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Abstract
The main goal of this work is to study the interactions between fluids and porous
(rigid and elastic) media, inspired by biological organs and functions, with the
long-term objective of developing poroelastic coatings for aeronautical purposes.
Since the poroelastic media considered are characterized by a microscopic porous
matrix, a homogenization technique is used to describe the separation of scales
which characterizes the phenomenon. This technique is used together with a study
of the interface conditions needed to match the solutions at the boundary between
the pure-fluid and the porous regions. Homogenization leads us in two directions,
the microscopic and the macroscopic one, yielding the governing equations for the
mixture fluid-solid, considered as a new continuum. The first point of view allows
to understand the microscopic characteristics (permeability and elasticity), influ-
encing the latter, which describes the macroscopic behavior of the flow. Problems
in different flow regimes (laminar and turbulent) are considered to validate the
model, which includes inertia in the leading order equations for the permeability
tensor through a Oseen approximation. The components of the permeability and
elasticity are reasonably well estimated by the theory, both in the laminar and the
turbulent case. This is demonstrated by comparing the model’s results to both ex-
perimental measurements and direct numerical simulations of the equations which
solve for the flow also through the pores of the medium. Some limits of the tech-
nique used are shown considering different microscopic skeletons, isotropic and
anisotropic. The appropriateness of the conditions at the macroscopic boundaries
of the medium is enquired also performing a linear stability analysis of the com-
puted profile of velocity in the particular application of canopy flows.





Chapter 1

Introduction

1.1 Half a century of research in biomimetics
Even if Leonardo da Vinci, Orville andWilbur Wright, George de Mestral (the

inventor of Velcro, fig. 1a) and many others have been inspired by Nature in their
work, the term “biomimetics” entered the Webster’s dictionary only in 1974 after
biophysicist Otto Schmitt who used it for the first time at the International Bio-
physics Congress in Boston in 1969. From that moment on much progress has
been made in biomimetics. Among the works which contain a more complete re-
view of the common attempts to apply Nature’s principles to technology we can
cite Vincent et al. (2006) and Lakhtakia & Martín–Palma (2013). We present be-
low a concise list of works on biomimetics, which constituted also the stimulus us
to undertake the present study. In most of the phenomena commonly studied in
biomimetics, the presence of a separation of characteristic scales (e.g. the charac-
teristic dimensions of some physical structures or phenomena) is very important.
To appreciate both scales, it is often necessary to consider two different points of
view: the microscopic and the macroscopic one. The former allow us to appreciate
differences over a small scale, although we do not see sufficiently far to appreciate
differences at the large scale; with the latter we can see physic over a large scale but
cannot appreciate anything of the microscopic world. Some of the works which
have in common these two ways of viewing things are listed below, with reference
to activities pursued in the last 50 years or so.

• The microscopic observation of the leaves of the lotus (Barthlott & Nein-
huis, 1997) or of the wings of some species of insects (Wagner et al., 1996)
identified a relationship between the superficial microstructures, their wet-

8



1.1 Half a century of research in biomimetics 9

(a) Velcro device consists of two dif-
ferent parts, upper and lower. The
lower part has coils of plastic thread
which form hooks.

(b) The structures on the top of the lotus
leaf, along with a waxy coating, help to
efficiently repel water droplets.

(c) Feet of geckos are covered with
ridges and microscopic hairs, which
enable it to cling to very smooth sur-
faces.

(d) Owls have the benefit of silent
flight due to the filamentous extensions
of their anterior barbules on their feath-
ers.

(e) The sharply pointed, placoid scales on the
skin of sharks, also known as dermal teeth, re-
duce drag.

Figure 1.1: Example of microscopic structures in biological organisms. Without a
microscopic visualization of these geometries and an understanding of their effect„
the corresponding macroscopic result would not be available.
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tability and behavior under the influence of contamination. The resulting
conclusions of these works led to the production of paints for self-cleaning
surfaces.

• The study of themicrostructures which compose the surface of insects’ eyes
and wings (Bernhard et al., 1965; Stoddart et al., 2006), and the leaves
of some tropical plants (Lee, 1986) was helpful to produce antireflective
polyethilene sheets.

• Autumn & Peattie (2001) and Geim et al. (2003) have shown that hairs of
the gecko foot adhere to hydrophobic and hydrophilic surfaces thanks only
to the size and shape of the microscopic structures of the hairs, without any
kind of chemical addictive. Dry adhesive tapes, such as GeckSkinTM, are
now produced using this principle.

• In the ’60 the first studies on the shark skin were conducted, proving that
these fast inhabitants of the oceans have peculiar placoid scales on their
skins. These microscopic structures induce vortices that cut down friction
drag significantly. Bio-inspired V-shaped riblets (inspired by such scales)
have been originally developed by NASA Langley Research Center tech-
nology (and then produced by the 3M Company, http://www.nasa.gov/
centers/langley/news/factsheets/Riblets.html), in order to improve air-
plane fuel efficiency, by reducing the drag caused by the friction of turbulent
airflow over the airplane. After its development in the ’80, the film was used
both in aeronautical and naval fields. More recent applications are, for in-
stance, in the production of professional swimwear. Much literature exists
for quantifying the drag reduction and optimize the shape of the riblets which
modify the boundary layer of the fluid flow interacting with them (e.g. Lu-
chini et al., 1991). A recent review has been done by Bechert et al. (2000)
with a particular focus on the drag reduction assessment.Work on this topic
is still undergoing: Wen et al. (2014) are developing a synthetic 3D-printed
shark skin.

• Aeroacoustic studies by Kroeger et al. (1972) and Sarradj et al. (2011) have
shown that owls eliminate self-noises when they hunt. These studies in-
spired a wide literature on the acoustics of fluid-structure interactions near
poroelastic surfaces (e.g. Sueki et al., 2010).

On the other side, there are studies in which we find only macroscopical and me-
chanical inspiration from Nature; it is the case, for instance, of earth-moving ma-

http://www.nasa.gov/centers/langley/news/factsheets/Riblets.html
http://www.nasa.gov/centers/langley/news/factsheets/Riblets.html
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chinery which can be optimized with ridges and bumps inspired by soil-moving
animals (Li et al., 2004). One more example of one-scale-biomimetics is the de-
velopment of microflyers (Sirohi, 2013), ornithopters (Park & Yoon, 2008) or ap-
pendices inspired by wings and feathers which optimize the flight of traditional
airplanes and operate an active or passive control of the flight.

Our work aims to put together these two aspects of biomimicry, proposing a
mathematical model which will be used to simulate porous and poroelastic coat-
ings which can then be applied to mobile wings devices for passive control and
optimization of the flight. Why porous and elastic coatings? Observing riblets one
need porosity, observing birds’ feathers also elasticity is required. Furthermore,
the presence of poroelastic surfaces or coatings is proven to modify significantly
the flow field near them (cf. Battiato et al., 2010; Luhar & Nepf, 2011; Gosselin
& de Langre, 2011; Rosti et al., 2015).

Our main goal is to develop a simple and computationally cheap model to sim-
ulate the behavior of the coatings and the fluid which flows near and inside them,
in order to use it to evaluate and optimize some fundamental measures like skin
friction or drag. Two important constraints can be immediately outlined:

• the skeleton which constitutes the coating should have at least two principal
characteristic scales (and likewise for the phenomenon which we are simu-
lating);

• themodel should be able to take into account themicroscopic skeleton (which
we cannot express explicitly if we have the constraint of computational econ-
omy) as well as the macroscopic configuration, and on its basis, one should
be able to locally change a given microscopic property in a simple way (Wen
et al., 2014, already observed that the microscopic geometrical properties of
the riblets are different in different regions of the shark skin).

In order to attain our objectives, in a preliminary analysis two things should be
understood:

• how to model the presence of a solid structure;

• how a fluid flow develops inside and near the porous medium.

A study of the literature, presented in the next sections, has been pursued to achieve
the two objectives listed above.
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1.2 Models for poroelastic materials
As already outlined earlier, when a fluid flows in a porous medium, there is

usually a strong separation of scales between the macroscopic scale defined by the
global size of the problem and themicroscopic length typical of the solid inclusions
of the porous medium (cf. figures 1.2 and 1.3). We present an overview of some
methods which can be used to model a porous and elastic medium.

1.2.1 Microscopic and macroscopic approaches
Two approaches are generally employed to treat flows in porous media: the first

one is to implement a pore-scale numerical simulation of the flow in the medium,
reproducing closely the geometry of the solid skeleton. The second consists in
an effective macroscopic simulation where the microscopic structure is lost, but
some auxiliary problem is introduced to characterize the pore-scale behavior. The
first path has been followed, for instance, by Breugem & Boersma (2005), Kut-
tanikkad (2009) and Matsumura & Jackson (2014). One of the difficulties of this
kind of analysis is the computational cost of the simulation: the smaller is the ra-
tio between the microscopic and the macroscopic length scale, the larger is the
resolution which must be used to discretize the geometry of the skeleton. From
a technical point of view, if on the one hand, for rigid porous media, it is rela-
tively simple to perform a direct numerical simulation because the presence of the
porous medium requires only to modify the domain over which we are solving the
equations of motion for the fluid, on the other hand, when one deals with media
which are also elastic, things become more difficult: the domain over which the
equations should be solved changes in time and two systems of equations (one for
the fluid and the other for the solid) must be coupled via an interface condition
which holds on the microscopic, moving boundaries of the poroelastic structure.
Much effort is devoted to this direction of research: different technique have been
implemented (e.g. the immersed boundary method), but there are still great lim-
itations (whether computational or of applicability, due by the simplifications of
somemodels). Such a big effort presents the additional disadvantage of providing a
solution to only a particular configuration of the porous medium. With the second
choice, based on homogenization, we have a concise and rapid description of the
fluid behavior, satisfactory from amacroscopic point of view. A precursory idea of
this method consists in assuming that simulating a fluid flowing through a porous
medium is the same as thinking of the coupled fluid-solid medium as a continuum
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L

l

Figure 1.2: Macroscopic design of a poroelastic coating (left), and microscopic
zoom over one cylindrical fiber inside a cubic representative elementary volume
(defined by the upscaling technique). L and l are the macroscopic and microscopic
length scales, respectively.

for which an effective conductivity, permeability or viscosity, different from that of
the fluid, can be defined. These effective medium approaches were first postulated,
for rigid media, from an empirical point of view by Darcy (1856) and then modi-
fied using analytical considerations (Brinkman, 1949). In the elastic case, instead,
a similar model has been deduced by Biot (1955) which found a well posed sys-
tem of partial differential equations coupling the Darcy’s law with the equilibrium
equations for the elastic material. Even if the equations were born as empirical
laws, several strategies have been developed in time in order to derive these equa-
tions analytically, deducing the macroscopic behavior from the local description
(Davit et al., 2013). This procedure is called upscaling. Different techniques are
available for upscaling: they start from a representative elementary volume (REV,
cf. figure 1.2) and generate an equivalent macroscopic continuous model called
homogenized model.

1.2.2 Volume averaging technique
One of the most used approaches is the volume averaging method thoroughly

described by Whitaker (1998). It consists in considering an elementary cell rep-
resentative of the porous structure (V in figure 1.3); the size of the REV is of the
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o x2
x1

x3

Figure 1.3: View of a generic porous medium within an elementary cell V. Vf
is the volume occupied by the fluid and Vs is that occupied by the solid, so that
V = Vf + Vs. Γ is the fluid-solid microscopic interface.

order of the pore size. A fundamental assumption is that of periodicity, over V ,
for the unknown quantities. Starting from the Navier-Stokes equations (NSE), it is
assumed that the solution (velocity and pressure fields) can be decomposed into a
mean part plus a fluctuation (Gray, 1975). The fluctuation represents how much
the solution is far from its mean part and it must satisfy a zero average condition
over the REV, that is fundamental to deduce the effective equations. After substi-
tuting the decomposition of the unknown fields inside the NSE and considering the
spatial average of the equations over the REV, one obtains the momentum equation
for the mean flow, with forcing terms related to the fluctuations. In this way, the
Darcy’s law (Whitaker, 1986), its Brinkman’s correction (Quintard & Whitaker,
1994) and the Forchheimer’s equation (Whitaker, 1996) have been deduced the-
oretically. Even if Whitaker did not developed any model for elastic media (cf.
Whitaker, 1998), there are also works which propose models for poroelastic me-
dia based on volume averaging (e.g. Le Bars & Worster, 2006), but in this case a
closure relation for the motion of the structure is introduced.

1.2.3 Homogenized model
Another strategy widely used is described by Mei & Vernescu (2010) and con-

sists in implementing a homogenization technique based on a multiple scale anal-
ysis. The starting point of this technique is the same as the volume averaging
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method: the Navier-Stokes equations are taken to be valid over Vf in figure 1.3 and
a proper expansion of the unknown fields in terms of powers of a small parameter
is assumed. If the convective term is sufficiently small (of the order of the ratio be-
tween length scales) the resulting equations at leading order are self-contained, i.e.
there is no need to introduce a closure relation. Darcy’s, Brinkman’s and Forch-
heimer’s equations can be deduced analytically also in this case. The generaliza-
tion to the deformable elastic case requires some effort because also the equation
for the elastic material must be accounted for. Both approaches briefly outlined
above require closure relations when nonlinear terms are present. Much work is
present in the literature: in particular, Mei & Auriault (1991) have examined the
effect of weak fluid inertia in the porous medium, finding that Forchheimer’s cor-
rection to Darcy’s law should be at least cubic (instead of quadratic) for isotropic
media. This has been confirmed by Firdaouss et al. (1997). The same occurs for
orthotropic media (Skjetne & Auriault, 1999). Auriault (2009) investigated the
domain of validity of Brinkman’s equation, finding that it is valid for swarms of
fixed particles or a fixed bed of fibers at very low concentration and under pre-
cise conditions which depend on the separation of scale parameter ε = l/L, with
l and L two different, representative length scales. Homogenization provides a
point of contact between the microscopic and the macroscopic worlds, and per-
mits to transfer information from one point of view to the other. In this, it differs
from purely microscopic approaches such as those by Tamayol & Bahrami (2009),
van der Westhuizen & du Plessis (1996), Jackson & James (1986) and Yazdchi
et al. (2011), and it is also different from purely macroscopic points of view, such
as that by Battiato (2012) in which analytical forms of the permeability are taken
from the literature.

Both volume averaging method and homogenization theory are suitable for the
development of mathematical models in poroelasticity. Many works in this field
have been pursued on the basis of these two techniques: some example are Rice
& Cleary (1976); Burridge & Keller (1981); Sharma (2007); Penta & Ambrosi
(2013). Actually, even if the two methods are different, they have several points of
contact which are explained in detail by Davit et al. (2013).



1.2 Models for poroelastic materials 16

GOVERNING

EQUATIONS

SEPARATION OF SCALES

BASED NORMALIZATION

MULTIPLE SCALE

EXPANSION

AVERAGING STEP

MICROSCOPIC

PROBLEMS

MACROSCOPIC

PROBLEMS

AVERAGING STEP

Figure 1.4: Diagram of the workflow for the homogenization technique. Rectan-
gle represents the theoretical steps to develop a model equation. Ovals represent
the operative steps where the equations are solved. The multiple scale expansion
and the averaging step give us the microscopic and macroscopic equations, respec-
tively. Furthermore, the averaging is also used to transfer information between the
two sets of equations.
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1.3 Interface conditions and coupling methods
All the works and the methods cited up to now refer to the solution of the

flow deeply inside a porous medium, far from the boundaries. The problem of
the interface conditions between the pure fluid and the porous region is crucial
and amply discussed in the literature. The scene is rather complex already in
case of rigid porous media: Jäger & Mikelić (1996, 2000) spent much effort on
this problem, concluding, through functional analysis and introducing an auxiliary
problem based on homogenization, that the widely used condition of Beavers &
Joseph (1967) and its modification by Saffman (1971) have a mathematical jus-
tification. Beavers & Joseph (1967) observed that the penetration of the velocity
into the porous bed extends over a length proportional to

√
K, with K the bed’s

permeability. This is equivalent to specifying a jump in the average velocity at
the interface. More elaborate conditions have also been proposed, simulating the
flow inside the porous medium with the Darcy-Brinkman equation, introducing
an effective viscosity µe (Givler & Altobelli, 1994), and imposing continuity of
the normal and tangential components of the stress tensor at the interface (Hill &
Straughan, 2008). Another interface condition has been developed by Ochoa-Tapia
& Whitaker (1995) via the definition of the excess surface and bulk stress tensors
to be obtained from the governing equations holding in the porous and pure fluid
regions. This condition becomes, under certain hypotheses, the continuity of the
effective velocity and pressure over the macroscopic interface. Finally, a strategy
often used to couple two different media is the penalization method. It consists
in solving the Navier-Stokes equations in the whole domain, with a forcing term
added in the porous region to take into account the presence of the structure. This
forcing term is multiplied by the characteristic equation of the porous domain and
it goes to zero smoothly outside of it. This approach has been pursued, among
others, by Bruneau & Mortazavi (2008) and Angot et al. (1999). Cimolin & Dis-
cacciati (2013) have shown that even if the penalization method is stable and easy
to implement, the comparison of the solution against experimental data near the
interface is not satisfactory. Concerning the interface conditions for elastic media,
one difficult consists on the motion of the macroscopic interface. This difficult is
often avoided by imposing interface conditions at a fixed interface (usually that
one identified from an initial resting state of the medium), assuming that the de-
formations are small, or equivalently, that the phenomenon is observed from a
macroscopic point of view. The usual choice for the conditions to be imposed at
the fixed interface appears to be the continuity of the effective velocities and of
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yitf

1

0 y

f(y)

 POROUS/POROELASTIC

REGION

PURE FLUID REGION

Figure 1.5: Sketch of a smooth filter f centered at the height of the interface yitf ,
of possible use in a penalization method.

effective normal stresses, as stated in Barry et al. (1991); Hoffmann et al. (2004);
Gopinath & Mahadevan (2011); Alexiou & Kapellos (2013).

Summing up, the interface conditions can be essentially classified in three
classes: the first one involves pressure and velocities which are linked over the
interface directly (continuity or jump); the second one involves them indirectly,
linking the normal to the interface components of the stress tensor. The second
class cannot be employed if the equation to be solved in the porous medium is
Darcy’s law. The third class includes all those methods which use a filter to go
from the porous region to the fluid region; a drawback of this latter approach is
that there is no general physical justification for the choice of the filter. Some
authors Breugem et al. (2004); Jamet & Chandesris (2009) have proven that the
variation of the permeability near the interface is not an intrinsic property of the
porous medium, but depends on the properties of the flow.

1.4 Solidmechanics: transversely isotropic structures
Our bio-inspired coating is assumed to be composed by cylindrical fibres; we

are thus interested in the fluid-structure interaction of transversely isotropic porous
media such as those sketched in fig. 1.6. A transversely isotropic material is char-
acterized by the fact that all the geometric and physical properties are symmetric
about an axis that is normal to a plane of isotropy (properties along x3 in fig. 1.6
are constant if the cylinders are infinitely long). This means that, if A is a sec-
ond order tensor only depending on the topological and physical properties of the
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o x1

x2

Vf

Vs

l

Γ

x1

x3

o

Figure 1.6: View of a transversely isotropic porous medium, made by fibers shown
in the (x1, x3) and (x1, x2) plane, respectively. The dotted rectangle in the two
frames represents the elementary cell V . Vf is the volume occupied by the fluid
and Vs is that occupied by the solid, so that V = Vf + Vs. Γ is the fluid-solid
microscopic interface.

structure, it can be written in the form:

A =

Ü
A1 0 0

0 A1 0

0 0 A3

ê
,

so that A is fully determined by two constants instead of nine. The proof of this
fact is very simple: ifA is a generic material matrix related to the medium and f ,
d are material properties such that

f = Ad,

in a medium which is transversely isotropic, the material properties are invariant
with respect to an orthogonal transformationR along the axis of symmetry, i.e.

Rf = ARd;

combining the equations we obtain that

A = R−1AR.
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For transversely isotropic materials R is a rotation over the plane (x1, x2) and
hence it has the form

R =

Ü
cos θ sin θ 0

− sin θ cos θ 0

0 0 1

ê
;

for the special case θ = π we obtain thatA13 = A31 = A12 = A21 = 0 and for θ =
π
2
it is found that A23 = A32 = 0 and A11 = A22. Analyzing elastic media, higher

rank tensors will be introduced (like the stiffness tensor); also for these tensor
some symmetry properties can be demonstrated because of transverse isotropicity
(Cowin, 2013). The homogenization theory presented in the following holds both
in the case of isotropic and anisotropic porous media, and thus also for transversely
isotropic porous media. In the last case it is useful to define the concept of unit (or
elementary) cell; a cubic unit cell is defined in fig. 1.6 by the dotted lines. This
choice of the elementary cell is equivalent to developing homogenization for an
infinitely wide lattice of infinitely long cylinders or, equivalently, the theory holds
if we are far from the boundaries of the porous medium; to take into account the
boundaries some strategies will have to be devised, both at a macroscopic and at a
microscopic level as briefly anticipated in section 1.3.





Chapter 2

Homogenized model for rigid and
elastic porous media

In this chapter the models developed with the homogenization theory intro-
duced in chapter 1, to simulate flows through porous media, are presented. The
whole theory considered here in the case of two-scale is suitable for infinitely wide
domains; we do not deal for now with boundary or interface conditions which are
the subject of the next chapter. To not confuse the reader we show the options
which can be chosen for the model. Table 2.1 represents all the possible choices
which can be made on the basis of the characteristics of the structure and of the
flow and the tools to analyze the system. We present the two-scale approach for
both rigid and elastic porous media, distinguishing for the flow regimes in table
2.1 and then the three-scales approach for the rigid case. The latter approach is
useful for certain particular structures where three length scales are present and
it represents an attempt to extend the standard technique to macroscopically or
mesoscopically confined media. It transform the three-dimensional microscopic
problems into more tractable two-dimensional problems (which are not depending
on the mesoscopic variable). This fact depends on the nature of the equations to
which the technique is applied: for poroelasticmedia, even if we apply a three-scale
theory, we does not obtain equations independent on the mesoscopic direction (x3

in this case), reason for that the three-scale theory is omitted.

22
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RIGID ELASTIC

Re = O(ε)
�������������
2-SCALE

3-SCALE
2-SCALE

Re = O(1)
�������������
2-SCALE

3-SCALE
2-SCALE

Table 2.1: Table showing the possible choices to model flow through porous and
poroelastic media.

2.1 Two-scale approach for rigid porous media
Let us consider a rigid porous medium saturated by an incompressible New-

tonian fluid of constant density ρ. The velocity and pressure fields in the fluid
domain are ruled by the Navier Stokes equations (NSE):

∂ûi
∂x̂i

= 0, (2.1.1)

ρ
∂ûi

∂t̂
+ ρûj

∂ûi
∂x̂j

= − ∂p̂

∂x̂i
+ µ∇̂2ûi, (2.1.2)

defined on Vf , with ûi = 0 on Γ which is the solid-fluid interface. In order to
highlight the order of each term in the governing equations we need to introduce
two length scales: the microscale l which represents a characteristic dimension
of the solid inclusions, and the macroscale L which is associated with the global
pressure gradient (the pressure scale is denoted with P ). This fact allows us to
define an ordering symbol

ε =
l

L
� 1.

Under the hypothesis that the global pressure gradient is balanced by the local
viscous term, we obtain an order relation that defines the velocity scale U :

P

L
=
µU

l2
. (2.1.3)

The scaled dimensionless variables are related to the dimensional ones by:

t̂ =
l

U
t =

µ

εP
t, x̂ = lx, p̂ = Pp, û = Uu =

εlP

µ
u.

The governing equations thus become:

∂ui
∂x̂i

= 0,
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Vs

V
f

V

o x2

x1

x3

Figure 2.1: View of a generic porous medium within an elementary cell V. Vf
is the volume occupied by the fluid and Vs is that occupied by the solid, so that
V = Vf + Vs. Γ is the fluid-solid microscopic interface.

ρ
∆P 2l3

µ2L2

∂ui
∂t

+ ρ
∆P 2l3

µ2L2
uj
∂ui
∂xj

= −∆P

l

∂p

∂xi
+

∆P

L
∇2ui.

Defining the Reynolds number on the microscale as:

Re =
ρUl

µ
= ερ

∆Pl2

µ2
,

and multiplying the last equation by L
∆P

, the dimensionless NSE can be rewritten
as

Re
∂ui
∂t

+ Reuj
∂ui
∂xj

= −1

ε

∂p

∂xi
+∇2ui. (2.1.4)

As already noted there are two possibilities about the Reynolds number:

Re� 1 and Re = O(1).

2.1.1 Small Reynolds number
We start by choosing the case Re� 1 and consider the dimensionless NSE

∂ui
∂xi

= 0

εRe
∂ui
∂t

+ εReuj
∂ui
∂xj

= − ∂p

∂xi
+ ε∇2ui.
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Before applying the homogenization method we have to specify that we con-
sider a medium which is periodic over a cell V , and focus our attention on this cell
(the microscopic volume, cf. fig. 2.1). We introduce the fast (microscopic) and
slow (macroscopic) variables x and x′ = εx and the expansions

u = u(0) + εu(1) + . . . , p = p(0) + εp(1) + . . . (2.1.5)

where u(i) and p(i) are functions of (x,x′, t). Note that

∂

∂xi
→ ∂

∂xi
+ ε

∂

∂x′i
(2.1.6)

and
∂2

∂xi∂xi
→ ∂2

∂xi∂xi
+ 2ε

∂2

∂xi∂x′i
+ ε2

∂2

∂x′i∂x
′
i

. (2.1.7)

Nowwe can rewrite the equations substituting expansions (2.1.5) and using (2.1.6)
and (2.1.7):

N∑
j=0

Ñ
εj
∂u

(j)
i

∂xi
+ εj+1∂u

(j)
i

∂x′i

é
= 0, (2.1.8)

Re
N∑
l=0

εl+1∂u
(l)
i

∂t
+ εl+1u

(l)
j

N∑
m=0

Ñ
εm
∂u

(m)
i

∂xj
+ εm+1∂u

(m)
i

∂x′j

é = (2.1.9)

−
N∑
l=0

(
εl
∂p(l)

∂xi
+ εl+1∂p

(l)

∂x′i

)
+

Ñ
N∑
l=0

εl+1∂
2u

(l)
i

∂x2
j

+ 2
N∑
l=0

εl+2 ∂
2u

(l)
i

∂xj∂x′j
+

N∑
l=0

εl+3∂
2u

(l)
i

∂x′2j

é
.

Collecting like-order terms, we obtain at order ε0:

∂u
(0)
i

∂xi
= 0, (2.1.10)

0 = −∂p
(0)

∂xi
, (2.1.11)

and at order ε1:

0 = −∂p
(1)

∂xi
− ∂p(0)

∂x′i
+

∂2u
(0)
i

∂xj∂xj
, (2.1.12)

under the hypothesis that Re is at most of order ε. From equation (2.1.11) we have
that p(0) = p(0)(x′, t), i.e. the leading order term of the pressure varies only over
the macroscale (and time in general). Equations (2.1.10) and (2.1.12) constitute a
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Stokes problem for u(0)
i and p(1) forced by the macroscopic pressure p(0) and the

solution can be written formally as

u
(0)
i = −Kij

∂p(0)

∂x′j
, p(1) = −Aj

∂p(0)

∂x′j
+ p

(1)
0 (x′, t), (2.1.13)

whereKij is a tensor,Aj is a vector and p(1)
0 is an integration constant (with respect

to the integration variable x). Substituting (2.1.13) into (2.1.10) and (2.1.12) and
dividing by ∂p(0)/∂x′j , it follows that the coefficients should satisfy the relations:

∂Kij

∂xi
= 0, −∂Aj

∂xi
+∇2Kij = −δij, (2.1.14)

which is a forced Stokes problem in the unknownsKij and Aj for i, j = 1, 2, 3 (in
principle a system of 12 equations and 12 unknowns) with boundary condition

Kij = 0 on Γ,

and Kij and Aj which are V -periodic. Moreover, to ensure uniqueness of the
solution we can impose

〈Aj〉 = 0 (2.1.15)

for each j, where the volume average over a unit cell 〈·〉 is defined by:

〈f〉 :=
1

V

∫
Vf

f dV. (2.1.16)

By taking the volume average of (2.1.13), noting that p(0) and p(1)
0 do not depend

on x and using (2.1.15), we obtain

〈u(0)
i 〉 = −Kij

∂p(0)

∂x′j
, with Kij = 〈Kij〉, (2.1.17)

〈p(1)〉 = ϑp
(1)
0 , with ϑ =

Vf
V
,

where Kij is the dimensionless permeability tensor and ϑ the porosity. The equa-
tion above is Darcy’s law, which is thus a first order approximation of the NSE in
ε. In dimensional variables, eq. (2.1.17) reads:

〈û(0)
i 〉 = −Kijl

2

µ

∂p̂(0)

∂x̂j
= −K̂ij

µ

∂p̂(0)

∂x̂j
. (2.1.18)
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2.1.2 Going beyond leading order
A strategy to account for inertia is to consider the next order terms in eqs.

(2.1.8) and (2.1.9), and thus write:

∂u
(1)
j

∂xj
+
∂u

(0)
j

∂x′j
= 0 (2.1.19)

u
(0)
j

∂u
(0)
i

∂xj
= −∂p

(2)

∂xi
− ∂p(1)

∂x′i
+

∂2u
(1)
i

∂xj∂xj
+ 2

∂2u
(0)
i

∂x′j∂xj
(2.1.20)

u
(1)
i = 0 on Γ and u(1)

i V − periodic.

where the time derivative of u(0)
i is absent in the momentum equation because u(0)

i

is obtained in the previous section as the solution of a steady problem; we have now
assumed also that Re is exactly of order ε. Substituting eq. (2.1.13) in (2.1.19) and
(2.1.20), the equations read:

∂u
(1)
j

∂xj
= Kij

∂2p(0)

∂x′i∂x
′
j

(2.1.21)

∂p(2)

∂xi
− ∂2u

(1)
i

∂xj∂xj
= Aj

∂2p(0)

∂x′i∂x
′
j

− ∂p
(1)
0

∂x′i
−Kjl

∂Kik

∂xj

∂p(0)

∂x′k

∂p(0)

∂x′l
− 2

∂Kij

∂xk

∂2p(0)

∂x′j∂x
′
k

,

(2.1.22)
where the terms in the LHS are unknown. Because of linearity of equations (2.1.21)
and (2.1.22) we can formally write a particular solution as:

u
(1)
i = −Lijk

∂p(0)

∂x′j

∂p(0)

∂x′k
−Mijk

∂2p(0)

∂x′j∂x
′
k

− Sij
∂p

(1)
0

∂x′j
(2.1.23)

p(2) = −Bjk
∂p(0)

∂x′j

∂p(0)

∂x′k
− Cjk

∂2p(0)

∂x′j∂x
′
k

− Tj
∂p

(1)
0

∂x′j
+ p

(2)
0 , (2.1.24)

where p(2)
0 depends only on the macroscale variable. Substituting (2.1.23) and

(2.1.24) into (2.1.19) and (2.1.20) we obtain

∂

∂xi

Ñ
−Bjk

∂p(0)

∂x′j

∂p(0)

∂x′k
− Cjk

∂2p(0)

∂x′j∂x
′
k

− Tj
∂p

(1)
0

∂x′j

é
− ∂2

∂xg∂xg

Ñ
−Lijk

∂p(0)

∂x′j

∂p(0)

∂x′k
−Mijk

∂2p(0)

∂x′j∂x
′
k

− Sij
∂p

(1)
0

∂x′j

é
=

= Aj
∂2p(0)

∂x′i∂x
′
j

− ∂p
(1)
0

∂x′i
−Kjl

∂Kik

∂xj

∂p(0)

∂x′k

∂p(0)

∂x′l
− 2

∂Kij

∂xk

∂2p(0)

∂x′j∂x
′
k

,
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∂

∂xi

Ñ
−Lijk

∂p(0)

∂x′j

∂p(0)

∂x′k
−Mijk

∂2p(0)

∂x′j∂x
′
k

− Sij
∂p

(1)
0

∂x′j

é
= Kij

∂2p(0)

∂x′i∂x
′
j

which are satisfied if the relation below hold:

∂Lijk
∂xi

∂p(0)

∂x′j

∂p(0)

∂x′k
= 0,

∂Bjk

∂xi

∂p(0)

∂x′j

∂p(0)

∂x′k
− ∂Lijk
∂xg∂xg

∂p(0)

∂x′j

∂p(0)

∂x′k
= Kjl

∂Kik

∂xj

∂p(0)

∂x′k

∂p(0)

∂x′l
,

∂Mijk

∂xi

∂2p(0)

∂x′j∂x
′
k

= −Kkj
∂2p(0)

∂x′j∂x
′
k

,

∂Cjk
∂xi

∂2p(0)

∂x′j∂x
′
k

− ∂Mijk

∂xg∂xg

∂2p(0)

∂x′j∂x
′
k

= −Aj
∂2p(0)

∂x′i∂x
′
j

+ 2
∂Kij

∂xk

∂2p(0)

∂x′j∂x
′
k

,

∂Sij
∂xi

∂p
(1)
0

∂x′j
= 0,

∂Tj
∂xi

∂p
(1)
0

∂x′j
− ∂Sij
∂xg∂xg

∂p
(1)
0

∂x′j
= −∂p

(1)
0

∂x′i
.

Simplifying all the macroscopic terms related to the pressure, we obtain the fol-
lowing set of microscopic equations:

∂Lijk
∂xi

= 0 (2.1.25)

∂Bjk

∂xi
− ∂Lijk
∂xg∂xg

= Klj
∂Kik

∂xl
(2.1.26)

∂Mijk

∂xi
= −Kkj (2.1.27)

∂Cjk
∂xi

− ∂Mijk

∂xg∂xg
= −Ajδik + 2

∂Kij

∂xk
(2.1.28)

∂Sij
∂xi

= 0 (2.1.29)

∂Tj
∂xi
− ∂Sij
∂xg∂xg

= −δij (2.1.30)

Lijk = Sij = Tj = 0, Mijk = − V

|Γ|
〈Kkj〉ni on Γ,

Lijk, Mijk, Bjk, Cjk, Sij, Tj V -periodic
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plus the conditions 〈Cij〉 = 〈Bij〉 = 〈Tj〉 = 0 in order to guarantee uniqueness of
the solution. Sij and Tj are the same as Kij and Aj because they satisfy the same
problem. Something has to be explained about the condition on Γ for Mijk: the
inhomogeneous boundary value problem for Mijk is needed in order to counter-
balance the source term in equation (2.1.27) inside the elementary cell. Moreover,
this choice forMijk satisfies the no-slip condition for u(1)

i : using equations (2.1.23)
and the boundary condition forMijk we obtain

u
(1)
i =

V

|Γ|
〈Kkj〉

∂2p(0)

∂x′j∂x
′
k

ni = 0 on Γ. (2.1.31)

Since we are interested in the macroscopic velocity and pressure, we can take
the average of (2.1.23) and (2.1.24):

〈u(1)
i 〉 = −Lijk

∂p(0)

∂x′j

∂p(0)

∂x′k
−Mijk

∂2p(0)

∂x′j∂x
′
k

−Kij
∂p

(1)
0

∂x′j
, (2.1.32)

〈p(2)〉 = ϑp
(2)
0 , (2.1.33)

where Lijk = 〈Lijk〉 andMijk = 〈Mijk〉. Combining equation (2.1.17) with
(2.1.33), we obtain an anisotropic version of the non-linear correction of Darcy’s
law (the so-called Forchheimer equation):

〈ui〉 = 〈u(0)
i 〉+ ε〈u(1)

i 〉 =

= −Kij
∂p(0)

∂x′j
− ε

Ñ
Lijk

∂p(0)

∂x′j

∂p(0)

∂x′k
−Mijk

∂2p(0)

∂x′j∂x
′
k

−Kij
∂p

(1)
0

∂x′j

é
= (2.1.34)

= −Kij
∂p0

∂x′j
− ε

Ñ
Lijk
KljKgk

u
(0)
l u(0)

g −
Mijk

Klk
∂u

(0)
l

∂x′j

é
,(2.1.35)

where p0 = p(0) + εp
(1)
0 . We highlight the fact that the equation above, at least in

theory, does not hold in the case of non-negligible inertia. A paper by Skjetne &
Auriault (1999) shows that this non linear correction of Darcy’s law is valid for
Re ∈ (

√
ε, 1). A strategy to consider, at least in theory, higher values of Re is

presented in the following section.

2.1.3 Finite Reynolds number
The system is different when Re = O(1). The dimensionless NSE are the same

as in section 2.1.1 (eqs. (2.1.8) and (2.1.9)) and expanding as before we have the
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following equations at different orders in ε:

∂u
(0)
i

∂xi
= 0, (2.1.36)

0 = −∂p
(0)

∂xi
, (2.1.37)

Re

Ñ
∂u

(0)
i

∂t
+ u

(0)
j

∂u
(0)
i

∂xj

é
= −∂p

(1)

∂xi
− ∂p(0)

∂x′i
+

∂2u
(0)
i

∂xj∂xj
, (2.1.38)

where the presence of the nonlinear term on the O(ε) momentum equation com-
plicates matters. Still, from (2.1.37) we have p(0) = p(0)(x′, t); further analytical
progress can be made under an Oseen-like approximation, i.e. assuming that

u
(0)
j

∂u
(0)
i

∂xj
≈ Uj

∂u
(0)
i

∂xj

where Uj is a mean fluid velocity through the pores defined via a spatial average:

Uj :=
1

VTot

∫
VTot

〈u(0)
j 〉 dV ; (2.1.39)

with VTot themacroscopic volume of the porousmedium (fluid plus solid). Initially
we search for a steady solution of equations (2.1.36) and (2.1.38). The Oseen
approximation has been proposed for cases with Re = O(1) by Gustafsson &
Protas (2013), with satisfactory results. We adopt it here in order to maintain a
linear problem, yielding (2.1.17).The choice of a global estimate of the velocity
U , defined via equation (2.1.39), is important to establish a two-way link between
the microscopic and the macroscopic set of equations.

Steady solution
If the time derivative in equation (2.1.38) is negligible, after linearization we

obtain the following problem

ReUj
∂u

(0)
i

∂xj
= −∂p

(1)

∂xi
− ∂p(0)

∂x′i
+
∂2u

(0)
i

∂x2
j

(2.1.40)

and
∂u

(0)
i

∂xi
= 0; (2.1.41)
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writing the solution as in eq. (2.1.13), we are actually searching for Kij and Aj
which satisfy

− ReUg
∂Kij

∂xg
=
∂Aj
∂xi
− δij −

∂2Kij

∂x2
g

(2.1.42)

and
∂Kij

∂xi
= 0 (2.1.43)

which can be obtained as in section 1.1.1. After u(0)
i and p(0) are found, Uj in

(2.1.39) must be updated until convergence.

2.2 Two-scale approach for poroelastic media
If the inclusions in fig. 2.1 are not rigid, but are made of a deformable material,

the theory described up to now does not hold and we need to take into account the
deformation of the structure. One of the problems is that, although the unit cell
is fixed in time and centered in x, Vs = Vs(t) and Vf = Vf (t) because of the
deformation and so, in general, it follows that

V (x) = Vs(x, t) ∪ Vf (x, t),

where the dependence on time and on the centroid x of each cell appears; for ease
of notation we will omit both of these dependencies. Another difficulty is that the
equation for the solid motion must now be coupled with the equations for the fluid.
Thus, we consider the dimensional equation for the structure, i.e.

ρs
∂2v̂i

∂t̂2
=
∂σ̂ij
∂x̂j

on Vs, (2.2.1)

where v̂ is the solid displacement vector and σ̂ij are the components of the solid
stress tensor. Under the assumption that the structure is linearly elastic, for in-
finitesimally small strain the following equation holds

σ̂ij = Ĉijklε̂kl(v̂) =
1

2
Ĉijkl

Ç
∂v̂k
∂x̂l

+
∂v̂l
∂x̂k

å
(2.2.2)

with Ĉijkl the fourth order elasticity tensor. This equation must be coupled to the
dimensional NSE for the velocity field û and the pressure field p̂, written in the
form:

ρf

Ç
∂ûi

∂t̂
+ ûj

∂ûi
∂x̂j

å
=
∂Σ̂ij

∂x̂j
on Vf , (2.2.3)
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∂ûi
∂x̂i

= 0 on Vf , (2.2.4)

where Σ̂ij is the canonical fluid stress tensor

Σ̂ij = −p̂δij + 2µε̂ij(û), (2.2.5)

with ε̂ the strain tensor for the fluid, formally defined like for the structure. The
boundary conditions on the solid-fluid interface Γ are the continuity of velocities
and normal stresses:

ûi =
∂v̂i

∂t̂
and Σ̂ijnj = σ̂ijnj, (2.2.6)

where n is the unit normal vector pointing from the solid to the fluid; moreover,
we impose V -periodicity. As in the rigid case, we need to understand the order (in
ε) of each term in the governing equations. If U , V and TS are the fluid velocity,
solid displacement and solid time scales, respectively, from equation (2.2.6) it is:

U =
V

TS
. (2.2.7)

Moreover, we use Young’s modulus of elasticity, E, to scale the elastic tensor and
denote by P the pressure scale. If we assume that macroscopic solid stresses are
balanced by pressure on the interface, we have

E
Pl2

µL2
TS = P, (2.2.8)

provided that macroscopic pressure forces are equilibrated bymacroscopic viscous
dissipation i.e. equation (2.1.3) holds also in this case. Thus, the solid time scale
is defined as

TS =
µL2

El2
=

µ

ε2E
, (2.2.9)

with ε = l/L� 1. Furthermore, from (2.2.1) we can introduce the relation

ρs
T 2
S

=
E

L2
, (2.2.10)

on the assumptionn that inertia of the solid is of the same order of the solid stress
over the macroscale. Combining equations (2.2.9) and (2.2.10) we obtain:

ρsEl
2

µ2
=

1

ε2
. (2.2.11)
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Relation (2.1.3) implies that the fluid velocity scale can be written as

U = ε
P l

µ
. (2.2.12)

Using the last equation together with equations (2.2.7) and (2.2.9) we obtain the
solid displacement scale:

V = ε
PL2

El
=
PL

E
. (2.2.13)

Evaluation of the characteristic time scales In order to understand if the as-
sumptions on the order ofmagnitude for the physical constants of themediummake
sense, we calculate them in case of different elastic materials and fluids. Table 2.2
shows a few possible values of characteristic time scales for some combinations of
the chosen materials. In all the cases ε = 10−3. As we can see, TS is at least three
orders of magnitude smaller than TF for each fluid-solid combination. This fact
suggests that the model described here applies when the solid phase reacts insta-
neously to stresses imposed by the fluid i.e. when the solid phase is in equilibrium
over the characteristic time-scale of the fluid system. However, since the homog-
enization theory is valid also in the limit of infinitesimally small ε and TS ∝ ε−2,
the solid time scale becomes comparable to the fluid one if ε is sufficient small.

We are now ready to introduce the relations between the dimensional and di-
mensionless variables (the latter without hat):

t̂ =
ltf
U
, for the fluid time scale, and t̂ =

µts
Eε2

, for the solid time scale, (2.2.14)

x̂ = lx, p̂ = Pp, û = ε
P l

µ
u, v̂ =

PL

E
v. (2.2.15)

Substituting these definitions in the fluid equation we obtain equation (2.1.4) which
can be written as

εRe
Ç
∂ui
∂tf

+ uj
∂ui
∂xj

å
= − ∂p

∂xi
+ 2ε

∂εij(u)

∂xj
, (2.2.16)

where, also in this case Re = (ρfUl)/µ. Applying the same procedure to the
equation for the solid we obtain:

ε4ρs
El2

µ2

∂2vi
∂t2s

=
∂σij
∂xj

on Vs. (2.2.17)

which becomes
ε2
∂2vi
∂t2s

=
∂σij
∂xj

on Vs. (2.2.18)
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thanks to (2.2.11). The boundary condition on the normal stresses becomes:

− p ni + 2ε εij(u)nj =

ñ
1

ε
Cijklεkl(v)

ô
nj on Γ. (2.2.19)

The continuity equation for the fluid, the boundary conditions and V -periodicity
remain unchanged. At this point we can perform a multiple scale expansion as in
the rigid case introducing the fast and slow variables, x and x′ = εx, respectively,
and the expansions

f = f (0) + εf (1) + ε2f (2) + . . . where f = {ui, vi, p,Σij, σij}. (2.2.20)

Moreover we note that the strain tensor (for either the solid or the fluid) becomes

εij + εε′ij (2.2.21)

where
εij(w) =

1

2

Ç
∂wi
∂xj

+
∂wj
∂xi

å
and

ε′ij(w) =
1

2

(
∂wi
∂x′j

+
∂wj
∂x′i

)
.

2.2.1 Small Reynolds number
Using equations (2.2.20) and (2.2.21), and supposing that Re = O(ε), we ob-

tain the following system for the fluid:

∂u
(0)
i

∂xi
= 0, (2.2.22)

∂u
(1)
i

∂xi
+
∂u

(0)
i

∂x′i
= 0, (2.2.23)

0 = −∂p
(0)

∂xi
, (2.2.24)

0 =
∂Σ

(0)
ij

∂x′j
+
∂Σ

(1)
ij

∂xj
= −∂p

(1)

∂xi
− ∂p(0)

∂x′i
+

∂2u
(0)
i

∂xj∂xj
, (2.2.25)

on Vf , and for solid:
∂σ

(0)
ij

∂xj
= 0, (2.2.26)
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0 =
∂σ

(1)
ij

∂xj
+
∂σ

(0)
ij

∂x′j
, (2.2.27)

∂2v
(0)
i

∂t2s
=
∂σ

(2)
ij

∂xj
+
∂σ

(1)
ij

∂x′j
, (2.2.28)

on Vs, plus the boundary conditions:

u
(0)
i =

∂v
(0)
i

∂ts
, (2.2.29)

u
(1)
i =

∂v
(1)
i

∂ts
, (2.2.30)

σ
(0)
ij nj = 0, (2.2.31)

σ
(1)
ij nj = Σ

(0)
ij nj = −p(0)ni, (2.2.32)

σ
(2)
ij nj = Σ

(1)
ij nj, (2.2.33)

on Γ. It is useful to specify the form of the tensors σ and Σ at leading powers in ε:

σ
(0)
ij = Cijkl(εkl(v

(0))), (2.2.34)

σ
(1)
ij = Cijkl(εkl(v

(1))) + Cijkl(ε
′
kl(v

(0))), (2.2.35)

Σ
(0)
ij = −p(0)δij, (2.2.36)

Σ
(1)
ij = −p(1)δij + 2εij(u

(0)). (2.2.37)

We now observe that, from equation (2.2.24), we have p(0) = p(0)(x′, t); the system
made by (2.2.26) and (2.2.31) implies that

σ
(0)
ij = 0 ∀ i, j i.e. Cijkl(εkl(v(0))) = 0 ∀ i, j, (2.2.38)

and from this we have

εkl(v
(0)) = 0 ∀ k, l which implies that v(0) = v(0)(x′, t).
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Effective elasticity tensor Coupling the order ε solidmomentum equation (2.2.27)
with the boundary condition (2.2.32) we obtain a system which, using (2.2.35) and
(2.2.38), can be rewritten in the following way:

∂

∂xj

¶
Cijkl

î
εkl(v

(1)) + ε′kl(v
(0))
ó©

= 0 on Vs, (2.2.39)¶
Cijkl

î
εkl(v

(1)) + ε′kl(v
(0))
ó©
nj = −p(0)ni on Γ, (2.2.40)

plus V -periodicity. Since the system above can be viewed as a linear differential
equation for v(1) forced by v(0) and p(0), we formally express v(1) in terms of v(0)

and p(0):

v(1)(x,x′, t) = χpqi (x)ε′pq(v
(0))(x′, t)− ηi(x)p(0)(x′, t) on Vs, (2.2.41)

where χ is a third order tensor and η a vector. Substituting (2.2.41) into (2.2.39)
and (2.2.40) we have:

∂

∂xj

¶
Cijkl

î
εkl(χ

pq)ε′pq(v
(0))
ó
− Cijkl

î
εkl(η)p(0)

ó
+

+ Cijkl
î
ε′kl(v

(0))
ó©

= 0 on Vs, (2.2.42)¶
Cijkl

î
εkl(χ

pq)ε′pq(v
(0))
ó
− Cijkl

î
εkl(η)p(0)

ó
+

+ Cijkl
î
ε′kl(v

(0))
ó©
nj = −p(0)ni on Γ. (2.2.43)

A particular solution of this system solves the two problems:

∂

∂xj
{Cijkl [εkl(χpq) + δkpδlq]} = 0 on Vs, (2.2.44)

{Cijkl [εkl(χpq) + δkpδlq]}nj = 0 on Γ, (2.2.45)

and
∂

∂xj
[Cijkl εkl(η)] = 0 on Vs, (2.2.46)

[Cijkl εkl(η)]nj = −ni on Γ. (2.2.47)

Generalizing the averaging operator to the solid phase within the unit cell, we
define

〈fs〉 =
1

V

∫
Vs
fs dV,

where the function fs is defined on Vs. From this moment on we will not distin-
guish between the solid or fluid averaging unless the distinction is ambiguous. Our
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target is to deduce a set of equations to determine the solution up to order ε. In
order to do this we can take the solid-phase average to express the solid stress:

〈σ(1)
ij 〉 = (2.2.48)

= 〈Cijkl εkl(v(1))〉+ 〈Cijkl〉ε′kl(v(0)) =

= [〈Cijkl εkl(χpq)〉+ 〈Cijkl〉δkpδlq] ε′pq(v(0))− 〈Cijkl εkl(η)〉p(0) =

= Cijpq ε′pq(v(0))− 〈Cijkl εkl(η)〉p(0),

where
Cijpq = 〈Cijkl εkl(χpq)〉+ 〈Cijpq〉. (2.2.49)

Momentum balance for the composite Equation (2.2.48) is the macroscale
Hooke’s law in the solid phase forced by the fluid pressure. To deduce the mo-
mentum equation for the composite we can define a new tensor

Tij =

 Σij on Vf
ε−1σij on Vs.

(2.2.50)

where σ is divided by ε because we take into account the scaling relation (2.2.19)
between σ and Σ. It is useful at this point, to compute the average of T (0)

ij , i.e.
〈T (0)

ij 〉 =
∫
V T

(0)
ij dV /V:

〈T (0)
ij 〉 = 〈σ(1)

ij 〉+ 〈Σ(0)
ij 〉 = 〈σ(1)

ij 〉 − ϑp(0)δij =

= [〈Cijkl εkl(χpq)〉+ 〈Cijkl〉δkpδlq] ε′pq(v(0))− (〈Cijkl εkl(η)〉+ ϑδij)p
(0) =

Cijpq ε′pq(v(0))− α′ijp(0), (2.2.51)

where α′ij is defined by

α′ij = ϑδij + 〈Cijkl εkl(η)〉. (2.2.52)

Adding the averages of (2.2.25) and (2.2.28) we get

〈∂
2v

(0)
i

∂t2s
〉 = 〈

∂T
(0)
ij

∂x′j
〉+ 〈

∂Σ
(1)
ij

∂xj
〉+ 〈

∂σ
(2)
ij

∂xj
〉. (2.2.53)

Observing that we can exchange integral and derivative only if the integration do-
main and variables do not depend on the differentiation variable we obtain

(1− ϑ)
∂2v

(0)
i

∂t2s
=
∂〈T (0)

ij 〉
∂x′j

+
1

V

∫
Vf

∂Σ
(1)
ij

∂xj
dV +

1

V

∫
Vs

∂σ
(2)
ij

∂xj
dV,
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which, using Gauss theorem, becomes

(1− ϑ)
∂2v

(0)
i

∂t2s
=
∂〈T (0)

ij 〉
∂x′j

+
1

V

∫
Γ

(
σ

(2)
ij − Σ

(1)
ij

)
nj dΩ.

The last integral in the equation above is zero by the boundary condition (2.2.33),
so that the average momentum balance of the composite can be rewritten as

(1− ϑ)
∂2v

(0)
i

∂t2s
=

∂

∂x′j

î
Cijpqε′pq(v(0))− α′ijp(0)

ó
. (2.2.54)

Equation (2.2.54) can be solved, if C is assigned, after solving the equations for χ
and η.

Continuity equation for the composite Another important equation is deduced
using the continuity equation for the fluid at order ε. Let us take the fluid-phase
average of (2.2.23):

〈∂u
(0)
i

∂x′i
〉 = − 1

V

∫
Vf

∂u
(1)
i

∂xi
dV.

As before we can exchange derivative and integral; usingGauss theorem, we obtain
that the equation above is equivalent to

∂〈u(0)
i 〉

∂x′i
=

1

V

∫
Γ
u

(1)
i ni dΩ =

1

V

∫
Γ
v̇

(1)
i ni dΩ =

1

V

∫
Vs

∂v̇
(1)
i

∂xi
dV = 〈∂v̇

(1)
i

∂xi
〉,

(2.2.55)
by the boundary condition (2.2.30). Equation (2.2.41) tells us that

〈∂v̇
(1)
i

∂xi
〉 = 〈 ∂

∂xi

∂

∂ts

î
χpqi (x)ε′pq(v

(0))(x′, ts)− ηi(x)p(0)(x′, ts)
ó
〉 =

= 〈 ∂
∂xi

χpqi (x)ε′pq(v̇
(0))(x′, ts)〉 − 〈

∂

∂xi
ηi(x)ṗ(0)(x′, ts)〉 =

= 〈∂χ
pq
i

∂xi
〉ε′pq(v̇(0))− 〈∂ηi

∂xi
〉ṗ(0).

The only time scale left is the solid time scale ts, indicated simply as t in the
following. A dot above a variable denotes derivation with respect to t. Substituting
the equation above in (2.2.55) we obtain a relation between the solid stress and the
pressure:

∂〈u(0)
i 〉

∂x′i
= 〈∂χ

pq
i

∂xi
〉ε′pq(v̇(0))− 〈∂ηi

∂xi
〉ṗ(0). (2.2.56)

Also this equation can be solved, once we know χ and η.
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Momentum equation for the effective flow In order to obtain a momentum
equation for the fluid phase we consider the problem formed by (2.2.22), (2.2.25),
the boundary condition (2.2.29) plus periodicity over V . This problem can be
viewed as a Stokes problem for u(0) and p(1) forced by p(0) and v̇(0), so that the
most general solution can be written as

u
(0)
i = −Kij

∂p(0)

∂x′j
+Hij v̇

(0)
j and p(1) = −Aj

∂p(0)

∂x′j
+Bj v̇

(0)
j . (2.2.57)

Substituting this form of the solution in equations (2.2.22), (2.2.25), (2.2.29) we
obtain

∂Hij

∂xi
v̇

(0)
j =

∂Kij

∂xi

∂p(0)

∂xj
, (2.2.58)Ç

∂Bj

∂xi
− ∂2Hij

∂xk∂xk

å
v̇

(0)
j =

Ç
∂Aj
∂xi
− δij −

∂Kij

∂xk∂xk

å
∂p(0)

∂x′j
, (2.2.59)

and
(Hij − δij) v̇(0)

j = Kij
∂p(0)

∂x′j
on Γ. (2.2.60)

A solution of this problem can be found imposing the left-hand-side and the right-
hand-side of equations (2.2.58) and (2.2.59) to vanish. Then, simplifying by v̇(0)

j

or ∂p(0)/∂xj the equations obtained, we find two different problems which must
be solved in the unit cell:

∂Aj
∂xi
− ∂Kij

∂xk∂xk
= δij,

∂Kij

∂xi
= 0, Kij = 0 on Γ, (2.2.61)

and
∂Bj

∂xi
− ∂Hij

∂xk∂xk
= 0,

∂Hij

∂xi
= 0, Hij = δij on Γ. (2.2.62)

In order to guarantee the unicity of the solution, since only the gradient of Aj
and Bj appears in equations (2.2.61), (2.2.62), we impose 〈Aj〉 = 0 and 〈Bj〉 =

0. Finally, we consider the volume average of equations (2.2.57) obtaining the
macroscopic governing equation for the fluid phase

〈u(0)
i 〉 − Hij v̇

(0)
j = −Kij

∂p(0)

∂x′j
, (2.2.63)

〈p(1)〉 = −Aj
∂p(0)

∂x′j
+ Bj v̇(0)

j . (2.2.64)

Equation (2.2.63) can be viewed as a Darcy’s law for the unknown 〈u(0)
i 〉−Hij v̇

(0)
j .
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2.2.2 Finite Reynolds number
For Re = O(1) the equations to solve are different. In this case, after substi-

tuting the expansion in ε in the governing equations (2.2.16) and (2.2.18), the new
set of equations for each order of ε is composed by equations (2.2.22) to (2.2.33)
where equation (2.2.25) is substituted by (4.2.1). The development of the effective
equations remains unaltered up to eq. (2.2.53) which must be replaced by

〈∂
2v

(0)
i

∂t2s
〉+ ReŪj〈

∂u
(0)
i

∂xj
〉 = 〈

∂T
(0)
ij

∂x′j
〉+ 〈

∂Σ
(1)
ij

∂xj
〉+ 〈

∂σ
(2)
ij

∂xj
〉, (2.2.65)

so that the new effective equation for the solid structure is

(1− ϑ)
∂2v

(0)
i

∂t2s
+ ReŪj〈

∂u
(0)
i

∂xj
〉 =

∂

∂x′j

î
Cijpqε′pq(v(0))− α′ijp(0)

ó
. (2.2.66)

In the same way we obtain equation (2.2.56) which represents the effective con-
tinuity equation for the composite. Focusing now on the development of Darcy’s
law for the effective velocity, we consider the problem formed by (2.2.22), (4.2.1),
boundary condition (2.2.29) plus periodicity over V . After averaging, we obtain
that the effective equations for u(0)

i are exactly (2.2.63) and (2.2.64) whereHij and
Bi are the solution of the same system as in the Re = O(ε) case, and Kij and Ai
are the solution of a system formed by (4.2.1) and (2.1.43).

2.3 Three-scale approach for rigid porous media
In consideration of the peculiarity of our porous mediumwe can also perform a

three-scale analysis. In addition to the microscale l and the macroscale L defined
before, we introduce a mesoscale h which is a characteristic distance along the
longitudinal axis of the filaments. The order relation among these three scales are:

l

h
= O(ε),

h

L
= O(ε), ⇒ l

L
= O(ε2). (2.3.1)

We thus introduce a new elementary cell, shown in Fig. 2.2. The velocity and
pressure fields are governed by equations (2.1.1) and (2.1.2). In the previous case
we had that the velocity and pressure field were V -periodic; in this case, instead,
we can only impose periodicity along the x1 and x2 directions. In the x3 direction
the condition needed are

ûi(x1, x2, 0, t) = 0 and ûi(x1, x2, h, t) = Uh
i (2.3.2)
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L

o

x2

x1

SOLID SUBSTRATE

Figure 2.2: View of the particular porous medium, made by fibers shown in the
(x1, x3) and (x1, x2) plane, respectively, for which a three-scale study is suitable.
The dotted rectangle in the two frames represents the elementary cell. Notations
are the same as in the two-scale approach.

where Uh
i is the velocity in the pure fluid region (unknown a priori).

As in the previous case, under the hypothesis that the global pressure gradient is
balanced by the local viscous term, the pressure scale is found by equation (2.1.3).
The dimensionless variables are related to the dimensional ones by:

x̂i = lxi for i = 1, 2 x̂3 = hx3 t̂ =
l

U
t

ûi = Uui for i = 1, 2 and û3 = εUu3

Considering these normalizations, we observe that two scales define the pressure
gradient, i.e.

∂p̂

∂x̂i
=
µUL

l3
∂p

∂xi
for i = 1, 2 and

∂p̂

∂x̂3

=
µUh

l3
∂p

∂x3

= ε
µUL

l3
∂p

∂x3

.

Substituting in the governing equations we obtain

U

l

∂ui
∂xi

+
εU

h

∂u3

∂x3

= 0 for i = 1, 2, (2.3.3)

ρ

Ç
U2

l

∂ui
∂t

+
U2

l
uj
∂ui
∂xj

+
εU2

h
u3
∂ui
∂x3

å
= (2.3.4)

= −µUL
l3

∂p

∂xi
+
µU

l2
∂2ui
∂x2

j

+
µU

h2

∂2ui
∂x2

3

for i, j = 1, 2
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ρ

Ç
εU2

l

∂u3

∂t
+
εU2

l
uj
∂u3

∂xj
+
ε2U2

h
u3
∂u3

∂x3

å
= (2.3.5)

= −εµUL
l3

∂p

∂x3

+ ε
µU

l2
∂2u3

∂x2
j

+ ε
µU

h2

∂2u3

∂x2
3

for j = 1, 2

Defining the Reynolds number in the usual way and multiplying equations (2.3.4)
and (2.3.5) by l/ρU2 and l/ερU2, respectively, the normalized momentum equa-
tion is

∂ui
∂t

+ uj
∂ui
∂xj

+ ε2u3
∂ui
∂x3

=

= − 1

ε2Re
∂p

∂xi
+

1

Re
∂2ui
∂x2

j

+ ε2
1

Re
∂2ui
∂x2

3

for j = 1, 2 and i = 1, 2, 3.

(2.3.6)

The continuity equation becomes

∂ui
∂xi

+ ε2
∂u3

∂x3

= 0 for i = 1, 2. (2.3.7)

As in the two-scale analysis we consider two possibilities for the Reynolds number:

Re = O(ε) and Re = O(1).

2.3.1 Small Reynolds numbers
If we choose Re = O(ε) the momentum equation can be rewritten as

ε3
Ç
∂ui
∂t

+ uj
∂ui
∂xj

+ ε2u3
∂ui
∂x3

å
=

= − 1

Re∗
∂p

∂xi
+ ε2

1

Re∗
∂2ui
∂x2

j

+ ε4
1

Re∗
∂2ui
∂x2

3

for j = 1, 2 and i = 1, 2, 3,

(2.3.8)

where Re∗ = O(1). The continuity equation remains unchanged. We introduce
the microscopic variables (x1, x2) in the x1- and x2-directions, the mesoscopic
variable x′3 = εx3 in the x3−direction, the macroscopic variables (x′′1, x

′′
2, x

′′
3) =

ε2(x1, x2, 0) and the expansions

u = u(0) + εu(1) + . . . , p = p(0) + εp(1) + . . . (2.3.9)

where u(i) and p(i) are functions of (x1, x2, x
′
3, x
′′
1, x

′′
2, t). The derivative operators

assume the following form

∂

∂xi
→ ∂

∂xi
+ ε2

∂

∂x′′i
for i = 1, 2 (2.3.10)
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∂

∂x3

→ ε
∂

∂x′3
, (2.3.11)

and

∂2

∂xi∂xi
→ ∂2

∂xi∂xi
+ 2ε2

∂2

∂xi∂x′′i
+ ε4

∂2

∂x′′i ∂x
′′
i

for i = 1, 2, (2.3.12)

∂2

∂x3∂x3

→ ε2
∂2

∂x′3∂x
′
3

. (2.3.13)

Substituting all these expansions in the governing equations and collecting like-
order terms, we obtain at O(ε0)

u
(0)
i = 0 on Γ (2.3.14)

∂u
(0)
i

∂xi
= 0 for i = 1, 2, (2.3.15)

∂p(0)

∂xi
= 0 for i = 1, 2, (2.3.16)

at O(ε)
∂p(1)

∂xi
= 0 for i = 1, 2 and

∂p(0)

∂x′3
= 0, (2.3.17)

and at O(ε2)

0 = −∂p
(0)

∂x′′i
− ∂p(2)

∂xi
+
∂2u

(0)
i

∂x2
j

for i, j = 1, 2, (2.3.18)

0 = −∂p
(1)

∂x′3
+
∂2u

(0)
3

∂x2
j

for j = 1, 2. (2.3.19)

Equations (2.3.16) and (2.3.17) imply that p(0) = p(0)(x′′) (the leading order pres-
sure term depends only on macroscale) and

p(1) = p(1)(x′3, x
′′
1, x

′′
2) (2.3.20)

(the order ε term of the pressure does not depends on the microscale). Equation
(2.3.19) is linear for u(0)

3 , forced by ∂p(1)/∂x′3. By linearity we can write the solu-
tion as

u
(0)
3 = −K33

∂p(1)

∂x′3
. (2.3.21)

Substituting (2.3.21) in (2.3.14) and (2.3.19) we obtain the equations for K33:

∂K33

∂x2
1

+
∂K33

∂x2
2

= −1. (2.3.22)



2.3 Three-scale approach for rigid porous media 45

K33 = 0 on Γ. (2.3.23)

In the same way we can conclude that the solution of equations (2.3.18) can be
written as

u
(0)
i = −Kij

∂p(0)

∂x′′j
for i, j = 1, 2 (2.3.24)

and
p(2) = −Aj

∂p(0)

∂x′′j
+ p

(2)
0 for j = 1, 2, (2.3.25)

where p(2)
0 is constant with respect to xj, j = 1, 2. The equations which must be

satisfied by Kij, Aj are obtained by substituting (2.3.24) and (2.3.25) in (2.3.18),
(2.3.15) and (2.3.14), i.e.

∂Aj
∂xi
− ∂2Kij

∂x2
k

= δij for i, j, k = 1, 2, (2.3.26)

∂Kij

∂xj
= 0 for i, j = 1, 2, (2.3.27)

Kij = 0 on Γ for i, j = 1, 2. (2.3.28)

In order to find the equations for the velocity field at the macroscale we define the
following averaging

〈f〉P =
1

A

∫
P(Vf )

fdA (2.3.29)

where P(Vf ) is the projection of Vf over the (x1, x2)-plane so that dA = dx1dx2

and A is the area of P(Vf ). Summing up we have the following seven unknowns

K =

Ü
k11 k12 0

k21 k22 0

0 0 k33

ê
and A =

Ä
A1 A2 0

ä
(2.3.30)

which can be found solving the problem defined over the projection of the elemen-
tary cell V over the (x1, x2) plane

∂Aj
∂xi
− ∂2Kij

∂x2
1

− ∂2Kij

∂x2
2

= δij

∂Ki1

∂x1

+
∂Ki2

∂x2

= 0

Kij = 0 on Γ

Kij, Aj (x1, x2)-periodic

(2.3.31)
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for the unknowns Kij, Aj , i, j = 1, 2. K33, instead, can be found solving the
following problem over the whole cell V

∂K33

∂x2
1

+
∂K33

∂x2
2

= −1

K33 = 0 on Γ

K33 (x1, x2)-periodic

(2.3.32)

Once we have found all the coefficients, after averaging (2.3.21) and (2.3.24), the
equations for the velocity field at the macroscale read

〈u(0)
3 〉P = −〈K33〉P

∂p(1)

∂x′3
; 〈u(0)

i 〉P = −〈Kij〉P
∂p(0)

∂x′′j
(2.3.33)

since ∂p(0)/∂x′′j does not depend on the variables of integration in the definition
of 〈·〉P . Equations (2.3.33) are mesoscopic. To obtain the macroscopic equations
we have to consider the average with respect to the mesoscopic variable x′3 defined
as

〈·〉3 =
∫ 1

0
· dx′3 (2.3.34)

where x′3 varies between 0 and 1 since we are considering problems over a unitary
cube. The resulting equations are

〈〈u(0)
3 〉P〉3 = −〈〈K33〉P

∂p(1)

∂x′3
〉3, 〈〈u(0)

i 〉P〉3 = −〈Kij〉P
∂p(0)

∂x′′j
(2.3.35)

which macroscopically are defined only for a fixed x′′3 (indeed, as already noted,
the macroscopic variable in the third direction is not defined, and this means pre-
cisely that the porous medium is macroscopically confined in that direction). This
last fact is equivalent to stating that, in a fluid-structure interaction problem, the
presence of a porous medium, can be written as a modified boundary condition at
a fixed x3.

2.3.2 Finite Reynolds numbers
If we choose Re = O(1) the dimensionless governing equations are

∂ui
∂t

+ uj
∂ui
∂xj

+ ε2u3
∂ui
∂x3

=

= − 1

ε2Re
∂p

∂xi
+

1

Re
∂2ui
∂x2

j

+ ε2
1

Re
∂2ui
∂x2

3

for j = 1, 2 and i = 1, 2, 3,
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and
∂ui
∂xi

+ ε2
∂u3

∂x3

= 0 for i = 1, 2.

The procedure is the same as in the small Re case; collecting like-order terms in ε,
equations found previously at O(ε0) and O(ε) still hold, but at O(ε2) we obtain

∂u
(0)
i

∂t
+u

(0)
j

∂u
(0)
i

∂xj
= − 1

Re

(
∂p(0)

∂x′′i
+
∂p(2)

∂xi

)
+

1

Re
∂2u

(0)
i

∂x2
j

for i, j = 1, 2, (2.3.36)

∂u
(0)
3

∂t
+ u

(0)
j

∂u
(0)
3

∂xj
= − 1

Re
∂p(1)

∂x′3
+

1

Re
∂2u

(0)
3

∂x2
j

for j = 1, 2. (2.3.37)

instead of equations (2.3.18) and (2.3.19). As before, p(0) = p(0)(x′′1, x
′′
2) and

p(1) = p(1)(x′3, x
′′
1, x

′′
2). Before solving equations (2.3.36) and (2.3.37), they must

be linearized using the definition (2.1.39). Once the equations are linearized, the
solution of (2.3.36) and (2.3.37) can be written as in equations (2.3.24), (2.3.25)
and (2.3.21), respectively. However, the tensor K satisfies the following systems

ReUl
∂Kij

∂xl
+
∂Aj
∂xi
− ∂2Kij

∂x2
1

− ∂2Kij

∂x2
2

= δij

∂Ki1

∂x1

+
∂Ki2

∂x2

= 0

Kij = 0 on Γ

Kij, Aj (x1, x2)-periodic

(2.3.38)

for the unknowns Kij, Aj , i, j, l = 1, 2. K33, instead, can be found solving the
following problem over the whole cell V

− ReUj
∂K33

∂xj
+
∂K33

∂x2
1

+
∂K33

∂x2
2

= −1

K33 = 0 on Γ

K33 (x1, x2)-periodic

(2.3.39)

with j = 1, 2. The macroscopic equations can be deduced as in the small Re case
(equations 2.3.35).



Chapter 3

Treatment of heterogeneities

As already noted in chapter 1, our goal is to develop a model for a fluid flow
which interacts with porous and elastic structures. In order for our work to have
some relevance in real physical applications, we have to be able to deal with sudden
changes in the physical characteristics of the domain over which we solve. This is
the case, for instance, of macroscopic boundaries in the porous medium, beyond
which there are zero-permeability zones (walls) or fully permeable regions (pure
fluid). It must be pointed out that all of these occurences should be treated with the
homogenization technique with great care, since the fundamental hypothesis in ho-
mogenization is that we are dealing with infinite domains in order to identify some
sort of micro–periodicity in the structure. Thus, different sets of equations must be
solved over different domains neighboring, for example, a region of different phys-
ical properties. These same equations should be coupled with interface conditions
valid at the intersections of the domains. NSE hold in the pure fluid region, while
in the porous region the macroscopic equations developed in the previous chapter
are assumed to be valid.

In this chapter we show the basis of the domain decomposition method, high-
lighting how these interface conditions are treated. Then we present a different
normalization of the macroscopic equations in order to make them comparable
with NSE. Eventually, we introduce the interface conditions used to couple the
two sets of equations in the rigid case. Several interface conditions are present in
the literature and a recent review can be found in Carraro et al. (2013). They can
be essentially classified in three classes: the first one involves pressure and veloc-
ities which are linked over the interface directly (continuity or jump); the second
one involves them indirectly, linking the normal to the interface components of the
stress tensor. The second class cannot be employed if the equation to be solved

48



49

in the porous medium is Darcy’s law. The third class includes all those methods
which use a filter to go from the porous region to the fluid region; a drawback of
this latter approach is that there is no general physical justification for the choice
of the filter. We have tested the most representative of each class comparatively;
all conditions contain a certain degree of arbitrariness (since they must account for
the lack of homogenization) and require the a posteriori calibration of one or more
parameters.

For clarity, we denote in the following with ·|F the unknown fields in the pure
fluid region, and with ·|P the unknown fields in the porous medium, as sketched
in figure 3.2.

Whereas the microscopic fluid-structure interface Γ has a physical counterpart
and it is unequivocally defined by the microscopic structure of the porous medium,
the interface related to the boundaries of a porous medium (which has a pointwise
or local characterization if we use a macroscopic or mesoscopic approach, respec-
tively, as already explained in section 1.2.1) is an idealization which does not have
a physical counterpart and its introduction is necessary if we want to observe the
phenomenon from both the points of view just cited. To formalize its definition
we restrict our macroscopic problems on a plane, so that the interface is a curve.
The coordinates of this curve on a plane are xITF (γ) where γ is the curvilinear
abscissa which parametrizes the curve. The subsequent question is: how can we
identify this curve? The answer cannot be formalized for every structure, but in
general one should consider a smooth line which overlies the portions of Γ, whose
normal unit vector points outside the porous medium. This definition is visualized
in figure 3.1. Similarly, the interfacial region (highlighted in figure 3.1) can be
realized as an offset of the pointwise interface, of width a priori unknown.
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Figure 3.1: The solid thick lines represent the microscopic pointwise interface
defined as before; the highlighted regions, instead, are the local macroscopic in-
terfaces (or interfacial zones).

3.1 Heterogeneous domain decomposition method
In order to make immediately clear why we have written about interface con-

ditions and coupling sets of equations, we briefly show the idea of domain decom-
position method. In terms of differential problems we want to solve two different
boundary value problems over two disjoined neighboring domains ΩF and ΩP

such that ΩF ∩ ΩP = ΓFP as represented in figure 3.2. We denote with gF and
gP the families of unknowns which live on ΩF and ΩP , respectively. Using these
notations from the macroscopic fluid-structure interaction problem the following

ΩF

ΩP

ΓFP

ΩF

ΩP

F-REGION

P-REGION

gF=(uF,pF)

gP=(uP,pP,vP)

Figure 3.2: Sketch of a generic domain over which the domain decomposition
method is applied. In each region we have a different solution.
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system of equations arises:

LFgF = fF over ΩF ,

LPgP = fP over ΩP ,

ΦF (gF ) = hF over ∂ΩF\ΓFP ,
ΦP (gP ) = hP over ∂ΩP\ΓFP ,
ΨF (gF ) = ΨP (gP ) over ΓFP ,

ΞP (gP ) = ΞF (gF ) over ΓFP ,

(3.1.1)

where fF and fP are the knowns terms, ΦF and ΦP , hF and hP are the boundary
conditions and ΨF , ΨP and ΞF , ΞP are the exchange conditions related to the re-
spective problems F and P . We note that in order to have two well posed boundary
values problems, two exchange conditions are needed, one for the F -problem and
one for the P -problem. For an in-depth analysis we refer to Quarteroni & Valli
(1999).

3.2 Macroscopic and pointwise equations
In each region of the domain constituted only by the fluid phase (ΩF ), the NSE

are valid. They have been non-dimensionalized on the basis of a macroscopic
Reynolds number ReL defined as

ReL =
ρUL
µ

, (3.2.1)

where a priori L is not necessarily equal to L, is the macroscopic length used in
the homogenization method. With this choice we call X the long-scale spatial
variable and δ = l/L the characteristic small parameter of the elementary cell
with the new normalization. For simplicity, from this point on, we assume that
L = L, δ = ε and X = x′ (for the two-scale approach, or X = x′′ for the three-
scale approach). Moreover, we note that the microscopic problems introduced in
chapter 2 are referred to the microscopic domain and deduced using a different
Reynolds number, based on the length l. The relation between the two Reynolds
numbers is

Re = εReL;

we now have to normalize the microscopic domain using the following transfor-
mation:

X = εx
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i.e., if the microscopic variable in the L−normalization varies in [0, ε]3 then x

varies in [0, 1]3, so that Kij and Aj are dimensionless variables computed on the
unitary cube (or on the unitary square in the case of three scales). We underline
here that only the order zero terms are considered in our homogenization technique,
i.e. u = u(0). For this reason we can compare the effective equations, deduced
in chapter 2, with the pointwise NSE and, to not confuse the reader, we omit the
brackets and the superscript (0) in the effective equations, with the understanding
that each time that we encounter an unknown denoted by ·|P , it is the solution of
the homogenized governing equations.

Darcy’s equation The second normalization stems from the need to coupleDarcy’s
equation with the NSE. The dimensional Darcy’s equation is

ûi = −K̂ij
µ

∂p̂

∂x̂j
; (3.2.2)

to find the non-dimensional Darcy’s law we consider the same normalization of
the Navier-Stokes equation:

x̂ = Lx, p̂ = ρU2p, û = Uu. (3.2.3)

Writing Darcy’s law in non-dimensional form we get

ui = −ReL
K̂ij
L2

∂p

∂xj
, (3.2.4)

which can be written as

ui = −ε2ReL
K̂ij
l2

∂p

∂xj
= −ε2ReLKij

∂p

∂xj
. (3.2.5)

We note that K̂ij/l2 is the non-dimensional permeability tensor, normalized by l2,
i.e. the permeability tensor found via homogenization (Kij in eq. (2.1.17)).

Brinkman’s equation We consider here also Brinkman’s equation, which has
not been introduced up to now. This equation can be obtained from homogeniza-
tion theory (cf. Mei&Vernescu (2010)), adopting slightly different normalizations
of the starting equations, on the assumption that the fibers are sufficiently sparse.
The dimensional form of this equation is

ûi = −K̂ij
µ

∂p̂

∂x̂j
+
K̂ij
µ
µe
∂2ûj
∂x̂2

k

,
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where µe is an effective viscosity, a priori unknow (cf. Givler & Altobelli (1994)).
Using the normalizations in equation (3.2.3), the non-dimensional form of the
equation above is

ui = −Kijε2ReL
∂p

∂xj
+Kijε2

µe
µ

∂2uj
∂x2

k

. (3.2.6)

Poroelastic equations We recall here the poroelastic equations:

(1− ϑ)
∂2vi
∂t2

=
∂

∂x′j

î
Cijpqε′pq(v)− α′ijp

ó
,

∂ui
∂x′i

= 〈∂χ
pq
i

∂xi
〉ε′pq(v̇)− 〈∂ηi

∂xi
〉ṗ,

ui −Hij v̇j = −Kij
∂p

∂x′j
.

(3.2.7)

In this case we choose the normalization employed in the homogenization tech-
nique to couple (3.2.7) with NSE, which read as in equation (2.2.16), i.e.

εRe
Ç
∂ui
∂tf

+ uj
∂ui
∂xj

å
= − ∂p

∂xi
+ 2ε

∂εij(u)

∂xj
. (3.2.8)

3.3 First approach: the fictitious interface condition
The first interface condition is suitable when we want to couple the Darcy’s

law with the NSE; it consists of imposing

p|P = p|F + constant (3.3.1)

at a fictitious interface positioned a small distance δ, which we call penetration
depth, below the physical interface, in order to transfer information from the fluid
region to the porous region. The presence of the constant term has no influence
on the solution of Darcy’s equation, since the pressure is always specified (both in
P and F ) up to an arbitrary constant; the constant is however maintained, at least
formally, in (3.3.1) to highlight the fact that pressure may be non-continuous across
the interface. More specifically, a pressure jump has been predicted by Marciniak-
Czochra & Mikelić (2012) and Carraro et al. (2013) when the porous medium
is anisotropic or in the presence of flow inertia, and it varies along the interface
direction. On the other hand, continuity of pressure across the interface, up to the
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order of the pore size, was strongly advocated by Ene & Sánchez-Palencia (1975).
To have adequate conditions for the Navier-Stokes equation, we use

ui|F = ui|P , (3.3.2)

applied at the same fictitious interface as above. Here ui|F is not averaged because
it is the effective velocity, computed over a grid in which each point corresponds to
a microscopic cell. Enforcing the continuity of both pressure and velocity below
the real interface has been proposed and tested by Le Bars &Worster (2006), with
the scope of accounting for inertia within the porous layer in the immediate vicinity
of the fluid domain. Le Bars & Worster (2006) have shown that this is essentially
equivalent to the interface condition by Beavers & Joseph (1967), which is applied
at the physical interface, and have estimated the distance δ to vary as

δ = c

 
K
ϑ
, (3.3.3)

where K represents the permeability (in their case a scalar since the medium is
isotropic) and c is a constant to be determined (c = 1 in their work). By enforcing
the conditions at δ, we are sufficiently far from the interface for the periodicity
assumption of the theory to remain tenable.

3.4 Second approach: Brinkman–Navier–Stokes cou-
pling at the interface

The second approach Kaviany (1995) consists in modifying Darcy’s equation
adding a viscous term through which we can impose continuity of the velocity and
the tangential and normal components of the stress tensor over the interface. The
resulting equation is Brinkman’s equation (3.2.6). If µe were available we could
impose the following conditions at the fluid-porous interface:

(σijnj)ni|F = (σijnj)ni|P and (σijnj)ti|F = (σijnj)ti|P (3.4.1)

to transfer data from the fluid domain to the porous mediumP ruled by Brinkman’s
equation, and

ui|F = ui|P (3.4.2)

to go from the porous domain to the fluid domain. In equations (3.4.1), σij is the
stress tensor, ni and ti are, respectively, the unit vectors normal and tangent to the
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interface. Such conditions can be written in the present case asÇ
∂u1

∂x3

+
∂u3

∂x1

å∣∣∣∣∣
F

=
µe
µ

Ç
∂u1

∂x3

+
∂u3

∂x1

å∣∣∣∣∣
P

(3.4.3)

and Ç
−p+

2

ReL
∂u3

∂x3

å∣∣∣∣∣
F

=

Ç
−p+

2µe
µReL

∂u3

∂x3

å∣∣∣∣∣
P

. (3.4.4)

We note that the stress from the pure fluid region F is transmitted to the homog-
enized region P , and is distributed to both the inclusions (the fibers) ad the fluid
contained within them.

3.5 Third approach: the apparent permeability near
the interface

It is important to state the concept that the permeability is an apparent property
of a porous skeleton (cf. Edwards et al. (1990); Breugem et al. (2004)), i.e. it does
not depend only on the geometrical structure of the porous medium, but also on
the flow regime inside it whenever we want to include (at least some) inertia. Up
to a certain regime, the permeability can be assumed to be an intrinsic property;
outside of this regime it depends mostly on the flow’s properties (cf. figure 3.3).
For this reason, if we look at the problem from a mesoscopic point of view the
third interface condition used consists in applying the same strategy as in section
3.3 with δ = 0, i.e. the matching is enforced precisely at the physical interface,
but the permeability components are driven smoothly to a large absolute value near
the interface, through a filter function which forces the permeability to vary rapidly
over a distance of the order of ε. This strategy has been proposed by Chandesris
& Jamet (2008) and Jamet & Chandesris (2009). The difficulties of imposing this
condition arise during the estimation of the filter which allows the permeability to
vary. Unfortunately there is no general law which describes the variation; if we
have a numerical solution of a test case, the values of the permeability must be
calibrated point by point (as shown for K11 in figure 3.4). This has been done in
the hope of finding insight for the evaluation of the filter.
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F(g,h,k)

Re APPARENT PERMEABILITY

INTRINSIC PERMEABILITY

Figure 3.3: Intrinsic or apparent behavior of the permeability for varying regimes
of the flow (expressed as function of Re) and the parameters g, h, k which repre-
sent some geometrical properties of the structure (e.g. porosity, shape of the solid
inclusions or geometry of the macroscopic configuration).
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Figure 3.4: Inverse of the pointwise permeability K11 in a macroscopic region
computed applying Darcy’s law to the results of a direct numerical simulation a
posteriori. The macroscopic configuration considered is described in chapter 5.
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3.6 The equivalent boundary condition for the three-
scale approach

If we apply a three-scale approach, in macroscopic terms, equation (2.3.35)
reads as boundary condition because it holds only for a fixed x3. In analogy with
the conditions imposed in the first case presented in this chapter, we suppose that
equation (3.3.1) is valid. Then, the horizontal velocity is deduced by equation
(2.3.35), which is not dependent on x′′3. The slip horizontal velocity with the cur-
rent notation reads

u1|F = − K11
∂p

∂x1

∣∣∣∣∣
F

. (3.6.1)

Combining equation (3.6.1) with the continuity equation we obtain a second rela-
tion that can be used as an interface condition for u3:

∂u3

∂x3

∣∣∣∣∣
F

= K11
∂2p

∂x1

∣∣∣∣∣
F

. (3.6.2)

The hypotheses upon which this condition is applicable are essentially two:

• the porous medium has three characteristic length scales;

• the microscopic structure of the porous medium is isotropic or transversely
isotropic, or, at least, K12 = 0, otherwise the gradient of p in the vertical
direction appears in the effective boundary condition (and this cannot be
computed because the pressure inside the porous medium should be known).



Chapter 4

Microscopic results

As it can be evinced from chapter 2, there are two categories of equations,
which lead us to different results, for the microscopic and macroscopic variables.
The former category of results will be presented in the following chapter. Also in
this case we divide the results on the basis of Table 2.1. The microscopic equations
are solved over different domains, i.e. we have considered porous media with dif-
ferent periodic microstructures. The solid inclusions inside an elementary cell are
represented in figure 4.1 These inclusions can be distinguished using the following
classification:

• unconnected structures: detached spheres;

• partially connected structures (only in one direction): cylinders;

• totally connected structures (in all directions): touching spheres, linked cylin-
ders.

Moreover, the same structures can be classified as isotropic (spheres, touching
spheres) and transversely isotropic structures (cylinders, linked cylinders). The
choice of the three categories listed above is not casual and, as we show in the
present chapter, it causes fundamental differences in the effective tensors, mak-
ing sometime unsuitable the homogenization technique. The microscopic tensors
field computed over the unitary cubic cell, as noted in section 3.2, are presented.
Then, special attention is devoted to the averaged fields, since only these values
are used in the macroscopic governing equations for the flow and displacement.
All the Cauchy’s problems associated to the microscopic world are computed us-
ing OpenFOAM, an opensource tool for solving partial differential equations; for
a detailed explanation of the numerical methods we refer to Appendix A.1.
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Figure 4.1: Four different solid inclusions which characterize the porous medium
inside the elementary cell: spheres, touching spheres, cylinders and linked cylin-
ders.
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radius of the sphere radius of the cylinder
ϑ = 0.3 0.5508 0.4720
ϑ = 0.35 0.5374 0.4549
ϑ = 0.4 0.5232 0.4370
ϑ = 0.45 0.5083 0.4184
ϑ = 0.5 0.4924 0.3989
ϑ = 0.55 0.4754 0.3785
ϑ = 0.6 0.4571 0.3568
ϑ = 0.65 0.4372 0.3338
ϑ = 0.7 0.4153 0.3090
ϑ = 0.75 0.3908 0.2821
ϑ = 0.8 0.3628 0.2523
ϑ = 0.85 0.3296 0.2185
ϑ = 0.9 0.2879 0.1784
ϑ = 0.95 0.2285 0.1262
ϑ = 0.99 0.1337 0.0564

Table 4.1: The table shows how the radii of a spherical or cylindrical inclusion
vary for varying porosity ϑ. The porosities 0.3 to 0.45 cannot be realized if we do
not allow for intersecting spheres.
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The tensor Hij and the vector Bj A general consideration must be made for
Hij and Bj: they are deduced by system (2.2.62) for which a particular solution
is Hij = δij and Bj constant, for each of the tested geometries. This fact can be
proven analytically by simply substituting δij in the system, as confirmed by Mei
& Vernescu (2010) and by our numerical calculations over the microscopic cell.
The value of Bj is not important to determine the flow and displacement fields
because it expresses the dependence of p(1) onto v̇(0), which does not appear in the
effective equations at leading order.

4.0.1 Summary of the microscopic problems
We recall first the systems of PDE’s to be solved for the microscopic quantities

χ, η,K, H,A and B:
∂

∂xj
{Cijkl [εkl(χpq) + δkpδlq]} = 0,

{Cijkl [εkl(χpq) + δkpδlq]}nj = 0 on Γ,

(4.0.1)


∂

∂xj
[Cijkl εkl(η)] = 0,

[Cijkl εkl(η)]nj = ni on Γ,

(4.0.2)



∂Aj
∂xi
− ∂2Kij

∂x2
k

= δij,

∂Kij

∂xi
= 0,

Kij(x, t) = 0 on Γ,

(4.0.3)



∂Bj

∂xi
− ∂2Hij

∂x2
k

= 0,

∂Hij

∂xi
= 0,

Hij(x, t) = δij on Γ

(4.0.4)

plus V−periodicity for all the unknowns. When Re = O(1) all the problems
remain unchanged except for system (4.0.3) which is substituted by

− ReUg
∂Kij

∂xg
=
∂Aj
∂xi
− δij −

∂2Kij

∂x2
g

,

∂Kij

∂xi
= 0,

Kij(x, t) = 0 on Γ.

(4.0.5)
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4.1 Packed spheres
The case of packed spheres has been widely studied in the literature (cf. Car-

man (1939); Zick & Homsy (1982); Martys et al. (1994)) and is presented here as
a first validation case for the permeability tensor.

4.1.1 The permeability tensor Kij and Ai

In figure 4.2 the component of the fieldsKij andAi computed over the unitary
cubic cell are shown. For spherical structures we find that K11 = K22 = K33,
and Kij with i 6= j are antisymmetric with respect to the center of the sphere.
Given that a spherical structure is isotropic, it is easy to prove that 〈Kij〉 = Kδij
(cf. Goldstein (1980)), where K is a constant. Thanks to the antisymmetry of
the microscopic fields, we obtain that 〈Kij〉 = 0 for i 6= j. Figure 4.2 shows also
that Kii is perfectly symmetric with respect the center of the sphere. A particular
consideration must be made for Aj: it is clear that, since it plays the role of the
pressure in Stokes equations, it is determined up to a constant, so that also Aj is
antisymmetric up to a translation. Actually, we are searching for a macroscopic
solution at leading order in ε: whereas 〈Kij〉 appears in the macroscopic equations
for u(0)

i , 〈Aj〉 is used only in the macroscopic equation for p(1), thus, it is not used
in the determination of the leading order approximation of the flow field.

Comparison with the Kozeny and Carman equation

Since we are interested in the averaged values of the microscopic fields, we
have compared the permeability tensor Kij computed via equations (2.1.14) in
the case of packed spheres (Kij = Kδij) with the Kozeny-Carman law given in
Carman (1939):

K̂ =
1

5

Ç
Vs
|Γ|

å2 θ3

(1− θ)2
(4.1.1)

where Vs is the solid volume and |Γ| is the area of the fluid structure interface
(wetted surface); this equation is dimensional; in order to compare with the non-
dimensional results we have to normalize the isotropic permeability K̂ with l2 (cf.
eq. 2.1.18). In the case of spheres, the dimensional Kozeny-Carman law becomes

K̂ =
1

5

(
4
3
πr3

4πr2

)2
θ3

(1− θ)2
=

d2

180

θ3

(1− θ)2
; (4.1.2)
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Figure 4.2: K and A fields in the unit cell,for the case of Stokes flow (eq. 2.1.14),
porosity ϑ = 0.8.
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moreover, using the following relation which holds in the case of a cubic elemen-
tary cell with spherical inclusions;

d2 =

Ç
6

π

å 2
3

l2(1− θ)
2
3 , (4.1.3)

we obtain the following non dimensional form of the Kozeny-Carman law:

K =
K̂
l2

=

Ç
6

π

å 2
3 1

180

θ3

(1− θ) 4
3

. (4.1.4)

The results are reported in fig. 4.3, together with our numerical results and the
theoretical solutions by Zick & Homsy (1982). Our results for Kij = 〈Kij〉 av-
eraged over space with the definition in equation (2.1.16), match perfectly those
obtained by Zick&Homsy (1982) for varying values of the porosityϑ (cf. fig. 4.3).
The values of Zick & Homsy (1982) are Stokes flow results, obtained through the
technique of integral equations, for different packings of uniform spheres. The
much-quoted Kozeny-Carman (Carman (1939)) empirical formula is close to the
theoretical findings only for ϑ around 0.5. A better fit through the data, to represent
the isotropic permeability as function of the porosity, is given by:

K̂ =
1

5

Ç
Vs
|Γ|

å2 ϑ
5
2

(1− ϑ)
47
30

(4.1.5)

(dashed red line in figure 4.3), valid in the range 0.476 < ϑ < 1.
Since the case of disjoined spheres has no physical meaning, as it will be shown

later on section 4.2.3, we do not present the results for the other microscopic ten-
sors.
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Figure 4.3: Permeability versus porosity for regular arrays of spheres: homoge-
nization theory (�), empirical law of Kozeny-Carman (−), theoretical results by
Zick & Homsy (1982) (I).

4.2 Cylindrical fibres
As already discussed in the introduction, the case of cylindrical fibres is an-

alyzed to model the behavior of biologically inspired coatings. We present the
results for the permeability and for the effective elasticity tensor for this particular
geometry. The results presented here are valid for an infinitely wide bed of in-
finitely long cylinders, or equivalently, for a region deep inside the porous medium.

4.2.1 The permeability tensor Kij

Since the structure is transversely isotropic, the components of the permeability
tensor reduce to three: the transversal and longitudinal components K11 and K33,
respectively, and the extra diagonal component K12 = K21. Once Kij is found,
we have a pointwise solution inside the elementary cell V = [0, 1]3.

Case Re = O(ε)

If we are interested in the model for infinitesimally small Reynolds number we
must solve system (4.0.3). The isocontours of each component of the solution are
shown in figures (4.4) to (4.10) for the following porosities: ϑ = 0.4, 0.5, 0.6, 0.7, 0.8, 0.96.
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Since the non-zero components ofKij do not depend on x3, we represent them over
a fixed horizontal plane of equation x3 = 0.5. We omit the results forK2j because
they are a permutation of K1j . K11 and K22 have only one plane of symmetry
(x1 = 0.5), whereasK33 has two planes of symmetry (x1 = 0.5 and x2 = 0.5). As
just observed for the case of packed spheres,K12 andK21 are not identically equal
to zero, but antisymmetric. On the contrary, with this geometry, K13, K23, K31

and K32 are zero and the isocontours represented in figures 4.6, 4.8 and 4.9 are
only due to discretization errors. As one expects, the maximum value of the main
diagonal components increases when the porosity increases. To be thorough, in
figures 4.7 and 4.11 also the results for Aj are presented even if they are not used
in the effective equations. Obviously, also in this case Aj is determined up to a
constant; in particular, we observe that A1 and A2 are antisymmetric with respect
to the plane x1 = 0.5 up to a translation of the whole field, and A3 assumes a
constant value in the whole domain. A2 is not shown because it is a rotation of 90

degrees of A1 around the x3-axis.
As in the previous case, we carry out the weighted integral of Kij over its

microscopic domain, as by equation (2.1.16), to obtainK11,K33 andK12, the latter
being zero by antisymmetry. The results are displayed in fig. 4.12 against a set
of theoretical and experimental data from the literature (Sangani & Yao (1988);
Skartsis & Kardos (1990); Sadiq et al. (1995); van der Westhuizen & du Plessis
(1996); Mityushev & Adler (2002a)), with close agreement for ϑ ranging from 0.3
to 0.9. In the case Re = O(ε) we obtain thatK33 is about twiceK11, which ranges
from about O(10−4) to O(10−1).

The three-scale approach As already noted, the particular cylindrical structure
gives microscopic permeabilities which are invariant with respect to x3. More-
over, if we suppose that the cylinders has two characteristic scale, l, comparable
to its diameter and h, associated to its height which is different from the macro-
scopic length L, it makes sense to perform the three-scale approach described in
section 2.3. The microscopic results are not shown here since they are analogous
to those of the two-scale approach. The averaged results, in the sense of equation
(2.3.29), are represented in figure 4.13, together with the results of the two-scale
approach, already presented in figure 4.12. As one can see, the two theories are in
good agreement. Actually, looking at the solution of the two-scale approach, the
components of Kij and Aj which are not present in the three-scale approach, are
equal to zero in the two-scale approach, so that the equations are similar, but have
been solved over different domains.
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Figure 4.4: K11 for different radii of the cylinder. The porosity ranges in the inter-
val [0.4,0.96].

Figure 4.5: K12 for different radii of the cylinder. The porosity ranges in the inter-
val [0.4,0.96].
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Figure 4.6: K13 for different radii of the cylinder. The porosity ranges in the inter-
val [0.4,0.96].

Figure 4.7: A1 for different radii of the cylinder. The porosity ranges in the interval
[0.4,0.96].
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Figure 4.8: K31 for different radii of the cylinder. The porosity ranges in the inter-
val [0.4,0.96].

Figure 4.9: K32 for different radii of the cylinder. The porosity ranges in the inter-
val [0.4,0.96].



4.2 Cylindrical fibres 70

Figure 4.10: K33 for different radii of the cylinder. The porosity ranges in the
interval [0.4,0.96].

Figure 4.11: A3 for different radii of the cylinder. The porosity ranges in the inter-
val [0.4,0.96].
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Figure 4.12: Components of the permeability tensor versus porosity for regular
arrays of cylinders. The present results are represented by bullets, red for K11 =

K22, black for K33.
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Figure 4.13: Components of the permeability tensor versus porosity for regular
arrays of cylinders calculated with the three-scale (squares) and two-scale ap-
proaches.
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Case Re = O(1)

If we are interested in finite Reynolds numbers, instead, we must solve problem
(4.0.5). The thing which should be immediately observed is that the permeability
is not an intrinsic property of the structure, but it depends on the macroscopic
characteristics of the flow, so that it can be termed apparent permeability. In order
to understand how it is influenced by the flow, a parametric study for varying ϑ and
ReU has been pursued. To verify if the Oseen’s approximation adopted is suitable
in this case, our results are compared with the results of Edwards et al. (1990)
where the permeability is evaluated a posteriori inverting the Darcy’s equation
after solving for the flow. For comparison purposes, we rewrite equations (4.0.5)
using a new notation. We define the mean fluid velocity vector through the pores
as vp = U/ϑ and the pore Reynolds number, Rep = Upl/ν, where Up is the scale
of the pore velocity vp. Hence, we can write the solution of the new linearized
equations as in (2.1.13) and search for Kij and Aj which satisfy

∂Kij

∂xi
= 0, −ϑRepvpl

∂Kij

∂xl
=
∂Aj
∂xi
− ∂2Kij

∂x2
g

− δij, (4.2.1)

with the same boundary conditions as those used in problem (2.1.14). Thus, the
permeability in this case is no longer a simplematerial property, but depends on the
Reynolds number and the orientation of the velocity vector. In the simple case in
which the fluid has a single main direction of motion x1 with constant pore velocity
(as in Edwards et al. (1990)), i.e. vp = (1, 0, 0), equation (4.2.1) becomes:

∂Kij

∂xi
= 0, −ϑRep

∂Kij

∂x1

=
∂Aj
∂xi
− ∂2Kij

∂x2
g

− δij. (4.2.2)

Five different values of θ have been used, from 0.4 to 0.8. Important differ-
ences with respect to the Re = O(ε) case, whether in the microscopic pointwise
permeability or in the averaged values, can be found. In figure 4.14 we see that the
main effect of the presence of the Oseen’s forcing term is the loss of the symme-
tries which characterize the microscopic fields associated to Re = O(ε). Figures
from 4.15 to 4.17 show the loss of symmetry as function of the Oseen’s closure
term, for a fixed porosity of 0.7. The quantity ReU1 ranges in the interval [0, 150].
Furthermore the effect of a fixed forcing quantity ReU1 for varying porosity can
be observed in figure 4.18 to 4.20, where θ ∈ [0.4, 0.8] and ReU1 = 150.

From a macroscopic point of view, in figure 4.21 we can observe the behavior
of the averaged values of Kij which decreases monotonically when the porosity
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Figure 4.14: Relevant components of the permeability inside the microcell. K12 =

K21 and the remaining components are identically zero. In this case we have θ =

0.4 and Re = 150 based on a reference velocity U1 = 1. The solution is invariant
with respect to x3 and symmetry is lost.
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Figure 4.15: K11 for varying the Oseen forcing term from 0 to 150 in accordance
to the values used in Edwards et al. (1990).

Figure 4.16: K12 for varying the Oseen forcing term from 0 to 150.
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Figure 4.17: K33 for varying the Oseen forcing term from 0 to 150.

Figure 4.18: K11 for varying porosity at Re = 150.
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Figure 4.19: K12 for varying porosity at Re = 150.

Figure 4.20: K33 for varying porosity at Re = 150.
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Figure 4.21: K11 and K33 for varying porosity from 0.4 to 0.8 for different values
of the Oseen’s term. The circles represents the values of K11 computed by Ed-
wards et al. (1990); unfortunately, they studied a two dimensional problem over a
horizontal plane so that K33 is not available.
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Figure 4.22: Horizontal component of the permeability K11 versus ϑRep of equa-
tion (4.2.2) from the measurements by Ghisalberti & Nepf (2004). Since the per-
meability is deduced from experimental data, the vertical and horizontal bars rep-
resent the uncertainty of the measurements which is about 10% for each value.
The grey band represents the range of permeabilities calculated by the homoge-
nized model for finite Reynolds numbers for 0.96 ≤ ϑ ≤ 0.99.

decreases, as in the low Re case, and also when the Oseen term increases, thing
that can be noted also observing the microscopic fields.

Another validation has been pursued using the experimental values of Ghisal-
berti & Nepf (2004; 2005; 2006) regarding a turbulent canopy flow. The averaged
permeability is deduced a posteriori from their works, using equation (3.2.5), and
has been compared with that deduced by our model. Since they assume to have a
parallel flow, the only component of permeability that can be evaluated isK11. Fig-
ure 4.22 display the averaged values K11 for variable pore velocity. The gray band
represents the range of permeability K11 computed using the homogenized model
(4.2.2) for the corresponding porosities of each experiment. The experimental val-
ues are in reasonably good agreement with the homogenized values. More details
on this problem are provided in section 5.3.
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Effect of the flow direction on the apparent permeability

Even if the microscopic geometry of the porous medium that we are analyzing
is transversely isotropic, since the apparent permeability depends also on the flow
field some noticeable effects linked to non-isotropicity can be observed in the case
of high Re numbers. In figure 4.23 we can see that if we impose an arbitrary
value for the Oseen’s term, e.g. ReU = (10, 20, 15), the symmetries typical of a
transversely isotropic medium are lost and a new form of the permeability tensor
arises. For this particular flow direction and intensity we obtain an anisotropic
permeability tensor equal to:

Kij =

Ü
0.0046 0.0003081 O(10−9)

0.0003079 0.0057 O(10−9)

O(10−9) O(10−9) 0.01118

ê
(4.2.3)

which can be compared with the corresponding permeability of the Stokes flow
case:

Kij =

Ü
0.009 O(10−9) O(10−9)

O(10−9) 0.009 O(10−9)

O(10−9) O(10−9) 0.019

ê
. (4.2.4)

Other tests which we have performed demonstrate that the greater the difference
between the components ofU, the greater are the anisotropic effects on the micro-
scopic and the averaged permeability.

4.2.2 Tensors Lijk andMijk

Computing the 27 component of Lijk, we have verified that they are equal to
zero in accordance with Nield & Bejan (2013) and, in particular, with Skjetne &
Auriault (1999) in which it is proven, using a variational form of the equations for
Kij , Lijk andMijk, that for a certain range of Re ∈ (ε

1
2 1), only a cubic correction

of Darcy’s law is relevant. In figure 4.24 and in table 4.2, for example, some
components of the microscopic fields and the averaged values of the tensor Lijk
which appears in the quadratic correction of Darcy’s law, are shown.

4.2.3 χpq
i , ηi, α′ij and the effective elasticity tensor Cijpq

In this section we solve for the microscopic problems (4.0.1) – (4.0.2). In order
for equations (4.0.1), (4.0.2) to make sense we introduce the microscopic elasticity
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Figure 4.23: Components of the permeability tensor computed using an Oseen
term with ReU = (20, 10, 25).
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Figure 4.24: Some components of the tensor Lijk. Looking at L323 and L313 a
characteristic symmetry for transversely isotropic materials can be evinced.
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×109 i=1 i=2 i=3
Li11 −8.26 1.89 −0.13

Li12 -0.47 -1.69 -0.11
Li13 -0.51·10−1 -0.27·10−1 -0.52
Li21 -4.47 2.30 0.22 ·10−2

Li22 -7.34 0.87 -0.36·10−1

Li23 -0.31·10−1 0.96·10−1 4.31
Li31 0.65·10−2 -0.47·10−2 0.26·10−1

Li32 0.72·10−2 -0.91·10−2 0.4·10−1

Li33 0.85·10−3 -0.17·10−1 -0.71·10−1

Table 4.2: Components of the tensor L computed using equation (2.1.25) and
(2.1.26) and averaged over the elementary cell.

tensorCijkl, expressed as a 6×6matrix in Voigt’s contracted notationVoigt (1889).
If we consider an isotropic elastic material, Cijkl assumes the following form:

Cijkl =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


(4.2.5)

where λ and µ are the Lamé constants of the isotropic material, normalized by
Young’s modulus of elasticity. In terms of Young’s modulus E and Poisson’s ratio
νP , the following relations hold:

λ =
νPE

(1 + νP )(1− 2νP )
and µ =

E

2(1 + νP )
. (4.2.6)

We have analyzed three different materials plus the limit case of an incompress-
ible polyurethane elastomer for which νP → 0.5. The different materials can be
classified on the basis of νP :

- silicon carbide (SiC), νP = 0.15⇒ λ = 0.186, µ = 0.435;

- iron, νP = 0.28⇒ λ = 0.504, µ = 0.390;

- polycarbonate, νP = 0.42⇒ λ = 1.849, µ = 0.352;

- polyuretane elastomer, νP = 0.499⇒ λ = 166.403, µ = 0.333.
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The tensor χpqi and vector ηi

Tensor χpqi represents a microscopic displacement. System (4.0.1) is formed by
linear PDE’s obtained as a combination of the entries of the pointwise elasticity
tensor Cijkl and of the jacobian of χpqi , valid over the solid structure inside the
microcell. Figure 4.25 shows the microscopic shape of χ11

1 for three values of
ϑ. It is represented in the (x1, x2) plane because of its invariance with respect to
x3. The particular domain over which we are solving the equations causes a lot of
symmetries and antisymmetries for χpqi . In order not to be redundant we do not
dwell on the microscopic structure of the 27 component of χpqi , but provide directly
the averaged values which appear in the effective equations. We observe also that ηi
solves the same differential equations as χpqi , with a different boundary condition,
and its microscopic shape is analogous to that of χpqi , as can be seen comparing
figures 4.25 and 4.26. From a macroscopic point of view we are interested in the

Figure 4.25: View of χ11
1 , for ϑ = 0.4, 0.7, 0.9 (r = 0.4370, 0.3090, 0.1784), re-

spectively. Since the vector field is constant along x3, only a view over a horizontal
midplane (x1, x2) is shown.
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jacobian of χpqi and ηi because they play a role in the definition of Cijpq, in the
continuity equation for the composite, and in the matrix α′ij , which appears in the
balance equation for the effective displacement. In each of the cases studied for
the four different material the following relations hold:〈
∂χ11

j

∂xi

〉
= −δi1δ1jA,

〈
∂χ22

j

∂xi

〉
= −δi2δ2jA,

〈
∂χ33

j

∂xi

〉
= −(δi1δ1j+δi2δ2j)B,

〈
∂χ13

j

∂xi

〉
= −δi1δ3jA,

〈
∂χ12

j

∂xi

〉
= −(δi1δ2j+δi2δ1j)

A

2
,

〈
∂χ23

j

∂xi

〉
= −δi2δ3jA,〈

∂χ31
j

∂xi

〉
=

Æ
∂χ13

i

∂xj

∏
,

〈
∂χ21

j

∂xi

〉
=

Æ
∂χ12

i

∂xj

∏
,

〈
∂χ32

j

∂xi

〉
=

Æ
∂χ23

i

∂xj

∏
. (4.2.7)

The coefficientsA andB depend a priori on thematerial properties and are listed in
table 4.3 (in case of iron cylinders) for different porosities in the range of [0.4, 0.9].
Also, η can be written in an analogous way, i.e.Æ

∂ηj
∂xi

∏
= −(δi1δ1j + δi2δ2j)C (4.2.8)

where C varies with ϑ as shown in table 4.3.

The effective elasticity Cijpq

The macroscopic stiffness tensor (equation 2.2.49) has the following non-zero
entries:

C1111 = C2222 = (λ+ 2µ)(−A+ 1− ϑ),

C1122 = C2211 = C3311 = C3322 = λ(−A+ 1− ϑ),

C1133 = C2233 = −(2λ+ 2µ)B + (1− ϑ)λ,

C3333 = −2λB + (1− ϑ)(λ+ 2µ),

C1212 = C1313 = C2323 = µ(−A+ 1− ϑ).

The microscopic simulations for the four materials considered show that A, B
and C do not change if we change the Poisson’s ratio of the material. This fact
means that the properties of the material enter the model only when we consider
the dimensional stiffness tensor Cijkl. We can conclude that for this particular shape
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iron
A B C

ϑ=0.4 0.600 0.172 0.328
ϑ=0.45 0.550 0.158 0.301
ϑ=0.5 0.500 0.144 0.274
ϑ=0.55 0.450 0.129 0.246
ϑ=0.6 0.400 0.115 0.219
ϑ=0.65 0.350 0.101 0.191
ϑ=0.7 0.300 0.086 0.164
ϑ=0.75 0.250 0.072 0.137
ϑ=0.8 0.200 0.058 0.109
ϑ=0.85 0.150 0.043 0.082
ϑ=0.9 0.100 0.029 0.055

Table 4.3: Values of the coefficients A, B and C to be used to find χ and η in the
case of a porous medium constituted by iron cylinders, computed solving system
(4.0.1) and (4.0.2) for varying ϑ.

η1 η2

η3

Figure 4.26: View of each component of the microscopic ηi field, ϑ = 0.8. Since
the vector field is constant in x3, only a view over a horizontal midplane (x1, x2)

is shown.
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of the porous medium, Cijkl has the following form:

Cijkl =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 ♠ 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(4.2.9)

where the symbol represents the only non zero entries of thematrix, which depends
on porosity and Young’s modulus. The matrix α′ij , instead, assumes the form

α′ij =

Ü
ϑ 0 0

0 ϑ 0

0 0 ϑ

ê
.

The non-dimensional value of ♠ can be deduced by table 4.3 and does not de-
pend on λ and µ associated to the different materials tested. The real stiffness
of each material enters the model when we consider its dimensional form: for a
porosity equal to 0.8, ♠ varies from O(10−3) (polyurethane elastomer) to O(102)

(silicon carbide). Looking at Cijpq, it is clear that the homogenized material has
rather strange properties, as already noted by Hoffmann et al. (2004). These au-
thors have considered a poroelastic layer similar to ours, demonstrating that volume
conserving deformations (shear deformations, in particular) do not produce elastic
stresses. We ascribe this property to the fact that fibers are disconnected from one
another. A strategy to deduce a full stiffness tensor is proposed in the following by
slightly modifying the geometry of the fibers.

4.3 Linked fibres
A solution to the problem encountered in the previous section is to connect

the porous inclusions in all the directions inside the microscopic cell, generating
a geometry composed by a principal cylinder crossed by two secondary cylinders
transversely to it as represented in figure 4.1. To make some comparison between
the tensors deduced with this geometry and with that of the previous section, we
consider a porosity which is almost the same as in the case of simple cylinders.
This means that the diameter dt of the crossing cylinders has to be much smaller
than the diameter d of the main fiber. In table 4.4 we can see how the porosity
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main cyl. d/dt = 7.5 d/dt = 5 d/dt = 2.5 d/dt = 1

ϑ = 0.8 ϑ = 0.797 ϑ = 0.793 ϑ = 0.768 ϑ = 0.583

r = 0.252 rt = 0.034 rt = 0.050 rt = 0.101 rt = 0.252

Table 4.4: Behavior of the porosity for varying the ratio dt/d for a fixed value of
ϑ = 0.8.

changes for varying the ratio dt/d. In order to not be redundant we present one
sample case for which the problem for Cijkl has been solved.

4.3.1 The permeability tensor Kij and Aj

The results presented here are referred to a porosity of 0.79 realized using a
main cylinder of radius 0.252 (in the case of simple cylinders ϑ would be 0.8)
and d/dt = 5. We observe that even if in this case ϑ varies only by about 1.3%

the changes in the permeability are rather relevant. In figure 4.27 the microscopic
fields of permeability are shown. The values assumed by the effective permeability
are

Kd=5dt
ij =

Ü
2.5 · 10−4 O(10−10) O(10−10)

O(10−10) 2.5 · 10−4 O(10−10)

O(10−10) O(10−10) 4.7 · 10−4

ê
.

These values are about two order of magnitude smaller than the values computed
using a simple cylinder geometry with the same radius:

Kij =

Ü
1.9 · 10−2 O(10−10) O(10−10)

O(10−10) 2.0 · 10−2 O(10−10)

O(10−10) O(10−10) 3.9 · 10−2

ê
.

The fact that the permeability tensor changes much even if the porosity does not,
is desirable because it is an indication that the information related to the structure
passed to the macroscopic equations are sufficiently detailed and do not depend
only on the porosity. Calculating the permeability for different ratios of d/dt the
following results are obtained:

Kd=dt
ij =

Ü
9.4 · 10−5 O(10−10) O(10−10)

O(10−10) 9.4 · 10−5 O(10−10)

O(10−10) O(10−10) 9.4 · 10−5

ê
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Figure 4.27: Component of the permeability tensor and vectorAj in case of linked
cylinders. The second row of Kij is not shown because it is a permutation of the
elements in the first row.
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and

Kd=2.5dt
ij =

Ü
2.0 · 10−4 O(10−10) O(10−10)

O(10−10) 2.0 · 10−4 O(10−10)

O(10−10) O(10−10) 4.1 · 10−4

ê
.

As one can see, the permeability decreases monotonically decreasing the porosity,
i.e. decreasing the ratio d/dt; for the case d = dt the structure becomes isotropic
and this is confirmed also by the shape ofKij which is analogous to that in the case
of sphere. For the other d/dt the shape of the new effective permeability tensor
confirms that the property of transverse isotropicity is conserved also with this
geometry.

4.3.2 Tensors Lijk andMijk

Also in this case, in accordance with Skjetne & Auriault (1999), since the ge-
ometrical properties of the structure are maintained (transverse isotropicity), the
averaged values of Lijk andMijk are equal to zero. Some sample components are
shown in figure 4.28.

4.3.3 χpq
i , ηi and the effective elasticity tensor Cijpq

The problem encountered with Cijkl is relaxed with the “connected” geometry.
In figures 4.29 to 4.32 the microscopic fields are shown. In particular figures 4.29
and 4.31 show the symmetry of the couplesχ11

i –χ22
i andχ13

i –χ23
i which can then be

observed also at a macroscopic level in the effective stiffness tensor (C1111 = C2222,
C1122 = C2211, C1313 = C2323 and C1133 = C2233 = C3322 = C3311).

The new effective stiffness tensor has now the form

Cijkl =



© �
⊗

0 0 0

� © ⊗
0 0 0⊗ ⊗

F 0 0 0

0 0 0 ♣ 0 0

0 0 0 0 ♠ 0

0 0 0 0 0 ♠


(4.3.1)

in accordance with Cheng (1997) and Cowin (2013); in particular, for the specific
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Figure 4.28: Three components of the tensor Lijk are show. Since the structure is
transversely isotropic, all the components of Lijk andMijk vanish.
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Figure 4.29: Magnitude of the vector field χ11
i and χ22

i for four different values of
the ratio d/dt: 1, 2.5, 5, 7.5.
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Figure 4.30: Magnitude of the vector field χ33
i and χ12

i for four different values of
the ratio d/dt: 1, 2.5, 5, 7.5.
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Figure 4.31: Magnitude of the vector field χ13
i and χ23

i for four different values of
the ratio d/dt: 1, 2.5, 5, 7.5.
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Figure 4.32: Magnitude of the vector field η for four different values of the ratio
d/dt: 1, 2.5, 5, 7.5.
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values chosen for the linked cylinders geometry we have :

Cd=dt
ijkl =



0.2233 0.0314 0.0314 0 0 0

0.0314 0.2233 0.0314 0 0 0

0.0314 0.0314 0.2233 0 0 0

0 0 0 0.0117 0 0

0 0 0 0 0.0117 0

0 0 0 0 0 0.0117


,

Cd=2.5dt
ijkl =



0.0352 0.0020 0.0047 0 0 0

0.0020 0.0352 0.0047 0 0 0

0.0047 0.0047 0.2002 0 0 0

0 0 0 −0.0072 0 0

0 0 0 0 −0.0116 0

0 0 0 0 0 −0.0116


,

Cd=5dt
ijkl =



0.0044 0.0010 0.0002 0 0 0

0.0010 0.0044 0.0002 0 0 0

0.0002 0.0002 0.1985 0 0 0

0 0 0 −0.0060 0 0

0 0 0 0 −0.0116 0

0 0 0 0 0 −0.0116


and

Cd=7.5dt
ijkl =



0.0004 0.0020 0.0001 0 0 0

0.0020 0.0004 0.0001 0 0 0

0.0001 0.0001 0.1983 0 0 0

0 0 0 −0.0048 0 0

0 0 0 0 −0.0111 0

0 0 0 0 0 −0.0111


.

As one can observe, the structure realized with d = dt becomes isotropic be-
cause there are three planes of symmetry for the geometry, and the shape of Cijkl
is in accordance with the theory of solid mechanics (cf. Cowin (2013)). For the
case d = 2.5dt the presence of the transverse cylinders is important, and this can
be seen in the effective stiffness tensor which assumes the characteristic shape of
transversely isotropic media. Increasing the ratio d/dt, Cijkl tends to that com-
puted for the case of simple cylinders. The matrix α′ij behaves in the same way
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(increasing d/dt it tends to the α′ij of the previous case):

α′d=dt
ij =

Ü
0.5828 0 0

0 0.5828 0

0 0 0.5828

ê
, α′d=2.5dt

ij =

Ü
0.7683 0 0

0 0.7683 0

0 0 0.7683

ê
,

α′d=5dt
ij =

Ü
0.7929 0 0

0 0.7929 0

0 0 0.7929

ê
, α′d=7.5dt

ij =

Ü
0.7973 0 0

0 0.7973 0

0 0 0.7973

ê
.

Actually, also in this case, the values assumed by the diagonal components of α′ij
correspond to the porosities of each geometry, as clearly shown by table 4.4.

4.4 Touching spheres
One more geometry which relaxed the problem encountered for Cijkl is an

isotropic structure built as degeneration of the spherical case, by simply making
the diameter of the sphere greater than the edge of the cubic elementary cell. The
result is that the spheres touch each others, while maintaining a unique connected
region of fluid.

4.4.1 The permeability tensor Kij

The effective values of permeability computed are obviously lower than the
case of spheres and satisfies the properties due to the isotropicity of the micro-
scopic structure. A sample case is shown in figure 4.33, realized using a radius for
the sphere of 0.52, which gives a porosity of ϑ = 0.4159. The averaged perme-
ability is

Kij = 3.64 · 10−5δij

which is in accordance with the values obtained with the spheres for low porosities.

4.4.2 χpq
i , ηi, α′ij and the effective elasticity tensor Cijpq

We have verified that also in this case the effective elasticity tensor satisfies
isotropy. Figure 4.34 shows all the possible symmetries for χpqi at a microscopic
level; these symmetries can be verified at a macroscopic level observing that the
off-diagonal components are equal to one another, and the diagonal components
satisfy the equalities C1111 = C2222 = C3333 and C1212 = C1313 = C2323. The
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Figure 4.33: First row of Kij for spherical inclusions of radius 0.52. The other
rows can be realized by a permutation of the first one.

effective elasticity tensor is

Cijkl =



0.1493 0.0212 0.0212 0 0 0

0.0212 0.1493 0.0212 0 0 0

0.0212 0.0212 0.1493 0 0 0

0 0 0 0.0457 0 0

0 0 0 0 0.0457 0

0 0 0 0 0 0.0457


.

Also in this case α′ij can be written as ϑδij , i.e.

α′ij =

Ü
0.4159 0 0

0 0.4159 0

0 0 0.4159

ê
.



4.4 Touching spheres 98

Figure 4.34: Magnitude of χpq for spherical inclusions of radius 0.52.





Chapter 5

Macroscopic results

Once the microscopic averaged quantities have been computed, the next step
is to solve the effective equation of motion. The goal of the chapter is to show that
the homogenized model is suitable also from a macroscopic point of view. In this
chapter we present two applications, the first consists of lid-driven cavity filled in a
certain zone by a homogeneous porous medium whether rigid or elastic, the latter
is a canopy flow, only in the rigid case. All the results presented here are supposed
to be invariant along x2, i.e. they can be represented on the plane (x1, x3). From
this moment on, the x1 and x3 directions are also named horizontal and vertical
directions, respectively.

5.1 Summary of the macroscopic problems
For Re = O(ε) the model is made by the following system of equations:

(1− ϑ)
∂2v

(0)
i

∂t2
=

∂

∂x′j

î
Cijpqε′pq(v(0))− α′ijp(0)

ó
,

∂〈u(0)
i 〉

∂x′i
= 〈∂χ

pq
i

∂xi
〉ε′pq(v̇(0))− 〈∂ηi

∂xi
〉ṗ(0),

〈u(0)
i 〉 − Hij v̇

(0)
j = −Kij

∂p(0)

∂x′j
,

(5.1.1)

which is a system of three linear PDE’s for the three macroscopic unknowns 〈u(0)
i 〉,

v(0) and p(0) with respective boundary conditions. When Re = O(1) system

100
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(5.1.1) can be replaced by

(1− ϑ)
∂2v

(0)
i

∂t2s
+ ReŪj〈

∂u
(0)
i

∂xj
〉 =

∂

∂x′j

î
Cijpqε′pq(v(0))− α′ijp(0)

ó
,

∂〈u(0)
i 〉

∂x′i
= 〈∂χ

pq
i

∂xi
〉ε′pq(v̇(0))− 〈∂ηi

∂xi
〉ṗ(0),

〈u(0)
i 〉 − Hij v̇

(0)
j = −Kij

∂p(0)

∂x′j
.

(5.1.2)

For the particular case of rigid structures, since v(0)
i = 0, the equations above

reduce to the system 
〈u(0)

i 〉 = −Kij
∂p(0)

∂x′j
,

∂〈u(0)
i 〉

∂x′i
= 0.

(5.1.3)

In both cases the systems are coupled with the NSE normalized as in equation
(3.2.8).

5.2 Lid-driven cavity
We focus our attention on anisotropic media and it is thus fundamental to con-

sider a phenomenon characterized by at least two principal directions. We first
solve for the flow in a composite domain, in which there is both a pure fluid region
and a porous region formed by densely packed rigid fibres: the choice of consider-
ing a lid-driven cavity, filled up to a certain height (each fibre is long 0.33 times the
side length of the square cavity) by the porous medium, as sketched in figure 5.1,
allows us to analyze the orthotropic character of the medium. In fact, because of
the non-negligible vertical velocity inside the porous region, we are able to quan-
tify how muchK33 affects the fluid flow and we can impose and compare different
interface conditions. On the other hand, this case is more difficult than the classical
pressure-driven channel flow with porous walls studied by many authors before.
The configuration of the problem is shown in figure 5.1: a slip velocity is imposed
on the top of a unitary square cavity and no-slip conditions are taken on the bottom
and side walls.
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x3

x1

PURE FLUID (F) REGION u=0u=0

u=U

dp
dx1

=0
dp
dx1

=0

dp
dx3

=0

POROUS (P) REGION

Figure 5.1: View of the macroscopic domain with the boundary conditions im-
posed when solving Darcy’s equation in the P -region.

5.2.1 Rigid case
Many simulations have been done for varying ϑ and ReL = LU/ν where L

(set equal to 1) is the side of the cavity and U (also equal to 1) is the slip velocity
imposed at the top. Before doing a comparison for varying parameters, we must
validate the macroscopic model and the interface conditions developed in chapter
3.

Validationwith three dimensional direct numerical simulationswhich account
for all fibers

In order to validate the homogenized model, compare the different interface
conditions and assess which of them fits the problem analyzed in this work, three-
dimensional direct numerical simulations (DNS) of the incompressible Navier-
Stokes equations in the real geometry, accounting for all fibres (50 for the simu-
lations presented here, so that ε = 0.02) are performed with OpenFOAM. In the
transverse direction (x2) the size of the domain is taken equal to ε (in dimension-
less terms) and periodic boundary conditions are enforced. The numerical mesh
needed to have grid-converged solutions is formed by over 8 million cells for ReL
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Figure 5.2: Spatial convergence study for the DNS in the case of ReL =

100. The different grids are built with the software snappyHexMesh
(http://www.openfoam.org/version2.3.0/snappyHexMesh.php).

up to 1000; figure 5.2 provides an example of a convergence test for a measure (the
PDF of the permeability components) introduced further on (§5.2.1). Figures 5.3,
5.4, 5.6 show a macroscopic view of the flow field in the cavity for the following
parameters: ReL = 1000, ε = 0.02 (i.e. 50 fibres), ϑ = 0.8. The horizontal and
vertical velocity are represented using two different scales: the fluid scale (upper
frames of the corresponding figures) and the porous scale (lower frames). The pre-
sence of the fibers has a damping effect in the velocity field. So that, if we visualize
the fields at a fluid scale the differences in the porous region cannot be appreciated.
In these figures an oscillatory character of the velocity can be seen, due to the fact
that no-slip condition has been imposed on the surface of each cylinder; this fact
is also confirmed by figure 5.7 (which shows a sampling of u1 and u3 inside the
porous region for a fixed x3 and for varying x2 in case of a simulation done using
ReL = 10) and 5.5 where a slice of the steady converged solution for ReL = 100

at x3 = 0.25 (thus within the porous medium) is shown, through isocontours of
the first velocity component, near the solid boundaries and around x1 = 0.5. The
figure also shows a cut through the numerical grid.

With the results from the DNS we can:

(i) evaluate the components of the permeability tensor and verify the results of
homogenization theory;

(ii) test the different interface conditions and, for example, calibrate the constant
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Figure 5.3: Isocontours of the horizontal velocity in the unitary square cavity for
ReL = 1000, ϑ = 0.8 and ε = 0.02. Two different ranges of values are used to
represent the same flow.
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Figure 5.4: Isocontours of the vertical velocity in the unitary square cavity for
ReL = 1000, ϑ = 0.8 and ε = 0.02.
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Figure 5.5: Zoom of the macroscopic domain of the DNS inside the porous
medium with ϑ = 0.8. Slice of the cavity at x3 = 0.25. Only few cylinders
(out of 50) are shown inside and at the extremities of the cavity. The colours and
the white curves in the top frame represent the x1-component of the velocity field
and its isocontours. In the lower frame a cut through the grid is shown.
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Figure 5.6: Isocontours of the pressure field in the unitary square cavity for ReL =

1000, ϑ = 0.8 and ε = 0.02.
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Figure 5.7: Pointwise values of the velocity components found through the DNS;
the values are used to compute the average over each elementary cell of fig. 5.8)
and to obtain KNS

33 . x3 = 0.2, Re = 10, ϑ = 0.8, ε = 0.02. The oscillatory
behavior of the velocity is due by the fact that the no-slip condition is imposed
over each cylinder.
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Figure 5.8: Sample case of the unitary cavity filled with N = 50 cylinders of
height h = 0.33 and radius r = 0.00504 (ϑ = 0.8). b) View of some elementary
cells over which the fields are averaged. The dimension of the cubic cell is set by
the dimension and number of the filaments.

c in the definition of δ (equation 3.3.3), calibrate the parameter µe in the
Brinkman’s equation and the shape of the filter in section 3.5;

(iii) validate the unknown fields at a macroscopic level, verifying the appropri-
ateness of the homogenized equations.

To compare the DNS results with the two-dimensional simulations described in
the previous section we must extract in a proper way the averaged values of the
fields: the whole domain is thus decomposed into elementary cubic cells of size ε3

(some of them are sketched in figure 5.8) and all fields are averaged over each
micro-cell using the definition (2.1.16); in this way two-dimensional fields are
obtained from theDNS results and, in particular, we have a sampling of the solution
in the porous medium (in the case of a layer of N filaments of height 0.33 we
have a cartesian grid, with velocity components and pressure centered in the cell,
composed by 0.33N2 elements in P ). The values of the averaged velocity field
for a simulation with ReL = 10 is shown in figure 5.9. The spatial average has
a smoothing effect on the solution. Furthermore, the averaged velocity near the
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walls of the cavity is not zero as its pointwise counterpart, fact that will be seen
also in the solution of the homogenized model. Using the grid built, the pressure
gradient is computed with fourth order finite differences with the scheme described
in Appendix A.2. In the internal region of the porous medium, assuming that
Darcy’s approximation is valid (i.e. 〈uDNS〉 = 〈u(0)〉 and 〈pDNS〉 = p(0)), Kij
is computed using equation (3.2.5). Finally, we need to account for the influence
of the wall/interface boundary layers and for the presence of isolated regions in
which the pressure gradient becomes negligibly small; thus, the values of KDNSij

(superscript DNS is used to indicate that the value has been estimated on the
basis of the full simulations) are evaluated on the basis of their probability density
functions (PDF). To compute the PDF we divide the values of Kii in a number of
intervals such that each one of them has an extent equal to 10% of the value ofKii
for which we find the maximum of the PDF.

The components of the permeability tensor

Direct numerical simulations have been performed for Reynolds numbers ReL
varying from 1 to 1000, for fixed value of ε = 0.02 and ϑ = 0.80. The a-posteriori
treatment of the DNS results within the porous medium permits to extract the value
of the permeability components over each elementary cubic cell, yielding the prob-
ability density functions displayed in fig. 5.10. It is immediately apparent that the
PDF pinpoints sharply the values of K11 and K33 for ReL up to 100, whereas for
larger ReL’s the two components of the permeability display a broader variability.
The peak values are nonetheless well defined and are reported in table 5.1, against
corresponding results from the homogenization theory. The latter have been com-
puted including inertial terms in the equations, with the sameUp found in the direct
simulations of the full geometry. The values of the permeability components from
the DNS are about 40% larger than those from the theory. We have seen (fig. 4.22)
that the same occurs also in the test case of canopy flow (which will presented
later on), under turbulent conditions, for low values of ϑRep. In the narrow range
of pore Reynolds number considered here, the full simulations do not allow to ex-
tract a clear trend of how the permeability varies, whereas the theory indicates a
slow decrease of both components with Rep.

The disagreement between theory and direct simulations appears to be rela-
tively mild, when seen in the scale of fig. 4.21, but nonetheless deserves to be
clarified, since it occurs also for flow cases (ReL = 1) in which the motion of the
fluid through the pores is clearly ruled by Stokes equation. We believe that, on
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Figure 5.10: Probability density function of K11 and K33 for different values of
ReL. The apparent permeability is computed a posteriori applying Darcy’s law to
the averaged solution of the DNS.

the one hand, the flow geometry plays a role here, since the two sidewalls con-
strain the fluid, forcing it to recirculate; a much better agreement would have been
obtained had we considered a pressure-driven channel flow, like done by many au-
thors Le Bars &Worster (2006); Hill & Straughan (2008); Battiato (2012). On the
other hand, we would expect a closer match between the DNS results and the the-
ory had we pushed the asymptotic development to third order, modifying Darcy’s
equation with a cubic Forchheimer term, as described by Mei & Vernescu (2010).
This is indirectly supported by one direct simulation at ReL = 100, conducted
with 200 fibres (instead of 50) – for which the small parameter ε of the expansion
is small (and equal to 0.005), for the same porosity coefficient ϑ = 0.80 – yielding
values of the apparent permeability closer to the theoretical ones in table 5.1.

In the following, the results from the three-dimensional numerical simulations
will be compared to results from the coupled two-dimensional Navier-Stokes/Darcy
equation, where in the latter model the values used for the apparent permeability
are those of the direct numerical simulations.
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The macroscopic fields

A representative comparison between theDNS results and those from themodel
system is displayed in figure 5.11 and 5.12 in terms of the streamlines of the flow
and the pressure field, respectively. In the model system we have enforced inter-
face conditions described in 3.3, with δ = ε/5, i.e. we have used the penetration
depth δ that, as we will show, yields the best agreement between the model and
the direct simulations. The results are very close to one another and, in particular,
the complex behavior of the flow within the porous domain appears to be correctly
captured by Darcy’s equation (with a tensorial permeability). Also the pressure
field of the homogenized model matches that of the DNS with the constant term
of equation (3.3.1) appropriately chosen.

It is noticeable the fact that for different interface conditions the results are qual-
itatively similar, and all the model solutions look “correct", with minor differences
noticeable. These differences can be appreciated near the interface and inside the
porous medium. A closer look at the interfacial and porous zone is needed.

Focus on the interface

To assess the quality of the interface conditions we focus on x1 = 0.5. The first
condition presented in 3.3 yields the results displayed against the DNS solution in
figures 5.13 and 5.14, for ReL = 100. A value of δ between 0 and ε/5 provides
a good fit with the DNS in the F -region and at the interface, whereas increasing
δ above ε/2 yields values of both velocity components near the interface which
progressively overestimate the “true" values. Within the porous domain (x3 ≤
0.25), the difference between the solutions computed for varying δ’s and the DNS
is negligible. When ReL is equal to 1000, an excellent agreement with the DNS
results is achieved for δ = ε/5, as shown in figures 5.15 and 5.16. It is important
to notice that a poor choice of δ (e.g. δ ≥ ε) degrades the solution also in the
fluid region F , as fig. 5.15 clearly demonstrates. As far as interface condition 3.3
is concerned, thus, we observe an increase of the penetration depth, δ, with Rep,
as one would intuitively expect. This fact will be confirmed also by the second
application presented later on canopy flows.

We now turn to interface condition 3.4. Brinkman’s equation has been dis-
cretized and directly matched to Navier-Stokes results in the F -region; the velo-
city profiles obtained at x1 = 0.5 are compared to the reference profiles in figure
5.21, for ReL = 100 and different values of the effective viscosity, focusing on the
region across the interface and within the porous domain. As µe approaches zero
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Figure 5.11: Streamlines in the composite domain. Frames a) and b) represent the
solution for ReL = 100; c) and d) display results for ReL = 1000. In all cases the
porosity is ϑ = 0.80. The frames on the left show solutions of the homogenized
model, the right frames are the DNS results. Representative velocity profiles will
be later displayed along the vertical lines x1 = 0.5.
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Figure 5.12: Isocontours of the pressure field in the composite domain. Frames a)

and b) represent the solution for ReL = 100; c) and d) display results for ReL =

1000. In all cases the porosity is ϑ = 0.80. The frames on the left are the solutions
of the homogenized model, the right frames are the DNS results.
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0.5 (middle of the cavity) for the DNS and four choices of δ (ReL = 100). Two
zooms are highlighted at the interface. Interface strategy: 3.3.
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0.5 for the DNS and four choices of δ (ReL = 1000). Interface strategy: 3.3.
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Figure 5.17: Values of the viscosity in the interface region, ReL = 10, θ = 0.8.
The values near the wall are neglected.

the Darcy limit is recovered; the upper value of µe/µ considered is 30, close to
that determined experimentally by Givler & Altobelli (1994), which are similar
to the values recovered by the DNS, applying the Brinkman’s equation a pos-
teriori (cf. figures 5.17 and 5.18). Furthermore, even the theoretical value,
µe/µ = (1 − ϑ)−1 = 5, deduced on the basis of volume averaging theory by
Ochoa-Tapia & Whitaker (1995), has been tested. We can observe that a value of
the effective viscosity which is either too large (30) or too small (0.3) degrades
significantly the solution in the F -region, as a direct consequence of the poor es-
timation of the velocity in the proximity of the interface. Conversely, when µe
is a few times larger than the dynamic viscosity of the fluid, i.e. it is close to
the theoretical approximation, the solution appears to behave better, when com-
pared to the DNS, although close inspection of the fields within the porous region
(not shown) denote differences between the model solution and the “exact” result
which are larger than those found with interface strategy 3.3. This negative aspect
of Brinkman’s model, coupled to the fact that the effective viscosity is not available
a priori, can be somehow tempered by the fact that Brinkman’s equation naturally
creates boundary layers near the solid walls where the velocity is smoothly driven
to zero. A similar conclusion on the poor performance of Brinkman’s model in
handling porous-fluid interfaces has also been reported by James & Davis (2001).

Results from the interface condition 3.5 are displayed in figure 5.23 and 5.24;
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Figure 5.18: Values of the viscosity in the interface region, ReL = 100, θ = 0.8.
The values near the wall are neglected.

here the permeability varies as the macroscopic interface (at xITF3 = 0.33) is ap-
proached. Whereas this is physically reasonable, it is unknown how the permeabil-
ity should be taken to vary. In this specific case we use the DNS results to define
the shape of the filter to apply on K. The permeability inside the porous medium
is recovered using Darcy’s law as explained in the previous section. Figures 5.19
and 5.20 show the values of permeability found in the porous region. The peaks
corresponds to the region where ∂p/∂x1 = 0 or ∂p/∂x3 = 0 due to the particular
configuration of the flow. Here, we need a value of permeability for each x3 in the
porous zone. It is sampled for each x1 in the cavity and then a mean value along
the x1 direction is extrapolated (solid and dotted lines of figure 5.23). It is clear
that up to a distance d = O(ε) from the interface the value of Kii is constant; then
it increases. In particular we observe that for the case ReL = 100 shown in figure
5.23 the component K11 has d1 = 5

2
ε, while for K33 it is d3 = 3

2
ε. This seems to

indicate that K−1
ii is proportional to di; in Table 5.1 this trend is further explored

for varying values of ReL. The distance di (i = 1, 3) defines an interfacial layer
whose thickness decreases slowly with the increase of the Reynolds number ReL.
In this it differs from the protrusion height δ of the fictitious interface approach.
The agreement at the interface between the homogenized solution and the solution
of the DNS is however not very good (cf. fig 5.24); this is probably due to the fact
that near the interface Darcy’s law is inappropriate and a model which accounts
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DNS, for different ReL.
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Interface strategy: 3.4.

for inertia is needed.

The pressure jump at the interface

The availability of the DNS renders it possible to assess the presence of, and
quantify, the pressure jump across the physical interface. Arguments for the ex-
istence of a pressure jump have been put forward, using homogenization theory
coupled with a boundary layer analysis near the interface, by Marciniak-Czochra
& Mikelić (2012) for the Stokes flow over an anisotropic porous bed. Similarly,
when inertia is present, a pressure slip at the interface has been reported by Sa-
haroui & Kaviany (1994). The condition of Marciniak-Czochra & Mikelić (2012)
in dimensionless form, reads:

− [p] = pP (x1, ITF
−)− pF (x1, ITF

+) =
C

ReL
∂u1

∂x3

(x1, ITF ), (5.2.1)

with the first term above representing the pressure jump across the interface, po-
sitioned at x3 = ITF , and C a constant which depends only on the porous bed
geometry. We have evaluated precisely this jump on the basis of the DNS, by av-
eraging the microscopic data, both in F and P , over cubic unit cells of size ε3.
Then, the pressure in the pure fluid is evaluated at x3 = ITF+ = ITF + ε

2
, and

the average pressure in P is evaluated at x3 = ITF− = ITF − ε
2
. The left frame

of 5.25 displays |ReL[p]| along the interface at the three values of ReL simulated;
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Figure 5.24: Macroscopic profile of u1 and u3 (lower frames) for x1 = 0.5 com-
puted using the filtered permeability shown in figure 5.23 (ReL = 100) and com-
pared to the case in which the permeability components are maintained constant
throughout the porous zone. Two zooms over the interfacial zone are highlighted
on the right. Interface strategy: 3.5.
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Figure 5.25: Left: pressure jump across the interface at three values of the
Reynolds number. Right: shear parameters S at the interface. Both frames are
based on DNS results.
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the right frame of the same figure reports a shear parameter defined as:

S =
∂u1

∂x3

(x1, ITF ) +
∂u3

∂x1

(x1, ITF ). (5.2.2)

In our simulations ∂u3/∂x1(x1, ITF ) at the interface is typically two orders of
magnitude smaller than the ∂u1/∂x3(x1, ITF ) term, which thus dominates the
parameter S. Comparison of the two frames makes it clear that, in the presence of
inertia, a simple constantC cannot be found to satisfy the pressure jump condition,
which is thus unsuited for use in the present case. Thus, although the pressure jump
is present, condition (5.2.1) cannot be readily enforced.

A comparison for varying ϑ

We want now to assess how the microscopic structure affects the macroscopic
flow field. In order to do this macroscopic homogenized simulations are performed
for several values of the porosity and different geometries of the porous inclusions.
Since we have already noted that the fictitious interface condition produces better
results than the other two conditions tested, all the results shown here are computed
using the first condition with δ = ε/5 = 0.004. The comparison is shown in figu-
res 5.26 to 5.28 for the case of cylindrical inclusions and for different porosities.
As one can see, the magnitude of the velocities are proportional to the permeabil-
ity, so that the lower the porosity, the lower are the magnitudes of the horizontal
and vertical velocity components. For this specific kind of inclusions, the vertical
velocity is always greater than the horizontal because K33 > K11. Figures 5.29
to 5.31 shows the flow when the porosity is maintained the same (ϑ = 0.8), but
the porous structure changes: cylinders, spheres and linked cylinders (the case of
touching spheres cannot be realized for this value of ϑ). As already underlined
before, the intensity of the velocity depends on Kij; in the case of isotropic inclu-
sions (spheres), K11 = K33 so that u1 and u3 are of the same order. This behavior
can also be observed in figure 5.32: looking at the streamlines for the case of sim-
ple cylinders and spheres it appears clear that in the former case the path of each
streamline has a more vertical developement than in the latter case.

One of the advantages of the homogenized model is that in order to perform
a macroscopic simulation for different porous structures the only thing to modify
are the values of the parameters Kij which appear in the macroscopic solver.
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Figure 5.26: Isocontours of the horizontal velocity at Re = 100, for three different
values of porosity: ϑ = 0.3, 0.8, 0.9. Only the velocity in the porous region is
shown. The microscopic structure of the porous medium is constituted by cylin-
ders.
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Figure 5.27: Isocontours of the vertical velocity at Re = 100, for three different
values of porosity: ϑ = 0.3, 0.8, 0.9. Only the velocity in the porous region is
shown. The microscopic structure of the porous medium is constituted by cylin-
ders.
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Figure 5.28: Isocontours of the pressure at Re = 100, for three different values of
porosity: ϑ = 0.3, 0.8, 0.9. Only the pressure in the porous region is shown. The
microscopic structure of the porous medium is constituted by cylinders.
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Figure 5.29: Isocontours of the horizontal velocity at Re = 100, for three differ-
ent microscopic geometries: cylinders, spheres and linked cylinders (with d/dt =

2.5). Only the velocity in the porous region is shown. The porosity is about 0.8.



5.2 Lid-driven cavity 133

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

−2

−1

0

1
x 10

−4

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

−15

−10

−5

0

5

x 10
−5

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

−2

−1

0

1

x 10
−6

Figure 5.30: Isocontours of the vertical velocity at Re = 100, for three different mi-
croscopic geometries: cylinders, spheres and linked cylinders (with d/dt = 2.5).
Only the velocity in the porous region is shown. The porosity is about 0.8.
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Figure 5.31: Isocontours of the pressure at Re = 100, for three different micro-
scopic geometries: cylinders, spheres and linked cylinders (with d/dt = 2.5). Only
the velocity in the porous region is shown. The porosity is about 0.8.
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Figure 5.32: Streamlines of the flow field in case of cylindrical (up) and spherical
(down) inclusions. Only the porous region is shown. The porosity is 0.8.

5.2.2 Poroelastic case
Results of the poroelastic system (5.1.1) are presented here. In all the cases

the microscopic structure is composed by linked cylinders (to not encounter the
problem explained in section 4.2.3 for unconnected fibers). The macroscopic con-
figuration is the square cavity presented in the previous section. The results have
been compared to one another and with the corresponding rigid cases. First of all,
we introduce the interface conditions which allow to transfer information between
the fluid and the homogeneous region.

The interface conditions

A similar to the real interface condition which is used by many authors (Barry
et al., 1991; Hoffmann et al., 2004; Gopinath & Mahadevan, 2011; Alexiou &
Kapellos, 2013) consists in imposing the continuity of normal and tangential stresses
at the interface. In terms of homogenization this condition reads

〈Σ(0)
ij 〉 · nj = 〈σ(1)

ij 〉 · nj. (5.2.3)
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In the particular case of a horizontal interface in the (x1, x3)-plane, the condition
can be written asÇ

C1313
∂v1

∂x3

+ C1313
∂v3

∂x1

å∣∣∣∣∣
P

= ε

Ç
∂u1

∂x3

+
∂u3

∂x1

å∣∣∣∣∣
F

(5.2.4)Ç
C3311

∂v1

∂x3

+ C3333
∂v3

∂x3

+ α′33p

å∣∣∣∣∣
P

=

Ç
−p+ 2ε

∂u3

∂x3

å∣∣∣∣∣
F

(5.2.5)

where |P and |F denote the quantities in the porous and fluid region, respectively.
This condition has to be considered together with the continuity of velocities at the
interface, i.e.

ui|P = ui|F . (5.2.6)

Since in the P -region also the pressure is solved for, we need to impose one more
condition. Gopinath&Mahadevan (2011) argue that onemore boundary condition
at the macroscopic interface can be formulated by assuming that the interface is
bounded by a semipermeable thin skin of thickness df and isotropic permeability
Kf . The following fluid flux is present through the skin

K33
∂p

∂x3

∣∣∣∣∣
P

=
Kf
df
P ∗|F−P , (5.2.7)

where P ∗|F−P is the difference of pressure calculated across the skin. The ratio
Kf/df is a priori unknown and must be tuned for each configuration of the flow.
Conditions (5.2.4), (5.2.5) and (5.2.7) are used to transfer information from F -
region to P -region, equation (5.2.6), vice versa. For the discretization of these
condition cf. Appendix A.2.

A comparison with the rigid case

The simulations described below are made using a microscopic structure com-
posed by linked cylinders (with ϑ = 0.8 and ε = 0.02) made of iron (E =

210GPa). ReL = 100 in all the cases. Several values of the parameter Kf/df
have been tested, finding that the solution is weakly sensitive to the choice of this
parameter (chosen equal to K33/10−2 for the simulations shown in this section).

The results are normalized using the relations in (2.2.14) and (2.2.15), except
for the effective velocity field which is normalized using relations (3.2.3) to be
comparable with the rigid case. For comparison purposes, it has been necessary to
perform simulations inside a square cavity of side equal to 1/ε (which corresponds
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Figure 5.33: Streamlines inside the cavity. The porous medium has a microscopic
structure made by linked cylinders. In the upper frame d/dt = 2.5, in the lower
d/dt = 7.5.

to a unitary cavity with the normalization in 3.2.3). In figures 5.33 to 5.38 a com-
parison between the poroelastic solutions for the cases d/dt = 2.5 and d/dt = 7.5

is shown. As in the rigid case, the effective velocities in the homogenized region
are roughly proportional to the permeability. The displacement field is coherent
with the velocity of the homogenizedmaterial (c.f. figures 5.34, 5.35 and 5.36). As
one expects, the horizontal deformations are greater if the microscopic structure is
“less” connected along x1 (i.e. in case of d/dt = 7.5). Since the configuration of
the microscopic structure remains unchanged in x3 for the cases d/dt = 2.5 and
d/dt = 7.5, also the intensity of the vertical deformations are almost the same (cf.
figure 5.35). In figures 5.39 to 5.41 the result of the poroelastic case for the
parameters ReL = 100, ϑ = 0.8 and d/dt = 2.5 are presented against results of the
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Figure 5.34: Contours of the displacement in the x1 direction. In the upper frame
d/dt = 2.5, in the lower d/dt = 7.5.
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Figure 5.35: Contours of the displacement in the x3 direction. In the upper frame
d/dt = 2.5, in the lower d/dt = 7.5.
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Figure 5.36: Representation of the displacement vector field. In the upper frame
d/dt = 2.5, in the lower d/dt = 7.5.
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Figure 5.37: Contours of the velocity field in the x1 direction. In the upper frame
d/dt = 2.5, in the lower d/dt = 7.5.
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Figure 5.38: Contours of the velocity field in the x3 direction. In the upper frame
d/dt = 2.5, in the lower d/dt = 7.5.

rigid case for the same parameters. The effective velocity field inside the porous
region is pretty much the same in both cases at steady-state.
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Figure 5.39: Streamlines inside the porous medium. The microscopic structure is
made by linked cylinders with d/dt = 2.5. The upper and lower frames show the
deformable and rigid case respectively.
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Figure 5.40: Contours of the velocity field in the x1 direction. The microscopic
structure is made by linked cylinders with d/dt = 2.5. The upper and lower frames
show the deformable and rigid case respectively.



5.3 Flow in a canopy 142

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

−2

−1

0

1

x 10
−6

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

−2

−1

0

1

x 10
−6

Figure 5.41: Contours of the velocity field in the x3 direction. The microscopic
structure is made by linked cylinders with d/dt = 2.5. The upper and lower frames
show the deformable and rigid case respectively.

5.3 Flow in a canopy
In this section we want to demonstrate that the model formed by equations

(2.1.17), (4.2.2) plus the equations in the pure fluid domain and the interface con-
ditions are adequate also to simulate a turbulent canopy flow. This kind of flow
has been widely studied in the past since it develops very often in Nature (a re-
cent review is provided by Nepf (2012)). Much literature (theoretical and exper-
imental) is present to understand the mechanisms which induce the creation of a
quasi-parallel mixing layer and the formation of honami and monami waves over
canopies. Raupach et al. (1996) and Finnigan (2000) have classified the different
structures which characterize the flow on the basis of the geometrical properties
of the canopy (e.g. its density) and the parameters of the mixing layer.

In order to understand if the closure adopted for the Re = O(1) case in equa-
tion (4.2.2) makes sense we have used the experimental data of
Ghisalberti & Nepf (2004) where a fully developed turbulent flow of water over
a submerged layer of vertical rigid fibres is studied. The setting of the problem
is sketched in figure 5.42; the porosity ϑ in the experiments ranges from 0.96 to
0.99 and ε is about 0.2 (defined as the ratio between the diameter of the fibers and
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Figure 5.42: Setting of the experiments of Ghisalberti & Nepf (2004). Water flows
over a layer of rigid cylindrical fibres. The whole system is slightly inclined at an
angle α so that the fluid motion is driven by gravity.

the height of the water column). The measurements of the mean velocity inside
the canopy and the driving term are available so that the permeability K11 can
be estimated a posteriori using Darcy’s law which, in this case, can be written in
dimensional variables as

〈u(0)
1 〉 = K11

g sinα

ν
, (5.3.1)

where ν = 0.94 ·10−6m2/s is deduced using Reml in table 1 of Ghisalberti & Nepf
(2004) and α is the slope of the inclined system. The use of equation (5.3.1) in
the lower zone of the canopy, termed “wake zone", is justified on physical grounds
since, as noted by Ghisalberti & Nepf (2009), such a region is ‘governed by a
simple balance of drag and hydraulic gradient, much like classical porous medium
flow’.

Figure 4.22 and 5.43 display results for the microscopic permeability fieldK11

within the elementary volume, and the averaged valuesK11 for variable pore velo-
city. The gray band represents the range of permeability K11 computed using the
homogenized model (4.2.2) for the corresponding porosities of each experiment.
The experimental values are in reasonably good agreement with the homogenized
values; discrepancies are of the same order as those shown in figure 4.21 and table
5.1.
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Figure 5.43: Horizontal component of the permeabilityK11 within a unit cell, for
varying ϑRep = 0, 50, 500, 1500. Increasing Rep, the value of K11 is reduced and
the distribution initially looses symmetry with respect to the vertical mid-plane
through the cylinder, to eventually regain it because of periodicity for ϑRep above
500. Here ϑ = 0.975.
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Wenow consider the problem from amacroscopic point of view. Observing the
sketch of the velocity profile in figure 5.42 it seems reasonable to impose continuity
of the streamwise velocity at a distance δ (the penetration depth) below the top of
the canopy. This is the fictitious interface and equation (5.3.1) is thus applicable
for x3 ∈ [0, h− δ]. Since we are dealing with a fully developed turbulent flow, in
the region above the fictitious interface (x3 ∈ [h−δ, x∞3 ]), after using the Reynolds
decomposition for the velocity (i.e. ui = Ui + u′i) plus temporal averaging (·), the
streamwise momentum equation reads:

∂u′1u
′
3

∂x3

= g sinα. (5.3.2)

Thus, the turbulent stress balances the hydraulic gradient in the upper zone (termed
the “exchange zone”), whereas the viscous term can be neglected. Assuming a
constant mixing lengthmodel, such as that proposed byGhisalberti &Nepf (2004),
the Reynolds stress can be written as

− u′1u′3 =

Ç
cl∞δ

∂U1

∂x3

å2

, (5.3.3)

where l∞δ is shown in figure 5.42, c is a constant and their product is a “mixing
length". Substituting equation (5.3.3) into equation (5.3.2), solving for the mean
flow and determining the two constant of integration by imposing the value of U1

at h− δ and ∂U1

∂x3

∣∣∣
h−δ

= 0, it is found:

U1(x3) = U1(h− δ) +
2

3

√
g sinα

cl∞δ

[
(x∞3 − h+ δ)

3
2 − (x∞3 − x3)

3
2

]
. (5.3.4)

The condition at the fictitious interface yields U1(h − δ) = 〈u(0)
i 〉(h − δ) =

Kij g sinα
ν

. As we can observe from figure 5.44 the proposed solution fits the ex-
periments with the unique value of c = 0.086. Summing up, we can make the
following two points:

• The values of the permeability deduced from the experiments slightly over-
estimate those evaluated via homogenization theory (cf. figure 4.22), and
this is possibly due to the fact that in the experiments by Ghisalberti & Nepf
(2004) the parameter ε is about 0.2, a value which is not much smaller than
one.
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• The agreement between the experimental and theoretical velocity profiles in
figure 5.44 confirms that the interface condition A of
Le Bars & Worster (2006) is suitable in this turbulent case. Moreover, for
the four experiments analyzed, the order of magnitude of δ estimated from
equation (3.3.3) matches that used here. However, if c in equation (3.3.3)
were a simple constant, considering the trend of K11 in figure 4.22, also δ
would decrease for increasing values of Rep, contrary to observations (cf.
the inset in fig. 5.44). Thus, the “constant” c in equation (3.3.3) should be
rendered an increasing function of Rep, for δ to increase monotonically with
the increase of the pore velocity (at each given value of ϑ).

For ease of notation we denoteU = (U, V,W ), x = x1, y = x3.

5.3.1 Linear stability analysis
We have studied the linear stability of the profile defined by equation (5.3.4)

which holds in the interval [h−δ, x∞3 ] and the results have been compared with the
linear stability results found by Pluvinage (2015) where a different method to find
the mean flow and to take into account of the presence of the canopy is used. From
now on, the approach of Pluvinage (2015) is named A and our approach is named
B. We briefly present below the determination of the mean flow in approach A. It
is assumed that the velocity profile ranges between two extreme values, one, U1,
which is found in the region from the lower plate at y = 0 to y = y1 (the bottom,
ininfluential boundary layer is neglected), and the other, U2, which prevails for
y > y2 (= x∞3 of the previous section). The distance tml is defined as the difference
y2−y1. The mean velocity is Um = (U1 +U2)/2. Using Reynolds’ decomposition
for velocity and pressure, ui = Ui+u′i, p = P +p′, in the NSE and averaging (this
operation is indicated by overbars), we have:

∂Ui
∂xi

= 0, (5.3.5)

ρ(
∂Ui
∂t

+ Uj
∂Ui
∂xj

+ u′j
∂u′i
∂xj

) = −∂P
∂xi

+ µ
∂2Ui
∂xj∂xj

+ fi; (5.3.6)

the last term in eq. (5.3.6) is the mean drag force of the canopy, proportional to the
square of the velocity via two coefficients: one, denoted as a represents the frontal
area of the vegetation per unit volume, i.e. the packing density of the elements
(equal to 0.08 cm−1 in the experiments by Ghisalberti & Nepf (2004, 2005)), while
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Figure 5.44: Analytical velocity profiles, in dimensional variables, against exper-
imental results by Ghisalberti & Nepf (2004),Ghisalberti & Nepf (2006), Ghisal-
berti & Nepf (2009) for the turbulent flow over a layer of rigid fibres. The symbols
represent the velocity measurements (with uncertainty of 5%) for cases B, H, I,
and J of table 1 of Ghisalberti & Nepf (2004). The analytical solution, equation
(5.3.4), is represented by the solid lines. Two horizontal gray lines, which appear
overlapped in the scale of the figure, represent the physical interface h (in dimen-
sional terms h = 0.139 m for case B and h = 0.138 m for the other cases). In the
inset the values of δ, which define the fictitious interface at x3 = h− δ, are shown
for the corresponding cases. The dashed line is drawn to guide the eye. In the four
experiments we have used the following values for l∞δ : 9: 0.202 m �: 0.245 m
©: 0.279 m .: 0.286 m. Furthermore, the microscale l (used to normalize δ in
the inset) is equal to 5.06 cm in experiment B (with ϑ = 0.99) and 2.83 cm in the
other cases (for which ϑ = 0.96).
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the second is the drag coefficient Cd of the canopy. The mean flow is parallel in
the experiments, so that the equations reduce to:

∂U

∂x
= 0, (5.3.7)

∂U

∂t
= −1

ρ

∂P

∂x
+ (ν + νt)

∂2U

∂y2
− 1

2
CdaU

2, (5.3.8)

0 = −1

ρ

∂P

∂y
. (5.3.9)

In equation (5.3.8) it is assumed that the Reynolds stress can be modeled through
a eddy viscosity and, henceforth, the constant mixing length l = cl∞δ approach
already introduced in eq. (5.3.3) is used. The pressure gradient depends on the
surface slope S = sin α of the lower plate (which is slightly inclined in the exper-
iments, with 0.18× 10−5 < S < 10−4), i.e.

∂P

∂x
= −ρgS. (5.3.10)

In the case of steady-in-the-mean flow, eq. (5.3.8) reads

∂

∂y

[Ç
∂U

∂y

å2
]

=
1

l2

Ç
1

2
CdaU

2 − ν ∂
2U

∂y2
− gS

å
, (5.3.11)

and this equation can be easily solved numerically, for 0 < y < y2, as done, e.g.,
by Ghisalberti & Nepf (2004). In particular, they assume that l = 0.22 (h − y1)

within the canopy (y1 < y < h) and l = 0.095 tml in the portion of the shear
layer above the canopy (h < y < y2). The coefficients 0.22 and 0.095 arise from
experimental measurements and averaging over several configurations.

The drag coefficient Cd is deduced from the bulk drag coefficient CdA of a
random array of rigid cylinders. At large Reynolds numbers Red (based on the
diameter d of a cylinder and U1) this coefficient decreases with increasing cylinder
density, a d, according to the best fit polynomial established by Nepf (1999):

CdA =

(
1 +

10

Re
2/3
d

)
[1.16− 9.31ad+ 38.6(ad)2 − 59.8(ad)3], (ad < 0.1)

(5.3.12)
withCd(y) = CdAη(y) and η(y) a function deduced experimentally by Ghisalberti
& Nepf. Here, again, the profile of η(y) is obtained via averaging over a large num-
ber of experimental runs. The vertical profile of the drag coefficient is displayed
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CASE Red K11 K22

G 70.4 0.0045 0.0054

H 172.8 0.0014 0.0017

I 108.8 0.0027 0.0032

J 49.3 0.0032 0.0038

Table 5.2: Reynolds numbers, Red = U1d/ν, and dimensionless components of
the apparent permeability tensor for the cases analyzed.

in fig. 5.46 for four cases, G, H, I and J taken from the papers by Ghisalberti &
Nepf.

The methodology used to compute U is based on a procedure initiated by
Ghisalberti & Nepf (2004) and allows to automatically determine the value of the
mean velocity at the top of the canopy, U(h). It involves two independent relation-
ships to be satisfied iteratively:

• h−y1 =
1

8.7Cd a

Ç
(∆U)2

U(h)2 − U2
1

å
, to evaluate the lower point of the mixing

layer, y1;
• ∆U

U(h)
≈ 16(a d) + 1 (for 0.016 < ad < 0.081), to permit the evaluation of

y2.
The former equation stems from a balance between production and dissipation

of shear-scale turbulent kinetic energy in a vegetated shear layer while the latter
arises from the experimental correlation observed between ∆U/U(h) and the veg-
etation density in a range of values of a d
(Ghisalberti & Nepf (2004)). For an in deep description of this iterative method
we refer to Pluvinage (2015).

Neglecting drag

Neglecting the canopy drag amounts to solving the inviscid stability equations
within the flow domain to ascertain the effect of inflection points of the mean flow
profile on the growth rate, frequency and wavelength of the most unstable mode
which ensues. In the context of canopy flows this approach has been advocated by
Raupach et al. (1996) on the argument that the mixing-layer analogy provides an
explanation for many of the observed distinctive features of canopy turbulence.

We scale velocity with the mean flow velocity Um, length with the canopy
height h, pressure with ρUm2 and time with h/Um, so that the dimensionless
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Figure 5.45: Mean flow velocity profile through a rigid canopy computed with
method A and B (blue and red - dashed - curves, respectively).

Rayleigh equation reads:î
(U − c)(D2 − α2)− U ′′

ó
v = 0, (5.3.13)

for the vertical velocity mode shape v(y), with D and primes denoting d/dy; dis-
turbances are taken to behave like eiαx−iωt and c = ω/α is the phase velocity of
the wave. The temporal stability problem studied here requires finding complex
eigenvalues c for each assigned value of the (real) wavenumber α. The boundary
conditions are simply v = 0 at y = 0 and y∞ in approach A and y∞ is taken large
enough for results not to be modified upon subsequent increments of y∞.

The new approach pursued here is denoted as B. For the case of approach B a
different condition must be imposed at the fictitious interface placed in y = 1− δ;
it will be precisely this condition which will force the occurrence of one unstable
mode, considering that the profile of the mean velocity in the interval [1 − δ, y∞]

presents no inflection points (under B). At y = 1−δ we impose, like we have done
in the corresponding determination of the mean flow, continuity of pressure and
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Figure 5.46: Vertical profile of the drag coefficient Cd for runs G, H, I and J.
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Figure 5.47: Mean velocity profiles of the flow through a rigid canopy, for vari-
ous experimental runs (markers represent experimental datas from Ghisalberti &
Nepf (2004, 2005)). Solid and dashed lines are the mean flow profiles built using
approach A and B, respectively. In physical units it is h = 13.8 cm and the free
surface is at y∞ = 46.7 cm.

of the vertical velocity component. We thus need the expression of p and v deep
within the canopy, where U is constant. It is simple to find that, for y ≤ 1 − δ,
equation (5.3.13) reduces to the first term because U is constant, and its solution



5.3 Flow in a canopy 152

is
vcanopy = G sinh(αy), pcanopy = −iG(U − c) cosh(αy), (5.3.14)

where G is an integration constant. For y ≥ 1− δ the following equation holds

p =
i

α

ïÅω
α
− U

ã
Dv + U ′v

ò
, (5.3.15)

deduced by combining the Rayleigh and continuity equation for the disturbances.
Imposing continuity of p and v at y = 1 − δ by substituting equation (5.3.14) in
(5.3.15) the following boundary condition is found:

p|1−δ tanh[α(1− δ)] + i(U − c) v|1−δ = 0. (5.3.16)

The results, in terms of temporal growth rate ωi as function of α, are shown for the
four cases G through J in fig. 5.48. The amplification factors of approaches A and
B are in very good agreement with each other; variations can be ascribed to the
mild differences between the two velocity distributions. A further confirmation of
the results in figure 5.48 is represented by the analytical solutions for the piecewise
linear profiles in the semi-infinite domain [0,∞), the inclined piece of which is
taken to be tangent to the numerical profile of approachA at the point of maximum
vorticity (cf. fig. 5.45). It is simple to find that

ωi(α) = α Im

Ö
±

Ã
−
Ç
U2 − U1

2

å2

+
m

2α
(U2 − U1)A− m2

16α2
B

è
,

with
A =

Ç
1− e−2αy1 + e−2αy2

2

å
,

B =
Ä
e−4αy1 + e−4αy2 − 2e−2α(y2+y1) − 4e−2αtml − 4e−2αy1 + 4e−2αy2 + 4

ä
,

and m = (U2 − U1)/tml the slope of the profile at the inflection point. The three
families of curves in fig. 5.48 are very close to one another at low to moderate
values of α. The results indicate that the preferred wavenumber should be in the
range 0.4 ≤ α ≤ 0.7 (which means that wavelengths go from about 9h to 16h).

To verify whether these values are reasonable we turn to the detailed measure-
ments and analysis of coherent eddies by Raupach et al. (1996). Their results are
for honamiwaves, i.e. for the oscillations of terrestrial canopies under the effect of
wind, and thus apply to the case of a boundary layer (in their case the atmospheric
boundary layer) which is much thicker than the vegetation height. As such, they are



5.3 Flow in a canopy 153

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

 

 

α

ω
i

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

α

ω
i

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

ω
i

 

 

α

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

α

ω
i

 H G

 I  J

Figure 5.48: Temporal growth rate against wavenumber for the four cases, un-
der Rayleigh’s stability equation. Solid lines: numerical results (approach B with
symbols); dashed lines: analytical results for piecewise-linear profiles.

not directly applicable to the present case of aquatic canopies, but are nonetheless
believed to provide relevant orders of magnitudes of the waves’ characteristic fea-
tures. The crucial parameter in the analysis by Raupach et al. (1996) is the shear
length scale Ls = U(h)/U ′(h). Ls correlates well the streamwise spacing of the
dominant canopy eddies; in particular, Raupach et al. (1996) state that

α =
2πh

γLs
,

with γ = 8.1 ± 0.3, on the basis of observations from several experiments. We
further note that Ls appears to be correlated also to the occurrence of monami
waves in water: our analysis of the nine flow scenarios studied by Ghisalberti &
Nepf (2002) suggests that monamis take place past a threshold value Ls = 0.65h,
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and the corresponding instabilities display a wavenumber αwhich is always below
1.4. Further confirmation of the relevance ofLs for the case of coherent eddies over
aquatic vegetation is provided by Singh et al. (2015).

Another result by Raupach and colleagues, based on two-point u correlations
of honami waves in a sparse wheat canopy, is that the dominant circular frequency
is approximated by

ωr =
π

ε

U(h)

Um
,

with ε = 3±0.5. A fit through the experimental data of Ghisalberti & Nepf (2002)
for experiments in water provides a mean value of ε which is centered around 3.5.

A further correlation reported by Raupach et al. (1996) concerns the growth
rateωi of themost unstable eddies, which is found to be proportional tohU ′(h)/Um.

Table 2 gives a summary of these predictions for the four experiments byGhisal-
berti and Nepf analyzed here. On the basis of what stated above on Ls we might
expect scenarios G, H and I to lead to monami waves. It is however somewhat un-
expected to find that case J apparently displays the largest instability growth rate.

It is immediately apparent from the table that the most unstable wavenumbers
of the inviscid stability analysis are 100% off the experimental correlations. Also,
the frequencies of themost unstablemode at the peak value ofα are underestimated
by the numerical results. These facts justify a closer look at the effect of the drag
force exerted by the canopy on the flow.

Accounting for drag

Drag is accounted for, in approach A, through a source term in the momentum
equations, yielding amodifiedRayleigh equation similar to that used by Singh et al.
(2015) for the study of canopy flows. The difference from Singh et al.’s approach is
that the drag coefficient Cd is not taken to be constant by Pluvinage (2015) within
the canopy but variable, as shown in fig. 2. Another difference lies in the fact that
is considered a shear layer extending to a large value of y∞, whereas Singh et al.
have limited the vertical extent of the domain to the actual size of the water channel
of the experiments by Ghisalberti & Nepf (2002), enforcing at the free surface a
no-shear condition. A final difference lies in the turbulence model used in Singh
et al. (2015), based on a constant eddy viscosity through the canopy.

The equation used in approach A is:

(U − c)(D2 − α2)v − U ′′v − ia

α
D(CdUDv) = 0,
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with v = 0 at y = 0, y∞.
ApproachB couples Rayleigh’s equation outside of the canopy toDarcy’s equa-

tion within it, with a matching at the fictitious interface, y = 1 − δ, on pressure
and vertical velocity. Deep inside the porous zone the dimensional disturbance
equations are

∂ui
∂xi

, ui = −κij
µ

∂p

∂xj
.

Scaling the variables as in the previous section, the continuity equation remains
unaltered and Darcy’s equation becomes:

ui = −ρUmh
µ

κij
h2

∂p

∂xj
= −ReKij

d

ah2

∂p

∂xj
,

with Re = ρUmh/µ the Reynolds number, Kij = κij/l
2 the dimensionless per-

meability tensor (normalized with the square of the length l of the unit cell, i.e.
the canonical normalization used elsewhere in this thesis), and d/ah2 = (l/h)2

a geometric coefficient related to the diameter (d = 0.64cm) of the cylindrical
fibers forming the canopy. From now on, for simplicity, we will indicate the group
ReK33 d/ah

2 with the symbol ξ.
Given the orthotropic nature of the canopy, the off-diagonal terms of the per-

meability tensor Kij vanish, and continuity yields

(D2 − α̃2)p = 0,

with α̃ = α
»
K11/K33. For the case of Stokes flow it is K11/K33 ≈ 0.50 (cf.

fig. 4.12), but here we have chosen to use K11/K33 = 0.83, as by computations
in chapter 4, at the present values of the Reynolds number (cf. table 5.2). Upon
application of the condition v(0) = 0, it is easy to find that p and v deep inside the
canopy are given by:

pcanopy = Ã cosh(α̃y), vcanopy = −ξα̃Ã sinh(α̃y).

Continuity of p and v at y = 1− δ yields the boundary condition to be used when
solving Rayleigh’s equation in the domain [1− δ, y∞], i.e.

v|1−δ + ξ α̃ tanh[α̃(1− δ)] p|1−δ = 0. (5.3.17)

The other condition is simply v|y∞ = 0.
Stability results are displayed as ωi versus α in figure 5.49. For approach A

the curves are very similar to those of the previous section, except for a damping
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Figure 5.49: Stability curves for runs G, H, I and J, accounting for drag. The solid
and the dashed lines are based, respectively, on approach A and B.

effect experienced by the most unstable Helmholtz mode for all cases considered.
This is precisely the effect predicted by Py et al. (2004) for the mixing layer insta-
bility over a flexible crop canopy. However, given that the wavenumber of largest
growth seems still underestimated (at least against experimental correlations, cf.
table 5.3) something seems to be missing from model A. A similar argument mo-
tivated Py et al. (2004) to study a coupled fluid-structure model, accounting for
the flexibility of the canopy via a wave equation (Doaré et al. (2004)). Py and
colleagues demonstrated that, for realistic values of the crop flexibility, the char-
acteristics of the mixing layer instability were significantly modified, in particular
with an increase of the most amplified wavenumber. This explained, at least in
qualitative terms, discrepancies with measurements of the size of coherent eddies
over a variety of canopies, as reported by Finnigan (2000).

In cases G through J examined here the canopy is not flexible, whichmeans that
it is the model itself (Rayleigh equation plus drag in the canopy, expressed with a
drag coefficient Cd) which might have to be questioned. Model B proposed here



5.3 Flow in a canopy 158

CASE αA αB ωiA ωiB ωrA ωrB
G 0.73 1.05 0.083 0.157 0.68 1.225
H 0.50 0.8 0.045 0.112 0.45 0.929
I 0.43 0.75 0.034 0.103 0.38 0.867
J 0.70 1.00 0.092 0.168 0.63 1.182

Table 5.4: Most unstable modes for approaches A and B, accounting for drag
throughout the canopy.

represents an alternative, never explored before, which shows some promise. In
fact, the results based on the coupled Rayleigh-Darcy system providemost unstable
wavenumbers which approaches the heuristic predictions by Raupach et al. (1996),
as shown in table 5.4.

Also the growth rate of the most unstable mode is rather well correlated by the
results of model B which indicate that

ωiBUm
U(h)h

= 0.108± 0.014,

i.e. the ratio above is constant to within about 10%. Conversely, the same ratio
based on ωiA varies from 0.037 to 0.080.

The most unstable circular frequencies ωr of the analysis, on the other hand,
exceed those of Raupach et al.’s correlation (cf. table 5.3). On the basis of our
results the coefficient ε should be about half the value quoted in Raupach et al.
(1996) for the case of honami.

An example of mode shapes is provided in figure 5.50 for scenario G. For
comparison purposes also the mode shapes of the no drag case are reported; all
cases refer to a wavenumber equal to 0.7. As for the curves of the growth rate, in
the case without drag the eigenfunctions of the two approaches are similar. The
main difference is in the fact that we do not constrain the horizontal disturbance
velocity to be continuous at the fictitious interface in approach B. Regarding the
case with drag, instead, the main difference between the two approaches seems to
be the non-smoothness of the vertical velocity at y = 1− δ.
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Figure 5.50: Modulus of the most unstable perturbation mode shapes for run G
(α = 0.7). Solid lines: Rayleigh equation. Dashed lines: including the drag force.
Upper frames: approach A; lower frames: approach B.



Chapter 6

Conclusions and outlook

A homogenization approach has been used to study the flow over and through
porous and poroelastic media, with a general strategy suitable for every kind of
micro-periodic geometry. The work is developed essentially from two points of
view: the microscopic and the macroscopic one. The microscopic equations pro-
vide a characterization of the particular geometry of the porous medium, resulting
in an estimate for the components of the permeability and the effective elasticity
tensors; the results for these tensors can be summarized in this way:

• the permeability tensor for spheres and touching spheres is isotropic (i.e.
Kij = κδij), as expected. In the case of spheres Kij has been validated and
a new correlation for the (scalar) permeability κ is provided as function of
the porosity ϑ of the medium, correcting the classical relation by Kozeny-
Carman.

• For transversely isotropic structures (cylinders and linked cylinders) only
two diagonal components of this second order tensor (K11 and K33) are
present since the terms relative to the plane normal to the vertical fibres’
axes are equal. This result can be easily confirmed analytically (Milton,
2004). For cylindrical structures, Kij has been compared with values from
the literature, obtaining good agreement.

• In the presence of inertia within the porous region, an approach to estimate
the permeability is proposed, based on the Oseen linearization of the equa-
tions in the unit cell, plus an iterative approach which alternates between
the microscopic and the macroscopic region. With this technique, the ap-
parent permeability from the theory approaches the values found in exper-
iments and direct numerical simulations, with the correct trend as function

160
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of the pore Reynolds number. The theoretical values do not precisely match
those available from experiments or DNS because the fibres considered here
are neither sufficiently slender nor packed densely enough for the first order
equations of the multiple scale approximation to be fully adequate. To im-
prove this one could possibly push the multiple scale theory up to higher
order.

• The permeability tensor determined with the new three-scale approach for
cylindrical structure is completely in agreement with that found in the two-
scale approach. This allow us to consider simpler two-dimensional micro-
scopic problems for every structure which is invariant in the x3-axis.

• The effective elasticity tensor Cijkl associated to the homogenized material
has been computed. The assumption of periodicity over the REV gives
good results for completely connected microscopic structures (linked cylin-
ders and touching spheres), highlighting the properties of the transversely
isotropic media. In case of unconnected fibers the homogenized material
has strange properties which deserve further investigations (Hoffmann et al.,
2004).

• The tensor α′ij depends directly on a geometrical assigned parameter (the
porosity), so that no computational efforts must be made for its determina-
tion.

The coupling of the flow problemwithin the porousmediumwith that in a pure-
fluid region neighboring it is particularly important. The main conclusion is that
Darcy’s law and its generalization to the poroelastic case provides a good approx-
imation of the velocity inside the porous medium, also when inertia in the flow
within the P -region is non-negligible. For rigid porous media, the DNS imple-
mented inside the cavity has been fundamental since it has allowed us to explore
in depth the different interface conditions to be imposed between the fluid and
porous region. All of them contain some degree of arbitrariness and parameters
which must be tuned. The interface condition of Le Bars &Worster (2006), which
is an extension of the one by Beavers & Joseph (1967), is found to be the most
suitable, both in the case of laminar and turbulent flow. The penetration depth
δ which needs to be imposed satisfies the order estimate of Le Bars & Worster
(2006), for fixed pore Reynolds number. When ϑRep increases also δ increases,
and this should be accounted for when selecting δ in the model.
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Conversely, the use of Brinkman’s correction to Darcy’s law should be avoided
since, on the one hand, the estimation of the effective viscosity µe is uncertain
and, on the other, results with this model appear to systematically overestimate the
velocity near the interface.

Finally, also a condition which employs permeability components which vary
as the interface is approached do not appear adequate. The distance over which
the permeability approaches the infinite value of the pure fluid region has been
estimated to be of order ε on the basis of DNS, and depends mildly on Reynolds
numbers, for the range considered which spans three orders of magnitude. The
use of permeability components which change smoothly (even according to DNS
results) is, however, not sufficient in a coupled NSE-Darcy system to represent
inertial effects within a small porous layer adjacent to the pure fluid region, and
this suggests the inclusion of a Forchheimer term in a thin-layer interface model
(Firdaouss et al., 1997).

In case of poroelastic media the lack of a direct numerical simulation or other
kind of available results to allow comparisons, weakens the conclusions which we
reach, at least as far as the interface condition is concerned. The comparison with
the rigid case is a preliminary validation of the model.

In section 5.3 the instability of shear layers generated by rigid canopies, is
studied. A mean velocity profile (which fits in both cases the experimental data
by Ghisalberti & Nepf, 2004, 2005) has been determined using the Prandtl mixing
length assumption which appears to yield reasonable results. The presence of the
canopy is rendered imposing a boundary condition at its fictitious edge, deduced
by the governing homogenized equations.

A first step in stability analysis consists in neglect the canopy drag. The model
displays the stability behavior in agreementwith that described by Pluvinage (2015)
and yield similar results as the theoretical model based on a piecewise-linear mean
profile, at least for the case of longwaves. Comparisons of themost unstablemodes
with the measurements by Raupach et al. (1996) and Ghisalberti & Nepf (2004)
suggest that drag within the canopy must be accounted for (a fact which had been
already suggested by Py et al. (2004)). We have thus tried to include the drag
exerted by the canopy via a modified boundary condition at a canopy’s fictitious
edge. The second approach yields reasonable estimates of the wavenumber α and
of the frequency ωr, at least when compared to existing correlations. The growth
rate of the most unstable mode is also found to be proportional to the quantity
hU ′(h)/Um, with almost the same constant of proportionality for the four config-
urations studied, in agreement with experiments by Raupach et al. (1996). Some
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improvements could be obtained using Brinkman’s equation to model viscous ef-
fects within the canopy or Forchheimer’s equation to account for inertial terms. In
any case, only careful experimental measurements can justify the preference of a
model over another and permit progress in the determination of the most appropri-
ate interface condition to be imposed at the boundary of a porous (or poroelastic)
medium and a pure fluid region.

Future developments This work has many pending points yet, which could give
a deeper knowledge about the interaction between a fluid and a poroelastic medium
characterized by a separation of scale. Some of them are listed here, inlight of the
conclusions already reached:

• from a microscopic point of view, a strategy is needed to tackle unconnected
microscopic structures. A way could be to develop an ad hoc three-scale
approach which reduces the problem to the (x1, x2) plane, like in the rigid
case. Another one could be to relax the periodicity assumption in the x3-
direction and consider new boundary conditions at the bottom and top of
the fibers. This procedure should allow us to find some kind of response to
horizontal deformations through the fact that the fibers are hinged at a wall.

• Since it is suitable to not consider periodic structures, the homogenization
theory formalism must be extended to confined media, initially introducing
weak (or statistical) periodicity for the microscopic problems. This exten-
sion could lead us to interface conditions directly deduced by homogeniza-
tion.

• The preliminary study made using the Oseen’s approximation to account for
inertia in the permeability tensor should be parameterized finding a relation
between the apparent permeability, the Reynolds number, the direction of
the flow with respect to the principal axes of the microscopic structure and
the porosity.

• The Oseen’s approximation is only one strategy to include inertia in the
model. Another strategy consists in the development of non-linear equa-
tions for the homogenized model, which can be deduced by higher order
approximations in ε.

• A strategy to consider turbulent flows in poroelastic media could consist in
the determination of microscopic problems for variables (e.g. eddy viscosity
νt) which characterize the typical structures of turbulence.
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Appendix A

Numerical issues

A.1 The microscopic codes
The microscopic problems arising from homogenization have been solved with

OpenFoam. The objective of this appendix is not to explain the finite volume
method (FVM) on which OpenFoam is based, but to explain how this tool has
been used to solve the PDE’s introduced in chapter 2. For insights regarding
FVM we refer to Versteeg & Malalasekera (2007) and for its implementation in
OpenFoam to Moukalled et al. (2015). A simple scheme which describes how
this FVM code works is presented here to make this appendix self-consistent.
The casedirectory folder contains at least three subfolders: 0, constant and
system. The 0 folder contains the information about the initialization and bound-
ary conditions for the unknown fields. The constant folder contains the definition
of the discretized domain. To build a discretized domain we start from a CAD ge-
ometry of the physical domain. Then, this geometry is meshed (i.e. partitioned in
cells whose shape depends on the meshing method). Each cell has a center and
some faces over which the unknowns are evaluated on the basis of the spatial dis-
cretization scheme which is chosen. The numerical methods used for spatial and
temporal discretization are set in the system folder. Now we are ready to present
the strategies of resolution for the most used and meaningful microscopic tensors.

A.1.1 Resolution of the problem for Kij and Aj

Systems (4.0.3) or (4.0.5) (in case of Re = O(1)), are boundary value problem
defined over Vf , the domain occupied by the fluid inside the microscopic cell V .
The boundary conditions are, in both cases, Kij = 0 on Γ plus periodicity of the
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casedirectory

0 constant system

Figure A.1: Typical structure of an OpenFoam case.

unknowns over V . We have a system of twelve equations and twelve unknown,
plus the respective boundary conditions. Actually, the twelve governing equations
can be grouped into three sets of four disjoined equations. The unknowns of each
set are four: a vector field composed by the rows of the permeability tensor (KIj)
and a scalar field represented by each entry ofA (AI , I fixed).

From this point of view, for Re = O(ε), each of the three problems can be
seen as a Stokes problem whereKIj and AI play the role of velocity and pressure,
respectively. The solution of each set of equations satisfies exactly the same prob-
lem (the only difference is given by a volumetric source term represented in the
equations, the vector field δIj). In case of Re = O(1), the governing equations for
KIj contain one more term which can be viewed as a linearized convective term.

A minimal effort is required to solve the problem since it is sufficient to delete
the convective term (for Re = O(ε) or to linearize it for Re = O(1)) of icoFoam,
an existing solver for the NSE present in OpenFoam. In the programming language
the equations for Re = O(1) read

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//
f vVec t o rMa t r i x KEqn
(

fvm : : dd t (K)
5 + fvm : : d i v ( phiReU , K)

− fvm : : l a p l a c i a n ( nu , K)
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) ;

s o l v e (KEqn == DELTA −f v c : : g r ad (A) ) ;
10 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

In order to solve the problem for Re = O(ε) it is sufficient to delete the linearized
convective term fvm::div(phiReU, K). To better understand these equations we
have to consider that:

• A timemarching solver with Crank-Nicolson discretization in time (set in the
file casedirectory/system/fvSchemes.c) is used to reach the steady-
state; the time derivative is written in the solver as fvm::ddtwhere ddt is a
member of the class fvm (finite volume matrix; this allows to build the
matrices which discretize a partial differential operator) and double colon
:: is an access function to enter the classes.

• The spatial operators (which are members of fvm) has been discretized using
a Gauss integration with different interpolation schemes for each operator.

• The gradient of AI is taken into account in an explicit way (grad is a mem-
ber of the class fvc, finite volume calculus, which allows to build the
known term of the linear system associated to a given discretized PDE and,
more in general, to apply differential operations to vector fields), because
the PISO algorithm is used to decouple the equation forKIj and AI , (for an
explanation of the algorithm and its implementation, cf. Moukalled et al.,
2015).

• Once the spatial operators are discretized, the linear systems are solved us-
ing the GAMG (geometric-algebraic multi-grid) method for AI and PCG (pre-
conjugate gradient) method with DIC (Cholesky incomplete decomposition)
preconditioner for Kij .

For each one of the geometries for which the equations have been solved, a grid
convergence study has been performed (an example is shown in figure A.2 for
Re = O(ε) and ϑ = 0.8). In table A.2 others grid convergence tests are shown in
the case Re = O(1).

AlsoLijk andMijk satisfy Stokes problems, forced by different volumetric con-
stants. We omit the presentation of the corresponding codes which are analogous
to those for the permeability tensor.
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# CELLS K
503 2.07 · 10−2

753 2.10 · 10−2

1003 2.08 · 10−2

Table A.1: Scalar permeability in the case of spherical inclusions with ϑ = 0.8.
The base mesh is built with blockMesh with 50, 75, and 100 cells per unit length,
respectively. The final mesh is built with snappyHexMesh.

# CELLS ϑRep = 10−1 ϑRep = 1 ϑRep = 10 ϑRep = 50

503 1.89 · 10−2 1.89 · 10−2 1.80. · 10−2 1.59 · 10−2

753 1.85. · 10−2 1.85 · 10−2 1.80. · 10−2 1.57 · 10−2

1003 1.89 · 10−2 1.89. · 10−2 1.82 · 10−2 1.61 · 10−2

Table A.2: K11 for cylindrical inclusions with ϑ = 0.8 and for different Rep. The
base mesh is built with blockMesh with 50, 75, and 100 cells per unit length,
respectively. The final mesh is built with snappyHexMesh.

50 60 70 80 90 100
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

cells per unit length

<
K

ii>

 

 

<K
11

>

<K
33

>

Figure A.2: Grid convergence evaluated looking at the integral of K11 and K33

over the domain, for three different grids, in the case of cylindrical inclusions and
porosity 0.8.The mesh is built with snappyHexMesh.
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MAX(K11)
<K11>
<A1>

t

Figure A.3: Convergence in time of the time-marching solver for K1j . A steady
solution is reached in this case after about 0.25 time units. The case shown here
is related to K11 with ϑ = 0.8. Two indicators of the steady-state are shown:
the maximum value reached by the solution and its integral value over the whole
microscopic domain.

# CELLS K33 MAXV (K33)

503 4.09 · 10−2 8.12 · 10−2

1503 4.08 · 10−2 8.16 · 10−2

2003 4.08 · 10−2 8.16 · 10−2

Table A.3: Vertical permeability computed with the equations deduced by the
three-scale approach, in case of cylindrical inclusions such that ϑ = 0.8. The
mesh is built with NetGen algorithm using 50, 150, and 200 cells per unit length,
respectively.

Solution for Kij and Aj in the 3-scale approach The problems deduced by
the three-scale homogenization (equations 2.3.22, 2.3.26 and 2.3.27) are defined
over two-dimensional domains. The problems to be solved for the determination
of K1j , A1 and K2j , A2 do not change from the two-scale approach, so that their
resolution is the same as before. The problem forK33 is very simple: it consists of
a Poisson’s equation with a constant non-homogeneous forcing term in the whole
domain, plus periodicity along x1 and x2. The routine laplacianFoam, already
implemented in OpenFoam allows to easily determineK33. In table A.3 the spatial
convergence for K33 is shown.
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Determination of the averaged tensors Once themicroscopic permeability ten-
sor is computed, to obtain the integral value over its domain it is sufficient to define
a functionObject in the system/controlDict file of the present case.
/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

avgK
{

type c e l l S o u r c e ;
5 f u n c t i o nOb j e c t L i b s ( "libfieldFunctionObjects.so" ) ;

e n ab l e d t r u e ;
o u t p u t C o n t r o l t imeS t e p ;
o u t p u t I n t e r v a l 1 ;
l og t r u e ;

10 va l u eOu t pu t f a l s e ;
s o u r c e a l l ;
o p e r a t i o n v o l I n t e g r a t e ;
f i e l d s K;

}
15 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

A.1.2 Resolution of the problems for χpq
i and ηi

System (4.0.1) is constituted by twenty-seven equations with the respective
boundary conditions plus periodicity over the microcell. Upon inspection, the
twenty-seven unknown can be divided into nine independent groups of three un-
knowns which satisfy 9 disjoined sets of three equations plus boundary conditions.
From this point of view, we have 9 unknown vector fields defined over the solid
inclusions inside the microcell. Since the elastic material is isotropic these vector
fields reduces to six, precisely, χ11

i , χ22
i , χ33

i , χ12
i , χ13

i and χ23
i . Each of the six

unknown fields to be solved are ruled by equations which are linear combinations
of the entries of the jacobian ofχpq, [J(χpq)]ij = ∂jχ

pq
i . Each set of equations dif-

fers from the others because the coefficients of the linear combinations and source
terms in the boundary conditions are different. These coefficients represent the
elastic response of the material to compressions or expansions in each direction
(i.e they are related to the entries of the microscopic elasticity tensor C).

To understand how the operators are discretized and solved, we write explicitly
the equations for χ11

i :

C1111
∂2χ11

1

∂x2
1

+ C1122
∂2χ11

2

∂x1∂x2

+ C1133
∂2χ11

3

∂x1∂x3

+

+ C1212

Ç
∂2χ11

1

∂x2
2

+
∂2χ11

2

∂x1∂x2

å
+ C1313

Ç
∂2χ11

1

∂x2
3

+
∂2χ11

3

∂x1∂x3

å
= 0,
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C1212

Ç
∂2χ11

2

∂x2
1

+
∂2χ11

1

∂x1∂x2

å
+ C2211

∂2χ11
1

∂x1∂x2

+ C2222
∂2χ11

2

∂x2
2

+ C2233
∂2χ11

3

∂x2∂x3

+

+ C2323

Ç
∂2χ11

2

∂x2
3

+
∂2χ11

3

∂x2∂x3

å
= 0,

C1313

Ç
∂2χ11

3

∂x2
1

+
∂2χ11

1

∂x1∂x3

å
+ C2323

Ç
∂2χ11

3

∂x2
2

+
∂2χ11

2

∂x2∂x3

å
+

C3311
∂2χ11

1

∂x1∂x3

+ C3322
∂2χ11

2

∂x2∂x3

+ C3333
∂2χ11

3

∂x2
3

= 0.

The corresponding boundary conditions areÇ
C1111

∂χ11
1

∂x1

+ C1122
∂χ11

2

∂x2

+ C1133
∂χ11

3

∂x3

+ 1

å
n1+

+ C1212

Ç
∂χ11

1

∂x2

+
∂χ11

2

∂x1

å
n2 + C1313

Ç
∂χ11

1

∂x3

+
∂2χ11

3

∂x1

å
n3 = 0,

C1212

Ç
∂χ11

2

∂x1

+
∂χ11

1

∂x2

å
n1+

+

Ç
C2211

∂χ11
1

∂x1

+ C2222
∂χ11

2

∂x2

+ +C2233
∂χ11

3

∂x3

+ 1

å
n2+

+ C2323

Ç
∂χ11

2

∂x3

+
∂χ11

3

∂x2

å
n3 = 0,

C1313

Ç
∂χ11

3

∂x1

+
∂χ11

1

∂x3

å
n1 + C2323

Ç
∂χ11

3

∂x2

+
∂χ11

2

∂x3

å
n2+Ç

C3311
∂χ11

1

∂x1

+ C3322
∂χ11

2

∂x2

+ C3333
∂χ11

3

∂x3

+ 1

å
n3 = 0.

These equations are valid only if the elasticity tensor has the form (4.2.5). They
can be rewritten highlighting the laplacian of each component of χ11

i :

C1111

Ç
∂2χ11

1

∂x2
1

+
∂2χ11

1

∂x2
2

+
∂2χ11

1

∂x2
3

å
= −(C1122 + C1212)

∂2χ11
2

∂x1∂x2

+ (A.1.1)

− (C1133 + C1313)
∂2χ11

3

∂x1∂x3

− (C1212 − C1111)
∂2χ11

1

∂x2
2

− (C1313 − C1111)
∂2χ11

1

∂x2
3

,
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C2222

Ç
∂2χ11

2

∂x2
1

+
∂2χ11

2

∂x2
2

+
∂2χ11

2

∂x2
3

å
= −(C1212 + C2211)

∂2χ11
1

∂x1∂x2

(A.1.2)

− (C2233 + C2323)
∂2χ11

3

∂x2∂x3

− (C1212 − C2222)
∂2χ11

2

∂x2
1

− (C2323 + C2222)
∂2χ11

2

∂x2
3

,

C3333

Ç
∂2χ11

3

∂x2
1

+
∂2χ11

3

∂x2
2

+
∂2χ11

3

∂x2
3

å
= −(C1313 + C3311)

∂2χ11
1

∂x1∂x3

+ (A.1.3)

− (C2323 + C3322)
∂2χ11

2

∂x2∂x3

− (C1313 − C3333)
∂2χ11

3

∂x2
1

− (C2323 − C3333)
∂2χ11

3

∂x2
2

.

In the boundary conditions, the normal to the microscopic interface derivative of
each component of χ11

i can be highlighted:

C1111

Ç
∂χ11

1

∂x1

n1 +
∂χ11

1

∂x2

n2 +
∂χ11

1

∂x3

n3

å
= −

Ç
C1111 + C1122

∂χ11
2

∂x2

+ C1133
∂χ11

3

∂x3

å
n1+

(A.1.4)

−
ñ
(C1212 − C1111)

∂χ11
1

∂x2

+ C1212
∂χ11

2

∂x1

ô
n2 −

ñ
C1313

∂χ11
3

∂x1

+ (C1313 − C1111)
∂χ11

1

∂x3

ô
n3,

C2222

Ç
∂χ11

2

∂x1

n1 +
∂χ11

2

∂x2

n2 +
∂χ11

2

∂x3

n3

å
= −

Ç
C2211 + C2211

∂χ11
1

∂x1

+ C2233
∂χ11

3

∂x3

å
n2+

(A.1.5)

−
ñ
(C2121 − C2222)

∂χ11
2

∂x1

+ C2121
∂χ11

1

∂x2

ô
n1 −

ñ
C2323

∂χ11
3

∂x2

+ (C2323 − C2222)
∂χ11

2

∂x3

ô
n3,

C3333

Ç
∂χ11

3

∂x1

n1 +
∂χ11

3

∂x2

n2 +
∂χ11

3

∂x3

n3

å
= −

Ç
C3311 + C3311

∂χ11
1

∂x1

+ C3322
∂χ11

2

∂x2

å
n3+

(A.1.6)

−
ñ
(C3131 − C3333)

∂χ11
3

∂x1

+ C3131
∂χ11

1

∂x3

ô
n1 −

ñ
C3232

∂χ11
2

∂x3

+ (C3232 − C3333)
∂χ11

3

∂x2

ô
n2.

The equations, written in this way, lend themselves to an easy implementation with
OpenFoam. Two things must be observed:

• the RHS of each governing equation and boundary condition can be writ-
ten as the divergence of vectors whose entries are linear combinations of
[J(χpq)]ij;
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• the divergence operator is not implemented in OpenFoam as an implicit op-
erator. In the programming language of OpenFoam, the div operator is not
a member of the class fvm, but is a member of the fvc class.

On the basis of the previous considerations, the equations above are solved using
a time-marching solver. The LHS of (A.1.1), (A.1.2) and (A.1.3) represent the
implicit terms, while the RHS is completely explicit. In the OpenFoam notation
this means
/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

f vVec t o rMa t r i x ChiEqn
(

fvm : : dd t ( Chi ) +
5 fvm : : l a p l a c i a n ( diagC , Chi ) == − f v c : : d i v ( S )

) ;
/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

where diagC is a vector which contains the first three entries on the diagonal of
Cijkl and S is defined as
/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

S . r e p l a c e ( 0 , ( C11 . component ( v e c t o r : :Y) ∗ GradChi . component ( t e n s o r : :YY) +
C11 . component ( v e c t o r : : Z ) ∗ GradChi . component ( t e n s o r : : ZZ) ) ) ;

S . r e p l a c e ( 3 , ( Cmix . component ( v e c t o r : :X) ∗ ( GradChi . component ( t e n s o r : :XY) ) )
) ;

S . r e p l a c e ( 6 , ( Cmix . component ( v e c t o r : :Y) ∗ ( GradChi . component ( t e n s o r : : XZ) ) )
) ;

5 S . r e p l a c e ( 1 , ( Cmix . component ( v e c t o r : :X) ∗ ( GradChi . component ( t e n s o r : :YX) ) )
) ;

S . r e p l a c e ( 4 , ( C22 . component ( v e c t o r : :X) ∗ GradChi . component ( t e n s o r : :XX) +
C22 . component ( v e c t o r : : Z ) ∗ GradChi . component ( t e n s o r : : ZZ) ) ) ;

S . r e p l a c e ( 7 , ( Cmix . component ( v e c t o r : : Z ) ∗ ( GradChi . component ( t e n s o r : : YZ) ) )
) ;

S . r e p l a c e ( 2 , ( Cmix . component ( v e c t o r : :Y) ∗ ( GradChi . component ( t e n s o r : : ZX) ) )
) ;

S . r e p l a c e ( 5 , ( Cmix . component ( v e c t o r : : Z ) ∗ ( GradChi . component ( t e n s o r : : ZY) ) )
) ;

10 S . r e p l a c e ( 8 , ( C33 . component ( v e c t o r : :X) ∗ GradChi . component ( t e n s o r : :XX) +
C33 . component ( v e c t o r : : Y) ∗ GradChi . component ( t e n s o r : :YY) ) ) ;

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

where GradChi = [J(χpq)]ij , C11, C22, C33 are vectors formed by the non-zero
entries of the first, second and third row of Cijkl, respectively, and Cmix is a vector
which contains the last three entries on the diagonal of Cijkl.

Since in OpenFoam it is possible to impose only boundary conditions on the
value of the unknown fields (Dirichlet conditions) or on their normal to the bound-
ary surface derivative (Neumann conditions), also the boundary conditions (A.1.4),
(A.1.5), (A.1.6) are discretized in time, i.e.

LHS(N+1) = RHS(N) (A.1.7)
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where the superscript denotes the time index. These conditions are implemented
using the extension swak4Foam which allows to customize initial and boundary
conditions. Conditions (A.1.4), (A.1.5) and (A.1.6) have been imposed during the
initialization of χpq in the following way:
bounda r yF i e l d
{

down
{

5 t y p e c y c l i c ;
}
up
{

t ype c y c l i c ;
10 }

r i g h t
{

t ype c y c l i c ;
}

15 l e f t
{

t yp e c y c l i c ;
}
f r o n t

20 {
t ype c y c l i c ;

}
back
{

25 t y p e c y c l i c ;
}
f i l
{

t yp e groovyBC ;
30 va l u e un i fo rm (0 0 0) ;

v a l u eExp r e s s i o n "vector(0,0,0)" ;
g r a d i e n t E x p r e s s i o n "-oldTime(SBCs)&normal()" ;
f r a c t i o n E x p r e s s i o n "0" ;

}
35 }

where down, up, left, right, front, back represent the faces of the cubic mi-
croscopic cell over which periodic (cyclic) boundary conditions are imposed,
and fil corresponds to Γ (the microscopic fluid-structure interface). The func-
tion oldTime allows the access to the solution at the previous time step, while the
tensor SBCs represent the RHS of (A.1.4), (A.1.5) and (A.1.6). Note that here, the
boolean variable fractionExpression, set equal to 0, switches to a Neumann
boundary condition with known term equal to gradientExpression. We sum
up the numerical schemes used:

• a time marching solver with Crank-Nicolson discretization in time is used to
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Figure A.4: Tetrahedral grids of linked cylinders such that d/dt = 2.5 and r =

0.252. The grids are composed by about 2×105 (left) and 2×106 (right) tetrahedra.

reach the steady-state;

• the spatial operators are discretized using a Gauss integration with different
interpolation schemes for each operator;

• once the spatial operators are discretized, the linear systems are solved using
the PCG method with DIC preconditioner for Kij .

It is clear that when the steady state is reached the original equations and bound-
ary conditions are satisfied. For each one of the results shown in the thesis, both
temporal and spatial convergence has been verified. The grid convergence is
shown in figure A.5 for the particular case of a linked cylinder with d/dt = 2.5;
the relative error between the solution obtained with the coarser mesh (shown in
the left frame of figure A.4) and that obtained with the finer mesh (shown in the
right frame of figure A.4) is about 0.5% (evaluated as the mean of the relative er-
rors between each dominant component of 〈[J(χpq)]ij〉). An example of temporal
convergence is shown in figures A.6 and A.7 for χpq. The equations satisfied by
ηi are analogous to those just analyzed and do not need further explanations.
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Figure A.5: Grid convergence using three different tetrahedral meshes (the coarser
and finer are shown in figure A.5), for inclusions made of linked cylinders such that
d/dt = 2.5 and r = 0.252.
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Figure A.6: Relative error for each component of χ11, for varying time.
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Figure A.7: Two-norm of the averaged Jacobian of χpq for varying time. After
fifteen time units the norm reaches 99% of its final value.

A.2 The macroscopic codes
We briefly describe in this section the codes used to solve the macroscopic

configuration. In order to do this we need a solver for the pure fluid region to be
coupled with the solver in the porous homogenized region (based on Darcy’s law,
Brinkman equation or the generalization of Darcy’s law in the deformable case).
Each one of these codes are coupled in a proper way with the interface equations
listed in chapter 3. All the codes have in common the following points:

• they are 2D codes, written in Matlab ®, which solve for the flow over rect-
angular domains discretized with cartesian non-uniform grids;

• the grid is staggered, the pressure is computed on the internal points (centers
of the cells), the velocity is placed on the faces of the cells;

• the spatial operators are discretized using fourth-order finite differences.

Before presenting each solver we show how the spatial discretization is developed.
For ease of notation we restrict to a 1D case, supposing that the function f of

which we want to calculate the first and second derivative is function of a single
variable. In order to preserve the same order precision in each region of the do-
main, we need to define five different schemes for the first and second derivative of
f , one for each region highlighted in figure A.8; the five schemes are named FOSj,
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Figure A.8: Sketch of the position in the domain where each finite difference
scheme is used.

1 2 3 4

Figure A.9: Definition of each scheme and δ. The derivative are computed for the
red point using the values of f in the black points.

j=1,2,3,4,5 as can be seen in the same figure. In the internal points of the domain
a centered scheme with 5 points is used (FOS3). Approaching the boundaries of
the domain, in the second or second to last point, a one-backward-three-forward or
three-backward-one forward scheme is employed (FOS2,FOS4). Over the bound-
aries, a fully forward or backward scheme is used (FOS1,FOS5). Since the grid
is in principle non-uniform, we use the notation defined in figure A.9. We impose
that first or second derivative of f (denoted here with f (l), l = 1, 2) can be written
as a linear combination of the value of f in the neighboring points i.e.

FOS1 f (l)(x) = af(x) + bf(x+ δ1) + cf(x+ δ1 + δ2) + df(x+ δ1 + δ2 + δ3) +

+ef(x+ δ1 + δ2 + δ3 + δ4),

FOS2 f (l)(x) = af(x− δ−1) + bf(x) + cf(x+ δ1) + df(x+ δ1 + δ2) +

+ef(x+ δ1 + δ2 + δ3),
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FOS3 f (l)(x) = af(x− δ−1 − δ−2) + bf(x− δ−1) + cf(x) + df(x+ δ1) +

+ef(x+ δ1 + δ2),

FOS4 f (l)(x) = af(x− δ−1 − δ−2 − δ−3) + bf(x− δ−1 − δ−2) + cf(x− δ−1) +

+df(x) + ef(x+ δ1),

FOS5 f (l)(x) = af(x− δ−1 − δ−2 − δ−3 − δ−4) + bf(x− δ−1 − δ−2 − δ−3) +

+cf(x− δ−1 − δ−2) + df(x− δ−1) + ef(x),

where the coefficients a, b, c, d and e have to be determined. After writing the
Taylor expansion for f(x + δ1), f(x − δ−1), f(x + δ1 + δ2), f(x − δ−1 − δ−2),
f(x + δ1 + δ2 + δ3), f(x − δ−1 − δ−2 − δ−3) and f(x + δ1 + δ2 + δ3 + δ4),
f(x− δ−1 − δ−2 − δ−3 − δ−4), substituting in the equations above, and imposing
that they are equal to the desired derivative, the coefficients a, b, c, d and e solve
the following systems:

FOS1



1 1 1 1 1

0 δ1 δ1 + δ2 δ1 + δ2 + δ3 δ1 + δ2 + δ3 + δ4

0 δ2
1 (δ1 + δ2)2 (δ1 + δ2 + δ3)2 (δ1 + δ2 + δ3 + δ4)2

0 δ3
1 (δ1 + δ2)3 (δ1 + δ2 + δ3)3 (δ1 + δ2 + δ3 + δ4)3

0 δ4
1 (δ1 + δ2)4 (δ1 + δ2 + δ3)4 (δ1 + δ2 + δ3 + δ4)4





a

b

c

d

e

 =



δ1l

δ2l

0

0

0

 .

For the others schemes it is sufficient to modify the matrix of the coefficients of
the system:

FOS2



1 1 1 1 1

−δ−1 0 δ1 δ1 + δ2 δ1 + δ2 + δ3

δ2
−1 0 δ2

1 (δ1 + δ2)2 (δ1 + δ2 + δ3)2

−δ3
−1 0 δ3

1 (δ1 + δ2)3 (δ1 + δ2 + δ3)3

δ4
−1 0 δ4

1 (δ1 + δ2)4 (δ1 + δ2 + δ3)4

 ,

FOS3



1 1 1 1 1

−(δ−1 + δ−2) −δ−1 0 δ1 δ1 + δ2

(δ−1 + δ−2)2 δ2
−1 0 δ2

1 (δ1 + δ2)2

−(δ−1 + δ−2)3 −δ3
−1 0 δ4

1 (δ1 + δ2)3

(δ−1 + δ−2)4 δ4
−1 0 δ4

1 (δ1 + δ2)4

 ,
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FOS4



1 1 1 1 1

−(δ−1 + δ−2 + δ−3) −(δ−1 + δ−2) −δ−1 0 δ1

(δ−1 + δ−2 + δ−3)2 (δ−1 + δ−2)2 δ2
−1 0 δ2

1

−(δ−1 + δ−2 + δ−3)3 −(δ−1 + δ−2)3 −δ3
−1 0 δ3

1

(δ−1 + δ−2 + δ−3)4 (δ−1 + δ−2)4 δ4
−1 0 δ4

1

 ,

FOS5



1 1 1 1 1

−(δ−1 + δ−2 + δ−3 + δ−4) −(δ−1 + δ−2 + δ−3) −(δ−1 + δ−2) −δ−1 0

(δ−1 + δ−2 + δ−3 + δ−4)2 (δ−1 + δ−2 + δ−3)2 (δ−1 + δ−2)2 δ2
−1 0

−(δ−1 + δ−2 + δ−3 + δ−4)3 −(δ−1 + δ−2 + δ−3)3 −(δ−1 + δ−2)3 −δ3
−1 0

(δ−1 + δ−2 + δ−3 + δ−4)4 (δ−1 + δ−2 + δ−3)4 (δ−1 + δ−2)4 δ4
−1 0

 .

This kind of discretization allows to build the linear systems which discretize the
PDE’s for the determination of the flow field. In every solver developed, for the res-
olution of the linear systems, the Gauss elimination method already implemented
in Matlab ® is used. Since the code is 2D, we obtain a satisfying time efficiency
even if ad hoc decomposition methods for the matrices built are not used.

A.2.1 Fluid solver
The fluid solver is based on the fractional step method in the formulation pro-

posed by Perot (1993), a decomposition method to decouple the velocity and pres-
sure in the NSE, linearizing the non-linear term. The main steps of this method
are briefly presented:

• we discretize in space the NSE
∂u

∂t
+N(u) = −Gp+

1

Re
Lu

Du = 0

where N,G,L are the spatially discretized nonlinear term, gradient and
laplacian operators respectively, plus the boundary conditions.

• Regarding the temporal discretization, we use a Crank-Nicolson scheme for
the laplacian with an Adam-Bashfort approximation of the non-linear term
after the first time step:
u(n+1) − u(n)

∆t
+

3

2
N(u(n))− 1

2
N(u(n−1)) = −Gp(n+1) +

1

Re
Lu(n+1) + Lu(n)

2

Dun+1 = 0
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where n is the temporal index. If we define

r(n) =
u(n)

∆t
−
ñ

3

2
N(u(n))− 1

2
N(u(n−1))

ô
+
Lu(n)

2Re

and
A =

I

∆t
− L

2Re
the system can be rewritten asAu

(n+1) = −Gp(n+1) + r(n)

Du(n+1) = 0.
(A.2.1)

• The gradient operator can be approximated in the following way

∆tAG =

Ç
I − ∆t

2Re

å
G ≈ G

if ∆t/(2Re) is sufficient small. If this relation holds, system (A.2.1) can be
rewritten as 

Au∗ = r(n)

∆tDGp(n+1) = Du∗

u(n+1) = u∗ −∆tGp(n+1).

(A.2.2)

Each one of the equations in system (A.2.2) represent a single step of the
fractional step method which consists of

- determine u∗;

- solve the Poisson equation for p(n+1) forced by the divergence of u∗;

- update u∗ with Gp(n+1) to determine u(n+1).

The validation of this solver is initially performed using the results in a unitary
square cavity present in Ghia et al. (1982) obtaining a perfect matching. However
is not necessary to present this validation here since a more convincing valida-
tion has been already shown in figures 5.11 to 5.16 comparing the results obtained
with this code with the DNS in the cavity. Figure A.10 show the temporal conver-
gence when a steady solution inside the cavity is calculated. Figure A.11 shows
the convergence with respect the grid.
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Figure A.10: Absolute error (|f (n+1) − f (n)|) for the velocity and pressure fields.
Along the x-coordinate the number of iterations in time are shown. The scale in
y is logarithmic. This test case is realized simulating a square unitary cavity with
ReL = 100. The number of nodes per unit area are 6.4× 103.
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Figure A.11: Horizontal (upper frame) and vertical (lower frame) velocities at the
center of the cavity (x1 = 0.5), calculated using different numbers of nodes per
unit area (3.6 × 103, 8.1 × 103 and 1.44 × 104 ). The Reynolds number ReL is
equal to 100.
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A.2.2 Solver for the Darcy’s law
In the porous region the homogenization technique yields system (5.1.3). Sub-

stituting the Darcy’s law in the continuity equation we find

ε2ReL
∂

∂xj
Kij

∂p

∂xi
= 0. (A.2.3)

After this equation for the pressure is solved, the velocity can be deduced a poste-
riori applying Darcy’s law. Equation (A.2.3) is a Laplace’s equation weighted in
each direction with respect to the entries of the permeability tensor. Actually, since
Kij is diagonal and not depends on the microscale, equation (A.2.3) becomes

K11
∂2p

∂x2
1

+K33
∂2p

∂x2
3

= 0. (A.2.4)

The Laplacian is discretized using the fourth-order finite differences already de-
scribed. Also in this case the pressure is computed over the centers of each cell.
Since we solve for the pressure we cannot impose boundary conditions on the ve-
locity directly. In order to prevent the impermeability of the walls, a homogeneous
Neumann condition is imposed for the pressure. This fact causes that, even if the
normal velocity is zero, there is a non-zero slip velocity over the walls, thing that is
in accordance with the fact that we are solving a macroscopic model for an average
velocity.

Coupling with NSE The coupling with NSE via the conditions described in 3.3
consists of the following iterative procedure

• run the fluid solver with a guess value for the velocity at the interface;

• determine and, since the grid is staggered, interpolate over the interface (lin-
ear and cubic fittings have been used without obtaining relevant differences)
the pressure field in the fluid zone;

• impose a constant jump in the pressure as interface condition

p(n)|P = p(n)|F + constant (A.2.5)

where the superscript denotes the time index and the value of the constant is
not important because both in the fluid momentum equation and in Darcy’s
equation only the gradient of the pressure appears;
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• solve the pressure in the porous zone and recover the velocity u(n)|P at the
interface via the Darcy’s equation;

• impose the continuity of velocity at the interface

u(n+1)|F = u(n)|P (A.2.6)

as boundary condition for the NS solver;

• re-run the NS solver with the updated interface condition and iterate the
procedure until the steady-state is reached.

A.2.3 Solver for the Brinkman’s equation
To solve the Brinkman’s equation we adopt a procedure similar to that used

for the Darcy’s solver. Substituting equation (3.2.6) in the continuity equation we
obtain

− ε2ReLKij
∂2p

∂xj∂xi
+ ε2

µe
µ
Kij

∂3uj
∂xi∂x2

k

= 0 (A.2.7)

so that we can consider the new system
ε2ReLKij

∂2p

∂xj∂xi
= ε2

µe
µ
Kij

∂3uj
∂xi∂x2

k

ui −Kijε2
µe
µ

∂2uj
∂x2

k

= −Kijε2ReL
∂p

∂xj
.

(A.2.8)

This set of equations has been solved with an iterative solver using the following
discretization: LHS

(n+1)
1 = RHS

(n)
1

LHS
(n+1)
2 = RHS

(n+1)
2 ,

(A.2.9)

where the superscript represent the iteration’s index and the subscript indicates
either the first or the second of (A.2.8). The iterative procedure consists of two
steps:

• solve for the pressure the first equation of system (A.2.9) with the velocity
at the previous time step;

• use the pressure as known term in the second equation of system (A.2.9) and
solve for the velocity; iterate until convergence.
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This strategy appears not very intuitive, however it is justified by the interface con-
ditions which we have presented in chapter 3. Conditions (3.4.3) and (3.4.4) can
be seen as non-homogeneous Neumann conditions for u1 and u3 over the interface.
In particular, in (3.4.4) the pressure appears directly, without any gradient opera-
tor applied to it. Since the pressure is determined, both in the fluid solver and in
the porous solver, up to a constant, this could affect the solution. To pin this con-
stant it is sufficient to use (3.4.4) as a boundary condition for the pressure in the
first equation of system (A.2.9) and solve the Brinkman’s model with the iterative
procedure just explained.

Coupling with NSE The coupling of these equations with NSE has been imple-
mented in a way similar to that of the Darcy’s solver:

• run the fluid solver with a guess value for the velocity at the interface;

• save all the quantities which must be used in interface conditions (3.4.3–
3.4.4) and interpolate them at the correct points, approaching the interface
from the fluid region;

• impose conditions (3.4.3) and (3.4.4) discretized in time as

∂u
(n+1)
1

∂x3

∣∣∣∣∣∣
P

= − ∂u
(n)
3

∂x1

∣∣∣∣∣∣
P

+
µ

µe

Ñ
∂u

(n)
1

∂x3

+
∂u

(n)
3

∂x1

é∣∣∣∣∣∣
F

(A.2.10)

andÑ
−p(n+1) +

2µe
µReL

∂u
(n+1)
3

∂x3

é∣∣∣∣∣∣
P

=

Ñ
−p(n) +

2

ReL
∂u

(n)
3

∂x3

é∣∣∣∣∣∣
F

; (A.2.11)

• solve the Brinkman’s model with the procedure outlined above;

• impose the continuity of velocity at the interface (A.2.6) as boundary con-
dition for the NS solver;

• re-run the NS solver with the updated interface condition and iterate the
procedure until the steady-state is reached.
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A.2.4 Solver for the equations for poroelastic media
System (5.1.1) is composed by time-dependent equations, plus interface con-

ditions (5.2.4) to (5.2.7). Since interface condition (5.2.5) presents the same prob-
lem as in equation (3.4.4) for the Brinkman’s model, a similar approach has been
adopted. Substituting the third equation (generalized Darcy’s law) in the second
equation (generalized continuity equation) of system (5.1.1), we obtain a set of
three equations and three unknowns (pressure and displacement fields) for the
poroelastic medium:

(1− ϑ)
∂2vi
∂t2

=
∂

∂x′j

î
Cijpqε′pq(v)− α′ijp

ó
,

〈∂ηi
∂xi
〉∂p
∂t
− ∂

∂x′i

(
Kij

∂p

∂x′j

)
= 〈∂χ

pq
i

∂xi
〉ε′pq(v̇)− ∂

∂x′i
(Hij v̇j) ,

(A.2.12)

where the superscript (0), which denotes the leading order in ε, is omitted for ease
of notation. These equations have been discretized in time in the following way:

〈∂ηi
∂xi
〉p

(n+1) − p(n)

∆t
− 1

2

∂

∂x′i

(
Kij

∂p(n+1)

∂x′j

)
=

1

2

∂

∂x′i

(
Kij

∂p(n)

∂x′j

)
+

+〈∂χ
pq
i

∂xi
〉ε′pq

(
v(n) − v(n−1)

∆t

)
− ∂

∂x′i

(
Hij

vj
(n) − vj(n−1)

∆t

)
,

(1− ϑ)
v

(n+1)
i − v(n)

i

∆t
− 1

2

∂

∂x′j

î
Cijpqε′pq(v(n+1))

ó
=

1

2

∂

∂x′j

î
Cijpqε′pq(v(n))− α′ijp(n)

ó
.

(A.2.13)

Coupling with NSE The coupling of these equations with NSE has been imple-
mented in a way similar to that of the other homogenized solvers presented:

• run the fluid solver with a guess value for the velocity at the interface;

• save all the quantities which must be used in interface conditions (5.2.4–
5.2.5–5.2.7) and interpolate them at the correct points, approaching the in-
terface from the fluid region;

• impose condition (5.2.7) discretized in time as

Kf
df
p(n)|P +K33

∂p

∂x3

∣∣∣∣∣
P

=
Kf
df
p(n)|F , (A.2.14)

to solve the first equation of system (A.2.13) for the pressure, withKf = K33

and df = 10−2;
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• impose conditions (5.2.4) and (5.2.5) discretized in time as

C1313
∂v

(n+1)
1

∂x3

∣∣∣∣∣∣
P

= − C1313
∂v

(n)
3

∂x1

∣∣∣∣∣∣
P

+ ε

Ñ
∂u

(n)
1

∂x3

+
∂u

(n)
3

∂x1

é∣∣∣∣∣∣
F

(A.2.15)

C3333
∂v

(n+1)
3

∂x3

∣∣∣∣∣∣
P

= −

Ñ
C3311

∂v
(n)
1

∂x3

+ α′33p
(n)

é∣∣∣∣∣∣
P

+

Ñ
−p(n) + 2ε

∂u
(n)
3

∂x3

é∣∣∣∣∣∣
F

(A.2.16)
to solve for the displacement field the second equation of system (A.2.13);

• impose the continuity of velocity at the interface (A.2.6) as boundary con-
dition for the NS solver;

• re-run the NS solver with the updated interface condition and iterate the
procedure until the steady-state is reached.

A.2.5 Code for the linear stability analysis
A code for the linear stability has been developed with the following charac-

teristics:

• the presence of the porous medium is simulated via boundary conditions
(5.3.16) or (5.3.17) (without and with drag). The mean profile does not have
inflection points, so that, in principle, it is stable. The boundary conditions,
imposed at the fictitious interface, generate the unstable modes;

• the differentiation matrices are based on Chebyshev polynomials (cf. Canuto
et al., 1988; Weideman & Reddy, 2000);

• since the collocations points x over which these polynomial are evaluated
ranges in the interval [−1, 1], a linear map is used to map the Chebyshev
space in the physical space ([1 − δ, y∞]); in this particular case we have
employed

f(x) =
y∞ − (1− δ)

2
(1− x) + (1− δ);

• the function eigs implemented in MatLab ® is used to solve the resulting
generalized eigenvalue problem.

As shown by table A.4 for a particular case, convergencewith respect to the number
of collocations points is reached. In figure A.12, instead, the invariance of the
solution with respect to the choice of y∞ is shown.
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# POINTS cr ωi
100 1.120 0.1646

150 1.169 0.1624

200 1.182 0.1684

300 1.195 0.1695

400 1.199 0.1708

600 1.201 0.1714

800 1.202 0.1715

1000 1.202 0.1715

Table A.4: Values of the most unstable eigenvalue for the caseG (cf. section 5.3.1)
with α = 1 and y∞ = 15, for varying number of collocations points.
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Figure A.12: Modulus of the eigenfunction associated to the most unstable eigen-
value for varying y∞. Test case G with 200 collocation points and α = 1.
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