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Abstract

Fluid-structure interaction problems are very common in modern engi-
neering and their solution is of crucial importance during the design phase in
a broad variety of fields, from aeronautics, to civil engineering, to medicine.

This works focuses on the study of the interaction between a flexible
filament and a pulsatile flow inside a two-dimensional channel. The sys-
tem, even if symmetric in its initial conditions and in the ensuing forcing,
can develop an asymmetric behaviour due to the interaction between its
components; to quantify asymmetry we choose to observe the average an-
gle during the flapping of the filament and the average flow through the
channel during a pulsatile-flow time period.

The investigation is done through virtual experiments, i.e. simulating
the system dynamics numerically. We use a modified version of the Frac-
tional Step Method to solve the fluid dynamics in the domain, discretiz-
ing the equations on a staggered grid; the Immersed Boundary Method is
adopted to take into account the presence of the filament and the interaction
between the filament and the fluid.

An existing code has been modified and adapted to the new case of
study, yielding two different types of solution, distinguished by the method
through which the pulsatile flow is imposed: through velocity boundary
conditions or through imposed pressure gradient together with periodic
boundary conditions.

We find evidences of symmetry breaking in our case of study and we ex-
plore the space of parameters in order to better characterize the occurrence
of symmetry breaking and its magnitude. We observe significant asymme-
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try both in the filament movement and in the average velocity induced in
the channel.

We also make use of other techniques such as the Finite Time Lyapunov
Exponent to further characterize the effect of the fluid-structure interaction
on the flow inside the channel.

Finally, the effects of the filament together with the pulsatile flow are
included in a simplified model in order to obtain a better comprehension of
the dynamics of this coupled system.
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Sommario

I problemi di interazione fluido-struttura sono molto comuni nell’inge-
gneria moderna e la loro soluzione è di cruciale importanza nella fase di pro-
gettazione in una grande varietà di campi, dall’aeronautica, all’ingegneria
civile, fino alla medicina.

Questo lavoro riguarda lo studio dell’interazione fra un filamento flessi-
bile e un flusso pulsante in cui è immerso, all’intero di un canale bidimen-
sionale. Il sistema, benché simmetrico nelle sue condizioni iniziali e nelle
sollecitazioni imposte successivamente, può sviluppare un comportamento
asimmetrico a causa delle interazioni fra le sue componenti. Per quantifica-
re l’asimmetria si è scelto di osservare l’angolo medio formato dal filamento
durante il suo movimento e il flusso medio all’interno del canale durante un
periodo del flusso pulsante.

La ricerca è stata svolta tramite esperimenti virtuali, ovvero simulan-
do le dinamiche del sitema numericament. Si è utilizzata una versione
modificata del metodo Fractional Step per la soluzione della dinamica del
fluido all’interno del dominio, discretizzato utilizzando una griglia stagge-
red, e il metodo dei Immersed Boundary per tenere conto della presenza del
filamento e della mutua interazione fra il filamento stesso e il fluido.

Un codice esistente è stato modificato e adattato al caso in studio, fi-
no ad arrivare a due versioni differenti distinte dal modo in cui il flusso
pulsante è generato, attaverso condizioni al contorno di velocità oppure at-
traverso un gradiente di pressione imposto insieme a condizioni al contorno
di periodicità.

Si è verificato il manifestarsi di rottura della simmetria nel sistema og-
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getto dei nostri studi e lo spazio dei parametri è stato esplorato per ca-
ratterizzare il verificarsi di tale rottura e il suo ordine di grandezza. Si
è osservata una asimmetria significativa sia per quanto riguarda il movi-
mento del filamento, sia nel flusso medio all’interno del canale. Sono state
inoltre utilizzare altre tecniche come i Finite Time Lyapunov Exponent per
analizzare più a fondo gli effetti dell’interazione fluido-struttura sul flusso
all’interno del canale.

Infine, gli effetti del filamento insieme al flusso pulsante sono stati
semplificati e modellati per permettere una migliore comprensione della
dinamica del sistema.
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Chapter 1

Introduction

1.1 Aeroelasticity

Aeroelasticity is the science which studies the interactions among iner-
tial, elastic, and aerodynamic forces. It was defined by Arthur Roderick
Collar in 1947 as “the study of the mutual interaction that takes place
within the triangle of the inertial, elastic, and aerodynamic forces acting
on structural members exposed to an airstream, and the influence of this
study on design” [1].

The classical theory of elasticity deals with the stress and deformation
of an elastic body under prescribed external forces or displacements. The
external loading acting on the body is, in general, independent of the de-
formation of the body. It is usually assumed that the deformation is small
and does not substantially affect the action of external forces; in such a
case we often neglect the changes in dimensions of the body and base our
calculations on the initial shape. Even in problems of bending and buckling
of columns, plates, or shells, either the external loading or the boundary
constraints are considered as prescribed. The situation is different, how-
ever, in most significant problems of aeroelasticity: the aerodynamic forces
depend critically on the attitude of the body relative to the flow. The elas-
tic deformation plays an important role in determining the external loading
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1.1. Aeroelasticity

Figure 1.1: Picture of the first Tacoma Narrows Bridge showing the aeroe-
lastic flutter in strong wind that will cause it to collapse. 1940.

itself. The magnitude of the aerodynamic force is not known until the elas-
tic deformation is determined. In general, therefore, the external load is
not known until the problem is solved. [2]

There are many scientific fields in which aeroelasticity is fully involved:
aircraft designers are concerned with aerodynamic performance of an elastic
aircraft, designers of bridges and skyscrapers need to know what the wind
will be doing to their structures, designers of artificial heart valves and
students of medicine want to know how blood flows in very flexible vessels,
naturalists and environmentalists are interested in the locomotion of birds,
fishes, and mammals, or the movement of leaves. Scientific study of these
problems has to focus on flow in regions with deformable boundaries, and
on the deformation of solids subjected to fluid loading, which varies with
the deformation itself. This often results in unexpected dynamics that we
would not see if we neglect the solid boundaries deformations.

The study of Aeroelasticity can be traced back to the 1920’s by aero-
nautical engineers, but a big push in this field derives from the unexpected
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Chapter 1. Introduction

failure of the Tacoma Narrows Bridge in 1940, as a result of aeroelastic
flutter caused by a strong wind (fig. 1.1). The failure have been studied,
among others, by von Karman [3] and Farquharson [4].

The numerical study of fluid–structure interaction problems began in
the 1970’s [7] and since then included studies in aerospace engineering ap-
plications [5], in the biomedical field, in arteries [6] and heart valves [7]
and in civil engineering applications [8]. Due to advances in computa-
tional power and numerical algorithms we are able to simulate increasingly
complex problems. The main aspect involved in this kind of problems is
computation of the dynamics of different physical domains (multiphysics)
and their coupling with moving boundary conditions and meshes.

The case of study object of this thesis work is another problem in which
the fluid-structure interaction is essential for an accurate study. The case
of study will be explained in the next sections, while the method used to
study it will be the object of the next chapter.

1.2 Case of study

The object of this thesis is the study of the interaction between one or
more flexible filaments and a pulsatile flow confined in a two-dimensional
channel. The case of study consists in three main components, the flexible
filaments, the rigid channel walls to which the filaments are clamped, and a
fluid inside the channel which is forced in a symmetric pulsatile flow. The
main components are characterized by multiple properties, the importance
of which in determining the final behaviour of the system will be studied
in this work.

The properties that characterize every filament are:

• the length, called Lf

• the density, ρf

• the axial elastic stiffness, that defines the relationship between applied
tension and axial elongation, Kelas
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1.2. Case of study

Pulsatile flow FluidFilament Channel

Figure 1.2: Case of study.

• the bending stiffness, that defines the relationship between applied
momentum and the resulting curvature, Kbeam

The channel properties and observables that can be defined are:

• the length (horizontally in fig. 1.2), L

• the height (vertically in fig. 1.2), 2h

• whether or not the filament(s) are on both sides (top and bottom in
fig. 1.2) of the channel

• the number of filaments on each side, Nf

• the distance between two filaments placed side by side, Df

• the angle that the clamped end of the filament forms with the channel
wall, θf

The fluid can be characterized by:

• the density, ρflow

• the dynamic viscosity, µ
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As stated above the fluid is given a pulsatile forcing, i.e. it follows a
reciprocating motion along the axial direction of the channel. This motion,
neglecting the effects of the interaction with the filament, is characterized
by:

• the duration of the time period, Tflow;

• being symmetric, that is showing no difference between the the first
half period and the second one;

• a velocity value that can be considered representative of the velocity
magnitude of the flow.

The definition of the velocity value needs some more specifications. First
of all an axial velocity is considered, neglecting any transversal component;
then, it has to be taken into account that the velocity field inside the channel
will be a function of time and vertical position of any cross-section of the
channel. Let’s first consider the spatial dependence; considering a cross-
section of the channel, the velocity values will vary from the boundaries
(where the viscosity of the fluid forces the velocity to vanish) to the center
(where the velocity value will be in general non-zero); because of this, a
spatial averaged value over a cross-section will be considered. Said spacial
averaged value will still be non-constant over time, due to the pulsatile flow,
and because of the flow symmetry it will vary between a minimum, negative
value and a maximum, positive one, that will have the same absolute value.

The absolute value we just defined is the velocity value that we consider
to characterize the pulsatile flow; it will be denoted as umax, where the over-
line symbolise the space averaging, while the subscript denotes the choice
of the maximum value over time. This observable will be better defined in
sec. 2.5.

1.3 Filament and flow interaction

Once the properties of the main components of our case of study are
defined, such components need to be put together in order to form the
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1.3. Filament and flow interaction

system we are interested in studying. If we keep on considering the existence
of three main components, three mutual interactions between them can be
defined and studied.

Two of them, namely filament – channel and channel – fluid, are very
much easier to describe compared to the third one, that is filament – fluid,
mainly due to fact that we consider the channel as non-deformable.

The filament – channel interaction can be reduced to the force and
momentum the channel exerts to the clamped end of the filament. In this
process said end will remain still, as desired, while the channel will suffer
no modification due to its supposed infinite rigidity.

The channel – fluid interaction is similarly limited to the boundary
region, where the presence of the walls forces the fluid to be locally still
(no-slip condition), while, again, the channel suffers no modifications.

The filament – fluid interaction is the most interesting one; in this case a
two-ways interaction exists, so that the filament position and local velocity
modifies the flow properties, while the fluid motion influences the filament
position and local velocity. This is due to the fact that the filament can
exert forces on the fluid and vice-versa, and both of them respond to the
applied forces being modified by them. This fact generates a peculiar loop,
very well explained by a simple example. If we imagine that in a given
moment the flow presence applies a given force in a specific point of the
filament, the filament will be influenced by that force, specifically it will be
probably accelerated in a particular direction. The acceleration will gener-
ate a movement of the filament, so that the displaced and moving filament
will in turn apply a force back to the fluid; this in turn will modify the flow,
at least locally. Now the flow is different from the one we considered at the
beginning, and due to this difference it will not apply the same force on the
filament, starting a potentially infinite loop.

There are configurations where the mutual interaction leads to a steady
and stable configuration, but there also are several configurations (that do
not need to be very complex) where said equilibrium is never reached, the
problem of a flag in a steady wind being one of the best studied and known
examples of a non-steady equilibrium. A flag immersed in a steady wind
— or a filament in a 2D steady flow, fig. 1.3 — will, in some cases, start
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Figure 1.3: Filament flapping in a flowing soapfilm due to two-way inter-
action [9].

to flap due to the mutual interaction with the flow and the feedback loop
that has just been described.

In our case of study, it is then very difficult to distinguish the influence
of the fluid on the filament from the influence of the filament on the fluid;
however, since the fluid is forced in a pulsatile flow while the filament is
passive, the most obvious interaction is the one originating from the pul-
satile flow; due to that, the filament will flap roughly in synchronization
with the flow.

1.4 Symmetry breaking

Given these preconditions and given the symmetry of the pulsatile flow,
in the presence of one or more passive filaments, a symmetric flow and a
symmetric movement of the filaments are expected. This is not always the
case: sometimes either the filament, the flow or both shows asymmetry in
some form. This is not the place where we can analyse in which study-cases
asymmetry arises, but it is interesting to describe which kind of asymmetry
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1.4. Symmetry breaking

can be expected.
As for the filament, the asymmetry will show up in its flapping move-

ment: as it flaps, the filament free-end (or any other point) can displace
more towards one side than to the other, its average position over time can
be displaced towards one side with respect to the filament clamped end, the
filament can show a greater curvature towards one side, etc. As for the flow,
if the pulsatile flow is forced by a pulsatile mass flow, the asymmetry would
show up as a non-zero average pressure difference between the two sides of
the channel; if the pulsatile flow is forced by a convenient pulsatile pressure
gradient, the asymmetry would be more easily noticeable and would show
up as a non-zero net flow over time in one direction.

These are the kinds of asymmetry we will look for in our system, the
aim being to understand which are the properties of the system that allow
a symmetry breaking, to explain how it happens and to analyse its effects.
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Chapter 2

Method

The case of study object of this thesis work has not been realised ex-
perimentally; we have resorted to Computational Fluid Dynamics, that is
taking advantage of numerical simulations.

Computational fluid dynamics, usually abbreviated as CFD, is a branch
of fluid mechanics that uses numerical methods and algorithms to solve
and analyse problems that involve fluid flows. The fundamental basis of
almost all CFD problems are the Navier–Stokes equations, which define
any single-phase (gas or liquid, but not both) fluid flow. These equations
can be simplified by removing terms describing viscous actions to yield the
Euler equations. Further simplification, by removing terms describing vor-
ticity yields the full potential equations. Finally, for small perturbations in
subsonic and supersonic flows (not transonic or hypersonic) these equations
can be linearised to yield the linearised potential equations.

Historically, methods were first developed to solve the Linearised po-
tential equations: two-dimensional (2D) methods, using conformal trans-
formations of the flow about a cylinder to the flow about an airfoil were
developed in the 1930s, while 3D Navier-Stokes equations solvers became
available in the 1990s [10].
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2.1. The Navier-Stokes equations

2.1 The Navier-Stokes equations

The Navier–Stokes equations, named after Claude-Louis Navier (1785
- 1836) and George Gabriel Stokes (1819 - 1903), describe the motion of
fluid substances. These equations arise from applying Newton’s second
law to fluid motion, together with the assumption that the stress in the
fluid is the sum of a diffusing viscous term (proportional to the gradi-
ent of velocity) and a pressure term - hence describing viscous flow. The
Navier–Stokes equations dictate not position but rather velocity. A solution
of the Navier–Stokes equations is called a velocity field or flow field, which
is a description of the velocity of the fluid at a given point in space and
time. Once the velocity field is solved for, other quantities of interest (such
as flow rate or drag force) may be found. The Navier–Stokes equations
are nonlinear partial differential equations in almost every real situation.
In some cases, such as one-dimensional flow and Stokes flow (or creeping
flow), the equations can be simplified and rendered linear. The nonlinear-
ity makes most problems difficult or impossible to solve and is the main
contributor to the turbulence that the equations model. The nonlinearity
is due to convective acceleration, which is an acceleration associated with
the change in velocity over position. Hence, any convective flow, whether
turbulent or not, will involve nonlinearity.

Together with supplemental equations (for example, conservation of
mass) and well formulated boundary conditions, the Navier–Stokes equa-
tions can model fluid motion accurately; even turbulent flows seem (on
average) to agree with real world observations. The Navier–Stokes equa-
tions assume that the fluid being studied is a continuum (it is infinitely
divisible and not composed of particles such as atoms or molecules), and
is not moving at relativistic velocities. At very small scales or under ex-
treme conditions, real fluids made out of discrete molecules will produce
results different from the continuous fluids modeled by the Navier–Stokes
equations.

The derivation of the Navier–Stokes equations begins, as said, with
an application of Newton’s second law: conservation of momentum (often
alongside mass and energy conservation) being written for an arbitrary
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portion of the fluid. A simplification of the resulting flow equations is
obtained when considering an incompressible flow of a Newtonian fluid.
The assumption of incompressibility rules out the possibility of sound or
shock waves to occur; so this simplification is not useful if these phenomena
are of interest. The incompressible flow assumption typically holds well
also when dealing with a compressible fluid at low Mach numbers. Taking
the incompressible flow assumption into account and assuming constant
viscosity, the Navier–Stokes equations will read, in vector form:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ f , (2.1)

where u is the velocity vector, p is the pressure, f represents other body
forces (forces per unit volume), such as gravity or centrifugal force, µ the
(constant) dynamic viscosity of the fluid and ∇ is the derivative operator
∂
∂x + ∂

∂y + ∂
∂z . u and p are function of the spatial position, x, and time, t.

Together with this equation, the continuity equation holds, which for
incompressible flow reads:

∇ · u = 0. (2.2)

2.1.1 Non-dimensionalization of the Navier-Stokes Equations

Non-dimensionalization of the Navier–Stokes equations is the conversion
of the Navier–Stokes equations to a form which is easier to use and reducing
the number of free parameters in the problem to be studied. The non-
dimensionalized Navier–Stokes equations are beneficial to use when posed
with similar physical situations, that is problems where the only change
are in the basic dimensions of the system. In addition to reducing the
number of parameters, non-dimensionalized equations help to gain a greater
insight into the relative size of various terms present in them. Following
appropriate selection of scales for the non-dimensionalization process, this
leads to identification of relative magnitude of the terms in the equations.

In order to non-dimensionalize (2.1), appropriate scales have to be cho-
sen and applied to dimensional quantities as follows:
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2.1. The Navier-Stokes equations

• length scale: L

• velocity scale: U∞, which is usually the velocity of the undisturbed
flow

• time: L/U∞

• pressure: ρ∞U
2
∞, which is double the dynamic pressure of the undis-

turbed flow

This yields, asterisk indicating non-dimensional quantities:

x* =
x

L
,

u* =
u

U∞
,

t* =
t

L/U∞
,

p* =
p

ρ∞U∞
.

(2.3)

Substituting (2.3) into (2.1), the non-dimensionalized equations ob-
tained are:

∂u*

∂t*
+ u* · ∇u* = −∇p* +

1

Re
∇2u* + f

L

U2
∞
. (2.4)

From now on when using this equations the asterisks will be omitted. If
the additional body forces f , mainly gravitational forces, can be neglected,
(2.4) simplifies to:

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u. (2.5)

Correspondingly, the conservation of mass reads:

∇ · u = 0. (2.6)
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2.2 Numerical method

Since there is no analytical solution for (2.5), exception made for a few
very simple cases, it is usually solved using a numerical code. In most of
them the same basic procedure is followed.

• The geometry (physical bounds) of the problem is defined.

• The volume occupied by the fluid is divided into discrete cells (the
mesh). The mesh may be uniform or non uniform.

• The physical modelling is defined, usually based on discretized Navier-
Stokes equations.

• Boundary conditions are defined. This involves specifying the fluid
behaviour and properties at the boundaries of the problem. For tran-
sient problems, the initial conditions are also defined.

• The simulation is started and the equations are solved iteratively as
a steady-state or transient process.

• Finally a postprocessor is used for the analysis and visualization of
the resulting solution.

Dealing with complex and turbulent flows, where the scale of small
perturbations is many orders of magnitudes smaller than the domain scale
asks for the mesh to be sufficiently fine in order to capture the smallest-
scale dynamics. This can lead to the need of some form of simplification and
modelling, in order to be able to run simulations using technically available
computational power; most notably the Reynolds Averaged Navier-Stokes
(RANS) approach and the Large Eddy Simulation (LES) approach can be
cited.

The RANS method is based on the Reynolds decomposition, whereby
an instantaneous quantity is decomposed into its time-averaged and fluc-
tuating components. A model is used to take into account the effects of all
fluctuating quantities. Doing this, a big computational power saving can
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2.2. Numerical method

be exploited, at the cost of less accuracy. LES approach models only the
smallest scales in the field (Kolmogorov scales) while simulating all other
scales. This approach is computationally more expensive than the RANS
method (in time and computer memory), but produces generally better
results since the larger turbulent scales are explicitly resolved.

In our case another approach, known as Direct Numerical Simulation
(DNS), is followed. A direct numerical simulation is a simulation in which
the Navier–Stokes equations are numerically solved without any additional
model. This means that the whole range of spatial and temporal scales
must be resolved; this lead to the need of a comparatively very big number
of cells or nodes. This approach, even if very demanding of computational
resources, shows some very important advantages for our work. Recalling
that our first goal is to look for symmetry breaking bifurcations in an appar-
ently symmetric system, the main prerogatives a code should have in order
to be apt for our investigation are best available accuracy and simplicity,
so that the numerical approach can be ruled out from the possible causes
of said symmetry breaking. DNS approach perfectly responds to these two
requirements, being more accurate than the other methods and not gen-
erating possible spurious effects due to the models implemented models.
Also, our domain is not overly complex, so that the simulations, while be-
ing still demanding, are not impossible to run on commercially available
workstations.

2.2.1 The fractional step method

There are many methods to discretize and solve our model equations,
and their description falls outside the present work. The method that will
be described and used here is the “fractional step method”, first introduced
independently by Chorin [11] and Temam [12] in 1968-69 and later improved
by Perot [13]. The algorithm of the projection method is based on the
Helmholtz decomposition of any vector field into a solenoidal part and an
irrotational part. Typically, the algorithm consists of two stages. In the first
stage, an intermediate velocity that does not satisfy the incompressibility
constraint is computed at each time step. In the second, the pressure is
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used to project the intermediate velocity onto a space of divergence-free
velocity fields to get the next update of velocity and pressure.

Let’s start with the non-dimensionalized Navier-Stokes equations to-
gether with the continuity equation for incompressible flows:

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u,

∇ · u = 0.
(2.7)

These differential equations need to be conveniently discretized in order
to convert them into algebraic systems that will be then solved numerically.

We can conveniently define the matrices G, D, L and the function N
as the discrete counterparts of the following operators:

∇p → Gp,
∇ · u → Du− b1,
∇2u → Lu+ b2Re,
∇ · (uu) → N(u).

(2.8)

where the terms b1 and b2 depends on the choice of boundary conditions.
The Navier-Stokes and mass-conservation equations (2.7) can be written as
a semi-discrete system:

∂u

∂t
+N(u) = −Gp+

1

Re
Lu+ b2,

Du = b1.
(2.9)

Using an explicit Adams-Bashforth scheme for the non-linear convec-
tive terms and an implicit Crank-Nicholson (trapezoidal) scheme for the
diffusive terms, (2.9) can be discretized in time as:


un+1 − un

∆t
+

3

2
N(un)− 1

2
N(un−1) = −Gpn+1 +

Lun+1 + Lun

2Re
+ b2,

Dun+1 = b1.
(2.10)

Manipulation of (2.10) leads to:
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2.2. Numerical method


un+1

∆t
− Lun+1

2Re
+Gpn+1 =

un

∆t
−
[

3

2
N(un)− 1

2
N(un−1)

]
+
Lun

2Re
+ b2,

Dun+1 = b1.

(2.11)

Defining:

A =
I

∆t
− L

2Re
; rn =

un

∆t
−
[

3

2
N(un)− 1

2
N(un−1)

]
+
Lun

2Re
,

(2.11) becomes: {
Aun+1 +Gpn+1 = rn + b2,

Dun+1 = b1.
(2.12)

The fully time and spatial discrete system can be written as an algebraic
linear system: [

A G
D 0

] [
un+1

pn+1

]
=

[
rn

0

]
+

[
b2
b1

]
. (2.13)

It’s not worthwhile to solve this system, instead its LU decomposition
can be written. An appropriate approximation of (2.13) has been proposed
[13]: [

A (∆tA)G
D 0

] [
un+1

pn+1

]
=

[
rn

0

]
+

[
b2
b1

]
. (2.14)

This is acceptable since (∆tA)G =
(
I − ∆t

2ReL
)
G ' G.

It should be noted that only the momentum equations are approxi-
mated, while the discrete continuity equation remains unaltered, since it is
important to satisfy it (and not create mass) if a realistic solution is desired.

The approximation given by (2.14) can be factored into the block LU
decomposition
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[
A 0
D −∆tDG

] [
u∗

pn+1

]
=

[
rn

0

]
+

[
b2
b1

]
, (2.15)

and [
I ∆tG
0 I

] [
un+1

pn+1

]
=

[
u∗

pn+1

]
. (2.16)

This can be further simplified and written as:

Au* = r + b2,

∆tDGpn+1 = Du*− b1,
un+1 = u*−∆tGpn+1.

(2.17)

These equations represent the step that are actually performed in the
numerical code used: the first equation generates an intermediate velocity
u* that does not satisfy the continuity constraint; the second is solved in
order to get the new pressure field pn+1; in the third the pressure pn+1 is
used to project the intermediate velocity u* onto a space of divergence-free
velocity fields to get the updated velocity field un+1.

2.2.2 Staggered grid

Initial attempts to solve the Navier–Stokes equations employed straight-
forward centered finite differences for the spatial operators on a regular grid,
with the pressure and velocity components being unknown at the corners
of each cell. Two typical terms in the equations would then be discretized
as follows in a uniform 2D grid:[

∂p

∂x

]
i,j

' pi+1,j − pi−1,j

2∆x[
∂2u

∂y2

]
i,j

' ui,j−1 − 2ui,j + ui,j+1

(∆y)2

(2.18)

where the subscripts i, j denotes the point with the spatial index (i, j)
at which the function is evaluated and ∆x and ∆y are the uniform spatial
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2.2. Numerical method

cell sizes. This spatial discretization leads to an instability problem known
as pressure checkerboard mode [14], that produces unphysical oscillations
in the pressure field yielding to a checkerboard-like pressure distribution.
The reason for this phenomenon is that the symmetric difference operator
(2.18) will annihilate checkerboard pressures, i.e. pressures which oscillate
between two different but fixed values on each grid line connecting the grid
points. In fact, if we imagine to color our grid in a checkerboard pattern, we
can soon discover that the pressure at the black vertices will not be related
to the pressure at the white ones. The remedy for oscillatory or checker-
board pressure solutions can be to introduce a staggered grid in space (fig.
2.1), first introduced by Harlow and Welch in 1965 [15]. This means that the
primary unknowns, the pressure and the velocity components, are sought
at different points in the grid. In Cartesian coordinates the staggered grid
offers the advantage of a strong coupling between the velocity components
and the pressure, avoiding undesired oscillations in the pressure field.

Discretizing the terms ∂p/∂x and ∂2u/∂y2 on a staggered grid at a point
with spatial indices (i, j + 1

2) results in:

[
∂p

∂x

]
i,j+ 1

2

'
pi+ 1

2
,j+ 1

2
− pi− 1

2
,j+ 1

2

∆x[
∂2u

∂y2

]
i,j+ 1

2

'
ui,j− 1

2
− 2ui,j+ 1

2
+ ui,j+ 3

2

(∆y)2

The staggered grid is convenient for many of the derivatives appearing in
the equations: pressure and diffusion terms are very naturally approximated
by central differences without interpolation, since the pressure nodes lie at
cell centers and horizontal and vertical velocity components lie at the center
of cell faces, but for the nonlinear terms it will be necessary to introduce
averaging.

This kind of grid has a few side effects on the data structure: depending
on the boundary conditions imposed, the computational domain of pressure
and velocity fields may vary (fig. 2.2).
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(a)

(b)

xi−1 xi xi+1

yi−1

yi

yi+1

xi−1

xi−1 xi xi+1

yi−1
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xi−3/2 xi−1/2 xi+1/2

yi−3/2

yi−1/2

yi+1/2

Figure 2.1: Colocated (a) and staggered (b) grid. x-velocity component is
evaluated at ←, y-velocity component at ↑, whereas pressure at ×.
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(0,0)

(Nx + 1, Ny + 1)(a)

(0,0)

(Nx + 1, Ny + 1)(b)

Figure 2.2: Staggered grid with periodic (a) and Dirichlet boundary condi-
tions (b). The dashed line border the computational domain.

2.2.3 Boundary conditions

In (2.8) boundary terms appeared. To understand why they do it is
useful to look at the computational domain, which is the whole set of grid
nodes at which variables are unknown. In fig. 2.2 two examples are given:
in the left case, periodic boundary conditions are imposed, so that the
computational domain corresponds to the whole grid exception made for
the last row and column, where velocities are considered to be known,
being imposed to be equal to the value in the first row and column; in the
right one, imposing Dirichlet boundary conditions (for example to enforce
a no-slip condition at solid boundaries), the computational domain does
not contain nodes on boundaries, where the velocities are known and their
value is set equal to zero. Due to the specific structure of the Cartesian
staggered grid, only velocity needs boundary conditions, pressure values
being always inside the computational domain.

In the present work, mainly two types of boundary conditions will be
used: imposed boundary conditions (that is inhomogeneous Dirichlet con-
ditions) and periodic boundary conditions.
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Usually at inlets the velocity of the fluid is known, so it is convenient
to use it as a boundary condition:

u|∂Ω = f(x, y ∈ ∂Ω),

where ∂Ω denotes the boundaries of the domain and f gives the imposed
boundary values for every point of the boundary.

These conditions lead to a non-zero boundary condition vector in the
numerical model. Dirichlet boundary conditions are also used, as stated
earlier, to enforce no-slip conditions at solid boundaries, giving raise to
boundary terms involving wall absolute velocity (in particular a non-moving
wall causes homogeneous boundary conditions, thus an empty boundary
vector).

Periodic boundary conditions are defined so that the velocity values of
one part of the boundaries will be imposed to be equal to those on the
corresponding part. In our case, these two parts will be the left side and
the right side of the channel. In this case the condition would read:

u(−L/2, y) = u(L/2, y),

L being the channel length and x = 0 being in the middle of the channel.

2.2.4 The Immersed Boundary Method

Having discussed the numerical implementation of the Navier-Stokes
equations and their spatial discretization, we will now move to the problem
of simulating the filament and its two-way interaction with the fluid. The
method we will use is known as Immersed Boundary Method (IBM) and
it has been first introduced by Peskin [7] who used it to simulate blood
flow interacting with flexible heart-valves. Ever since, it has been used in a
wide variety of applications where complex geometries and immersed elastic
membranes or structures are present.

The Immersed Boundary Method uses an Eulerian grid for the fluid
region, while it represents the immersed surface with a set of Lagrangian
points that follow the surface in its movement. The Eulerian grid does not
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need to be in specific relation with the Lagrangian one, due to the fact
that the interactions between fluid and immersed boundary are managed
through a discrete delta function that overcome the non-correspondence
between Eulerian and Lagrangian points. At every time step the code needs
to simulate the fluid-surface interaction in both ways: the surface applies
a force to the fluid due to its position and its deformation with respect
to its original shape; on the other hand, since the immersed boundary is
in contact with the surrounding fluid, its velocity must be consistent with
the no-slip boundary condition, thus the immersed boundary moves at the
local fluid velocity.

Figure 2.3: Example immersed boundary curve, Γ, described by the func-
tion X(s, t), immersed in a fluid-filled region Ω.

Calling Γ an immersed boundary (fig. 2.3), this results in the following
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set of equations [16]:

F (s, t) = AfX(s, t), (2.19)

f(x, t) =

∫
Γ
F (s, t)δ(x−X(s, t))ds, (2.20)

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u+ f,

∇u = 0
, (2.21)

∂X(s, t)

∂t
= u(X(s, t), t) =

∫
Ω
u(x, t)δ(x−X(s, t))dx, (2.22)

where lower-case letters are used for Eulerian variables and upper-case let-
ters for Lagrangian ones; X(s, t) is the vector function giving the location
of points on Λ as a function of arclength s and time t; f is the forcing term
which serves to model the effects of the boundary; F is the force applied
by the boundary to the fluid. Af is the force generation operator and it
is problem dependent: it depends on the structure and properties of the
membrane.

These equations closely represents the basic steps of the immersed bound-
ary method we described. Equation (2.19) calculates the force that the
boundary curve applies due to its current configurations; equation (2.20)
spreads said force, defined on the Lagrangian point, to the nearby Eulerian
point through the discrete delta function δ; equation (2.21) are the well
known Navier-Stokes and continuity equations that solve the flow to which
the forcing term f just obtained is applied; equation (2.22) interpolate the
velocity from the Eulerian field to the Lagrangian one in order to get a
velocity vector on each point of the membrane.

The discrete delta function has to satisfy a set of properties in order
to be suitable for our scope. The discrete delta function that will be used
here is the one proposed by Roma et al. [17], which has the size of its
support equal to three mesh widths in each space direction, while previous
immersed boundary computations have used delta functions whose support
was four mesh widths in each direction.
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2.3. Filament governing equations

2.3 Filament governing equations

The Af operator was defined in the previous section as a problem de-
pendent operator: it enforces the structure and properties of the immersed
boundaries that need to be studied. In our case, the filament is considered
as elastic (it reacts to an axial stretch) and flexible (it can bend, and when
doing so a restoring force is generated). Also it is clamped at one end: the
clamping condition will be enforced by virtually pinning the first few point
to their original position. A curvilinear coordinate s is used to specify the
position along the filament; s is the arclength.

Beginning with the elastic force, we can consider every small section of
the filament as a Hooke’s spring, of given stiffness Kelas; that is, we assume
that the material behaves like a fibre under elastic tension, so that the force
it generates (per unit s) is given by: [16]

Fs(s, t) =
∂

∂s
(T (s, t)τ (s, t), (2.23)

where T (s, t) is the tension and τ(s, t) is the tangent unit vector to the
boundary at the point X(s, t). The tangent unit vector is defined as:

τ (s, t) =

∂X

∂s∥∥∥∥∂X∂s
∥∥∥∥ . (2.24)

Since the initial straight position is considered to be unstressed, then∥∥∂X
∂s

∥∥−1 represents the strain. As stated before, we will consider an elastic
filament subject to Hooke’s law, so that the tension is proportional to the
strain, i.e.

T (s, t) = Kelas

(∥∥∥∥∂X∂s
∥∥∥∥− 1

)
. (2.25)

The elastic stiffness Kelas is chosen so that the filament is inextensible:
it must be large enough so that the force exerted by the fluid only generates
negligible elongations.
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The bending force of the filament is computed following the method
of Zhu and Peskin [18], based essentially on the principle of virtual work.
First the bending energy is defined as:

Eb =
1

2
Kb

∫ ∣∣∣∣∂2X(s, t)

∂s2

∣∣∣∣2 ds, (2.26)

so that the bending force is:

Fb = −∂Eb
∂X

. (2.27)

This is numerically discretized as:

Eb =
1

2
Kb

nf−1∑
m=2

[
|Xm+1 − 2Xm +Xm−1|2

(∆s)4

]
∆s (2.28)

and on the lagrangian point l we have:

(Fb)l =
Kb

(∆s)4

nf−1∑
m=2

(Xm+1 − 2Xm +Xm−1) (−δm+1,l + 2δm,l − δm−1,l),

(2.29)
where δm,l is the Kronecker symbol, its value being 1 if m = l and 0 other-
wise.

The clamped end is kept in its position by a virtual spring that connects
every “clamped” point to its original position, so that:

Ft(i) = −Ktarg(X(i, t)−Xt(i− t)), for i = 1, ..., ntarg, (2.30)

where the index i denotes a points in the discretized filament, ntarg is the
number of point that are considered pinned in order to enforce the clamping
condition andKtarg is the spring stiffness, its values being chosen so that the
displacement of the targeted points from the initial position is negligible.

If the filament is considered to have mass, then an inertial force will
exist:

Fi(s, t) = −ρfa(s, t) (2.31)
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Fi being the force per unit length, ρf the linear density of the one dimen-
sional filament and a its local acceleration. In the code, this is implemented
my means of a second fictitious filament that is linked by stiff springs to
the first one. While the first one interact with the fluid, the second one
does not; instead, they interacts between each other so that the first one
makes the second one move following its movement; the second one, on the
other hand, applies to the first one the forces that are due the real filament
inertia.

If we add to the acceleration of the second filament another constant
term in the right direction we can also take into account and model buoy-
ancy effects. In our work buoyancy is always considered to be zero.

2.4 Numerical implementation

All the things that have been defined in the previous sections have to be
implemented into a code that will be executed by one or more workstations.
The code is written in the MATLAB programming language, so that it will
be executed in the MATLAB numerical computing environment [20]. The
code used for this work has been modified starting from the existing code
used by Bagheri, Mazzino and Bottaro [21].

2.5 Velocity driven code

Having explained the ways we can impose boundary conditions in sec.
2.2.3, now we need to impose the right ones in order to generate the desired
pulsatile flow of period T and characteristic velocity umax (see sec. 1.2).

Referring to fig. 2.4 and its Cartesian coordinates, we can now better
define umax as

umax = max

(
1

2h

∫ h

−h
u(x, y, t)dy

)
,

which is obviously constant with x because of the incompressibility of the
flow.
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L

2h
x

y

Figure 2.4: Representation of the channel with its dimensions and coordi-
nates system.

In the first place, two Dirichlet conditions had been imposed both at
the inlet and at the outlet of the channel; they were identical to each other
and consisted in two parabolic profiles modulated in time by a sine function
and scaled with u′max which will be the resulting velocity magnitude:

u(−L/2, y, t) = u(L/2, y, t) =
3

2
u′max

(
1− y2

h2

)
sin

(
2πt

T

)
v(−L/2, y, t) = v(L/2, y, t) = 0

(2.32)

This leads to the desired value of umax:

umax = max

(
1

2h

∫ h

−h

3

2
u′max

(
1− y2

h2

)
sin

(
2πt

T

)
dy

)
=

=
1

2h

∫ h

−h

3

2
u′max

(
1− y2

h2

)
dy =

1

2h

(
3

2
u′max2h+

3

2h2
u′max

2h3

3

)
=

= u′max

The parabolic profile is the profile that builds up in a steady stream
inside a channel; due to the pulsatile flow, it turns out that the parabolic
profile is not the one that would develop in a very long channel. This lead
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to the fact that it is necessary to simulate a very long channel in order to
have a central zone in which the flow is not affected by the inlet/outlet
areas. The result of a simple channel simulation is shown in fig. 2.5, where
the black lines are vorticity contour-lines; the presence of vorticity due to
the inlet/outlet areas is an unwanted effect of the choice of the parabolic
profile and clearly affects the central zone of the channel.

time=20.0000

−4 −2 0 2 4
−2

−1

0

1

2

Figure 2.5: Unwanted vorticity due to the inlet and outlet velocity profiles.
Black lines are vorticity contour-lines. Re = 200.

After some tests with channels of different lengths, measuring the veloc-
ity profiles in the central section as a function of time, it appeared clear not
only that the velocity profile that develops is not parabolic, but also that
it cannot be represented as some kind of profile multiplied a sine function
over time. In fig. 2.6 the velocity profiles have been plotted every 1/4th of
period, for a long channel at Re = 200.

2.5.1 Velocity profile generation

Our goal is now to generate a profile that is as similar as possible to the
one that would be found in an undisturbed pulsatile flow in a channel. To do
this, we will, prior to star the actual simulation, simulate a long and empty
channel, to obtain the a set of velocity profiles (at x = 0, center of this long
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Figure 2.6: Velocity profiles for t/T=0.25 (blue), t/T=0.5 (green),

t/T=0.75 (red), t/T=1 (light blue), L = 8, h = 2, Re =
umaxhρflow

µ = 200

channel) over time. In order not to capture transient effects, the velocity
profiles in x = 0 are recorded and, after every pulsatile period, compared
to the corresponding ones of the period before, waiting enough time so
that they do not differ more than a certain threshold. If this happens, the
velocity profile for every time-step of the last pulsatile period is saved and
used as inlet and outlet boundary conditions. The set of values that will
be saved and used will be denoted:

ukj j ∈ [1, ny], k ∈ [1 : nT ],

where ny is the number of nodes in y direction and nT is the number of
time-steps contained in a pulsatile time period, so that:

nT =
T

∆t
.

This method worked very well for reducing (almost eliminating) vortic-
ity in inlet and outlet zone (fig. 2.7, same parameters as fig. 2.5), but does
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time=20.0000

−4 −2 0 2 4
−2

−1

0

1

2

Figure 2.7: No unwanted vorticity outside the boundary layer. Black lines
are vorticity contour-lines. Re = 200.

not guarantee the symmetric pulsatile flow we need. First of all, it does not
guarantee that the velocity profiles of the first half of the pulsatile period
are the same in absolute value compared to the ones of the second half,
due to persistent transient effects, even if small. This can be a problem,
since minor differences could generate symmetry breaking that would not
be interesting for our investigation. Also, for very high Reynolds number
it has been seen that the velocity profile can show some little asymmetry,
over y. To enforce symmetry the velocity profiles set is modified as follows:

ukj =


1

4

(
ukj + ukny−j+1 − u

k+nT
2

j − uk+nT
2

ny−j+1

)
, 1 ≤ k ≤ Nt

2
, i ∈ [1, ny],

1

4

(
ukj + ukny−j+1 − u

nT
2
−k

j − u
nT
2
−k

ny−j+1

)
,

Nt

2
≤ k ≤ nT, i ∈ [1, ny].

This mostly eliminates vorticity outside the filaments zone (fig. 2.7) and
guarantees a pulsatile flow with no net flow, with two semi period which are
exactly one the opposite of the other and with no asymmetries along y, by
construction. Since the velocity profile does not depends on any filament
properties nor on the number of filaments that are simulated, once obtained
it can be used for other simulations, saving computational time.
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2.6 Grid and convergence study

To test the convergence of the code, four different grids have been tested,
varying the value of the minimum distance between nodes between 1/20
and 1/80. The channel has been simulated with a single flexible filament
clamped on the bottom side; the pulsatile flow was characterized by a time
period of 1, Re = 200 and umax = 1. The angle formed by the free-end of
the filament with respect to the clamping point and the bottom wall of the
channel have been measured in four different simulations, with grid spacing
of 1/20, 1/40, 1/60, 1/80.
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Figure 2.8: Convergence study for various grid spacings: 1/20 (blue), 1/40
(green), 1/60 (red), 1/80 (light blue, dashed).

The results are plotted in fig. 2.8 and, with better details, in fig. 2.9;
in both of them different grid spacings are represented in different colors:
1/20 (blue), 1/40 (green), 1/60 (red), 1/80 (light blue, dashed).

Taking the results of the finest grid (1/80) as a reference, we calculated
the difference between the reference and the results of other grid spacings,
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Figure 2.9: Convergence study for various grid spacings: 1/20 (blue), 1/40
(green), 1/60 (red), 1/80 (light blue, dashed). Detail.

calculating the root mean square value of the angular error. The results
are shown in tab. 2.1.

Grid spacing 1/20 1/40 1/60

Average angular error, RMS 9.46 · 10−2 2.08 · 10−2 9.62 · 10−3

Table 2.1: Average error values for various grid spacings, with respect to
1/80 grid spacing.

From this results, we can be confident in the results obtained from grid
with spacing equal or smaller that 1/40.

2.7 Comparison with previous works

The code has been compared with the work of Yu [22]. In that work,
a single filament with given characteristics has been simulated inside a
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long channel with parabolic pulsatile flow. Because of this, the parabolic
inlet/outlet boundary conditions has been used in our code.

Yu simulated a filament with these dimensionless parameters:

ρr = 1,

G = 103,

Th = 0.0212,

Lf = 0.8.

where ρr is the ratio between filament and fluid densities, G is the shear
stress modulus, Th is the filament thickness and Lf its length.

The filament is immersed in a pulsatile flow defined as follows:

Re = 100,

Umax = 1.5,

T = 10,

where T is the period of the pulsatile flow. The channel is defined by:

H = 2,

L = 8,

where H is the total height of the channel and L its length.
Most parameters can be imposed directly in the code we are using, but

some calculations have to be done to find the corresponding filament density
and bending stiffness. Regarding filament density, it should be noted that
the parameter in our code is the linear density. So, simulating a filament
with unitary surface density and Th = 0.0212 lead to a linear density of
ρ = 0.0212, which has been used in our code.

Regarding the bending stiffness, we need to relate G with Kbeam used
in our code. As for Euler–Bernoulli beam theory, we know that, for a
constant properties beam:

EI
∂4w

∂x4
= q(x),
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where E is the the elastic modulus, I is the second moment of area (in
a three-dimensional case), w is the deflection of the beam and q is the
distributed load.

Our code is made to approximate the relation:

kbeam
∂4w

∂x4
= q(x),

so that we end up with:
EI = kbeam.

Assuming a Poisson coefficient ν = 0.5 we have:

E = 2G(1 + ν) = 3 · 103,

and being, in this two-dimensional case:

I =
Th3

12
= 7.94011 · 10−7

we have:
kbeam = EI = 2.3820 · 10−3.

which is the value we will use.
The simulation has been done with dt = 1 ·10−3 and a grid spacing near

the filament of 1/60.
The results are very similar to those obtained in [22], as can be seen

in figs. 2.10 and 2.11, the filament is moving in a physically reasonable
manner and the simulation is stable.

2.8 Pressure driven code

One of the interesting displays of symmetry breaking we enlisted in
section 1.4 was the existence of a non-zero mean flow inside the channel.
In the previous section we described one way to impose the pulsatile flow,
that is, imposing a time dependent velocity profile on the left and right
boundaries of the channel, generating the desired oscillating flow. Since the
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Figure 2.10: Comparison between Zu’s resuts (left) and ours’ (right) at
various time-steps.
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Figure 2.11: Comparison between Zu’s resuts (left) and ours’ (right) at
various time-steps, continued.
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pulsatile flow we need is symmetric (both y-wise and in time), the velocity
profiles were symmetric y-wise and in time; because of these requirements,
no net flow can be expected in the channel over time whatsoever. Something
that is related to the net flow, and that can be observed in the velocity-
driven version of the code, is a net pressure gradient over time, that is a
non zero pressure gradient averaged over an integer number of pulsatile
time-periods. Such a thing, that has been observed for some parameters
sets, could mean that if the flow were driven by a symmetric (over time)
pressure gradient, there would be a non zero net flow in one direction. If
the pulsatile flow is implemented by means of a pulsatile pressure gradient,
a net flow could exist without infringing boundary conditions; in order to
further investigate this, the code has thus been modified. The boundary
conditions on the left and right sides of the channel have been changed to
periodic conditions (that is, the u and v at the left edge of the domain are
due to be equal to the ones at the right edge, see (2.19)) and a pressure
gradient is added as a known term pg.

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u+ pg. (2.33)

2.8.1 Steady flow

The next step is to quantify the value of the needed pressure gradient in
order to get the desired flow, pulsatile or not. Starting from the steady case,
we can derive the required value from the Navier-Stokes equations. Starting
from non-dimensionalized NS equations plus the continuity equation:

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u+ f ,

∇ · u = 0,
(2.34)

and knowing that:

∂u

∂t
= 0;

∂u

∂x
= 0; v ≡ 0; f ≡ 0,
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then (2.34) becomes: ∇p =
1

Re
∇2u,

∇ · u = 0.
(2.35)

Knowing the parabolic velocity distribution along y direction and imposing
an average u velocity equal to one:

u(y) =
3

2

[
1−

(y
h

)2
]

; ∇2u = −
(

0,
3

h2

)
,

where h is the channel half-height. From these latest relations and (2.35)
we can derive:

∂p

∂x
= − 3

Re · h2
. (2.36)

This is the pressure gradient we need to impose in our code for a given
Reynolds number and a given channel height. The comparison of the result-
ing velocity profile and the velocity profile from the previous version of the
code is shown in fig. 2.12; the profile is identical in shape and magnitude.

2.8.2 Pulsatile flow

For the pulsatile flow we will use some results from Kerczek [23] and
Schmid & Henningson (sec. 6.4.1) [24].

Given a pressure gradient of the form:

∂p

∂x
= − 2

Re
Λ cos Ωt, (2.37)

it generates the velocity:

u(y′, t) =
Λ

γ2
u1(y′, t) (2.38)

where:

u1(y′, t) = <
{[

cosh (γ(1 + i))− cosh (γ(1 + i)y′)

i cosh (γ(1 + i))

]
eiΩt

}
(2.39)
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Figure 2.12: Velocity profiles comparison bewtween the pressure driven
code (blue line) and the velocity driven code (red crosses).

with Re = U0h/ν, U0 is the maximum bulk velocity (U0 = 1), γ = h/δ is
the ratio of the channel half-width to Stokes-layer thickness δ = (2ν/ω)1/2,
Ω = hω/U0 is the dimensionless frequency of the imposed pressure gradient
and y′ = y/h.

Our goal is to find the right pressure gradient in order to generate a
pulsatile flow characterized by a maximum y-averaged x-component veloc-
ity equal to one; that is a pulsatile flow which maximum 2D-flow (in both
direction) is 2h. In order to get the desired pressure gradient we need to
give the right value of Λ, which modifies the amplitude of the pulsatile
pressure gradient.

Again, as in section 2.5, we can define a single useful value describing
the amplitude of u1(y′, t), that is defined with close corrispondance with
equation (2.32). As stated, the overline indicates the y-wise averaging op-
eration, while the subscript indicates that we take the maximum value over
a pulsatile time period.
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2.8. Pressure driven code

It can be shown that the maximum values of (2.39) are obtained for ωt =
π/2 + kπ, for integer values of k; this means that in order to calculate u1ax

we can substitute eiωt with ±i; we will use +i. Equation (2.39) becomes:

u1ax(y′) = <
[

cosh (γ(1 + i))− cosh (γ(1 + i)y′)

cosh (γ(1 + i))

]
. (2.40)

Now we need to integrate (2.40) y-wise, in order to average it:

u1max =
1

2

∫ 1

−1
<
[

cosh (γ(1 + i))− cosh (γ(1 + i)y′)

cosh (γ(1 + i))

]
dy′ =

=
1

2
<
[∫ 1

−1
1− cosh (γ(1 + i)y′)

cosh (γ(1 + i))
dy′
]

=

=
1

2
<

[
2−

[
sinh (γ(1 + i)y′)

(γ(1 + i)) cosh (γ(1 + i))

]1

−1

]
=

=
1

2
<
[
2− 2 tanh (γ(1 + i))

(γ(1 + i))

]
. (2.41)

In fig. 2.13 the value of u1max is plotted for γ between 0 and 100.
From equation (2.38) we can derive that:

uMax =
Λ

γ2
u1max. (2.42)

As already stated, we want uMax, which is the time-maximum, y-wise av-
eraged velocity in the channel, to be equal to one; so we need to impose:

Λ

γ2
u1max = 1, (2.43)

that is:

Λ =
γ2

u1max
=

h2(
2ν
ω

)
u1max

=
Re · ωh

2U0u1max
=

Re · Ω
2u1max

. (2.44)

Substituting (2.44) into (2.37) we obtain:

∂p

∂x
= − 2

Re

Re · Ω
2u1max

cos Ωt = − Ω

u1max
cos Ωt. (2.45)
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Figure 2.13: Value of u1max for γ between 0 and 100.

The results obtained have been used in the code to generate the pulsatile
flow. The velocities obtained have been compared to those obtained with
the original version of the code. In figure 2.14 the two velocity profiles
measured at x = 0 are plotted for the time step corresponding to a quarter
of a period: the plot shows a very good agreement between the two methods.

2.9 Validation with COMSOL

Even if the basic comparisons made between the two codes showed very
positive results, they can not be considered a good validation test since they
are overly simple: there are many terms in the Navier-Stokes equations that
vanish in this scenario, beginning with those containing the v-component
of the velocity. To validate the new pressure-driven code we have chosen
to compare its results with the ones obtained with the commercial code
COMSOL Multiphysics [25] in a test case scenario that has to be simple
enough to be easily created both in MATLAB and COMSOL, but also
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Figure 2.14: Velocity profiles comparison between the pressure driven code
(blue line) and the velocity driven code (red crosses).

complex enough to fully put our code to the test. The setup chosen consists
in a periodic series of cylinders put inside an horizontal channel in which
there is a steady streaming. Both simulations are run with the same size
of the channel (L = 2, 2h = 2), the same cylinder radius (r = 0.25) and
the same flow properties (Re = 100, U = 1). In fig. 2.15 the two velocity
fields are shown side by side, underlining very good agreement. In order
to obtain a more quantitative result, the velocity profiles along two lines
have been plotted; the two lines are, with respect to the usual cartesian
coordinates, at y = 0.5 (fig. 2.16) and x = −1 (fig. 2.17). The differences
are negligible, so that the validation can be considered positive.
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Chapter 2. Method

Figure 2.15: Velocity fields comparison, using COMSOL code, left, and our
MATLAB code, right.

Figure 2.16: Velocity profiles comparison bewtween the two codes at y =
0.5. In continuous lines the results from the MATLAB code, in crossed lines
the ones from COMSOL. In blue the u-component, in red the v-component.
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Figure 2.17: Velocity profiles comparison bewtween the two codes at x =
−1. In continuous lines the results from the MATLAB code, in crossed lines
the ones from COMSOL. In blue the u-component, in red the v-component.
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Chapter 3

Results - Velocity driven
code

The first simulations have been run using the velocity driven code.
Out of the many properties we can vary, we decided to start varying the
pulsatile-flow time period, T . This parameter modifies strongly the be-
haviour of the system, so it has a big influence on the simulation outputs,
making it reasonable to investigate its effects first. We can define an adi-
mensional number related to the pulsatile-flow time period, i.e. the Strouhal
number. It is generally defined as follows:

St =
fL

U
=

L

TU

where f , L, U and T are, respectively, the characteristic frequency, length,
velocity and time of the system. In our case it is defined as:

St =
Lf

Tumax
(3.1)

Lf being the filament length, T the pulsatile-flow time period and umax
the characteristic velocity we defined in sections 1.2 and 2.5. The choice of
using the filament length as a length scale instead of the usual channel half
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3.1. One filament

Parameter Value

Channel

Length, L 12

Height, 2h 4

Number of filaments, Nf 1

Filament

Length, Lf 0.8

Density, ρf 0.05

Elastic stiffness, Kelas 100

Bending stiffness, Kbeam 5 · 10−3

Flow

Characteristic velocity, umax 1

Reynolds number, Re 80, 120, 240, 400

Time-period, T ∞

Table 3.1: Parameters used for the simulations.

height h may seem odd, but since the phenomenons we are investigating
depends on the filament length more strongly than on the channel height,
this can be a good definition.

The number and position of the filament(s) has been varied too.

3.1 One filament

In the basic configuration just one filament is clamped to the bottom
wall of the channel, in central position.

3.1.1 Steady-flow case

We will first consider a steady-flow case, in which the fluid simply moves
inside the channel bending the filament towards one side. The flow is im-
posed through boundary conditions, so that a parabolic velocity profile is
imposed at the inlet of the channel. We can consider this as a limit for very

46



Chapter 3. Results - Velocity driven code

low values of the Strouhal number: since there is no pulsatile flow we can
consider it as a pulsatile flow of infinitely long time-period T , so that the
Strouhal number would be zero. In table 3.1 the parameters used for this
simulation are listed.
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Figure 3.1: Filament free end angle θ (in radians) versus time for Reynolds
number 80 (blue), 120 (green), 240 (red) and 400 (light blue).

The results of this preliminary simulation are shown in fig. 3.1, where
the angle formed by the free end of the filament, the position at the wall
where the filament is clamped, and the bottom wall of the channel, θ, is
plotted against time for various Reynolds numbers. As the Reynolds num-
ber grows, a small unsteadyness can be seen as the θ angle starts fluctuating
around it average value. This is due to vortex shedding, as can be seen in
fig. 3.2, where the vorticity value is plotted for Re = 400. Also, the an-
gle decrease as the Reynolds number increases, due to the decreasing force
exerted by the low-viscosity fluid.
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Figure 3.2: Snapshot of the vorticity in the channel Re = 400.

3.1.2 Strouhal number bifurcation

A set of simulations varying the pulsatile time period, and thus the
Strouhal number have been done. The parameters that have been used are
listed in table 3.2. As for the filament density, no significant differences
appeared using the previous value, 0.05, or setting it to zero, so from now
on the latter value will be used in order to take away one spatial dimension
from the parameters space. It is to be noted that this does not mean that
the filament will now exhibit buoyancy: the density imposed in the code
is responsible for filament inertia, while the filament is always considered
mono-dimensional and neutrally buoyant. The channel length is chosen to
be 8: multiple value of it have been tested and this value is the smallest
one that ensures no significant boundary effects.

In figure 3.3 the average angle θ is plotted for different pulsatile time
periods. The filament shows a symmetric behaviour for short and long
time periods, while for intermediate values of T it behaves asymmetrically.
The sign of the average angle depends on the initial conditions: applying
a T/2 time shifting to the pulsatile flow determines an average angle of
same amplitude but opposite sign. Thus this symmetry breaking happens
through what is called a bifurcation; its peak is reached for T = 2.1 when
the average angle reaches a value of 0.148 rad or 8.5◦.
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Chapter 3. Results - Velocity driven code

Parameter Value

Channel

Length, L 8

Height, 2h 4

Number of filaments, Nf 1

Filament

Length, Lf 0.8

Density, ρf 0

Elastic stiffness, Kelas 100

Bending stiffness, Kbeam 5 · 10−3

Flow

Characteristic velocity, umax 1

Reynolds number, Re 200

Time-period, T
0.6, 0.9, 1.2, 1.5, 1.8, 1.95, 2.1,

2.25, 2.4, 2.55, 2.7, 3, 3.6

Table 3.2: Parameters used for the simulations.
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Figure 3.3: Average angle θ versus pulsatile time period T . A bifurcation
can be seen, with a peak around T = 2.1.
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Figures 3.4a, 3.4c, 3.4b show the filament position at different times
respectively for T = 1, T = 2.1, T = 3; only in the second case clear signs
of asymmetry can be seen, while in the first and last ones the movement
is symmetric. For better details, in fig. 3.5 the path of the free end of the
filament is plotted, for T = 2.1; as the time passes the filament movement
gets more and more asymmetric, until the free end draws an asymmetric
eight figure in space.
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Figure 3.4: Filament position at different times for T = 1 (a), T = 2.1 (b),
T = 3 (c). Asymmetry is clear for T = 2.1.

3.1.3 Varying the length of the filament

Another set of simulations has been run, everything else being equal,
with a filament length Lf = 0.6 and with T = 0.4, 0.6, 0.8, 1, 1.2, 1.35, 1.8, 2.1, 3.

The results are plotted in fig 3.6 (red line) compared with those obtained
in the past section (black line).
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Figure 3.5: Filament free end path for T = 2.1.
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Figure 3.6: Average angle θ versus pulsatile time period T for Lf = 0.6
(red line) and Lf = 0.8 (black line).
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The maximum average angle is smaller (around 0.05 rad) and the peak
appears for a shorter time period (T = 1.35).

There could be a link between the position of the peak (with respect
to T ) and the length of the filament: it seems that for shorter filaments
the peak occurs for shorter time periods. Plotting the same data of fig.
3.6 versus the inverse of the Strouhal number (as defined at the beginning
of this chapter), together with a third set of simulations with Lf = 1, the
three lines shows a similar shape and the peak is found around the same
value, between St = 0.4 and St = 0.5. (fig. 3.7).
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Figure 3.7: Average angle θ versus 1/St for Lf = 0.6 (red line), Lf = 0.8
(black line) and Lf = 1 (blue line). The three peaks now share a similar
value of St.

3.1.4 Asymmetry analysis

The case that showed the maximum average angle (Lf = 0.8, T = 2.1)
has been investigated more to understand the motion of the fluid.
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3.1. One filament

To do this, a script has been written in order to simulate a physical
passive scalar. A passive scalar is a contaminant in a fluid flow that is
present in such low concentrations that it has no dynamical effect (such as
buoyancy) on the fluid motion itself; usually smoke or dye particle are used
in experiments [26].
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Figure 3.8: The initial position and the final position of a set of passive
scalars is linked by a black line, a dot marks the final position after one
period. The red line denotes the filamet at rest.

To simulate this we followed a set of virtual particles; at every timestep
the velocity of every particle is updated interpolating the eulerian velocity
field and then the particle position is moved using a 3rd order Runge-Kutta
method, enforcing the continuity equation [27] [28]. Each particle is followed
for a whole time-period, during which they will move first towards one side
and then towards the other. Without any filament interaction they would
go back to the same position they started from, and this has been tested
and confirmed. In the presence of the filament and after asymmetry kicks
in, this is not true anymore. In fig. 3.8 the initial position and the final
position of each virtual particle is linked by a black line, a dot marks the

54



Chapter 3. Results - Velocity driven code

final position, and the filament original position is plotted in red.

There is a clear vortical structure on the left side of the filament, rotating
counter-clock-wise. Its center is roughly one unit to the left and one unit
above the clamped end of the filament and the vortex has a diameter of
approximately two units. Being the filament-height 0.8, it may well be
influenced by the lower part of the vortex, in which the flow is moving
towards the right; this qualitative observation is in agreement with the
average bending of the filament, to the right side.
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Figure 3.9: The u-velocity profiles of two channel sections at x = −1
(roughly corresponding to the center of the vortex) and at x = 0 (cor-
responding to the filament position) are plotted, as a continuous line and
as a dash-dot line, respectively.

To further investigate these aspects, the u-component of the velocity
field has been time-averaged over the same time-period; the velocity profiles
of two channel sections at x = −1 (roughly corresponding to the center of
the vortex) and at x = 0 (corresponding to the filament position when at
rest) are plotted in fig. 3.9, as a continuous line and as a dash-dot line,
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3.1. One filament

respectively. We can confirm that in the filament region the existing vortex
pushes the filament to the right and is the apparent cause of the angular
asymmetry. At x = −1, where the vortex generates the biggest velocities,
u can exceed a value of 0.5, which is half the imposed umax.

3.1.5 Net force and pressure gradient

As we stated in section 1.4, the way this code imposes the pulsatile flow
(via velocity boundary conditions) rules out the possibility of measuring
a net flow when averaging the flow rate over time. This does not, on the
other hand, prevents the existence of a non zero average pressure gradient
inside the channel or a non zero force applied from the filament and the
walls to the fluid.

Two script have thus been written, one to measure the pressure differ-
ence between the left side and the right side of the channel, to calculate
the spatial-averaged x pressure gradient and to average it over time; the
other to measure the viscous forces due to the channel walls and the hor-
izontal forces due to the filament interaction and to average them. This
corresponds to:

∇px(t) =
1

2hL

∫ h

−h
[p(L/2, y, t)− p(−L/2, y, t)] dy, (3.2)

∇px =
1

kT

∫ τ+kT

τ
∇px(t)dt, k ∈ N, (3.3)

and

fv(t) =

∫ L/2

−L/2
µ
∂u(x, y, t)

∂y

∣∣∣∣
y=−h

dx+

∫ L/2

−L/2
µ
∂u(x, y, t)

∂y

∣∣∣∣
y=h

dx, (3.4)

ff (t) =

∫ Lf

0
fx(s, t)ds, (3.5)

fv+f =
1

kT

∫ τ+kT

τ
[ff (t) + fv(t)] dt, k ∈ N, (3.6)
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where fv is the viscous force due to the horizontal walls, µ the dynamic
viscosity, ff the horizontal force due to the filament, fx the horizontal force
applied by the filament to the fluid per unit length and s a curvilinear
coordinate of the filament.

If these quantities are measured in the right way, they should be linked,
and precisely it should be:

2Lh∇px = fv+f . (3.7)

In figure 3.10 the trend of∇px(t), fv(t) and ff (t) are plotted respectively
in blue, red and black, during 10.5 time units, that is 5 time periods.
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Figure 3.10: Trend of ∇px(t) (blue), fv(t) (red) and ff (t) (black) during 5
pulsatile time periods.

These values have been averaged over time, as in (3.3) and (3.6), yield-
ing:

∇px = 1.584 · 10−4 fv+f = 5.203 · 10−3
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3.2. Two filaments

Upon enforcing (3.7):

2Lh∇px = 5.0688 · 10−3 ∼ 5.203 · 10−3 = fv+f

So that the two results are in remarkably good agreement. There is, thus,
a net force acting from left to right, or, which is equivalent, a net positive
pressure gradient that is needed to keep the desired pulsatile flow, due to the
imposed velocity boundary conditions. An interesting thing to investigate
is whether, if the pulsatile flow would be generated through a pressure
gradient, a non-zero average net flow would develop. This will be the object
of the next chapter.

3.2 Two filaments

To investigate the interaction between filaments we set up a series of
simulations with two filaments on the same side of the channel, spaced apart
by a certain distance d. All other parameters have been kept the same as
the ones that generated the biggest average angle, most notably T = 2.1.

In fig. 3.11 the average angle of each filament is plotted, for various val-
ues of the distance between them. Due to the code structure, for distances
smaller then 0.8 the free ends of the two filaments tend to stick to each
other, because of the overlapping of the two discrete delta functions used
to update their position, so the results for such distance values have not
been plotted. When the two filaments are close together they tend to bend
one towards the other, so that the right one bend on the opposite side with
respect to the left one. This does not happen as the distance between them
increases: when the distance is greater then 2 the two filaments behaves
similarly to each other, which means the two filaments are decoupled.

In figures 3.12a, 3.12b, 3.12c, 3.12d the filament behaviour can be better
seen: for both the distance values considered each filament moves asymmet-
rically, in a way that is similar to the one of the single filament, cf. figs.
3.4b and 3.5, the difference being that when they are close together the
whole system behaves symmetrically, while when they are spaced enough
apart it does not.
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Figure 3.11: Left filament (dashed line) and right filament (dotted line)
average angle, versus distance d between the two filaments.
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Figure 3.12: Filaments position at different time for d = 0.8 (a) and d = 2.4
(b); filaments free-ends trajectories for d = 0.8 (c) and d = 2.4 (d).
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3.2. Two filaments

3.2.1 Sensitivity to initial condition

Next, we will examine more in depth the system composed by two fila-
ments spaced apart of a distance d = 0.8, a case that shows a different and
interesting behaviour compared to the single filament case. In particular,
we want to verify whether the final configuration we saw depends on the
initial position of the filaments or not. To do this three more simulations
have been run, with the three initial conditions shown in figs. 3.13b, 3.13c
and 3.13d, and the results have been compared with those already run,
whose initial conditions are shown in 3.13a.
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Figure 3.13: The three filaments initial positions for the new simulations
(b, c, d) and the original one (a).

The results show that, after a short transient, the filaments initial po-
sitions exert no influence on the movement of the filament. In fig. 3.14 the
horizontal distances between the two filament free ends are plotted versus
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time, each line representing one of the four cases. Even if the observable
chosen shows big differences between the cases at the beginning of the sim-
ulations, the difference becomes negligible after less than five time units;
the sensitivity to the initial conditions is thus negligible, and this seems
reasonable when considering that the filaments are passive and only driven
by the flow.

It would be interesting to examine the situation at larger values of Re,
where a possibly chaotic behaviour may change these conditions, but this
is outside the scope of the present research. We thus move to consider the
case of a channel flow driven by a periodic pressure gradient.
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Figure 3.14: Filaments free-ends distance versus time for the initial condi-
tions in fig. 3.13a (blue), 3.13b (green), 3.13c (red) and 3.13d (light blue).
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Chapter 4

Results - Pressure driven
code

We will now examine the results obtained with the second version of our
code, in which the pulsatile flow is driven by a pulsatile pressure gradient,
imposing periodic boundary conditions.

In the first place we will check whether the two versions of the code
provide the same results under similar conditions, then we will study new
parameters sets.

First of all we want to define how we will measure the average net flow
that we are looking for. What we will do is to integrate the u velocity along
y and average the value over an integer number k of periods. This yields
to:

unet =
1

kT

∫ τ+kT

τ

[∫ h

−h
u(x, y, t)dy

]
dt, (4.1)

which is constant along x due to the incompressibility constraint. This
is the observable we will measure and plot, indicating the average velocity
inside the channel; it should be compared to umax, which is the velocity
magnitude due to the pulsatile flow.
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4.1 Comparison with previous code

The comparison with the results obtained with the velocity driven code
is made using the parameters already listed in tab. 3.2, the only difference
being L = 12. This parameter acquires now a bigger importance: in the
velocity driven code we choose a large enough value in order to have no
significant boundary effects; now we need to take into account that, due
to the periodic boundary conditions, we are simulating an infinite array of
filaments, whose spacing between each other is L. Also, since we will observe
an average net flow, the ratio between filaments and the walls length (where
the friction tends to diminish the average net flow, if it exists) gets a new
important role; because of these facts a bigger value has been chosen.

In fig. 4.1 the average angle obtained with the new code is plotted (blue
line) together with the one from the previous code (black line).

The two resulting curves are very similar: both show a clear central
peak, found for the same values of St; the two peaks also share the same
value of θ. In the left side of the plot the shapes of the two curves show
some differences, because the new results exhibit asymmetry in this region.
The reason for this will be studied in the next section.

The general agreement between the two codes is very good; the asym-
metric phenomenon we are studying, then, is not due to boundary condi-
tions effects.

The net velocity, as defined in the previous section, is plotted in fig. 4.2
(red line), together with the average angle values (blue line). The results
show that the amplitude of the net velocity is very small, mainly due to the
large length of the channel, which corresponds to filaments much spaced
apart, so that their influence is small on the whole quantity of fluid. Nev-
ertheless, the net velocity is mostly negative and this probably influences
the average angle, that show small negative values in the left part of the
graph.

Further analysis have been done varying the channel characteristic sizes
and other parameters, but it is useful to first analyse these results in order
to be able to make predictions and to explain new results.
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Figure 4.1: Average angle θ verus 1/St obtained with the new code (blue
line) and with the previous code (black line).

4.2 Average velocity fields

Depending on the Strouhal number, the flapping filament immersed in
a pulsatile flow have different effects on the flow itself. In order to show
this we will analyse the average velocity fields (u and v components), so
that we can isolate the filaments effect from the pulsatile flow: being the
latter symmetric, the associated average velocity fields would be null.

We noted that in the zone of intermediate values of St an asymmetric
vortex is stable at one side of the filament; this also can be visualized in
the average velocity fields. In figs. 4.3a and 4.3b the average fields (in the
central area of the channel, which is longer, L = 12) for u and v are plotted
respectively, for T = 2.1; through their analysis the existence of the vortex
is confirmed in the new code too.

In the zone of short T we noticed a slightly different behaviour in the
new simulations compared to the old ones. Looking at the average velocity
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Figure 4.2: Average net velocity unet (red line) and average angle θ (blue
line) verus 1/St.
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Figure 4.3: Average u field (a) and v field (b) in the central area of the
channel, for T = 2.1. The filament creates a vortex on the left side.
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fields (figs. 4.4a and 4.4b showing u and v fields respectively) we see that
the filament pushes the fluid towards the top wall of the channel, generating
a jet. Such a jet, or, better, due to the periodic boundary conditions, such
a series of jets, can bend towards one side and find a new equilibrium in
presence of the no-slip conditions at walls. This is exactly what happens
in our simulations, the presence of the bent jet can be deducted especially
from an accurate analysis of fig. 4.4b.
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Figure 4.4: Average u field (a) and v field (b) in the central area of the
channel, for T = 0.6. The filament creates a jet that is very slightly bent
towards the left.

For long T the filament has the opposite effects on the flow. Looking
at the average velocity fields (figs. 4.5a and 4.5b showing u and v fields
respectively) we see that the filament pushes the fluid towards the sides
of the channel, sucking it from the center. This effect, especially if the
filaments are closer to each other, generates again vertical jet towards the
top of the channel; in this case the jets are located in correspondence with
the domain boundaries, that is between two periodic filaments.

It is important to notice the presence, in the top half of the channel, of
two zones characterized by opposite u velocity: for shorter channels their
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Figure 4.5: Average u field (a) and v field (b) in the central area of the
channel, for T = 3.6. The filament moves the fluid towards the sides of the
channel.
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existence will become not stable and one of them two will start to dominate
the whole upper part, generating net flow.

4.3 Channel length

We did multiple sets of simulations varying the value of L and keeping
the other parameters equal to the ones listed in tab. 3.2. The values chosen
for L are: 12, 6, 3, 2.

In figs. 4.6 and 4.7 the average angle θ and average net velocity unet
are plotted respectively for the four values of L.
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Figure 4.6: Average angle θ verus 1/St, for L = 12 (blue), L = 6 (green),
L = 3 (red) and L = 2 (light blue).

Let’s first analyse the average angle, and let’s divide the 1/St range in
three zones, the first one for small T and 1/St < 2, the second one for
intermediate T and 2 < 1/St < 3.5, and the third one for large T and
1/St > 3.5. While it is difficult to draw conclusions on the importance of
L in the first zone, we can say something for the second and the third ones.

69



4.3. Channel length

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

1/St

u n
et

Figure 4.7: Average net velocity unet verus 1/St, for L = 12 (blue), L = 6
(green), L = 3 (red) and L = 2 (light blue).

For intermediate T , in the zone of largest asymmetry, the reduction of L
generates a small reduction of θ; for large T there is a clear trend towards
asymmetry as L gets smaller.

Looking at the average net flow unet or, which is more clear, to the
absolute value of unet in fig. 4.8, we can see that there is a clear trend
towards larger unet for shorter channel. This is what we should expect,
because the smaller the distance between two periodic filaments, the smaller
the contribution of viscous dissipation compared to the asymmetric force
generated by each filament. This is especially clear for intermediate values
of T , where filaments spaced apart of L = 2 generate a significant average
net flow of 0.173.

We can look at the average velocity fields in order to better comprehend
the behaviour of the system.

Starting from T = 0.6, which belongs to the first of the zones already
defined, the average u and v fields are plotted in figs. 4.9 and 4.10 respec-
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Figure 4.8: Absolute value of average net velocity unet verus 1/St, for
L = 12 (blue), L = 6 (green), L = 3 (red) and L = 2 (light blue).

tively. We can see a similar vertical jet-like effect on the fluid, not much
influenced by the length of the channel; we can expect that, because of
its orientation, it will be influenced more by the value of 2h: this will be
confirmed in the next section.

For T = 1.5, the value that shows the maximum net velocity, the results
are very much influenced by L. The average angle has a peak for L = 3,
while the net velocity shows a peak for L = 2. In figs. 4.11 and 4.12 the
average u and v fields are plotted respectively.

We can see that for large L the filament behaves again as a vertical
jet, stronger than in the previous case; as the channel length drop, this
configuration seem to be not stable anymore (starts to be bent for L = 6;
this results in a small net flow in 4.7), so that the asymmetric vortices again
are generated (most clear for L = 2). In the latter case the upper part of
the channel is dragged by the top half of the vortex, thus a net flow origins.

For T = 2.1, which corresponds to the resulting maximum average
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angle, we would expect to see small changes in the average fields, because
the value of the θ decreases only slightly as L decreases. This is true,
comparing figs. 4.13 and 4.14. The filament seem to be exerting only a
local effect on the fluid, there are no jet-like effects; this is clear especially
in figs. 4.13d and 4.14d where most part of the channel is unaffected by
the filament presence.

Lastly, for T = 3.6 (figs. 4.15 and 4.16), we can separates two regimes,
one for channel long enough is characterized by symmetric behaviour and
no net flow or significant average angle. In this case the filament acts, as we
already noted, as pushing the fluid towards the sides of the channel. The re-
sulting motion is similar to a convective motion, with vertical rising streams
on the two sides of the filament. If the distance between two filaments is
not enough these rising streams will merge at the periodic boundaries of
the channel. Letting L decrease more and this configuration seem to be not
stable anymore, yielding to a new asymmetric flow characterised by signif-
icant θ and unet. To help us understand better the flow, in fig. 4.17 the
streamlines path have been superimposed to the average u field for L = 3.
The streamlines have been obtained using the Matlab function streamline.
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Figure 4.9: Average u field for T = 0.6 and L = 2 (a), L = 3 (b), L = 6 (c)
and L = 12 (d).
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Figure 4.10: Average v field for T = 0.6 and L = 2 (a), L = 3 (b), L = 6
(c) and L = 12 (d).
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Figure 4.11: Average u field for T = 1.5 and L = 2 (a), L = 3 (b), L = 6
(c) and L = 12 (d).
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Figure 4.12: Average v field for T = 1.5 and L = 2 (a), L = 3 (b), L = 6
(c) and L = 12 (d).
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Figure 4.13: Average u field for T = 2.1 and L = 2 (a), L = 3 (b), L = 6
(c) and L = 12 (d).
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Figure 4.14: Average v field for T = 2.1 and L = 2 (a), L = 3 (b), L = 6
(c) and L = 12 (d).

78



Chapter 4. Results - Pressure driven code

x

y

 

 

−1 −0.5 0 0.5

−1.5

−1

−0.5

0

0.5

1

1.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(a)

x

y

 

 

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(b)

x

y

 

 

−3 −2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(c)

x

y

 

 

−6 −4 −2 0 2 4

−1

0

1

−0.2

0

0.2

(d)

Figure 4.15: Average u field for T = 3.6 and L = 2 (a), L = 3 (b), L = 6
(c) and L = 12 (d).
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Figure 4.16: Average v field for T = 3.6 and L = 2 (a), L = 3 (b), L = 6
(c) and L = 12 (d).
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Figure 4.17: Streamlines path overimposed to the average u field for L = 3
and T = 3.6. The streamlines have been obtained using the Matlab function
stramline.
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4.4 Channel height

The channel height, 2h has been kept fixed until now, its valued being
4. In this section we will investigate its influence on the simulations. The
set of parameters that have been used are listed in tab 4.1.

Parameter Value

Channel

Length, L 2

Height, 2h 2, 4, 8

Number of filaments, Nf 1

Filament

Length, Lf 0.8

Density, ρf 0

Elastic stiffness, Kelas 100

Bending stiffness, Kbeam 5 · 10−3

Flow

Characteristic velocity, umax 1

Reynolds number, Re 200

Time-period, T 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.7, 3.6

Table 4.1: Parameters used for the simulations.

Looking at the average angle θ as a function of 1/St (fig. 4.18), we
can see that for large values of 1/St the height of the channel 2h has small
influence on θ; for small values of 1/St, on the other hand, the differences
grow bigger.

One way to explain this is to recall that for short periods the filament
acts on the fluid pushing it towards the top of the channel, so that the
distance from the filament end to the top of the channel has a rather strong
impact on the system. On the other hand, for long time periods the filament
pushes the fluid towards the left and right sides of the channel, so that its
height is less relevant. In figs. 4.20a, and 4.20b the average u and v fields
are shown respectively, for 2h = 2. They confirm that that the filament
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Figure 4.18: Average angle θ as a function of 1/St for 2h = 2 (red), 2h = 4
(black, data from past simulations), 2h = 8 (blue).

basically act as a jet whose height is enough to interact with the top wall
(cf. with fig. 4.10a).

Regarding the average velocity unet, the major differences are found for
1/St = 1.875, that is when the maximum net flow is reached (fig. 4.19).
The lowest value is found for the least high channel, which can be related to
the presence of the top boundary layer too close to the filament, so that the
asymmetric vortex magnitude is lowered. Comparing the other two cases,
we can state that for 2h = 4 the average velocity is larger, but since its
value for 2h = 8 is larger than half of the former one, we can derive that the
biggest net flow is found for 2h = 8. In figs. 4.21a and 4.21b the average u
field is compared for the last two cases. We can see that for 2h = 8 there is
a bigger zone, in the upper part of the channel, where the average u value
is small and negative; this has both the effect to increase the total net flow
and to decrease the average net velocity magnitude.

83



4.4. Channel height

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

1/St

u n
et

Figure 4.19: Net velocity unet as a function of 1/St for 2h = 2 (red), 2h = 4
(black, data from past simulations), 2h = 8 (blue).
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Figure 4.20: Average u field (a) and v field (b) for T = 0.6 and 2h = 2.
The filament creates a jet towards the top wall of the channel.
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Figure 4.21: Average u field for 2h = 4 (a) and 2h = 8 (b); 1/St = 1.875.

4.5 Bending stiffness

The bending stiffnessKbeam has, until now, remained constant at kbeam =
0.005. In this section we will investigate the results of a ten-fold increase
of the bending stiffness, up to Kbeam = 0.05. The other parameters are the
one listed in 3.2, with L = 2.

The obtained average angle θ and average net velocity unet are plotted
in figs. 4.22 and 4.23 respectively.

Their general shape is similar, albeit they differ from each other no-
ticeably. The average angle is generally larger when simulating the stiffer
filament, but it has the same general shape; we can say the same for the
shape of unet, even if in the region from 1/St = 2 to 1/St = 3 the net flow
is two to four time the one observed for the softer filament.

Analysing the average net fields for T = 2.1 (that is 1/St = 2.625), fig.
4.24, we can observe that it is way more similar to the one observed, in the
case of softer filament, for T = 1.5 instead of T = 2.1 (cf. with figs. 4.11,
4.12, 4.13, 4.14). This can be explained with the fact that, as the stiffness
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Figure 4.22: Average angle θ as a function of 1/St for Kbeam = 0.005
(dotted line) and Kbeam = 0.05 (dashed line).

grows, the filament displacement due to the pulsatile flow gets smaller, so
that in order to get a similar movement a longer T is needed.

4.6 Reynolds number

Until now the Reynolds number has always remained the same, at Re =
200; in this section we will study the influence of the this parameters. The
parameters used in this set of simulations are those listed in tab. 4.2.

We measured the resulting average angle θ and the average net velocity
unet, which are showed in figs. 4.25 and 4.26 respectively.

We can say that for low value of Re the results show no asymmetry,
then starting from Re = 60 we can see a (albeit very small) non zero net
flow; for higher values of Re the asymmetric behaviour gets more and more
noticeable, but there seems not to be a clear threshold that separates the
asymmetric part from the symmetric one.

86



Chapter 4. Results - Pressure driven code

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

1/St

u n
et

Figure 4.23: Average net velocity unet as a function of 1/St for Kbeam =
0.005 (dotted line) and Kbeam = 0.05 (dashed line).
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Figure 4.24: Average u (a) and v (b) fields for T = 2.1 and Kbeam = 0.05.
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4.6. Reynolds number

Parameter Value

Channel

Length, L 2

Height, 2h 4

Number of filaments, Nf 1

Filament

Length, Lf 0.8

Density, ρf 0

Elastic stiffness, Kelas 100

Bending stiffness, Kbeam 5 · 10−3

Flow

Characteristic velocity, umax 1

Reynolds number, Re 25, 50, 60, 70, 75, 80, 90, 100

Time-period, T 1.8

Table 4.2: Parameters used for the simulations.
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Figure 4.25: Average angle θ as a function of Reynolds number Re.
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Figure 4.26: Net velocity unet as a function of Reynolds number Re.

4.7 Multiple filaments

Imposing the periodic boundary conditions on the left and right sides
of the channel we are virtually simulating an infinite set of equispaced
filaments. Doing so we also impose that each filament moves exactly the
same as the other ones. We will now simulate more than one filament in
the same periodic window, so that they will be free to move differently from
each other. The simulation parameters are listed in tab 4.3.

To describe the differences in the filaments movements we calculated
the maximum difference in the x position of the free-end of every couple of
filaments. In the case of two filaments, this means:

|∆x|(t) = |X1(e, t)−X2(e, t) + d|, (4.2)

where e is the index that denotes the end node of the filament. For more
than two filaments the same operation is done for every couple of filaments
and then the maximum value for every time-step is taken.
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4.7. Multiple filaments

Parameter Value

Channel

Length, L 2

Height, 2h 4

Number of filaments, Nf 2, 3, 4

Distance between filaments, d 2

Filament

Length, Lf 0.8

Density, ρf 0.

Elastic stiffness, Kelas 100

Bending stiffness, Kbeam 5 · 10−3

Flow

Characteristic velocity, umax 1

Reynolds number, Re 200

Time-period, T 1.8

Table 4.3: Parameters used for the simulations.

In fig. 4.27 the results for the four filaments case are shown; the differ-
ences between each filaments are negligible and almost comparable to the
numerical precision of the code.

Another test has been run with two filament using two slightly different
initial positions. The absolute value of the difference between the movement
of each free-end have been again measured and plotted in fig 4.28. After
the initial transient the differences get smeared out, so the two filaments
tend to behave in the same way.

We can then say that the periodic boundary conditions we impose are
not different from what we would observe if we would simulate a quasi-
infinite number of filaments equispaced.
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Figure 4.27: Maximum difference in the behaviour of the filaments versus
time.

4.8 Filaments on both sides

We will now conclude this section studying the effect of the presence of
filaments on both sides of the channel. The parameters used are the one
listed in tab. 4.1, with 2h = 4. In figs. 4.29 and 4.30 the average angle and
the average net velocity are plotted, respectively.

Comparing the average angle of each filament, we can see that for large
T they gets to the same values which are very close to the ones obtained
in the case with one filament. This means that in these conditions there
is not a strong interaction between the two filaments. On the other hand,
for small T , the values are quite different from each others, meaning that a
significant interaction is taking place. This is something we should expect:
as we saw in sec. 4.2 for short T the filaments move the fluid towards the
opposite wall of the channel, so towards the other filament; again, for large
T the fluid is pushed towards the sides, so the interaction is less probable.
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Figure 4.28: Maximum difference in the behaviour of the filaments versus
time, for slightly different initial positions.

As for unet it is interesting to see that the peak is roughly twice in
magnitude compared to the one filament case, so that we can say that both
filaments act coherently on the flow. The resulting average flow fields are
plotted in fig. 4.31

As we can see in the center zone of the channel a fast flowing zone exists,
with velocity values bigger than 0.6, which is 60% of umax.

Again to better understand the dynamics of the flow, we can overimpose
the path of the streamlines to the u average field, yielding to the plot in
fig. 4.32. The streamlines are mostly horizontal in a large region; in this
space the net flow generated could efficiently transport particles along the
channel.
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Figure 4.29: Average angle θ versus 1/St for the lower filament (blue) and
the upper filament (red), compared to the case of one filament (dotted line).

93



4.8. Filaments on both sides

0 1 2 3 4 5
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

1/St

u n
et

Figure 4.30: Average net velocity unet versus 1/St for the two filaments
case (dashed line) compared to the case of one filament (dotted line).
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Figure 4.31: Average u (a) and v (b) fields for T = 1.5.
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Chapter 5

Further analysis

Deeper studies have been carried out based on the results that we
showed in the past sections. We will use the Finite-Time Lyapunov Ex-
ponent (FTLE) technique first, then we will propose a model for the global
effect of the filament moving inside the channel.

5.1 FTLE

The Lyapunov exponent of a dynamical system is a quantity that char-
acterizes the rate of separation of infinitesimally close trajectories. Quan-
titatively, two trajectories with initial separation δx0 can diverge at a rate
given by:

|δx(t)| ≈ eλt|δx0| (5.1)

where λ is the Lyapunov exponent. The Lyapunov exponent is generally
defined as:

λ = lim
t→∞

lim
δx0→0

1

t
ln
|δx(t)|
|δx0|

. (5.2)

In Fluid Dynamics, usually, the Finite-Time Lyapunov Exponent (FTLE)
is used. It measures the rate of separation of infinitesimally close trajec-
tories over the time interval [t, t + τ ], τ being the time spent following
the trajectories before calculating the exponent. The FTLE is generally
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5.1. FTLE

function of space and time; in our case, however, we will apply it to the
time-averaged velocity field, so it will be function of space only. The ob-
tained map indicates the rate of separation of massless particle starting
close together, after being transported along the flow (advection) during
the finite time interval τ . High values of the FTLE are found along re-
pelling manifolds embedded in the flow. The manifolds determine the local
behaviour of the flow and are called Lagrangian Coherent Structures (LCS).
Contours of FTLE correspond to precise vortex boundaries and reveal LCS
[29, 30] in a similar fashion as visualization techniques based on injection
of “tracers”, such as dye or smoke.

In fig. 5.1 the working principle of this technique is showed for a double
vortex flow between walls; it shows (a) the trajectories of three initially
close points over a short interval of time. The points B and C are initially
close, but since they are located on either side of the vertical line separating
the two vortices, they quickly diverge from each other when advected by
the flow. On the other hand, the points initially located at A and B remain
relatively close together when advected by the flow. The FTLE values are
then plotted (b), confirming the existence of the vertical separating line
characterized by high value of FTLE, and showing the vortices presence.

We mapped the FTLE for four values of T and two values of L, obtaining
eight configurations, whose general behaviour can be summarized as in table
5.1. The other parameters are the ones listed in tab. 3.2.

In Figs. 5.2 and 5.3 the resulting FTLE fields are plotted, and we can
compare them with the general behaviour of the system. To obtain the
plots we used the averaged velocity fields.

Starting from L = 12, for T = 0.6 and T = 3.6 the symmetric behaviour
of the system is confirmed by the FTLE contours; for T = 1.5 the existence
of a stronger jet-like effect is clear and also the small asymmetry that comes
with it; for T = 2.1 the asymmetry is way more pronounced and also the
asymmetric vorticous structures are properly outlined. It is interesting to
notice that in all the cases there is a line characterized by higher values of
FTLE that begins with the clamped end of the filament; this is in agreement
with the explanation we gave for the two-vortices setup: since the flow can
not cross the filament, its presence will make the trajectory of two particles
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Chapter 5. Further analysis

(a)

(b)

Figure 5.1: Trajectories of three initially close points (a); to be no-
ticed how the points B and C quickly diverge from each other, com-
pared to A and B. The FTLE field associated to the flow (b) outlines
the vorticous structures and the vertical separating line. Courtesy of
http://mmae.iit.edu/shadden/LCS-tutorial/.
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5.1. FTLE

L = 12 L = 2

T = 0.6 No asymmetry in the move-
ment of the filament; filament
acting as a narrow vertical jet.

No asymmetry in the move-
ment of the filament; negligi-
ble net flow; filament acting
as a narrow vertical jet.

T = 1.5 Small asymmetry in the
movement of the filament;
filament acting as a stronger
vertical jet.

Small asymmetry in the
movement of the filament;
very significant net flow;
filament acting as a stronger
vertical jet.

T = 2.1 Very significant average an-
gle of the filament; genera-
tion of asymmetric vorticous
structures.

Very significant average angle
of the filament; small net flow;
generation of asymmetric vor-
ticous structures.

T = 3.6 Small asymmetry in the
movement of the filament.

No asymmetry in the move-
ment of the filament; no net
flow.

Table 5.1: General behaviour of the system for chosen values of L and T .
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Figure 5.2: FTLE values for L = 12 and T = 0.6 (a), T = 1.5 (b), T = 2.1
(c), T = 3.6 (d). Only the central area of the domain is plotted, between
x = −2 and x = 2.
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Figure 5.3: FTLE values for L = 2 and T = 0.6 (a), T = 1.5 (b), T = 2.1
(c), T = 3.6 (d).
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near to the filament but on different sides diverge significantly. This darker
line also outlines the filament when its movement is asymmetric: in fig.
5.2c the line is bent towards the right as the filament is, on average.

Now looking at the case of L = 2, in which the interaction between
filaments is stronger and the generated net flow is bigger, we can again
compare the FTLE contours with resulting flow. For T = 0.6 and T = 3.6
we see qualitatively similar results compared to the ones for L = 12; for T =
2.1 we can again outline the bent darker separation line that is bent towards
the right as the filament is, while the vorticous structures maintain the
shape we just observed; for T = 1.5 the biggest difference is found compared
to fig. 5.2b: the jet-like effect of the filament turns into asymmetric vortices
able to generate a steady streaming. Very interesting is the fact that in this
case, the separating darker line is almost vertical, in agreement with the
filament showing very small asymmetry in its movement.

The FTLE allowed us to better visualize the flow structures generated
in the channel and confirmed our previous observation, showing good agree-
ment with the results already obtained.

5.2 Modelling the filament

As we showed before and we confirmed through the analysis of FTLE
data, the maximum magnitude of net flow is reached for values of T that
does not generate a strongly asymmetric motion of the filament. Because
of this, asymmetry in its movement can’t be accounted as the cause of the
relatively strong net flow measured. To look for a reason we analysed again
the average flow field of an isolated filament led by a pulsatile flow, for
T = 1.5, which is shown in fig. 4.12d. In this circumstance, the filament
acts on average as exerting a vertical force on the fluid, pushing it towards
the top wall and generating a vertical jet inside the channel. This effect is
maximum exactly for T = 1.5. To clarify whether or not this is the cause
that drives the generation of net flow, we simplified our system into a model
that takes into account only this effect. We took away both the filament
and the pulsatile flow, and added, in a small region corresponding to the
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5.2. Modelling the filament

Figure 5.4: Scheme of the simplified model, the elastic filament and the
pulsatile flow are not taken into account and substituted by a vertical sur-
face force acting on the shaded rectangle. To the left and right sides of the
channel periodic boundary conditions are imposed.

upper half of the filament, a surface force pointing to the top, as sketched
in fig. 5.4, maintaining the periodic boundary conditions on the sides of the
channel. The model simulations have been run on COMSOL Multiphysics.

We run four simulations in order to reproduce the results found for
L = 12, L = 6, L = 3 and L = 2, for T = 1.5. The comparison between the
original results and the model are shown in figs. 5.8, 5.7, 5.6, 5.5, where
the velocity fields are plotted together with the streamlines path.

The figures show that the results match remarkably well, considering
the very high degree of simplification of the proposed model, where both the
filament and the pulsatile flow are not considered. Also, the area where the
vertical surface force is applied and the magnitude of this force are chosen
as a first try, while they can be fine tuned to better model the filament effect
on the pulsatile flow. For L = 12 and L = 6 there are minor differences
between the two systems; for L = 3 and L = 2 the differences become
noticeable, but still the velocity fields agree qualitatively with each other in
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Figure 5.5: Average u and v velocity fields with streamlines obtained from
the simplified model based on vertical jet and periodic boundaries (a and
c), compared with the ones obtained simulating the complete system (b and
d). L = 12.
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Figure 5.6: Average u and v velocity fields with streamlines obtained from
the simplified model based on vertical jet and periodic boundaries (a and
c), compared with the ones obtained simulating the complete system (b and
d). L = 6.
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Figure 5.7: Average u and v velocity fields with streamlines obtained from
the simplified model based on vertical jet and periodic boundaries (a and
c), compared with the ones obtained simulating the complete system (b and
d). L = 3.
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Figure 5.8: Average u and v velocity fields with streamlines obtained from
the simplified model based on vertical jet and periodic boundaries (a and
c), compared with the ones obtained simulating the complete system (b and
d). L = 2.
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both cases. Very interestingly, the velocity field obtained from the model
shows a significant net flow, especially, as should be expected, for L = 2.
In all the cases the magnitude of the net flow observed in the model is in
good agreement with the one obtained from complete simulations.

Thus this model can be considered a valid representation of the original
system and gives us a reason and an explanation for the strong peak net
flow we measured in our test case: the pulsatile flow makes the filament
flap in such a way that it has a strong propulsive effect on the fluid; this
effect, when the periodic boundaries are close to the filament, gives birth
to the asymmetric flow we observed, leading to significant net flow.
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Chapter 6

Conclusions

We can now draw some conclusions from the analysis we have performed
and the results obtained and outline possible future development of this
analysis.

The case of study has proven to be very interesting in its dynamics,
allowing us to investigate unforeseen effects and their consequences. The
method we choose to carry out our investigation has demonstrated to be
appropriate and reliable, and has allowed us to capture the behaviour of
the system with adequate fidelity.

The results obtained are very interesting because they describe an un-
expected effect of the interaction between the flexible filament and the
pulsatile flow in which it is immersed, yielding an asymmetry of the sys-
tem. Clear signs of symmetry breaking have arisen and the parameters sets
that permit such effect have been isolated. We have observed two kinds of
asymmetry, in the filament movement or in the channel average flow; the
two of them are not necessarily present at the same time and we showed
that there could be significant asymmetry in the channel velocity even if the
filament flapping is essentially symmetric. The Finite Time Lyapunov Ex-
ponent analysis has confirmed our findings and allowed us better visualize
the vortical structures present in the fluid domain.

A model has been proposed to simplify the original system into a much
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Chapter 6. Conclusions

simpler one where we take into account the filament effects together with
the pulsatile flow without introducing them explicitly in the simulations.
This model has shown good agreement with the original system for the pa-
rameters sets that we have compared. In the future, our goal is to further
investigate this interesting problem, broadening the space of parameters
and implementing new techniques of analysis. Also, the model we have
proposed can be extended and put to test with a more ample set of simu-
lation results. Starting from the model, an interesting investigation would
be to understand the reasons leading such a simple configuration to an
asymmetric behaviour; this could also explain the symmetry breaking in
the original case of study.
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