not develop if the plane at the ri-
blet crest is impermeable: shear forces the KH instability, but impermeability
suppresses it.
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2.1.4 Multi-scale riblets

Figure 2.1.18: Schematic of the geometry of (a) the 1-scale trapezoidal riblet and (b) the 2-scale one,
with a half height riblet in the centre. (The figure is taken from Endrikat 2020).

Figure 2.1.19: Drag change curve against both (a) the grooves lateral spacing and (b) the cross-
sectional area square-root (b). (The figure is taken from Endrikat 2020).

Then, Endrikat 2020 tried to investigate the effect of multi-scale riblets (i.e.
trapezoidal riblets with a half height riblet in the centre, see fig. 2.1.18), gen-
eralising the measure of the riblet size for multi scale surfaces.

This is an area that has been analysed also by previous authors. They found
that, installing shorter secondary riblets between blades on the surface with
the capability to repel eddies of smaller size, there was no significant differ-
ence for riblet sizes near the drag-optimum (Bruse et al. 1993) and that for
riblet sizes below the optimum multi-scale riblets might degrade the drag-
curve (Alinovi, Gribaudo, and Bottaro 2018). But for larger riblets with l+g &
11, the drag curve suggests a more gentle breakdown of drag reduction with
riblet size (fig. 2.1.19).

So, they thought of multi-scale hoping to raise the threshold of s+ above
which there is drag increase, in order to be able to realise larger riblets which
anyhow maintain drag reduction capabilities. This would be a great progress
in riblet design, since we remember that one of the main fact that raises costs
is that usually riblets sizes must be small.

First of all, they observed that s+ and l+g are not the most appropriate quan-
tities for the size of multi-scale riblet. Indeed, as a ”historical” notes, we
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should mention that initial drag curves were shown against both the riblet
height k+ and the lateral spacing s+ (e.g. in Walsh 1982), but soon the spac-
ing prevailed when looking for a length that could describe the riblet size of
optimal drag reduction (Bechert et al. 1997). Moreover, it had been found
empirically that l+g (the square root of the cross-sectional area of the groove,
A+
g ) was a suitable measure of the riblet size, because it captured the size of

minimum drag around l+g ≈ 10.7 ± 1.0 for different geometries and even re-
produced the drag-increasing regime (Garc̀ıa-Mayoral and Jiménez 2011, fig.
2.1.19 b).

Figure 2.1.20: Visualization of the function f defining Poisson equation to compute Lw for single-scale
and two-scale (a,b) trapezoidal riblets and (c,d) blade riblets. (The figure is taken from Endrikat 2020).

The first other quantity that Endrikat 2020 proposed to use is the penetra-
tion length L+

w that accounts for the groove shape and size. In order to find
this length, one needs to solve a Poisson equation that models turbulent fluc-
tuations in the cross-section of the riblet groove:

L3
w =

1

s

∫
Ag

f dA, where

∇2
yzf = −1 with

df

dz

∣∣∣∣
t

= 0, and fw = 0

(2.1.3)

Here, the subscripts t and w indicate, respectively, the riblet tips and the
wall; s is the dimensional later spacing and f a function defining the problem
(see fig. 2.1.20, where it is shown that secondary riblet reduces the values of
f and therefore of Lw). We remember that the authors used x, y and z axes
to denote, respectively, streamwise, spanwise and wall-normal directions.
Endrikat 2020 solved this equation to find Lw in the groove of single-scale
and two-scale riblets, as well as of the blade riblets. Endrikat 2020 found that
drag curves are much closer when using the new parameter to describe the ri-
blet size (fig. 2.1.21). So, this scale appears to be a suitable description of the
riblet size in both the viscous drag-regime and in the post-breakdown regime



36

Figure 2.1.21: Drag curves for trapezoidal and blade riblets against different lengths: (a) the riblet
spacing s+, (b) the L+

w length, (c) the square-root of the whole groove cross-sectional area l+g , (d) the new

geometrical length for multi-scale riblets l+g,i. (The figure is taken from Endrikat 2020).

(fig. 2.1.21). Endrikat 2020 also found that there could be a slightly higher
drag at the optimum for the two-scale riblet, but the difference is on the same
order of magnitude as the statistical uncertainty.

Endrikat 2020 also proposed a different generalisation of L+
w for two-scale ri-

blets by interpolating between two extreme cases (without the 2nd riblet -
k1 = 0 - and when the 2nd riblet is as big as the 1st - k1 = k0 -, where ki is
the height of the i-th riblet, starting from 0) to define an interpolated version
of the riblet size, namely l+g,i.

When k1 = 0, one has l+g,i =
√
A+
g , whereas, when k1 = k0, one has l+g,i =√

A+
g /2. For intermediate ratios of k1/k0, Endrikat 2020 linearly interpolated

the radicand such that

`g,i =
√
sk0 − k2

0 tan(α/2)− sk1/2 (2.1.4)

where α is the tip angle of the trapezoidal riblet (authors fixed α = 30°). De-
scribing the size of two scale riblets by l+g,i seems to capture their drag char-
acteristic, because it closely approximates L+

w except for a constant factor
(fig. 2.1.21). Conveniently, l+g,i is a geometrical length found without having
to solve the Poisson equation (fig. 2.1.21).

In the end, Endrikat 2020 finds that, despite half-sized riblets in the groove
further reduce drag at a fixed riblet spacing, there is no real benefit in terms
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Figure 2.1.22: Definition of the riblet size lg,i for two-scale trapezoidal and blade riblets compared to lg.
(The figure is taken from Endrikat 2020).

of the lowest attainable drag in comparison to one-scale riblets, as they ob-
tained the same drag curve in the post-optimum regime (once considered the
appropriate length to define the riblet size, fig. 2.1.21).

Conclusion

In conclusion, since drag reduction breaks down for widely spaced riblets even
in the absence of drag-increasing KH rollers, they suggested to delay the be-
ginning of other mechanism that can raise drag (e.g. form-induced Reynold
stresses due to secondary flows).



2.2 Anisotropic permeable substrates

We now describe the case of anisotropic permeable substrates, as treated by
Chavarin et al. 2021. At first we will describe the general framework and
quote the main results, then we will give some details about the approach
used by the authors.

2.2.1 Main framework and results

There is evidence that anisotropic permeable substrates can suppress the
dynamically-important near-wall (NW) cycle and consequently lead to drag
reduction in wall-bounded turbulent flows (up to 25%) by correctly tuning
streamwise and spanwise permeability.
The mechanism for such a reduction is the same that occurs for the riblets
case, i.e. an offset in the virtual origin felt by the mean flow (due to the stream-
wise permeability) and by the turbulent fluctuations (due to the spanwise
permeability). This offset weakens the quasi-streamwise vortices and further
reduces turbulent momentum transfer, leading to a decrease in skin friction.
Drag reduction is further limited by the appearance of KH rollers, due to a
relaxation in the wall normal permeability.

Authors used a resolvent formulation (see McKeon and Sharma 2010; McK-
eon 2017) to study the effect of such substrates.

They considered the Fourier-Transformed Navier-Stokes equations as a linear
forcing-response system, in which the non-linear terms represent an endoge-
nous forcing that gives rise to a velocity and pressure response.
In order to correctly model the effect of the permeable substrates, they used a
combination of the Volume-Averaged Navier-Stokes equations and of Darcy’s
law. As far as geometry is concerned, they chose a symmetric channel geome-
try at friction Reynold number Reτ = 180 and substrates with K+

y = K+
z .

Within this framework, they identified a resolvent operator (i.e. the forcing-
response transfer function which maps non-linear forcing to the velocity and
pressure response), whose gain-based decomposition leads to the identification
of response modes across spectral space, which reproduce important struc-
tural and statistical features of the wall bounded turbulent flow. So, in first
approximation, while trying to control the system, one can take into consider-
ation only the variations of these resolvent modes instead of the ones experi-
enced by the full turbulent flow field.

Substrates with high streamwise permeability and low spanwise permeability
are found to suppress the mode gain, leading to a drag reduction, which is
limited by the appearance of KH rollers beyond a threshold value of the wall-
normal permeability (fig. 2.2.2, 2.2.3).
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Figure 2.2.1: Predicted slip velocity as a function of streamwise permeability
√
K+
x . Closed symbols are

the DNS from Gòmez-de-Segura and Garc̀ıa-Mayoral 2019. Open symbols are the resolvent prediction made
by using a synthetic eddy viscosity model. (The figure is taken from Chavarin et al. 2021).

Figure 2.2.2: Predictions for the NW resolvent mode. (a) Normalized mode gains (velocity profile by

DNS) vs DNS result from Gòmez-de-Segura and Garc̀ıa-Mayoral 2019, as a function of
√
K+
y . (b) Normalized

mode gains with velocity profile by DNS vs synthetic velocity profile as a function of
√
K+
y . (c) Normalized

mode gains with velocity profile by DNS vs synthetic velocity profile as a function of
√
K+
x −

√
K+
y . Remem-

ber that in this model
√
K+
y =

√
K+
z , so that

√
K+
x −

√
K+
y =

√
K+
x −

√
K+
z . (The figure is taken from

Chavarin et al. 2021).

In particular, the gain for the single resolvent mode reproduces the initial
drag reduction trend, which is proportional to√

K+
x −

√
K+
z (2.2.1)

where
√
K+
x and

√
K+
z are, respectively, the streamwise and spanwise perme-

ability length scale (fig. 2.2.2).

Moreover, the resolvent-based formulation can predict conditions in which
rollers emerge (complementary to the slip-length based arguments used in the
previous section). This is because the gain for the resolvent mode can serve
as a proxy for the total drag reduction. In particular, in previous studies ri-
blet geometries reducing drag are found to reduce the forcing-response gain
for the NW resolvent mode in comparison to the smooth wall case.
The resolvent-based prediction is the following:

• the difference between the two permeability length scale can lead to a
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Figure 2.2.3: NW mode structure predictions made using the DNS velocity profiles for (a,b) the smooth-

wall case and for (c,d,e,f) the substrates for different values of φxy and
√
K+
y . φxy is the anisotropy ratio:

φxy =
√
K+
x /
√
K+
y . (sx) Red and blue contours are, respectively, positive and negative streamwise velocity.

(dx) the solid lines is the streamwise velocity while the dashed lines is the wall-normal velocity. The black
lines represent the smooth-wall case, while the gray lines represent the permeable substrates. (The figure is
taken from Chavarin et al. 2021).

wall-normal compression of the streamwise vortices, which limits the
energy extraction from the mean flow (fig. 2.2.3).

• for
√
K+
y & 0.4 energetic rollers with streamwise wavelenght λ+

x ≈ 150
can emerge (fig. 2.2.4).

The main weakness of this model is the requirement of the mean velocity pro-
file over the substrates, considering that no model or data is available for the
case of such substrates.
In particular, the use of a different profile can significantly affect the gain
prediction: when drag performance deteriorates (

√
K+
y & 0.4), important

differences are present between the DNS by Gòmez-de-Segura and Garc̀ıa-
Mayoral 2019 and the resolvent prediction made by using a synthetic eddy
viscosity model (fig. 2.2.1), since the latter assumes turbulence always to be
smooth-wall like and not to penetrate the substrates (which, indeed, it does,
with rollers that penetrate the rough wall).

However, it is important to notice that, even with the synthetic mean profile,
resolvent analysis does show the emergence of KH rollers for

√
K+
y & 0.4, and

thus it can generate useful a priori prediction even in this case (fig. 2.2.4,
2.2.5, 2.2.6).
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Figure 2.2.4: Normalized gain for spanwise-coherent structures plotted as a function of streamwise
length λ+

x and wave speed c+. These predictions make use of the synthetic mean profile. Red and blue shad-
ing respectively represent mode amplification and suppression. Structures with the largest amplification are
labelled with a (•) marker (The figure is taken from Chavarin et al. 2021).

Figure 2.2.5: Flow structure associated with the most amplified spanwise-constant resolvent mode over
the permeable substrate (see fig. 2.2.4). The red and blue shaded contours show regions of positive and nega-
tive pressure. (The figure is taken from Chavarin et al. 2021).

Figure 2.2.6: Comparison of resolvent-based gain predictions for spanwise-coherent structures with dif-
ferent anisotropy ratios: the maximum normalized gain obtained for resolvent modes is shown as a function of
wall-normal permeability for different values of λ+

z . All of these predictions were obtained using the synthetic
mean profiles. (The figure is taken from Chavarin et al. 2021).
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2.2.2 The Resolvent-Based Formulation

In this subsection, we provide a more deep explanation of the method used by
Chavarin et al. 2021.

Permeable Substrates Chavarin et al. 2021 started from the Volume-
Averaged (VA) Navier-Stokes (NS) equations, that give rise to two additional
terms: the sub-filter scale stresses and a surface filter term. In order to find
a suitable closure for the model, they parameterized the flow resistance us-
ing the Darcy permeability tensor (with the Forchheimer correction term for
inertial effects). The equations governing the motion are thus

∂〈u〉
∂t + 1

ε∇ · (ε〈u〉〈u〉+ ετ ) = −1
ε∇(ε〈p〉) + 1

εReτ
∇2(ε〈u〉)− ε

Reτ
K−1(I + F )〈u〉,

∇ · (ε〈u〉) = 0
(2.2.2)

with ε the porosity of the medium, K the dimensionless permeability tensor,
F the dimensionless Forchheimer resistance tensor, 〈·〉 the volume averaging
operation, 〈u〉 the dimensionless velocity, 〈p〉 the dimensionless pressure and
t the dimensionless time. The normalisation has been carried out with the
channel half-height h and the friction velocity uτ . The friction Reynold num-
ber is given by Reτ = uτh/ν and K is defined by K = K†/h2, with K† is
the dimensional permeability. Finally, τ = 〈uu〉 − 〈u〉〈u〉 is the sub-filter
scale stresses.

Than, they did the following simplifications:

• they considered a diagonal permeability tensor, K = diag(Kx, Ky, Kz),
with equal wall-normal and spanwise permeability, Ky = Kz. This is
equivalent to align the principal directions (or axes) of the tensor with
the streamwise, wall-normal and spanwise directions of the flow.

• they omitted the non linear Forchheimer correction term. This is be-
cause inertial effect are small.

• in order to maximize any potential drag reduction, they set the porosity
of permeable substrates to be ε ≈ 1.

• they neglected the sub-filter scale stresses, since they are mainly inter-
ested in structures such as NW cycle and KH rollers, which are much
larger than the characteristic length scale of the porous medium.

The equations thus reduce to

∂〈u〉
∂t + ∇ · (uu) = −∇(p) + 1

Reτ
∇2(u)− 1

Reτ
K−1u,

∇ · u = 0
(2.2.3)
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where the 〈·〉 symbol has been omitted.

Figure 2.2.7 shows the geometry of the system: the unobstructed region is
for y ∈ [−1, 1], the permeable substrates are for y ∈ [−(1 + H),−1] and
y ∈ [1, 1 + H]. The ”height” of the permeable substrate is H, as all lengths
have been normalized by the channel half-height h.

Figure 2.2.7: System geometry: symmetric channel flow configuration. (The figure is taken from
Chavarin et al. 2021).

Resolvent Analysis Now, a standard Reynolds-decomposition is taken.

The velocity and the pressure field are decomposed into a time-averaged com-
ponent and a fluctuating one: u(t,x) = U(x)+u′(t,x) with U(x) = [U(y), 0, 0]T

and p(t,x) = P (x) + p′(t,x).
Then, the velocity and pressure fluctuation are Fourier-transformed in stream-
wise and spanwise directions and in time:[

u′(t,x)
p′(t,x)

]
=

∫∫∫ [
uκ(y)
pκ(y)

]
exp (−iωt+ iκxx+ iκzz) dωdκx dκz (2.2.4)

where κx is the streamwise wavenumber, κz the spanwise wavenumber and
ω the frequency. uκ and pκ are the Fourier coefficients for the velocity and
pressure field at a given wavenumber-frequency combination κ = (κx, κz, ω).

Doing this, the initial equations can be expressed as[
uκ
pκ

]
=

(
−iω

[
I
0

]
−

[
Lκ −∇̃
−∇̃T

0

])−1 [
I
0

]
fκ = Hκfκ (2.2.5)

where the operator Lκ is shown below

Lκ =


−iκxU +Re−1

τ

(
∇̃2 −K−1

)
− dU

dy
0

0 −iκxU +Re−1
τ

(
∇̃2 −K−1

)
0

0 0 −iκxU +Re−1
τ

(
∇̃2 −K−1

)


(2.2.6)
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In this definition, fκ is the Fourier coefficient for the non-linear term and

∇̃ = (iκx,
∂
∂y , iκz), ∇̃

T
and ∇̃2

= (−κ2
x−κ2

z+ ∂2

∂y2 ) are the Fourier-transformed,
respectively, gradient, divergence and laplacian operators. The velocity and
pressure response at a given κ constitute a traveling wave flow field with, re-
spectively, streamwise and spanwise wavelenght λx = 2π/κx and λz = 2π/κz
that is moving downstream at speed c = ω/κx.
The transfer function that maps the non linear forcing fκ to the velocity and
pressure response is the resolvent operator Hκ.

A SVD (singular value decomposition) of Hκ is performed in order to find a
set of orthonormal response modes, ordered based on their gain (under an L2

energy norm). In order to do this, the resolvent operator is first scaled as

W uuκ = Hw
κW ffκ (2.2.7)

where we have defined Hw
κ = W uHκW

−1
f (the superscript w is present to

remind to W u and to W−1
f ), with W u and W f that incorporate numerical

quadrature weights for the entire domain. Finally, the SVD leads to

Hw
κ =

∑
m

ψκ,mσκ,mφ
†
κ,m (2.2.8)

where

σκ,1 > σκ,2 > · · · > 0, ψ†κ,lψκ,m = δlm, φ†κ,lφκ,m = δlm (2.2.9)

yielding forcing modes fκ,m = W−1
f φκ,m and velocity responses uκ,m =

W−1
u ψκ,m of unit total energy over the entire domain, i.e.∫ (1+H)

−(1+H)

u†κ,luκ,mdy = δlm,

∫ (1+H)

−(1+H)

f †κ,lfκ,mdy = δlm (2.2.10)

The resolvent framework allows to find that Hκ tends to low-rank at κ com-
binations that are energetic in wall-bounded turbulent flows. So, since usu-
ally the first singular value is an order of magnitude larger than subsequent
singular values, i.e. σκ,1 � σκ,2 > · · · , the resolvent operator can be well
approximated using a rank-1 truncation:

Hw
κ ≈ ψκ,1σκ,1φ

†
κ,1 (2.2.11)

Forcing in the direction of the first forcing mode fκ,1 = W−1
f φκ,1 generates a

velocity response uκ,1 = W−1
u ψκ,1 that is amplified by a factor σκ,1. So, under

the L2 norm, σ2
κ,1 is a measure of energy amplification.
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The authors now concentrate to evaluate the effect of anisotropic permeable
substrates on the rank-1 resolvent mode that serves a proxy for the NW cy-
cle. A reduction in gain is interpreted as mode suppression, indicating drag
reduction. Furthermore, they also try to predict the appearing of KH rollers.

Boundary Conditions The resolvent operator is discretized using spectral
discretization and rectangular block matrices.
We can thus use two different sets of equations in the unobstructed region
and in porous domain and couple the two via appropriate interfacial condi-
tions:

• no-slip boundary conditions at the lower and upper substrates wall, y =
±(1 +H)

• continuity in the velocity and pressure field at the interfaces between
the porous medium and the unobstructed flow, y = ±1

• continuity in the streamwise and spanwise shear at the interface

u = 0 at y = ±(1 +H),
u|y+

= u|y− and p|y+
= p|y− at y = ±1,

∂u
∂y

∣∣∣
y+

= 1
ε
∂u
∂y

∣∣∣
y−

and ∂w
∂y

∣∣∣
y+

= 1
ε
∂w
∂y

∣∣∣
y−

at y = −1,

∂u
∂y

∣∣∣
y−

= 1
ε
∂u
∂y

∣∣∣
y+

and ∂w
∂y

∣∣∣
y−

= 1
ε
∂w
∂y

∣∣∣
y+

at y = 1,

(2.2.12)

where y+ and y− denotes the values taken on either side of the porous substrate-
unobstructed flow interface.

Mean Velocity Profile In order to use this construction, the knowledge
of the mean profile velocity U(y) is required. Here, they used two different
methods to generate the mean profile:

• using DNS results by Gòmez-de-Segura and Garc̀ıa-Mayoral 2019

• using a synthetic eddy viscosity profile

As far as the second method is concerned, they proposed the following equa-
tion

1

Reτ

(
(1 + νe)

d2

dy2
+

dνe
dy

d

dy
− 1

Kx

)
U =

dp

dx
(2.2.13)
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which was solved numerically to obtain U(y). Here, νe is the eddy viscosity,
parametrized as

νe =



1

2

[
1 +

{
c2Reτ

3

(
2y − y2

) (
3− 4y + 2y2

)
×
(

1− exp

(
(|y − 1| − 1)

Reτ
c1

))}2
]1/2
− 1

2
, |y| 6 1

0, |y| > 1
(2.2.14)

where they set c1 = 46.2 and c2 = 0.61.

This model assumes that turbulence does not penetrate into the porous medium.
In reality, it does penetrate, depending on Ky and Kz.

Numerical Discretization The resolvent operator and the equations for
the mean velocity profile are discretized in the wall-normal direction using
spectral discretization and rectangular block matrices (i.e. using Chebyscev
polynomials). We will not go into such details.

Conclusion Resolvent analysis is a useful design tool for pursuing formal
optimisation of complex permeable substrates. The method could also be use-
ful to evaluate the effect of porous materials for other applications than drag
reduction or to provide insight into environmental flows over granular beds
and vegetation canopies. In order to refine the model, one could see how the
inclusion of inertial effect or more complex boundary conditions is likely to
affect control performance.



2.3 An experiment inspired by pufferfish skin

Here we report an experiment made by Zhou et al. 2021 with the aim to in-
vestigate the drag reduction effects of pufferfish skin. We will not focus on
the details of the experimental procedure, opting for briefly describing it and
then mentioning the main results obtained by the authors.

Figure 2.3.1: (sx) Schematic of the protusion. (dx) SEM image that shows the structure of typical
spines of the pufferfish (the white scale bar represents 500µm). (The figure is taken from Zhou et al. 2021).

Introduction As previously mentioned, perfectly smooth surfaces do not
exist in nature. Indeed, rough surfaces are the norm, not the exception, since
they can confer much benefit, including drag reduction capabilities. For ex-
ample, it seems that the incredible hydro-dynamical performances of sharks,
primarily their speed and flexibility, are in part due to the denticles covering
their dermis, featuring riblet-like micro-indentations. As seen in the previous
sections, riblet structures are considered an effective passive method of drag
reduction. However, there are several practical issues that limit their appli-
cability, such as the accumulation of ice or dirt. In this section, we will thus
consider surfaces with protusions, which also possess drag reduction capabili-
ties without the practical issues of riblets, since, for example, they can hinder
dust accumulation provided to enlarge their size. However, one has to study
carefully the general conditions of the flow and the geometry of such protu-
sions in order to realize a rough surface with a good drag reduction power
within the real fluid-dynamical conditions of interest.

The work we are going to expose proposes to identify and to highlight the
role of the correct geometrical and fluid-dynamical parameters one has to
take into consideration in order to achieve optimum drag reduction while
developing a rough surface with protrusions. The natural counterpart they
considered was pufferfish skin.

Pufferfish skin is known for its spine-covered (instead of scales) surface (see
fig. 2.3.1). These unique protusions have not only a protective function but
also an hydro-dynamical one, contributing to drag reduction. Indeed, this
fish shows an excellent physical capability to survive in the ocean: its burst
speed is of ∼ 3.5BL/s (body length per second) despite the difficulty for
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a swimming fish to exceed ∼ 1BL/s, thus suggesting for a drag reduction
mechanism.

Figure 2.3.2: Schematic of the experimental apparatus. 1 Test plate; 2 steel trip; 3 sample; 4 connector;
5 slender rod; 6 sliders; 7 force sensor. (The figure is taken from Zhou et al. 2021).

(Brief) Description of the Experiment The authors designed and man-
ufactured (by 3D printing) a flat sample and six samples featuring biomimetic
spine-covered protusions (BSCPs) with combinations of three different pro-
tusion heights (0.2, 0.4, 0.8mm) and two array patterns (averaged and stag-
gered). In a circulating water tunnel laboratory they introduced force mea-
surements and PIV (particle image velocimetry) with a free-stream velocity of
0.65m/s ≈ 2.43 km/h, which is consisted with pufferfish swimming velocity
(see fig. 2.3.2 for an idea). From the former they took drag reduction ratio

(defined as DR =
Drough−Dflat

Dflat
), while from the latter they considered Reynolds

shear stress (RSS) and turbulent intensity (TKE). Further, they considered
vortex structures within the turbulent boundary layer and then investigated
coherent structures benefiting drag reduction.

Main results First of all, they identified two parameters that influences
drag reduction power: height and array pattern. However, also Reynold num-
ber and the spacing scale were found to be influential factors, but the authors
focused on the previous two.

Indeed, as far as the force measurements are concerned (see fig. 2.3.3), the
staggered array was superior with respect to the averaged one because it
showed a higher drag reduction ratio, with maximum drag reduction of 5.9 %
for the sample with the shortest BSCPs (sample E). This agrees with the
spine array of pufferfish skin. Furthermore, higher elements cause more drag.
However, the growth rate was decreased, suggesting a limitation in this trend.

As far as PIV is concerned (see 2.3.4), the staggered array also achieved lower
Reynolds shear stress and turbulence intensity than the averaged one. Sam-
ple E decelerates the development of turbulence in the wall-normal direction
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Figure 2.3.3: Total drag measurements for each sample. The error bars are quite large, in particular for
the first one (smooth case) and the last three cases. (The figure is taken from Zhou et al. 2021).

Figure 2.3.4: Time-averaged (sx) Reynolds shear stress (RSS) and (dx) turbulence intensity. (The figure
is taken from Zhou et al. 2021).

with respect to the other samples. Indeed, it was found that higher roughness
brings undesirable effects to turbulence, resulting in a direct production of
larger RSS and TKE. However, the reason why the staggered pattern slows
down turbulence within the boundary layer is still unknown.

The authors investigated several prograde (PV) and retrograde (RV) vortices
in the instantaneous velocity fields using the ω and the Q-criterion (see fig.
2.3.5). The former had only slight impact while the latter had more negative
influences. Sample E was found to create the most PV (+5 %) and the least
RV (− (20÷ 30) %) with respect to the flat case.

Finally, Sample E showed an extended coherent structure (multiscale hairpin
vortex packets) in the streamwise direction, suggesting an orderly turbulence,
resulting for benefit to drag reduction compared to the flat case.
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Figure 2.3.5: Temporary evolution of streamwise vorticity within the boundary layer. (a) Sample E.
(b) Sample A (flat case). Red/orange=PV (prograde vortices) & Blue/green=RV (retrograde vortices). (The
figure is taken from Zhou et al. 2021).



Chapter 3

Interaction of a fluid with
a porous medium:
microscopic homogenised
formulation

This chapter represents the first part of the original project of my thesis,
being it an extension of the article by Naqvi and Bottaro 2021 to a three-
dimensional and moderately turbulent flow, also with a search for drag-reducing
features of the permeable layer.

In this section, we treat the boundary problem for the motion of a 3D fluid
near and throughout a porous medium, exploiting the separation of scales:
the characteristic microscopic length scale, l, is much smaller than the char-
acteristic macroscopic length scale of the outer flow, L. Thus the problem is
amenable to a multiple scale expansion, in terms of a small parameter ε ≡
l/L � 1. Furthermore, the full domain is split up into three parts (see fig.
3.1.1): a free-fluid region (superscript +), a central, thin boundary region (su-
perscript =) and a third region governed by Darcy’s equation (superscript −).
ˆvariables denote dimensional quantities.

We will directly present the 3D theory when inertia is non negligible, per-
forming an Oseen approximation. The coefficients present in the macroscopic
interface condition directly arise from the solution of several microscopic prob-
lems, which we will numerically solve with inclusions directed both spanwise
and streamwise and for several values of both porosity and friction Reynolds
number (main useful results are reported in tabular form in 4.2 for any quick
consultations). Furthermore, we will also propose a 3D description of the
same problem in the limit of small Reynolds number. This time, the coeffi-
cients are found by numerically solving Stokes’ problems in the microscopic
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domain. Then, we will also propose fitting curves in order to find how these
coefficients change with porosity, for both inline and staggered configurations
(again, main useful results are reported in tabular form in 4.2 for any quick
consultations).

Finally, in 4, we will try to test and to use these effective coefficients by simu-
lating macroscopic cases.

3.1 Mathematical Formulation for the Turbu-
lent Case

Figure 3.1.1: Schematic of the domain: (sx) macroscopic view highlighting a microscopic cell in red,
(dx) microscopic view with dimensional settings. (The figure is taken from Naqvi and Bottaro 2021).

Scaling and equations in the three regions In the free-fluid region,
L, L/U , U and ρU2 (with U the characteristic free stream velocity and ρ the
fluid density) are taken to scale, respectively, length, time, velocity and pres-
sure. The macroscopic Reynolds number is thus Re = ρUL/µ. Moreover, we
define X1 = X = x̂/L, X2 = Y = ŷ/L, X3 = Z = ẑ/L, U+

1 = U+ = û/U ,
U+

2 = V + = v̂/U and U+
3 = W+ = ŵ/U . This leads to the following dimen-

sionless system in the + region

∂U+
i

∂Xi
= 0,

∂U+
i

∂t
+ U+

j

∂U+
i

∂Xj
= −∂P

+

∂Xi
+

1

Re

∂2U+
i

∂X2
j

(3.1.1)

Here, the dependent variables are function of only the macroscopic coordi-
nates.

For the intermediate region, we use l = εL, L/U , εU and µU/L to scale, re-
spectively, length, time, velocity and pressure. Similarly, we define x1 = x =
x̂/l, x2 = y = ŷ/l, x3 = z = ẑ/l, U1 = U = ε−1û/U , U=

2 = V = = ε−1v̂/U
and U=

3 = W= = ε−1ŵ/U . The dimensionless equations in the y-elongated
microscopic cell are thus

∂U=
i

∂xi
= 0, ε2 Re

(
∂U=

i

∂t
+ U=

j

∂U=
i

∂xj

)
= −∂P

=

∂xi
+
∂2U=

i

∂x2
j

(3.1.2)
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Here, the dependent variables are periodic along x and z and they depend on
both microscale and macroscale coordinates. This can be seen by matching
velocity and traction vectors at the boundary:

lim
y→+∞

(U=, V =,W=) =
1

ε
lim
Y→0+

(
U+, V +,W+

)
(3.1.3)

and

lim
y→+∞

(
∂U=

∂y
+
∂V =

∂x
,−P= + 2

∂V =

∂y
,
∂W=

∂y
+
∂V =

∂z

)
=

= lim
Y→0+

(
∂U+

∂Y
+
∂V +

∂X
,−ReP+ + 2

∂V +

∂Y
,
∂W+

∂Y
+
∂V +

∂Z

) (3.1.4)

In the lower region, we use the same scales as in the interface region, except
for replacing εU by ε2U for the velocity and for assuming a steady flow field.
This means that viscous dissipation through the pores balances the macro-
scopic pressure gradient. Thus, in a square unit cell of this region, we have

ε
∂U−i
∂xi

= 0, ε4ReU−j
∂U−i
∂xj

= −∂P
−

∂xi
+ ε

∂2U−i
∂x2

j

(3.1.5)

plus periodicity along all spatial directions. The resolution of (3.1.5) yields
Darcy’s equation.

Instead of doing this, we will try to couple these systems together, as illus-
trated below.

Asymptotic expansion Here, we try to get a composite system valid in
the = and − regions.

From now on, we define R = ε2Re and assume that R = O(1). Then, we
expand each generic F variable as

F (xi, Xi, t) = F0 + εF1 + ε2F2 + . . . (3.1.6)

and we use a chain rule,

∂

∂xj
→ ∂

∂xj
+ ε

∂

∂Xj
(3.1.7)

In the end, we get the following results.

= Region:

O
(
ε0
)

:
∂U=

0 i

∂xi
= 0, RU=

0 j

∂U=
0 i

∂xj
= −∂P

=
0

∂xi
+
∂2U=

0 i

∂x2
j

(3.1.8)
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O
(
ε1
)

:
∂U=

1 i

∂xi
= −∂U

=
0 i

∂Xi
,

R
(
U=

0 j

∂U=
1 i

∂xj
+ U=

0 j

∂U=
0 i

∂Xj
+ U=

1 j

∂U=
0 i

∂xj

)
= −∂P

=
1

∂xi
− ∂P=

0

∂Xi
+
∂2U=

1 i

∂x2
j

+ 2
∂2U=

0 i

∂xj∂Xj

(3.1.9)
- Region:

O
(
ε0
)

:
∂P−0
∂xi

= 0 (3.1.10)

O
(
ε1
)

:
∂U−0 i
∂xi

= 0, −∂P
−
1

∂xi
+
∂2U−0 i
∂x2

j

=
∂P−0
∂Xi

(3.1.11)

O
(
ε2
)

:
∂U−1 i
∂xi

= −∂U
−
0 i

∂Xi
, RU−0 j

∂U−0 i
∂xj

= −∂P
−
2

∂xi
− ∂P−1
∂Xi

+
∂2U−1 i
∂x2

j

+ 2
∂2U−0 i
∂xj∂Xj

(3.1.12)

The composite description Now, we decompose the velocity and pressure
fields as

ui = u
(0)
i + εu

(1)
i +O

(
ε2
)

(3.1.13)

p = p(0) + εp(1) +O
(
ε2
)

(3.1.14)

with

u
(0)
i =

{
U=
i 0, y > 0

εU−i 0, y < 0
(3.1.15)

u
(1)
i =

{
U=
i 1, y > 0

εU−i 1, y < 0
(3.1.16)

p(0) =

{
P=

0 , y > 0
P−0 + εP−1 , y < 0

(3.1.17)

p(1) =

{
P=

1 , y > 0
εP−2 , y < 0

(3.1.18)

Thus, one obtains the following composite system{
∂iui = −ε∂′iu

(0)
i +O

(
ε2
)

−∂ip+ ∂2
jui = Ruj∂jui + ε

[
∂′ip

(0) − 2∂j∂
′
ju

(0)
i +Ru(0)

j ∂′ju
(0)
i

]
+O

(
ε2
)

(3.1.19)
where we have changed notation by setting

∂i =
∂

∂xi
, ∂′i =

∂

∂Xi
(3.1.20)
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Figure 3.1.2: Graphical representation of the equations in the various regions, after the Oseen linearisa-
tion. (The figure has been adapted from Naqvi and Bottaro 2021).

Near-wall turbulence beyond the lower transitionally rough regime:
the Oseen approximation In order to treat the problem, we simplify it
by linearising the convective terms thanks to an Oseen approximation. In this
regime, R = O(1), we are authorised to assume that the velocity near the
interface is approximately constant, equal to the (dimensionless) friction ve-

locity u∗, and directed along x, i.e. u
(0)
j ' (u∗, 0, 0), where the dimensional

friction velocity û∗ is normalised as u∗ = û∗

εU , with U the characteristic macro-

scopic velocity. Now, thanks to this relationships and recalling that Re = UL
ν ,

we have

−∂ip+∂2
jui = εReτ ∂xui+ ε

[
∂′ip

(0) − 2∂j∂
′
ju

(0)
i + εReτ ∂

′
xu

(0)
i

]
+O

(
ε2
)

(3.1.21)

where we have defined the friction Reynolds number Reτ = û∗L
ν . We observe

that now we have εReτ = O(1).

Thus, the composite description at leading order is given by

O(1) :


−∂ip(0) + ∂2

jui
(0) = εReτ ∂xu

(0)
i

∂iu
(0)
i = 0(
−p(0)δi2 + ∂2u

(0)
i + ∂iu

(0)
2

)
y∞

= Si2

(3.1.22)
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and at next order we have

O(ε) :


−∂ip(1) + ∂2

ju
(1)
i = εReτ

(
∂xu

(1)
i + ∂′xu

(0)
i

)
+ ∂′ip

(0) − 2∂j∂
′
ju

(0)
i

∂iu
(1)
i = −∂′iu

(0)
i(

−p(1)δi2 + ∂2u
(1)
i + ∂iu

(1)
2

)
y∞

= −
(
∂′2u

(0)
i + ∂′iu

(0)
2

)
y∞

(3.1.23)
where Si2 is the macroscopic traction vector evaluated at Y = 0+, i.e.

Si2 = σ·e2|Y=0+ = (STx, SN , STz) = lim
Y→0+

(
∂U

∂Y
+
∂V

∂X
,−ReP + 2

∂V

∂Y
,
∂W

∂Y
+
∂V

∂Z

)
(3.1.24)

with σ the total stress tensor.

Solution of the composite problem Now, thanks to the linearity of the
previous systems, we can decompose the velocity and pressure at leading or-
der, O(1), as {

u
(0)
i = ũijSj2
p(0) = p̃jSj2

(3.1.25)

This leads to the following system
−∂ip̃j + ∂2

l ũij = εReτ ∂xũij
∂iũij = 0
(−p̃jδi2 + ∂2ũij + ∂iũ2j)|y∞ = δij

(3.1.26)

which are three microscopic problems for j = 1, 2, 3.

At O(ε), we can decompose velocity and pressure as{
u

(1)
i = u‡ijk∂

′
kSj2

p(1) = p‡jk∂
′
kSj2

(3.1.27)

This leads to
εReτ ∂xu

‡
ijk + ũijδk1 = −∂ip‡jk − p̃jδki + ∂2

l u
‡
ijk + 2∂kũij

∂iu
‡
ijk = −ũkj(
−p‡jkδi2 + ∂2u

‡
ijk + ∂iu

‡
2jk

)
|y∞

= − (ũijδk2 + ũ2jδik)|y∞

(3.1.28)

which are nine problems to be solved in the microscopic cell, for j, k = 1, 2, 3.

We have to numerically solve all the previous problems in order to get ũij|y∞
and u‡ijk

∣∣∣
y∞

, which are the numerical coefficients appearing in the macroscopic

interface condition.
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We now would like to write explicitly every single problem before considering
any particular geometry.
At O(1), one has the following three problems:
j = 1: 

−∂ip̃1 + ∂2
l ũi1 = εReτ ∂1ũi1

∂iũi1 = 0
F S = (1, 0, 0)

(3.1.29)

j = 2: 
−∂ip̃2 + ∂2

l ũi2 = εReτ ∂1ũi2
∂iũi2 = 0
F S = (0, 1, 0)

(3.1.30)

j = 3: 
−∂ip̃3 + ∂2

l ũi3 = εReτ ∂1ũi3
∂iũi3 = 0
F S = (0, 0, 1)

(3.1.31)

where F S is the (dimensionless) boundary stress imposed at y∞.
For j = 2, one finds the simple analytical solution

ũi2 = 0, p̃2 = −1. (3.1.32)

These results will directly enter the O(ε) problems.
At O(ε), one has the following nine problems:
j = 1, k = 1:

−∂ip‡11 + ∂2
l u
‡
i11 − εReτ ∂1u

‡
i11 − ũi1 − p̃1δi1 + 2∂1ũi1 = 0

∂iu
‡
i11 = −ũ11

F S =
(
− ũ21|y∞ , 0, 0

) (3.1.33)

j = 1, k = 2:
−∂ip‡12 + ∂2

l u
‡
i12 − εReτ ∂1u

‡
i12 − p̃1δi2 + 2∂2ũi1 = 0

∂iu
‡
i12 = −ũ21

F S =
(
− ũ11|y∞ ,−2 ũ21|y∞ ,− ũ31|y∞

) (3.1.34)

j = 1, k = 3:
−∂ip‡13 + ∂2

l u
‡
i13 − εReτ ∂1u

‡
i13 − p̃1δi3 + 2∂3ũi1 = 0

∂iu
‡
i13 = −ũ31

F S =
(

0, 0,− ũ21|y∞
) (3.1.35)



58

j = 2, k = 1: 
−∂ip‡21 + ∂2

l u
‡
i21 − εReτ ∂1u

‡
i21 + δi1 = 0

∂iu
‡
i21 = 0

F S = (0, 0, 0)

(3.1.36)

j = 2, k = 2: 
−∂ip‡22 + ∂2

l u
‡
i22 − εReτ ∂1u

‡
i22 + δi2 = 0

∂iu
‡
i22 = 0

F S = (0, 0, 0)

(3.1.37)

j = 2, k = 3: 
−∂ip‡23 + ∂2

l u
‡
i23 − εReτ ∂1u

‡
i23 + δi3 = 0

∂iu
‡
i23 = 0

F S = (0, 0, 0)

(3.1.38)

j = 3, k = 1:
−∂ip‡31 + ∂2

l u
‡
i31 − εReτ ∂1u

‡
i31 − ũi3 − p̃3δi1 + 2∂1ũi3 = 0

∂iu
‡
i31 = −ũ13

F S =
(
− ũ23|y∞ , 0, 0

) (3.1.39)

j = 3, k = 2:
−∂ip‡32 + ∂2

l u
‡
i32 − εReτ ∂1u

‡
i32 − p̃3δi2 + 2∂2ũi3 = 0

∂iu
‡
i32 = −ũ23

F S =
(
− ũ13|y∞ ,−2 ũ23|y∞ ,− ũ33|y∞

) (3.1.40)

j = 3, k = 3:
−∂ip‡33 + ∂2

l u
‡
i33 − εReτ ∂1u

‡
i33 − p̃3δi3 + 2∂3ũi3 = 0

∂iu
‡
i33 = −ũ33

F S =
(

0, 0,− ũ23|y∞
) (3.1.41)

This problems will simplify once the O(1) solutions are available.

All these problems are subject to periodicity along x and z and to the no-slip
condition on the solid grains of the porous medium.

The boundary condition The boundary condition arises from matching
the velocity at the two scales, i.e.

Ui|Y=εy∞
= ε

(
u

(0)
i

∣∣∣
y∞

+ ε u
(1)
i

∣∣∣
y∞

)
+O(ε3) = ε ũij|y∞ Sj2+ε

2 u‡ijk

∣∣∣
y∞

∂Sj2
∂Xk

+O(ε3)

(3.1.42)
We will implement later this condition, after solving the microscopic prob-
lems.



3.2 Numerical solution of the microscopic prob-
lems in the Oseen Approximation

3.2.1 Spanwise Cylinders

Figure 3.2.1: System geometry for spanwise-aligned cylinders: (sx) elongated domain (dx) fully periodic
unit cell. Drawing not to scale.

With the aid of the software Comsol Multiphysics, we will now numerically
solve the microscopic problem in the microscopic elongated domain, consid-
ering cylindrical solid inclusions, with axes directed spanwise, i.e. along z di-
rection (see fig. 3.2.1). More specifically, our domain will consist of a xyz box
of sides [1, 2y∞, 1]. We have to choose the value of y∞ so that the fields will
be homogeneous in x and z near y = y∞. Usually, we will take y∞ = 5. The
dividing surface is set at y = y∞, so that half of the domain (y∞ < y < 2y∞)
is over it and the other half (0 < y < y∞) below it. For 0 < y < y∞, the above
mentioned identical cylindrical solid grains are present, spaced of 1 unit in y
and with an extension of 1 unit in z. The radius of the cylinders will be set
according to the specific chosen value of porosity, using the formula

r =

√
1− θ
π

(3.2.1)

which comes directly from the definitions of porosity: θ =
Vf
V =

V−Vp
V =

1 − πr2. We will set the center of the cylinders so that the first cylinder is
tangent to the dividing surface: ycyl = 1− r, with respect to y = 0.

We will at first fix both porosity to θ = 0.5 and Reτ = 180 and compute the
coefficients for varying y∞, in order to find a trend the allows us to evaluate
the parameters at y∞ → 0.
Then, we will fix only the value of the porosity at θ = 0.5 and compute the
coefficients for different values of Reτ in the interval [0, 390].
Finally, we will vary also the porosity in the interval [0.215, 0.99] for several
fixed values of Reτ = 0, 193, 390. Meanwhile, we will also plot these same
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values by ”transposing” them, i.e. we will vary Reτ in the interval [0, 390] for
each fixed value of θ in the interval [0.215, 0.99], just for having a complemen-
tary view of the same set of data.
Throughout the discussion, we will always take ε = 0.2.

Before showing the first results, we would like to emphasise that, with the
current values of ε and Reτ , the assumption εReτ = O(1) is not strictly
valid anymore, in particular, we have εReτ = O(10). This is not a real prob-
lem, since, in perturbation theory, one usually does asymptotic expansions in
terms of a ”small” parameter ε (formally ε � 1) that in reality can be set
equal to 1. This is to say that we can go beyond the formal limit imposed by
the theory and the results will still be correct. In our case, ε = 0.2 is not so
small because we are dealing with a very particular porous medium. On the
other hand, if we took a common porous medium, like a soil or a fabric, we
would obtain a really small ε, so that we could easily be within the limits of
the theory.

Trend at the leading order problems In this case, we find that only
ũ11|y∞ and ũ33|y∞ are non zero (see table 3.1). In particular, varying y∞, one
finds that (see fig. 3.2.2)

ũ11|y∞ = y∞ + λx, ũ33|y∞ = y∞ + λz (3.2.2)

with λx and λz slip lengths.

The same results are recovered also by

λi =
1

A

∫
S

ũii|y∞ dS − y∞ (3.2.3)

for i = 1, 3 = x, z (without summing), where the mean surface integral is
evaluated at the top surface and A is the area of the integral surface (A = 1
in this case). This is true since the following equality holds:

1

A

∫
S

ũij|y∞ dS = ũij|y∞ (3.2.4)

because the fields are homogeneous in x and z at y∞ (top surface).
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y∞ ũ11|y∞ ũ33|y∞
3 3.03560E + 00 3.04858E + 00
4 4.03564E + 00 4.04861E + 00
5 5.03562E + 00 5.04859E + 00
6 6.03563E + 00 6.04860E + 00
7 7.03567E + 00 7.04863E + 00

(3.2.5)

Table 3.1: This table shows the trend of ũ11 and ũ33 against y∞, in order to compute λx and λz coeffi-
cients. The computation has been carried out for θ = 0.5 and Reτ = 180.

Figure 3.2.2: Fit to the trend of the λx and λz coefficients with a linear function.
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Trend at the higher order problems Having solved the O(1) prob-
lems, little simplifications in the O(ε) problems, in particular in the boundary
stress conditions, can be made. One finds
j = 1, k = 1:

−∂ip‡11 + ∂2
l u
‡
i11 − εReτ ∂1u

‡
i11 − ũi1 − p̃1δi1 + 2∂1ũi1 = 0

∂iu
‡
i11 = −ũ11

F S = (0, 0, 0)

(3.2.6)

j = 1, k = 2:
−∂ip‡12 + ∂2

l u
‡
i12 − εReτ ∂1u

‡
i12 − p̃1δi2 + 2∂2ũi1 = 0

∂iu
‡
i12 = −ũ21

F S =
(
− ũ11|y∞ , 0, 0

) (3.2.7)

j = 1, k = 3:
−∂ip‡13 + ∂2

l u
‡
i13 − εReτ ∂1u

‡
i13 − p̃1δi3 + 2∂3ũi1 = 0

∂iu
‡
i13 = −ũ31

F S = (0, 0, 0)

(3.2.8)

j = 2, k = 1: 
−∂ip‡21 + ∂2

l u
‡
i21 − εReτ ∂1u

‡
i21 + δi1 = 0

∂iu
‡
i21 = 0

F S = (0, 0, 0)

(3.2.9)

j = 2, k = 2: 
−∂ip‡22 + ∂2

l u
‡
i22 − εReτ ∂1u

‡
i22 + δi2 = 0

∂iu
‡
i22 = 0

F S = (0, 0, 0)

(3.2.10)

j = 2, k = 3: 
−∂ip‡23 + ∂2

l u
‡
i23 − εReτ ∂1u

‡
i23 + δi3 = 0

∂iu
‡
i23 = 0

F S = (0, 0, 0)

(3.2.11)

j = 3, k = 1:
−∂ip‡31 + ∂2

l u
‡
i31 − εReτ ∂1u

‡
i31 − ũi3 − p̃3δi1 + 2∂1ũi3 = 0

∂iu
‡
i31 = −ũ13

F S = (0, 0, 0)

(3.2.12)

j = 3, k = 2:
−∂ip‡32 + ∂2

l u
‡
i32 − εReτ ∂1u

‡
i32 − p̃3δi2 + 2∂2ũi3 = 0

∂iu
‡
i32 = −ũ23

F S =
(

0, 0,− ũ33|y∞
) (3.2.13)
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j = 3, k = 3:
−∂ip‡33 + ∂2

l u
‡
i33 − εReτ ∂1u

‡
i33 − p̃3δi3 + 2∂3ũi3 = 0

∂iu
‡
i33 = −ũ33

F S = (0, 0, 0)

(3.2.14)

In this case, the only non zero coefficients are given by

− u‡211

∣∣∣
y∞

= u‡121

∣∣∣
y∞

= 0.5 y2
∞ + λx y∞ +Kitfxy

− u‡233

∣∣∣
y∞

= u‡323

∣∣∣
y∞

= 0.5 y2
∞ + λz y∞ +Kitfzy

u‡222

∣∣∣
y∞

= Kyy

(3.2.15)

where Kyy is the apparent permeability (apparent because of inertia; it will
become the medium permeability in the small Reτ limit) and Kitfxy and Kitfzy
are the interface permeabilities (see table 3.2 for data and fig. 3.2.3 for fit).
In particular, for the medium permeability we found that also a linear or
quadratic trend can be proposed (see fig. 3.2.4). However, the absolute vari-
ation is so small that it can be imputed to numerical errors in the software
computation. Then, we decided to quote a constant trend, that is the same
trend found in the Stokes’ limit.

These are the only parameters that enter the interface condition, since we
decided to evaluate the fields in the limit y∞ → 0. In particular, we found
that some fields sensibly differ from 0 at y∞ = 5 (or any other sufficiently
large finite value) but are compatible with a zero value at y∞ = 0. These

fields are u‡111

∣∣∣
y∞

and u‡331

∣∣∣
y∞

(see fig. 3.2.5). This phenomenon happens also

in the Stokes’ limit.

Also this time, the numerical value of the fields at the top surface corresponds
to the one obtained performing the top surface average of the same fields:

1

A

∫
S

u‡ijk

∣∣∣
y∞

dS = u‡ijk

∣∣∣
y∞

(3.2.16)

where, as before, A = 1.

Moreover, as, once again, found in the Stokes limit, the numerical values of
the above mentioned parameters are recovered also by taking the following
volume integrals already in the O(1) simulations:

Kitfxy =
∫
Vf Por

ũ11 dV

Kitfzy =
∫
Vf Por

ũ33 dV
(3.2.17)

where VfPor denotes the fluid volume below the interface. This results is par-
ticularly convenient since it means that interface permeabilities are already
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y∞ u‡121

∣∣∣
y∞

u‡211

∣∣∣
y∞

u‡323

∣∣∣
y∞

u‡233

∣∣∣
y∞

u‡222

∣∣∣
y∞

u‡111

∣∣∣
y∞

u‡331

∣∣∣
y∞

3 −4.6079E + 00 −9.3238E + 00 −9.4436E + 00
4 8.1439E + 00 −8.1436E + 00 8.1973E + 00 −8.1972E + 00 9.849E− 04 −2.1908E + 01 −2.2120E + 01
5 1.2679E + 01 −1.2679E + 01 1.2746E + 01 −1.2746E + 01 9.859E− 04 −4.2563E + 01 −4.2892E + 01
6 1.8215E + 01 −1.8216E + 01 1.8294E + 01 −1.8295E + 01 9.866E− 04 −7.3290E + 01 −7.3763E + 01
7 −2.4752E + 01 9.871E− 04 −1.1609E + 02 −1.1673E + 02

(3.2.20)

Table 3.2: This table shows the trend of O(ε) fields at y∞ against y∞, in order to compute Kitfxy , Kitfzy
and Kyy and λz coefficients. The computation has been carried out for θ = 0.5 and Reτ = 180.

available from the O(1) problems, and so one does not need to solve the O(ε)
ones to compute them.

Finally, as far as the medium permeability is concerned, one can compute it
also simulating the same O(ε) problem in the fully periodic unit cell, which
is computationally less expensive than using the elongated domain, and per-
forming the following operation:

Kyy =

∫
Vf
u‡222 dV (3.2.18)

where Vf is the fluid’s volume. This is true only for the u‡222

∣∣∣
y∞=0

= Kyy pa-

rameter. Indeed, other diagonal components of the medium permeability ten-
sor can be computed in the following way:

Kxx =
∫
Vf u

‡
121 dV

Kzz =
∫
Vf u

‡
323 dV

(3.2.19)

where the integral must be performed in the fully-periodic unit cell. We re-

mark that, in this case, Kxx and Kzz do not correspond to any value of u‡ijk

∣∣∣
y∞=0

.

Hence, they do not enter the interface condition. We should also mention
that, in this case, differently from the Stokes’ regime, where the relationship
Kxx ≈ Kyy must be recovered, we have Kxx 6= Kyy, since we assumed convec-
tion along the x-direction.
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Figure 3.2.3: Fit to the trend of the O(ε) coefficients: Kitfxy , Kitfzy and Kyy. In the last figure from top,
the p0 fitting parameter is Kyy and the vertical error bars, ±10−6, are present only to make the fit converge.
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Figure 3.2.4: Fit to the trend of Kyy coefficient with a quadratic function. The p0 fitting parameter is
Kyy.

Figure 3.2.5: Fit to the trend of u‡111

∣∣∣
y∞

and u‡331

∣∣∣
y∞

coefficients showing they are zero at the origin.
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Results for θ = 0.5 and several Reτ We now fix θ = 0.5 (and ε = 0.2)
and compute the coefficients for several values of Reτ in the interval [0, 390].
When possible, also Kitfxy and Kitfzy have been calculated directly from the
O(1) simulations. Moreover, Kyy has been calculated indifferently in the elon-
gated domain or in the fully periodic unit cell. Results are reported in table
4.7

A decreasing trend with Reτ has been found for all parameters (see fig. 3.2.6).

Coefficients variation with θ for several fixed Reτ We now fix Reτ =
0, 193, 390 (and ε = 0.2) and compute, for each Reτ , the parameters for vary-
ing θ in the interval [0.215, 0.99]. θ = 0.215 is the minimum value of porosity
for our geometry (r = 0.5): it is as if the medium is not permeable anymore
(Kyy = 0), like a rough wall. For the case Reτ = 0, more values of θ are re-
ported, since we wanted to better characterise the laminar case. Results are
reported in tables 4.5, 4.8 and 4.9.

This time, we find an increasing trend in θ, while the different curves cor-
responding to a particular value of Reτ show the same previous decreasing
trend in this parameter (see fig. 3.2.7).

Moreover, in figures 3.2.8, 3.2.9, velocity and pressure fields are shown in the
xy plane for the shear-along-x problem (i.e. ũi1). One can see the effect of
changing θ (first picture) and Reτ (second picture).

Furthermore, figure 3.2.10 shows Kyy in the fully periodic unit cell. Again,
one can see separately the effect of changing θ and Reτ . In particular, we see
that changing only θ one keeps the same trend, while changing Reτ from 0 to
193, leads to a different profile, in account that we assumed convection along
x-direction.

Coefficients variation with Reτ for several fixed θ We now consider
the ”transpose” values of the previous case, i.e. we keep porosity fixed to
θ = 0.215, 0.5, 0.8, 0.9, 0.99 and, for each of these values, we compute the coef-
ficients letting Reτ varying in [0, 390] (always with ε = 0.2). Numerical values
are reported in tables 4.10, 4.11, 4.12 and 4.13. This analysis does not add
anything else from physical point of view to the previous one, but it is an-
other option to show the data concentrating on the variation on Reτ instead
on θ.

Indeed the same decreasing trend with Reτ for all parameters is confirmed for
each value of θ (see fig. 3.2.11).
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Figure 3.2.6: Graphs of Table 4.7, i.e. of the parameters against Reτ having fixed θ = 0.5 and ε = 0.2,
for inline pattern and spanwise inclusions.
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Figure 3.2.7: Graphs of Tables 4.5, 4.8, 4.9, i.e. of the parameters against θ for different Reτ series
(inline configuration and spanwise inclusions).
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Figure 3.2.8: Velocity and pressure fields in the xy plain for θ = 0.50 (above), θ = 0.80 (below) and
Reτ = 193 for the problem of shear along x, i.e. ũi1, in the spanwise configuration.
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Figure 3.2.9: Velocity and pressure fields in the xy plain for Reτ = 0 (above), Reτ = 193 (below) and
θ = 0.50 for the problem of shear along x, i.e. ũi1, in the spanwise configuration.
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Figure 3.2.10: Kyy in the fully periodic unit cell for θ = 0.50 (top), θ = 0.80 (bottom) and for Reτ = 0
(sx), Reτ = 193 (dx), in the spanwise configuration.
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3.2.2 Streamwise Cylinders

Figure 3.2.12: System geometry for streamwise-aligned cylinders. View in the y − z plain.

We now change the (microscopic) geometry by changing only the direction of
the axes of the cylinders (see fig. 3.2.12), from spanwise (aligned along z) to
streamwise (aligned along x).

We then calculate the parameters for θ = 0.5 and different Reτ in the interval
[0, 264] (with ε = 0.2). The non zero parameters arise from the same problems
of spanwise cylinders, and, in principle, the calculation can be carried out in
the same manner. As before, Kitfxy and Kitfzy have been calculated directly from
the O(1) simulations. Moreover, Kyy has been always calculated in the elon-
gated domain. Indeed, we found further simplifications. Numerical values are
reported in table 4.14.

By first, we observe that there is no dependence of the parameters on Reτ ,
recovering the Stokes’ results for every Reτ (see also fig. 3.2.13). This is be-
cause we supposed to have convection only along x and, since, in this case,
from homogeneity, ∂·

∂x = 0, the Oseen term −εReτ∂xui is always zero.

Secondly, we observe that, approximately, the values of the parameters in this
case are simply the ones of the corresponding Stokes’ simulations with span-
wise cylinders but switched, i.e. λx|stream, ∀εReτ ≈ λz|span, Reτ=0, λz|stream, ∀εReτ ≈
λx|span, Reτ=0, Kitfxy

∣∣
stream, ∀εReτ

≈ Kitfzy
∣∣
span, Reτ=0

and Kitfzy
∣∣
stream, ∀εReτ

≈ Kitfxy
∣∣
span, Reτ=0

.

Whereas for medium permeability, one finds Kyy|stream, ∀εReτ ≈ Kyy|span, Reτ=0.
Anyhow, since these results are approximated, we preferred to simulate every-
thing from start.
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Figure 3.2.13: Graphs of Table 4.14, i.e. of the parameters against Reτ for θ = 0.5 (inline configuration
and spanwise inclusions). This graph tells us that, in this streamwise configuration, the parameters are εReτ
independent. Furthermore, streamwise parameters are directly available from the Stokes’ spanwise ones by
performing the following operations: fx|stream, ∀εReτ ≈ fz|span, Reτ=0 (and viceversa for the z component),

where fi = λi,Kitfiy (for i = x, z), and Kyy|stream, ∀εReτ ≈ Kyy|span, Reτ=0.

In the end, the coefficients for the case of streamwise-aligned cylinders for
every Reτ (always in this Oseen approximation) are directly available from
the Stokes’ ones with spanwise-aligned cylinders, with the simply above men-
tioned replacements.

Furthermore, also this time, in figure 3.2.14, velocity and pressure fields are
shown in the yz plain for the shear-along-x problem (i.e. ũi1), just for one
case (θ = 0.5, Reτ = 0).

Moreover, figure 3.2.15 shows Kyy in the elongated domain for one simple
case. With the above consideration, it’s clear why this picture is similar to
the one of the corresponding spanwise case, changing only the axes orienta-
tion.



76

Figure 3.2.14: Velocity and pressure fields in the yz plain for θ = 0.50 and Reτ = 0 for the problem of
shear along x, i.e. ũi1, in the streamwise configuration.

Figure 3.2.15: Kyy in the elongated domain for θ = 0.50, Reτ = 0 in the spanwise configuration.
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3.2.3 Boundary condition

Based on previous results, the macroscopic boundary condition, enforced at
Y = 0+, assumes the following form

U |Y=0+ = ελxS12|Y=0+ + ε2Kitfxy
∂S22

∂X

∣∣∣∣
Y=0+

+O
(
ε3
)

(3.2.21)

V |Y=0+ = − ε2Kitfxy
∂S12

∂X

∣∣∣∣
Y=0+

− ε2Kitfzy
∂S32

∂Z

∣∣∣∣
Y=0+

+ ε2Kyy
∂S22

∂Y

∣∣∣∣
Y=0+

+O
(
ε3
)

(3.2.22)

W |Y=0+ = ελzS32|Y=0+ + ε2Kitfzy
∂S22

∂Z

∣∣∣∣
Y=0+

+O
(
ε3
)

(3.2.23)

where Sj2 are the following component of the traction vector at Y = 0+

S12 =
∂U

∂Y
+
∂V

∂X

∣∣∣∣
Y=0+

, S22 = −ReP + 2
∂V

∂Y

∣∣∣∣
Y=0+

, S32 =
∂W

∂Y
+
∂V

∂Z

∣∣∣∣
Y=0+

(3.2.24)
and where the following effective coefficients have been defined:

λx,z = ũ11, 33|y∞=0 , Kyy = u‡222

∣∣∣
y∞=0

Kitfxy, zy = u‡121, 323

∣∣∣
y∞=0

= − u‡211, 233

∣∣∣
y∞=0

.

(3.2.25)
We can write these conditions in dimensional form:

û|0+ ≈ λ̂x

(
∂û

∂ŷ
+
∂v̂

∂x̂

)∣∣∣∣
0+

+
K̂itfxy
µ

∂

∂x̂

(
−p̂+ 2µ

∂v̂

∂ŷ

)∣∣∣∣∣
0+

(3.2.26)

v̂|0+ ≈
K̂yy
µ

∂

∂ŷ

(
−p̂+ 2µ

∂v̂

∂ŷ

)∣∣∣∣∣
0+

−K̂itfxy
∂

∂x̂

(
∂û

∂ŷ
+
∂v̂

∂x̂

)∣∣∣∣
0+

−K̂itfzy
∂

∂ẑ

(
∂ŵ

∂ŷ
+
∂v̂

∂ẑ

)∣∣∣∣
0+

(3.2.27)

ŵ|0+ ≈ λ̂z

(
∂ŵ

∂ŷ
+
∂v̂

∂ẑ

)∣∣∣∣
0+

+
K̂itfzy
µ

∂

∂ẑ

(
−p̂+ 2µ

∂v̂

∂ŷ

)∣∣∣∣∣
0+

(3.2.28)

where λ̂x, z = λx, z l, K̂itfxy, zy = Kitfxy, zy l2 and K̂yy = Kyy l2. Alternatively, writing
the dimensional coefficients in terms of the macroscopic length L (for example

a channel-half height), which is more useful for our purpose, we have λ̂x, z =
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(ελx, z)L, K̂itfxy, zy = (ε2Kitfxy, zy)L2 and K̂yy = (ε2Kyy)L2. Then, if we choose
L = 1m, we have

λ̂x, z = (ελx, z)m

K̂itfxy, zy = (ε2Kitfxy, zy)m2

K̂yy = (ε2Kyy)m2

(3.2.29)

which will be a useful result for our next development.

With the above conditions, there is no direct coupling between the Navier-
Stokes and the Darcy regions and the two problems can be solved separately:
once the outer flow problem is solved for, the pore pressure at leading order
within the isotropic porous medium is a harmonic function which satisfies
the Laplace equations, while at the dividing line one must take into account
a Dirichlet condition, infra mentioned in the section devoted to Saffman’s
conditions.

Another way to express the above conditions is writing them in Saffman’s
form, i.e. in term of the pore pressure P−0 . In dimensionless form, one has

U |Y=0+ = ελxS12|Y=0+ − ε2Kitfxy
∂P−0
∂X

∣∣∣∣
Y=0−

+O
(
ε3
)

(3.2.30)

V |Y=0+ = − ε2Kitfxy
∂S12

∂X

∣∣∣∣
Y=0+

− ε2Kitfzy
∂S32

∂Z

∣∣∣∣
Y=0+

− ε2Kyy
∂P−0
∂Y

∣∣∣∣
Y=0−

+O
(
ε3
)

(3.2.31)

W |Y=0+ = ελzS32|Y=0+ − ε2Kitfzy
∂P−0
∂Z

∣∣∣∣
Y=0−

+O
(
ε3
)

(3.2.32)

In this way, the motion in the free-fluid region is coupled to that in the porous
medium: the two problems must be solved together, coupling to the Laplace
equation for the pore pressure in the porous medium, i.e.

∂P−0
∂Xi

ni = 0, (3.2.33)

using the following equation, which expresses the balance of normal forces at
the interface,

P−0
∣∣
Y=0−

= P |Y=0+ −
2

Re

∂V

∂Y

∣∣∣∣
Y=0+

(3.2.34)

The same Saffman-like equations in dimensional form look like

û|0+ ≈ λ̂x

(
∂û

∂ŷ
+
∂v̂

∂x̂

)∣∣∣∣
0+

−
K̂itfxy
µ

∂p̂

∂x̂

∣∣∣∣∣
0−

(3.2.35)
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v̂|0+ ≈ −
K̂yy
µ

∂p̂

∂ŷ

∣∣∣∣∣
0−

−K̂itfxy
∂

∂x̂

(
∂û

∂ŷ
+
∂v̂

∂x̂

)∣∣∣∣
0+

−K̂itfzy
∂

∂ẑ

(
∂ŵ

∂ŷ
+
∂v̂

∂ẑ

)∣∣∣∣
0+

(3.2.36)

ŵ|0+ ≈ λ̂z

(
∂ŵ

∂ŷ
+
∂v̂

∂ẑ

)∣∣∣∣
0+

−
K̂itfzy
µ

∂p̂

∂ẑ

∣∣∣∣∣
0−

(3.2.37)

together with the Dirichlet condition for the pore pressure at the interface

p̂|0− ≈ p̂|0+ − 2µ
∂v̂

∂ŷ

∣∣∣∣
0+

(3.2.38)



3.3 The Stokes Limit

Mathematical Formulation If ε2Re � 1, the effective tensorial quantities
directly arise from the solution of Stokes’ problems. Indeed, we have
O(1): 

−∂ip̃j + ∂2
l ũij = 0

∂iũij = 0
(−p̃jδi2 + ∂2ũij + ∂iũ2j)|y∞ = δij

(3.3.1)

which are three microscopic problems for j = 1, 2, 3.

O(ε): 
ũijδk1 = −∂ip‡jk − p̃jδki + ∂2

l u
‡
ijk + 2∂kũij

∂iu
‡
ijk = −ũkj(
−p‡jkδi2 + ∂2u

‡
ijk + ∂iu

‡
2jk

)
|y∞

= − (ũijδk2 + ũ2jδik)|y∞

(3.3.2)

which are nine problems to be solved in the microscopic cell, for j, k = 1, 2, 3.

Once again, we explicitly write all the problems we need to solve, before con-
sidering any particular geometry.

At O(1), one has the following three problems:
j = 1: 

−∂ip̃1 + ∂2
l ũi1 = 0

∂iũi1 = 0
F S = (1, 0, 0)

(3.3.3)

j = 2: 
−∂ip̃2 + ∂2

l ũi2 = 0
∂iũi2 = 0
F S = (0, 1, 0)

(3.3.4)

j = 3: 
−∂ip̃3 + ∂2

l ũi3 = 0
∂iũi3 = 0
F S = (0, 0, 1)

(3.3.5)

where F S is the (dimensionless) boundary stress imposed at y∞.
For j = 2, one finds the simple analytical solution

ũi2 = 0, p̃2 = −1. (3.3.6)

These results will directly enter in the O(ε) problems.

At O(ε), one has the following nine problems:

80
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j = 1, k = 1: 
−∂ip‡11 + ∂2

l u
‡
i11 − ũi1 − p̃1δi1 + 2∂1ũi1 = 0

∂iu
‡
i11 = −ũ11

F S =
(
− ũ21|y∞ , 0, 0

) (3.3.7)

j = 1, k = 2: 
−∂ip‡12 + ∂2

l u
‡
i12 − p̃1δi2 + 2∂2ũi1 = 0

∂iu
‡
i12 = −ũ21

F S =
(
− ũ11|y∞ ,−2 ũ21|y∞ ,− ũ31|y∞

) (3.3.8)

j = 1, k = 3: 
−∂ip‡13 + ∂2

l u
‡
i13 − p̃1δi3 + 2∂3ũi1 = 0

∂iu
‡
i13 = −ũ31

F S =
(

0, 0,− ũ21|y∞
) (3.3.9)

j = 2, k = 1: 
−∂ip‡21 + ∂2

l u
‡
i21 + δi1 = 0

∂iu
‡
i21 = 0

F S = (0, 0, 0)

(3.3.10)

j = 2, k = 2: 
−∂ip‡22 + ∂2

l u
‡
i22 + δi2 = 0

∂iu
‡
i22 = 0

F S = (0, 0, 0)

(3.3.11)

j = 2, k = 3: 
−∂ip‡23 + ∂2

l u
‡
i23 + δi3 = 0

∂iu
‡
i23 = 0

F S = (0, 0, 0)

(3.3.12)

j = 3, k = 1: 
−∂ip‡31 + ∂2

l u
‡
i31 − ũi3 − p̃3δi1 + 2∂1ũi3 = 0

∂iu
‡
i31 = −ũ13

F S =
(
− ũ23|y∞ , 0, 0

) (3.3.13)

j = 3, k = 2: 
−∂ip‡32 + ∂2

l u
‡
i32 − p̃3δi2 + 2∂2ũi3 = 0

∂iu
‡
i32 = −ũ23

F S =
(
− ũ13|y∞ ,−2 ũ23|y∞ ,− ũ33|y∞

) (3.3.14)
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j = 3, k = 3: 
−∂ip‡33 + ∂2

l u
‡
i33 − p̃3δi3 + 2∂3ũi3 = 0

∂iu
‡
i33 = −ũ33

F S =
(

0, 0,− ũ23|y∞
) (3.3.15)

We anticipate that, also this time, just as in the Oseen case, with our usual
geometry, due to the solution of the O(1) problems, the O(ε) problems sim-
plify a little bit in the top boundary stress condition, as follows
j = 1, k = 1: 

−∂ip‡11 + ∂2
l u
‡
i11 − ũi1 − p̃1δi1 + 2∂1ũi1 = 0

∂iu
‡
i11 = −ũ11

F S = (0, 0, 0)

(3.3.16)

j = 1, k = 2: 
−∂ip‡12 + ∂2

l u
‡
i12 − p̃1δi2 + 2∂2ũi1 = 0

∂iu
‡
i12 = −ũ21

F S =
(
− ũ11|y∞ , 0, 0

) (3.3.17)

j = 1, k = 3: 
−∂ip‡13 + ∂2

l u
‡
i13 − p̃1δi3 + 2∂3ũi1 = 0

∂iu
‡
i13 = −ũ31

F S = (0, 0, 0)

(3.3.18)

j = 2, k = 1: 
−∂ip‡21 + ∂2

l u
‡
i21 + δi1 = 0

∂iu
‡
i21 = 0

F S = (0, 0, 0)

(3.3.19)

j = 2, k = 2: 
−∂ip‡22 + ∂2

l u
‡
i22 + δi2 = 0

∂iu
‡
i22 = 0

F S = (0, 0, 0)

(3.3.20)

j = 2, k = 3: 
−∂ip‡23 + ∂2

l u
‡
i23 + δi3 = 0

∂iu
‡
i23 = 0

F S = (0, 0, 0)

(3.3.21)

j = 3, k = 1: 
−∂ip‡31 + ∂2

l u
‡
i31 − ũi3 − p̃3δi1 + 2∂1ũi3 = 0

∂iu
‡
i31 = −ũ13

F S = (0, 0, 0)

(3.3.22)
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j = 3, k = 2: 
−∂ip‡32 + ∂2

l u
‡
i32 − p̃3δi2 + 2∂2ũi3 = 0

∂iu
‡
i32 = −ũ23

F S =
(

0, 0,− ũ33|y∞
) (3.3.23)

j = 3, k = 3: 
−∂ip‡33 + ∂2

l u
‡
i33 − p̃3δi3 + 2∂3ũi3 = 0

∂iu
‡
i33 = −ũ33

F S = (0, 0, 0)

(3.3.24)

We remember that all these problems are solved together with periodicity
along x and z and with no-slip condition at the solid inclusions.



3.4 Numerical Solution for the Microscopic
Stokes Case

Figure 3.4.1: System geometry for the shear problem. (sx) inline arrangement (dx) staggered arrange-
ment.

Figure 3.4.2: System geometry for the unit force problem. (sx) inline arrangement (dx) staggered ar-
rangement.

Then, we numerically solved the Stokes’ microscopic problems for both in-line
and staggered cylindrical inclusions, arranged in spanwise direction, for dif-
ferent values of porosity (fig. 3.4.1, 3.4.2). The system geometry is the same
as before, a part that now we also consider a staggered arrangement of cylin-
drical inclusions. For this latter configuration, since we have a total of two
cylinders in the unit cell, the radius of the cylinders is divided by a factor

√
2

to keep the same value of porosity, i.e. r =
√

1−θ
2π .

All the non zero coefficients at y∞ are the same as before, i.e.

λx,z = ũ11, 33|y∞=0 , Kyy = u‡222

∣∣∣
y∞=0

Kitfxy, zy = u‡121, 323

∣∣∣
y∞=0

= − u‡211, 233

∣∣∣
y∞=0

.

(3.4.1)
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with the same trends in y∞.

Furthermore, the same simplifying considerations of the Oseen case, can be
made here a fortiori, i.e.

•
1

A

∫
S

u‡ijk

∣∣∣
y∞

dS = u‡ijk

∣∣∣
y∞
,

1

A

∫
S

ũij|y∞ dS = ũij|y∞ (3.4.2)

at the top of the domain.

•
Kitfxy =

∫
Vf Por

ũ11 dV

Kitfzy =
∫
Vf Por

ũ33 dV
(3.4.3)

already in the O(1) simulations.

•
Kyy =

∫
Vf
u‡222 dV (3.4.4)

in the fully periodic unit cell.

• the other diagonal components of the medium permeability tensor can
be computed in the following way:

Kxx =
∫
Vf u

‡
121 dV

Kzz =
∫
Vf u

‡
323 dV

(3.4.5)

always in the fully-periodic unit cell. We remark that, in this case, Kxx
and Kzz do not correspond to any value of u‡ijk

∣∣∣
y∞=0

. Hence, they do

not enter the interface condition.

This time, we should recover the relationship Kxx ≈ Kyy, at least for the in-
line configuration. We will see that for the staggered configuration, this re-
lationship is only partially recovered, since in some cases (depending on geo-
metrical parameters) the symmetry from which the above relationship arises
is broken, because of the translation of the inclusions (made so that they are
tangent to the interface). We remember that we are translating only the in-
clusions, not also the unit square containing them. Thus, we are left with a
different periodic unit cell than the one we would have without translating
the cylinders.

In figures 3.4.3, 3.4.4, velocity and pressure fields are shown in the xy plane
for the shear-along-x problem (i.e. ũi1) for both inline and staggered arrange-
ment, each for two different values of porosity, namely 0.50 and 0.80.
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Figure 3.4.3: Velocity and pressure fields in the xy plain for θ = 0.50 (above) and θ = 0.80 (below) for
inline solid grains for the problem of shear along x, i.e. ũi1.

Furthermore, Kii for i = x, y, z are shown in figure 3.4.5, for both inline and
staggered arrangement and for θ = 0.50 and θ = 0.80. From this figure and
also from tables 3.5, we notice that, for the inline case, we have Kxx ≈ Kyy,
which comes from the symmetry of unit cell. As a consequence of this sym-
metry, we also notice that (always in the inline case) Kxx and Kyy only differ
in a π/2 rotation in figure 3.4.5. Instead, in the staggered configuration this
symmetry is broken when the radius of the cylinders is less than a quarter of
the cube length side, i.e. for r < 0.25. Thus, only for θ = 0.50 we recover the
relationship Kxx ≈ Kyy, in the other cases the two permeabilities are different,
as one can see by 3.6 and from fig. 3.4.5. This fact comes out from translat-
ing the cubes, keeping the cylinders fixed (or viceversa, which is equivalent)
so that the first top cylinder is tangent to the interface beetween the free-fluid
region and the porous medium. If we hadn’t performed this translation, the
symmetry would have been kept and the two permeabilities would have been
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Figure 3.4.4: Velocity and pressure fields in the xy plain for θ = 0.50 (above) and θ = 0.80 (below) for
staggered solid grains or the problem of shear along x, i.e. ũi1.

still numerically equal. We did this translation so that we can compare our
results with full DNS by Chu et al. 2021.
Tables 4.5, 4.6 report numerical values of the parameters as porosity varies.
We have considered θ ∈ [0.215, 0.99], adding also two extra point (θ = 0.85, 0.95)
when necessary. We should mention that high θ-values, in particular the value
θ = 0.99, are not representative of a realistic porous medium, except perhaps
for the case of sparse canopies; nonetheless, we consider them to validate the
correct trend, since we expect the parameters to have an abrupt, but continu-
ous, jump at high θ.

As far as errors are concerned, we estimated an error for the porosity, com-
ing from the fact that in Comsol, we truncated the corresponding value of the
radius at a certain digit (two significant digits). Thus, if rtrunc is the trun-
cated radius, we re-calculated porosity as θtrue = 1 − πr2

trunc (or θtrue =
1− 2πr2

trunc for the staggered pattern), and defined the error over the porosity
θ as σθ = |θ − θtrue| (see tables 3.3, 3.4). For θ = 0.215, the error does not
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θ θtrue σθ r
0.2150 0.2146 0.0004 0.50
0.5000 0.4973 0.0027 0.40
0.600 0.593 0.007 0.36

0.7000 0.6981 0.0019 0.31
0.800 0.804 0.004 0.25

0.8500 0.8479 0.0021 0.22
0.9000 0.8982 0.0018 0.18
0.950 0.947 0.003 0.13

0.99000 0.99015 0.00015 0.056

(3.4.6)

Table 3.3: This table shows the calculation of the error on θ for the inline configuration.

θ θtrue σθ r
0.2150 0.2146 0.0004 0.35
0.500 0.507 0.007 0.28
0.600 0.607 0.007 0.25
0.700 0.696 0.004 0.22
0.800 0.796 0.004 0.18
0.850 0.859 0.009 0.15
0.900 0.894 0.006 0.13

0.95000 0.95023 0.00023 0.089
0.99000 0.98995 0.00005 0.040

(3.4.7)

Table 3.4: This table shows the calculation of the error on θ for the staggered configuration.

θ Kxx Kyy
0.5000 1.828E − 03 1.827E − 03
0.800 1.991E − 02 1.990E − 02

(3.4.8)

Table 3.5: Comparison between Kxx and Kyy for restricted values of porosity, for the inline case.

θ Kxx Kyy
0.500 1.008E− 03 1.008E− 03
0.800 1.153E− 02 7.358E− 03
0.850 1.975E− 02 1.050E− 02

(3.4.9)

Table 3.6: Comparison between Kxx and Kyy for restricted values of porosity, for the staggered case.
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Figure 3.4.5: Kii for i = x, y, z (sx to dx) in the fully periodic unit cell both for inline (top) and stag-
gered (bottom) pattern and for two different values of porosity, namely θ = 0.50 (first and third row) and
θ = 0.80 (second and fourth row).

arise from the approximation of r = 0.5, which indeed is exact, but from
the truncation of the corresponding porosity value itself (which should be
θ = 1 − π

4 ≈ 0.2146 . . . ). The relative error is small, O(1 %), but not neg-
ligible, considering that, in principle, we are dealing with exact calculations
and not with experimental measurements.

Finally, in figure 3.4.6 graphs of the parameters against porosity are shown,
both for inline and staggered configurations. The coefficients have a mono-
tonic behaviour with θ. One should also notice that K itf

xy (inline pattern)
varies very slowly for θ ∈ [0.215, 0.8] and then presents a sharp increase for
θ ∈ [0.8, 0.99]. This trend is also present in the other parameters, but with a
less abrupt change, since for θ ∈ [0.215, 0.8] they vary more than K itf

xy does
in this range. We mention the for θ = 0.215, which represents the minimum
value of porosity (r = 0.5 for inline case), we have Kyy ≈ 0, consistently
with the fact that, with this geometrical configuration, it is as if the surface
is impermeable. For the staggered configuration, the medium permeabilities
assume lower values with respect to the inline pattern at the same value of
porosity. This is because, in staggered configuration, there is a non negligible
portion of domain in which the fluid cannot penetrate. These results are in
good agreement with the ones presented by Naqvi and Bottaro 2021.
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Figure 3.4.6: Fit of Tables 4.5, 4.6, i.e. of the Stokes’ parameters (Reτ = 0), for both inline and stag-
gered pattern (spanwise inclusions). We used the fit function ffit : y = Axm exp(β xn) + offset, where y and x
denote, respectively, dependent and independent variable and A, m, n and ”offset” are free coefficients.

In fig. 3.4.6 data have also been fitted with the aid of ROOT libraries, using
the following function:

ffit : y = Axm exp(β xn) + offset (3.4.10)

where y and x denotes, respectively, dependent and independent variable and
A, m, n and ”offset” are free coefficients.

Our fitting function is in good (and sometimes excellent) agreement with nu-
merical results and faithfully reproduces the numerical trend, as one can see,
by first, from direct inspection and, secondly, from the good χ2-probability,
almost well above the 5 % threshold. For the staggered configurations, some-
times there is some point slightly to the limits of compatibility, suggesting
that one could thicken the graphs with more numerical values. Anyhow, the
trend is perfectly reproduced in both cases and we are fully satisfied.
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3.4.1 Boundary condition

The macroscopic boundary condition to implement at Y = 0+ in the Stokes’
limit is the same than in the Oseen approximation, i.e.

U |Y=0+ = ελxS12|Y=0+ + ε2Kitfxy
∂S22

∂X

∣∣∣∣
Y=0+

+O
(
ε3
)

(3.4.11)

V |Y=0+ = − ε2Kitfxy
∂S12

∂X

∣∣∣∣
Y=0+

− ε2Kitfzy
∂S32

∂Z

∣∣∣∣
Y=0+

+ ε2Kyy
∂S22

∂Y

∣∣∣∣
Y=0+

+O
(
ε3
)

(3.4.12)

W |Y=0+ = ελzS32|Y=0+ + ε2Kitfzy
∂S22

∂Z

∣∣∣∣
Y=0+

+O
(
ε3
)

(3.4.13)

where Sj2 are the following component of the traction vector at Y = 0+

S12 =
∂U

∂Y
+
∂V

∂X

∣∣∣∣
Y=0+

, S22 = −ReP + 2
∂V

∂Y

∣∣∣∣
Y=0+

, S32 =
∂W

∂Y
+
∂V

∂Z

∣∣∣∣
Y=0+

(3.4.14)
and where the following effective coefficients have been defined:

λx,z = ũ11, 33|y∞=0 , Kyy = u‡222

∣∣∣
y∞=0

Kitfxy, zy = u‡121, 323

∣∣∣
y∞=0

= − u‡211, 233

∣∣∣
y∞=0

.

(3.4.15)
We can write these conditions in dimensional form:

û|0+ ≈ λ̂x

(
∂û

∂ŷ
+
∂v̂

∂x̂

)∣∣∣∣
0+

+
K̂itfxy
µ

∂

∂x̂

(
−p̂+ 2µ

∂v̂

∂ŷ

)∣∣∣∣∣
0+

(3.4.16)

v̂|0+ ≈
K̂yy
µ

∂

∂ŷ

(
−p̂+ 2µ

∂v̂

∂ŷ

)∣∣∣∣∣
0+

−K̂itfxy
∂

∂x̂

(
∂û

∂ŷ
+
∂v̂

∂x̂

)∣∣∣∣
0+

−K̂itfzy
∂

∂ẑ

(
∂ŵ

∂ŷ
+
∂v̂

∂ẑ

)∣∣∣∣
0+

(3.4.17)

ŵ|0+ ≈ λ̂z

(
∂ŵ

∂ŷ
+
∂v̂

∂ẑ

)∣∣∣∣
0+

+
K̂itfzy
µ

∂

∂ẑ

(
−p̂+ 2µ

∂v̂

∂ŷ

)∣∣∣∣∣
0+

(3.4.18)

where λ̂x, z = λx, z l, K̂itfxy, zy = Kitfxy, zy l2 and K̂yy = Kyy l2.
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Chapter 4

Macroscopic test:
Fully-developed Turbulent
Channel Flow

This chapter represents the second part of the original project of my the-
sis. We use our effective boundary condition to study the following macro-
scopic problem: a fully-developed turbulent channel flow at a moderate fric-
tion Reynolds number at the low wall. In particular, the upper wall will be
a smooth wall, whereas the inferior wall will be an anisotropic porous rough
wall. We imagine that below the inferior wall a porous medium is present,
but we will concentrate our interest only in the channel flow. In our numer-
ical calculations, carried out as a DNS (always technically done by two PhD
students from the University of Genoa, Essam Abdo and Sahrish Naqvi, whom
we sincerely thank), we will substitute the rough wall with a smooth wall, po-
sitioned, for the sake of convenience, at the same height of the previous rough
one, at which we will apply our special interface slip condition. This proce-
dure allows us to properly study the interaction between a three-dimensional
turbulent boundary layer and a porous medium avoiding expensive fully-
feature resolving DNS, thus saving computational time. Thus, the present
modelisation, directly stemming from homogenisation theory, represents an
alternative and innovative way to study such cases of interests, which indeed
cover most of the interaction between a flow and natural/biological surfaces,
possibly with industrial application, as widely seen in previous chapters.

In order to validate our solution, we will try to compare it with the fully-
featuring resolving DNS made by Chu et al. 2021. However, very recently
we discovered that, in this reference, important geometrical and dynamical
quantities have different numerical values from ours. Thus, only a qualitative
comparison is allowed. We will use both our Stokes and Oseen-like coefficients
DNS, in order to see if there is a good agreement already with Stokes’ co-
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efficients and if there is an improvement with Oseen-like coefficients. These
solutions will be carried out with spanwise-aligned inclusions, with θ = 0.5,
Reτ = 193 and ε = 0.2. As previously mentioned, we have been careful of
taking the inclusions tangent to the interface, at the level of microscopic sim-
ulations, as reported in the above mentioned reference paper.

Then we consider longitudinal inclusions to see if there is drag reduction with
respect to the case of a smooth wall. We remember that, in this case, Oseen’s
coefficients reduce to Stokes’ coefficients, which have been widely validated in
the past. Indeed, as a reference, we will preliminarily carry out a simulation
where also the inferior-channel wall is a smooth wall. Then, by changing the
value of ε, we should be able to optimise this drag reduction, reconstructing
the drag curve. In these simulations, we will take Reτ = 193, θ = 0.5 and
ε ∈ [0, 0.2]. We remember that, with the previously computed coefficients,
one should be able to study a variety of cases, changing θ and Reτ , for both
spanwise and streamwise-aligned (cylindrical) inclusions.

4.1 Spanwise inclusions: DNS validation

A DNS (Direct Numerical Simulation) study is a simulation at which the
exact unsteady Navier-Stokes equations are solved throughout the domain,
in order to resolve the behaviour of the different scales of turbulence eddies
without the need of any sort of turbulence modelling.
These simulations have been carried out with the aid of the software STAR-
CCM+ Multiphysics (entirely by two PhD students from the University of
Genoa, Essam Abdo and Sahrish Naqvi, as previously mentioned), whose
available license at the University of Genoa lacks most of the DNS utilities,
such as turbulence statistics and monitors.

In the following discussion, the velocity components in the streamwise x-,
wall normal y- and spanwise z-directions are denoted as u, v and w, respec-
tively.

We consider a channel where the upper wall is a smooth wall, at which we
apply a no-slip condition, while the inferior wall is originally a rough per-
meable wall with spanwise-aligned cylindrical porous elements of porosity
θ = 0.5 and of small parameter ε = 0.2 (ratio between the porous length
scale - say the interpore distance - and the outer, macroscopic one - say the
half-channel height H), where a friction Reynolds number of Reτ = 193 can
be defined as below. We substitute the permeable wall with a smooth wall
positioned at the same height, at which we apply our effective boundary con-
dition 3.2.26, 3.2.27, 3.2.28. We will use both the corresponding Stokes’ and
Oseen’s coefficients, previously calculated (reported in tables 4.1, 4.2 for clar-
ity), thus performing two different DNS. We will compare these results with



95

εReτ Reτ λx λz Kyy Kitfxy Kitfzy
0 0 4.513E− 02 6.883E− 02 1.828E− 03 2.220E− 03 5.561E− 03

39 193 3.514E− 02 4.768E− 02 9.431E− 04 1.296E− 03 2.707E− 03
(4.1.1)

Table 4.1: This table shows the numerical values of the (dimensionless) parameters of the effective
boundary conditions applied at the lower wall in the DNS. The case is of spanwise-directed cylindrical in-
clusions, with θ = 0.5 and ε = 0.2. The first row represents Stokes’ coefficients, while the second one is
Oseen’s coefficient at the indicated Reτ .

εReτ Reτ λ̂x (m) λ̂z (m) K̂yy (m2) K̂itfxy (m2) K̂itfzy (m2)

0 0 9.027E− 03 1.377E− 02 7.312E− 05 8.879E− 05 2.224E− 04
39 193 7.028E− 03 9.537E− 03 3.773E− 05 5.184E− 05 1.083E− 04

(4.1.2)

Table 4.2: This table shows the numerical values of the (dimensional, via 3.2.29) parameters of the effec-
tive boundary conditions applied at the lower wall in the DNS. The case is of spanwise-directed cylindrical
inclusions, with θ = 0.5 and ε = 0.2. The first row represents Stokes’ coefficients, while the second one is
Oseen’s coefficient at the indicated Reτ .

the fully-feature resolving DNS made by Chu et al. 2021, at least qualita-
tively.

Figure 4.1.1: DNS computational domain, with explanations of length sides, directions, periodicity and
boundary conditions.

Geometry and Setup We consider a channel of sides (Lx, Ly, Lz) = (2π, 2, π),
where we have normalised lengths with the channel half height H = 1m (see
fig. 4.1.1). We have selected this domain size in order to include the largest
turbulence eddies in the proper way, as similarly presented by Kozuka, Seki,
and Kawamura 2009. Due to the homogeneity of the fully-developed channel
flow in the stream-wise and span-wise directions, it is reasonable to assume
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Figure 4.1.2: DNS mesh characteristics.

periodicity in these two directions. Furthermore, the flow is driven by im-
posing the constant source term f = (1, 0, 0)N/m3, which substitutes the
(absent) pressure gradient. These choices, together with the equilibrium be-
tween the shear forces on the walls and the driving source term on the whole
domain, lead to a wall shear stress on each wall of 1Pa: τw = 1Pa. More-
over, we remember that we want to impose a friction Reynolds number at the

lower wall of 193, defined as Reτ = uτH
ν , where uτ =

√
τw
ρ is the friction veloc-

ity at the lower wall. In order to reach this target, we choose ρ = 1 kg/m3, so
that uτ = 1m/s, which leads to ν = uτH

Reτ
= Re−1

τ m2/s ≈ 5.18 · 10−3m2/s.
As far as normalisation is concerned, the normal distance y and the grid spac-
ings (∆x,∆y,∆z) are normalised with the length scale ν

uτ
, so that the dimen-

sionless parameters y+ and (∆+
x ,∆

+
y ,∆

+
z ) are defined. The velocity compo-

nents (u, v, w) as well as the RMS of the velocity fluctuations (urms, vrms, wrms)
are normalised with the shear velocity uτ . Sometimes, it is more suitable to
normalise some parameters according to global coordinates: as seen, the do-
main dimensions are normalised with H and the mean streamwise velocity
component will be occasionally normalised with the channel bulk average ve-
locity Ubulk. As far as the mesh is concerned, the number of cells is given by
(Nx, Ny, Nz) = (128, 150, 96); graphical visualisation can be found in figure
4.1.2.

Turbulent statistics and main monitored parameters All statistics
were formulated using user-defined functions. This included the following cal-
culations

• mean velocity by time-averaging

• velocity fluctuations to get the RMS values

• mean values of the Reynolds stresses
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Figure 4.1.3: Behaviour of Reτ vs. time for the DNS study.

The main monitored parameter to assess the convergence of statistics was
Reτ on the lower wall (see fig. 4.1.3). We based the calculation on the mean
value of the wall shear stress averaged over the lower surface. The calculation
of the mean value was updated after some time in order to avoid the effect of
the initial transient.

Mean Velocity profile The DNS results of the streamwise velocity at all
grid points were averaged through time to get mean values. Moreover, the
values of the mean streamwise velocity at each normal distance were also spa-
tially averaged through a horizontal xy plane. This is equivalent to the av-
eraging of the velocity profile from all available vertical line in the computa-
tional domain. The mean velocity profile is presented for the Stokes case (lon-
gitudinal and spanwise cylinders) in figure 4.1.4 in terms of global coordinate
in which the normal distance y is normalised with H, while the mean stream-
wise velocity is normalised with U avg. As a reference, the smooth channel case
and results from Chu et al. 2021 are reported as well. In fig. 4.1.5, the mean
velocity for the Oseen case is present, in terms of global coordinates in which
the normal distance ycenter is measured from the center of the channel and
normalised with H (ycenter/H = 1 for the upper wall, ycenter/H = −1 for the
lower wall), while the mean velocity is normalised with Ubulk = U avg. Note
that, in the smooth case, mean velocity equals to zero at both walls, while in
the porous case it is different from zero at the lower wall, consistently with
our boundary conditions. Moreover, in the smooth case, the velocity profile is



98

symmetric with respect to the center of the channel, while in the porous case
it is distorted, with a higher mean velocity in the upper region.

Figure 4.1.4: Mean velocity profile for longitudinal and spanwise inclusions (DNS performed with
Stokes’ coefficients), compared with the smooth walls one. As a reference, also the case for ε = 0.4 by Chu
et al. 2021 is reported.

Figure 4.1.5: Mean velocity profile for spanwise inclusions (DNS performed with Oseen’s coefficients).
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Velocity profile against wall coordinates It is better to plot the mean
velocity against the wall coordinates, i.e. the behaviour of u+ vs y+ (fig. 4.1.6,
4.1.7). In addition, this description provides a better understanding of the
simulation accuracy based on the classification of flow regions. We see that
the smooth wall case correctly reproduces the expected behaviour, based on
the general Spalding’s law. For spanwise cylinders, we find drag-increasing,
while with streamwise ones we are able to find also drag-reduction (as we will
see). We are going to compare our (spanwise) results with fully-feature DNS
by Chu et al. 2021 (fig. 4.1.8), being their case for spanwise cylinders with
θ = 0.5, ε = 0.4, Reτ = 279 (with our definition) and Re = 3680 (based
on H and on Ubulk). However, we have ε = 0.2 and Reτ = 193. This differ-
ence makes a quantitative comparison not possible, leaving us with only the
possibility of a qualitative one. For spanwise cylinders, results from Stokes’
coefficients are quite similar, while Oseen’s coefficients slightly improve results
in the viscous sub-layer but degrade them in the log-law region. This differ-
ence may be due to the difference in Reτ , since, while for the Stokes’ case
its value does not matter much, as long as it is above 170 (about), for larger
Reτ the only difference is felt in the extent of the log region, exactly where
we have a discrepancy with Oseen’s coefficients, which themselves depend on
Reτ . Finally, we have to stress out that the difference in ε is the main diffi-
cult to overcame in order to compare our results with this fully-feature DNS.
The point is that ε = 0.4 in our macroscopic case is really too large in order
to get convergent results (there is too much transpiration through the virtual
wall). This is why we tried to reproduce literature results with ε = 0.2, which
is not so small but neither too large. This difference is felt more in the Oseen
case (which in principle should improve Stokes’ results) because Oseen’s co-
efficients themselves depend also on ε, as they depend on εReτ : in our case,
we used εReτ = 0.2 · 193 ≈ 40 = O(10), while in the fully-feature DNS it is
εReτ = 0.4 · 280 ≈ 112 = O(102). We remember that in principle our Oseen
approximation should rely on the fact that ε� 1 and εReτ = O(1). We know
that as a matter of fact we can go beyond the formal limit of the theory, but
the fully-feature DNS would require going two order of magnitude above the
limit, not only one as we did. In the end, this qualitative comparison gives us
the idea that our solutions present a reasonable trend. However, we must sus-
pend the judgment about a possible close quantitative agreement with the ex-
act result, and also about a possible improvement of the Oseen’s coefficients.
At the same time, the fact that the (εReτ ≈ 40)-Oseen’s DNS presents a
less agreement with the (εReτ ≈ 112)-fully-feature DNS with respect to the
(εReτ ≈ 40)-Stoke’s DNS makes us confident that Oseen’s coefficients can
correctly reproduce the true case for which they have been calculated.
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Figure 4.1.6: Velocity profile against wall coordinate, for varying cases compared to the smooth channel
case (DNS performed with Stokes’ coefficients). Results from Chu et al. 2021 are reported as well.

Figure 4.1.7: Velocity profile against wall coordinate, for spanwise inclusions (DNS performed with
Oseen’s coefficients).
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Figure 4.1.8: Results from fully-feature DNS made by Chu et al. 2021 (case A1). (a): Velocity profile
against wall coordinate. (b): Mean velocity profile.
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RMS of the velocity fluctuations We decompose the instantaneous ve-
locity ui into the sum of the mean velocity ūi and a time-fluctuating field u′i,
as

ui = ui + u′i (4.1.3)

Then, we consider its RMS value as a measure of the strength of the fluctua-
tions:

ui, rms =

√
u′ 2i (4.1.4)

without summing on i. Again, these results were collected against y/H from
all available vertical lines and averaged to perform the pattern of the rms
fluctuation vs the wall normal distance. Now we clearly see (fig. 4.1.9) that
the fluctuations in the streamwise velocity is the strongest, then comes the
spanwise one and, finally, the normal velocity fluctuations are the weakest.
Furthermore, the spanwise cylinders enhance turbulent fluctuations (vrms and
wrms) as compared to the smooth wall case, and damper the intensity of the
streaks (urms). It’s reasonable to find that both spanwise and normal veloc-
ity components are fluctuating around zero, because the mean flow is driven
only in the streamwise direction. The strongest fluctuations take place in the
buffer layer, while in the viscous sub-layer they are weak.

Reynolds stresses We now concentrate on the description of the behaviour
of the viscous and the Reynolds stresses, specially the xy component across
the channel. This will give the total shear stress on the permeable wall, τw,
which is related to the total friction:

τw = τ vxy + τRxy (4.1.5)

where τ vxy = µ
(
∂u
∂y + ∂v

∂x

)
is the viscous stress xy component (taking into ac-

count that here v = 0) and τR12 = −ρu′v′ is the Reynolds stress xy component.
Since we find τRxy > 0, it actually increases the total stress at the low wall.

Finally, the stresses are normalised with the scale ρu2
τ . The behavior of the

DNS results of the Reynolds and stresses (modulus a − sign) against y/H is
presented in figure 4.1.10. For spanwise cylinders, the stress at the low wall is
in absolute value quite higher than in the smooth channel case.
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Figure 4.1.9: RMS of the velocity fluctuations (DNS performed with Stokes’ coefficients).
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Figure 4.1.10: Reynolds stress −τRxy (DNS performed with Stokes’ coefficients).



4.2 Streamwise inclusions: Drag reduction

This time, we switch the direction of the cylindrical inclusions of the (infe-
rior) permeable wall from spanwise to streamwise. We remember that, in this
case, Oseen’s coefficients coincide with Stokes’ ones, which have been widely
tested and validated in the past (Naqvi and Bottaro 2021), nor they present a
dependence from Reτ or ε (provided ε is still small and, ideally, εReτ of order
1). For this reason, we are going to use our own homogenised development,
despite the previous ineffective validation.

In this configuration, we hope to find drag-reduction with respect to the smooth
wall case. We are trying our inspiration from the riblets case, as widely illus-
trated in previous chapters. Again, we choose θ = 0.5 and Reτ = 193 at the
inferior wall. However, this time we vary ε ∈ [0, 0.2] (ε = 0, 0.1, 0.2 so far)
in order to reconstruct the drag curve, thus doing several DNSs. Indeed, we
believe that here ε (or εReτ) plays the same role of the (dimensionless) riblets
spacing s+ = suτ

ν in the case of riblets. This is because, if we try to divide s+

by Reτ = uτH
ν , we find s+

Reτ
= s

H . Hence, if we remember the definition of ε as

ε = l
L , where l is a characteristic microscopic length and L a macroscopic one,

by choosing l = s, the inter-pore distance (analog to the riblets spacing), and
L = H the half-channel height (as previously done), we are left with

ε =
s+

Reτ
(4.2.1)

Since s+ is a parameters that controls the drag-curve in the case of riblets, we
hope we can do the same here with ε (or εReτ), which is here proportional to
the analogue of s+.

Considering that from literature we know that there is drag reduction for
approximately s+ ∈ [0, 30] (and that there is drag-increase for higher val-
ues), reaching its optimum for s+ ≈ 20, we expect to find drag-reduction for
ε ∈ [0, 0.2] with optimum drag-reduction for ε ≈ 0.1, being Reτ = 193 fixed.

Obviously, also this time we substitute the inferior rough, permeable wall
with a smooth wall positioned at the same height, at which we apply our ef-
fective boundary condition 3.2.26, 3.2.27, 3.2.28. As far as microscopic coeffi-
cients are concerned, we will use a unique set of (dimensionless) coefficients,
reported in table 4.3. Moreover, dimensional coefficients are reported in table
4.4.

Geometry and Setup The geometry and setup are identical to the ones of
the spanwise simulations, apart that now the flow is driven not by an external
forcing but by an imposed constant pressure gradient, which acts as a source
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λx λz Kyy Kitfxy Kitfzy
6.901E− 02 4.521E− 02 1.871E− 03 5.588E− 03 2.226E− 03

(4.2.2)

Table 4.3: This table shows the numerical values of the (dimensionless) parameters of the effective
boundary conditions applied at the lower wall in the DNS. The case is of longitudinal cylindrical inclusions,
with θ = 0.5.

ε λ̂x (m) λ̂z (m) K̂yy (m2) K̂itfxy (m2) K̂itfzy (m2)

0.2 1.380E− 02 9.042E− 03 7.484E− 05 2.235E− 04 8.902E− 05
0.1 6.901E− 03 4.521E− 03 1.871E− 05 5.588E− 05 2.226E− 05

(4.2.3)

Table 4.4: This table shows the numerical values of the (dimensional, via 3.2.29) parameters of the effec-
tive boundary conditions applied at the lower wall in the DNS. The case is of longitudinal cylindrical inclu-
sions, with θ = 0.5. We considered several values of ε.

term. Hence, we can say that

τw =
∆p

L
H (4.2.4)

where L is a length measured in the streamwise direction (say the global
streamwise length of the domain) and ∆p is the pressure difference between
inlet and outlet when the fluid travels this streamwise distance. Since we set
H = 1m and would like τw = 1Pa, we choose the ratio ∆p

L to be ∆p
L =

1N/m3. Thus, we are in the same numerical situation of the previous simu-
lations.

Turbulent statistics and main monitored parameters Statistics in-
clude the same calculation of the previous case plus the flow rate, i.e.

• mean velocity by time-averaging

• velocity fluctuations to get the RMS values

• mean values of the Reynolds stresses

• flow rate, in order to reconstruct the drag curve

The main monitored parameter was Reτ on the lower wall also this time.
Moreover, we monitored instantaneous streamwise and wall normal veloci-
ties at y+ = 20 (buffer layer) for spanwise cylinders with ε = 0.2 and for
streamwise cylinders with ε = 0.1 (fig. 4.2.1). We find that for streamwise
cylinders (ε = 0.1) the flow seems on the way to become laminar again, while
for spanwise cylinders (ε = 0.2) it seems more chaotic.
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Figure 4.2.1: Isolines of U and V at y+ = 20 for ε = 0.1, 0.2 in a plane parallel to the inferior wall (DNS
performed with Stokes’ coefficients). Velocity numerical values are intended as expressed in ms−1.

Mean Velocity profile The same previous procedure to get the mean ve-
locity profile is performed. Result is presented in figure 4.1.4, with the same
previous notation. Also this time, we can note that we have a non zero ve-
locity at the lower wall in the porous case. However, apart from this, this
time the profile is less altered with respect to the smooth case, with much
less asymmetry (though still present) than in the spanwise case.

Velocity profile against wall coordinates With reference to fig. 4.1.6,
we notice that in this case with streamwise cylinders the shape of the velocity
is more similar to the smooth wall case than with spanwise cylinders. Fur-
thermore, by looking at the log-law region, we clearly see that there is drag-
reduction for ε = 0.1 and a slight drag-increase for ε = 0.2, confirming our
intuitions.

RMS of the velocity fluctuations In fig. 4.1.9, RMS of the velocity
fluctuations is presented also for this streamwise case. Similar consideration
about the general amplitude of the fluctuations can be made. Moreover, we
observe that for the drag-reducing case streamwise fluctuation is higher while
normal and spanwise ones are lower with respect to the smooth case, while
for the drag-increasing case the viceversa is true.

Reynolds stresses In fig. 4.1.10, xy-Reynolds stress is presented. This
time, the deviation from smooth channel is less than for spanwise cylinders,
with the drag-reducing case very close to it, although difference at the lower
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wall is still present (here not distinguishable for the drag-reducing case), thus
increasing the total stress at it.

Drag curve Finally, we are able to reconstruct the drag curve (fig. 4.2.2).
We should mention that with only the points for ε = 0, 0.1, 0.2 we can only
give a basic idea of the phenomenon, having in mind to thicken the graph
with more simulations. However, we find very interesting results: for ε = 0.2
we are about the turning point from drag-reduction to drag-increase, while
for ε = 0.1 we find drag reduction and have just passed the corresponding
ε value for drag-optimum point (by interpolating the data, we guess εopt ≈
0.08). Obviously, in the limit of ε → 0 we recover smooth wall’s results.
Hence, data are graphically compatible with a drag-curve similar to the ri-
blet’s one, with a linear relationship for ε ∈ [0, 0.1] to be investigated. This
confirms our intuitions: cylindrical streamwise-directed porous inclusions be-
have like riblets as far as drag reduction is concerned, with the ε (or εReτ)
parameter playing the same role of the (dimensionless) riblets’ spacing s+.
This enables us to quickly implement a surface with the desired drag-reducing
or drag-increasing factor, just by playing with geometrical and dynamical
quantities in the proper way.

Figure 4.2.2: Drag curve for longitudinal cylinders against ε. The point for spanwise cylinders at ε = 0.2
is reported as well ((DNS performed with Stokes’ coefficients)). The red dashed lines are drawn only to guide
the eye.



Conclusion

In the present work, we have used homogenisation theory to study the inter-
action between a fluid and a porous medium. Thanks to this technique, we
have been able to model the interaction via effective coefficients directly avail-
able from the solution of microscopic problems, so that one does not need to
set them ad hoc. This is an important result, since one is allowed to substi-
tute the permeable surface with a smooth one, provided that our effective
boundary conditions are applied, thus saving computational time. In this
way, one may study more complicated cases, for which a fully-feature DNS
is prohibitive or not desired. Hence, homogenisation theory (and, as a con-
sequence, our effective boundary condition) is a powerful tool to treat such
cases. Moreover, we tried to extend previous works by taking turbulence into
account (as well as a 3D description) already at microscopic level, going be-
yond the lower transitionally rough regime, via an Oseen approximation.

In 3, we calculated microscopic coefficients for a variety of cases, so that they
are already available for any future work of anybody. We remark we also gave
a little contribution from this point of view by proposing a fit law for micro-
scopic Stokes’s parameters against porosity.

In 4, in order to validate our conditions, we studied a macroscopic case (a
fully developed turbulent channel flow with one permeable wall of spanwise
inclusions) and compared our solutions with a recent fully-feature resolving
DNS present in literature. However, we found that, in this reference, impor-
tant geometrical and dynamical parameters had different numerical values
with respect to the ones we prepared our computations. This fact makes a
quantitative comparison ineffective, though allowing a qualitative one, which
indeed was quite satisfactory. Given the above mentioned diversity of pa-
rameters (in particular, εReτ), the (apparently unwanted) fact that the DNS
with Stokes’ coefficients, unlike the one with Oseen coefficients (which de-
pend themselves on εReτ), seems to be in good agreement with the literature
one makes us at least hopeful about a possible improvement by Oseen coef-
ficients, since they could lead to a better agreement with respect to the real
case they were constructed for. More work is need about this point: a fully-
feature DNS (with the correct corresponding parameters) is actually under
construction.
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Furthermore, despite the ineffective validation test, we decided to use our ef-
fective conditions to independently study another macroscopic case, very sim-
ilar to the previous one. This is because, in this case, we used, de facto, only
Stokes’ coefficients, which had already been widely tested (and validated) in
the past. Hence, as a result, we found that, by taking longitudinal porous
inclusions (we remember that in this case Oseen and Stokes’ coefficients co-
incide), there is a drag-reduction modulated by the ε parameter. Hence, we
were able to propose a theoretical porous surface with drag-reducing prop-
erty, characterise the drag curve and find values for optimum drag-reduction,
which is a highly desirable property in many industrial contexts.

Our construction may allow the rapid modeling of geometrical micro-features,
to identify, e.g., the most efficient drag-reducing textures, or the most suitable
structure of a porous membrane, and so on.

Possible future developments may include the following: consider a lubricant
fluid within the pores, solving the problem via the VOF (volume of fluid)
method in the unit cell; derive effective slip and transpiration conditions to
second order in this two-phase flow case (already derived at first order by Ali-
novi and Bottaro 2018); perform an effective DNS for a turbulent channel
flow over a LIS (lubricant impregnated surface) and compare to fully-feature
resolving DNS; optimise the morphology of the porous material, impregnated
with lubricant, and optimise property of lubricant fluid.

In the end, we proposed an alternative way to study and characterise the in-
teraction of a fluid with rough (permeable) surfaces, which are the norm, not
the exception, of many natural and biological systems, whose properties are
sources of inspiration for many useful applications, as seen in 1.



Appendix: Tables of
Microscopic Coefficients

θ λx λz Kxx ≈ Kyy Kzz Kitfxy Kitfzy
0.215 4.103E− 02 5.883E− 02 0 1.217E− 03 1.823E− 03 3.814E− 03

0.5000 4.513E− 02 6.883E− 02 1.828E− 03 6.966E− 03 2.220E− 03 5.561E− 03
0.600 4.713E− 02 7.398E− 02 4.331E− 03 1.212E− 02 2.410E− 03 6.737E− 03

0.7000 4.992E− 02 8.167E− 02 9.587E− 03 2.222E− 02 2.657E− 03 9.042E− 03
0.800 5.385E− 02 9.347E− 02 1.990E− 02 4.179E− 02 2.965E− 03 1.410E− 02

0.8500 1.008E− 01 1.820E− 02
0.9000 6.010E− 02 1.130E− 01 3.970E− 02 8.031E− 02 4.113E− 03 2.638E− 02
0.950 1.339E− 01 4.386E− 02

0.99000 8.912E− 02 1.953E− 01 1.255E− 01 2.534E− 01 2.960E− 02 1.075E− 01

(4.2.5)

Table 4.5: This table shows the numerical values of the parameters of interest against different values of
porosity, for Reτ = 0 (inline configuration and spanwise inclusions). Data are plotted in 3.4.6.

θ λx λz Kyy Kzz Kitfxy Kitfzy
0.215 4.759E− 02 7.677E− 02 0 5.056E− 04 2.469E− 03 7.871E− 03
0.500 5.168E− 02 8.677E− 02 1.008E− 03 3.693E− 03 2.866E− 03 9.618E− 03
0.600 5.378E− 02 9.305E− 02 2.435E− 03 6.591E− 03 3.160E− 03 1.169E− 02
0.700 5.618E− 02 1.003E− 01 4.314E− 03 1.128E− 02 3.618E− 03 1.457E− 02
0.800 5.998E− 02 1.122E− 01 7.358E− 03 2.180E− 02 4.699E− 03 2.051E− 02
0.850 1.233E− 01 1.050E− 02 3.392E− 02 2.740E− 02
0.900 6.656E− 02 1.323E− 01 1.342E− 02 4.448E− 02 7.806E− 03 3.376E− 02

0.95000 1.585E− 01 5.380E− 02
0.99000 1.010E− 01 2.173E− 01 4.897E− 02 1.382E− 01 3.712E− 02 1.056E− 01

(4.2.6)

Table 4.6: This table shows the numerical values of the parameters of interest against different values of
porosity, for Reτ = 0 (staggered configuration and spanwise inclusions). Data are plotted in 3.4.6.
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εReτ Reτ λx λz Kyy Kitfxy Kitfzy
0 0 4.513E− 02 6.883E− 02 1.828E− 03 2.220E− 03 5.561E− 03

12 60 4.170E− 02 6.124E− 02 1.533E− 03 1.887E− 03 4.507E− 03
24 120 3.815E− 02 5.365E− 02 1.262E− 03 1.556E− 03 3.462E− 03
36 180 3.562E− 02 4.859E− 02 9.859E− 04 1.336E− 03 2.819E− 03
39 193 3.514E− 02 4.768E− 02 9.431E− 04 1.296E− 03 2.707E− 03
44 222 3.419E− 02 4.591E− 02 8.474E− 04 1.222E− 03 2.506E− 03
53 264 3.301E− 02 4.374E− 02 7.407E− 04 1.130E− 03 2.263E− 03
61 306 3.202E− 02 4.195E− 02 6.605E− 04 1.054E− 03 2.071E− 03
70 348 3.110E− 02 4.037E− 02 5.928E− 04 9.890E− 04 1.911E− 03
78 390 3.028E− 02 3.898E− 02 5.375E− 04 9.333E− 04 1.776E− 03

(4.2.7)

Table 4.7: This table shows the numerical values of the parameters of interest against different values of
Reτ , having fixed θ = 0.5 and ε = 0.2, for inline pattern and spanwise inclusions. Data are plotted in 3.2.6.

θ λx Kitfxy λz Kitfzy Kyy
0.215 3.264E− 02 1.139E− 03 4.311E− 02 2.153E− 03 0

0.5 3.514E− 02 1.296E− 03 4.768E− 02 2.707E− 03 9.431E− 04
0.8 4.060E− 02 1.514E− 03 5.719E− 02 4.064E− 03 5.232E− 03
0.9 4.413E− 02 2.282E− 03 6.385E− 02 5.579E− 03 9.572E− 03

0.99 5.788E− 02 1.165E− 02 9.177E− 02 3.028E− 02 3.373E− 02

(4.2.8)

Table 4.8: This table shows the numerical values of the parameters of interest against different values of
θ, having fixed Reτ = 193 and ε = 0.2 (inline configuration and spanwise inclusions). Data are plotted in
3.2.7.

θ λx Kitfxy λz Kitfzy Kyy
0.215 2.832E− 02 8.416E− 04 3.580E− 02 1.480E− 03 0

0.5 3.028E− 02 9.333E− 04 3.898E− 02 1.776E− 03 5.375E− 04
0.8 3.442E− 02 1.071E− 03 4.533E− 02 2.421E− 03 2.784E− 03
0.9 3.721E− 02 1.392E− 03 4.977E− 02 2.973E− 03 5.078E− 03

0.99 4.590E− 02 5.925E− 03 6.608E− 02 1.554E− 02 1.880E− 02

(4.2.9)

Table 4.9: This table shows the numerical values of the parameters of interest against different values of
θ, having fixed Reτ = 390 and ε = 0.2 (inline configuration and spanwise inclusions). Data are plotted in
3.2.7.

εReτ Reτ λx Kitfxy λz Kitfzy Kyy
0 0 4.104E− 02 1.823E− 03 5.883E− 02 3.814E− 03 0

39 193 3.264E− 02 1.139E− 03 4.311E− 02 2.153E− 03 0
78 390 2.832E− 02 8.416E− 04 3.580E− 02 1.480E− 03 0

(4.2.10)

Table 4.10: This table shows the numerical values of the parameters of interest against different values of
Reτ , having fixed θ = 0.215 and ε = 0.2 (inline configuration and spanwise inclusions). Data are plotted in
3.2.11.

εReτ Reτ λx Kitfxy λz Kitfzy Kyy
0 0 5.385E− 02 2.965E− 03 9.347E− 02 1.410E− 02 1.990E− 02

39 193 4.060E− 02 1.514E− 03 5.719E− 02 4.064E− 03 5.232E− 03
78 390 3.442E− 02 1.071E− 03 4.533E− 02 2.421E− 03 2.784E− 03

(4.2.11)

Table 4.11: This table shows the numerical values of the parameters of interest against different values
of Reτ , having fixed θ = 0.8 and ε = 0.2 (inline configuration and spanwise inclusions). Data are plotted in
3.2.11.
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εReτ Reτ λx Kitfxy λz Kitfzy Kyy
0 0 6.010E− 02 4.113E− 03 1.130E− 01 2.638E− 02 3.970E− 02

39 193 4.413E− 02 2.282E− 03 6.385E− 02 5.579E− 03 9.572E− 03
78 390 3.721E− 02 1.392E− 03 4.977E− 02 2.973E− 03 5.078E− 03

(4.2.12)

Table 4.12: This table shows the numerical values of the parameters of interest against different values
of Reτ , having fixed θ = 0.9 and ε = 0.2 (inline configuration and spanwise inclusions). Data are plotted in
3.2.11.

εReτ Reτ λx Kitfxy λz Kitfzy Kyy
0 0 8.912E− 02 2.960E− 02 1.953E− 01 1.075E− 01 1.255E− 01

39 193 5.788E− 02 1.165E− 02 9.177E− 02 3.028E− 02 3.373E− 02
78 390 4.590E− 02 5.925E− 03 6.608E− 02 1.554E− 02 1.880E− 02

(4.2.13)

Table 4.13: This table shows the numerical values of the parameters of interest against different values
of Reτ , having fixed θ = 0.99 and ε = 0.2 (inline configuration and spanwise inclusions). Data are plotted in
3.2.11.

εReτ Reτ λx λz Kyy Kitfxy Kitfzy
0 0 6.901E− 02 4.521E− 02 1.871E− 03 5.588E− 03 2.226E− 03

36 180 6.901E− 02 4.521E− 02 1.871E− 03 5.588E− 03 2.226E− 03
44 222 6.901E− 02 4.521E− 02 1.871E− 03 5.588E− 03 2.226E− 03
53 264 6.901E− 02 4.521E− 02 1.871E− 03 5.588E− 03 2.226E− 03

(4.2.14)

Table 4.14: This table shows the numerical values of the parameters of interest against different values
of Reτ , having fixed θ = 0.5 and ε = 0.2 (inline configuration and streamwise inclusions). Data are plotted
in 3.2.13. This table tells us that, in this streamwise configuration, the parameters are εReτ independent.
Furthermore, streamwise parameters are directly available from the Stokes’ spanwise ones by performing
the following operations: fx|stream, ∀εReτ ≈ fz|span, Reτ=0 (and viceversa for the z component), where fi =

λi,Kitfiy (for i = x, z), and Kyy|stream, ∀εReτ ≈ Kyy|span, Reτ=0.
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