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Abstract

The present work deals with particle laden-flows and with small spherical particles
dispersed in homogeneous isotropic turbulence, in particular. A one-way coupling
is assumed, i.e. the flow acts on particles but not vice versa. The governing
mathematical model for this framework features many forces acting on particles,
whose evaluation presents several issues so that some strong simplifications are
often done. In this work we implement a proper numerical method in order to
perform Direct Numerical Simulations with a complete evaluation of all the forces.
Afterwards we perform a parametric investigation over a wide range of the particle-
to-fluid density ratio and particle response time i.e. Stokes number. Results show
how the contributions of the different forces and the preferential accumulation
highly vary depending on the values of these parameters. Furthermore, analyzing
the specific role of the Basset History force we want to show that this term,
often neglected in previous numerical studies, affects the particle behaviour even
at high density ratios. Finally, a further investigation is made on the effect
of turbulence on the mean particle settling velocity, for cases representative of
oceanic phytoplankton. The effect is found to be almost negligible within this
particular range, a result that could represent a useful contribution to the existing
debate in marine ecology.
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Sommario

L’argomento del presente lavoro riguarda la dettagliata analisi delle forze agenti
su particelle disperse in un flusso turbolento omogeneo ed isotropo. Il termine
particelle in questo ambito può comprendere particelle solide, gocce o bolle, di
dimensione inferiore alla più piccola scala caratteristica del flusso. Il problema
teorico si correla ad applicazioni di forte interesse quali sistemi combustivi, tecniche
di misura fluidodinamiche che fanno uso di traccianti, processi meteorologici e lo
studio di microrganismi nell’ecologia marina.

La fase fluida è assunta come un mezzo continuo e studiata con approccio
Euleriano mentre le particelle disperse vengono analizzate in chiave Lagrangiana.
L’accoppiamento considerato, concordamente ad altri autori, è di tipo one-way,
cioè il flusso non è modificato dalla presenza delle particelle. Sotto tali ipotesi, la
dinamica della particella è governata dal modello matematico di Maxey-Riley.

Il primo punto di particolare interesse che muove il lavoro è la messa a punto di
una procedura di calcolo numerico in grado di valutare tutti i termini del modello,
cioé tutte le forze agenti sulla particella, che spesso vengono invece trascurati per
semplificare l’aspetto teorico ed abbassare l’alto costo computazionale richiesto.
La situazione è particolarmente complessa nel caso turbolento, come è noto. A
questo proposito, la scelta del modello di turbolenza omogenea isotropa, risolto
numericamente tramite metodo pseudospettrale su un dominio triperiodico, è
giustificata dall’interesse per processi alle piccole scale.

Tra le varie forze, la cosiddetta Basset History force è quella che presenta le
difficoltà matematiche maggiori, sia dal punto di vista analitico che numerico.
Viene pertanto implementato e testato un metodo per la valutazione di tale
termine recentemente pubblicato in letteratura, per poi illustrare lo schema
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numerico completo per l’evoluzione delle particelle. Sono presentati diversi test di
validazione, tra cui il caso classico della particella sferica in caduta libera in un
fluido in quiete.

Il codice sviluppato viene quindi inizialmente utilizzato per effettuare un’indagine
parametrica su un ampio spettro di rapporti di densità e numeri di Stokes,
parametri che condizionano fortemente la dinamica, al fine di ottenere una clas-
sificazione sistematica dei contributi delle differenti forze. Tali contributi sono
sinteticamente quantificati dalle probability density function del rapporto tra
ciascun termine di accelerazione e quella totale. Viene inoltre studiato l’accumulo
preferenziale nei diversi casi con visualizzazioni istantanee e soprattutto tramite
la radial distribution function. I risultati confermano quelli di precedenti lavori
mentre alcune interessanti caratteristiche legate all’effetto della forza di Basset
vengono messe in evidenza tramite il confronto fra simulazioni con e senza tale
termine. Il contributo della forza di Basset risulta quasi sempre non trascurabile
ed in particolare troviamo che nel caso di alti rapporti di densità (particelle
cosiddette pesanti) esso è pari ad un 10% del totale, complementare alla restante
Stokes Drag, normalmente ritenuta essere l’unico termine rilevante.

Una specifica tematica che viene infine affrontata riguarda l’effetto del flusso
turbolento sulla velocità media di sedimentazione delle particelle, in presenza di
gravità. L’interesse per tale problema trova fondamento, ad esempio, nello studio
di processi ecologici quali la dinamica di microrganismi in ambienti acquatici,
con un acceso dibattito tra i ricercatori vista la difficoltà nelle misurazioni e la
complessità del fenomeno. La velocità media di sedimentazione che troviamo dalle
nostre simulazioni ha una variazione trascurabile rispetto alla velocità terminale
a cui tende la particella nel caso di fluido in quiete: l’effetto della turbolenza
sulla sedimentazione di particelle di questo tipo risulta irrilevante. Le particelle si
comportano praticamente come traccianti e tale risultato è confortato dall’analisi
dinamica che risulta molto simile a quanto trovato nell’indagine parametrica per
particelle di paragonabile tipologia.
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Chapter 1

Introduction

The present work deals with the modelling of particles1 dispersed in turbulent
fluid flows, a challenging field for research with applications both in environmental
phenomena and industrial processes, such as:

• the motion of plankton, algae and other microorganisms in the ocean;

• rain droplets formation and aerosols dispersion (sand, pollen, pollutants) in
the atmosphere;

• the behaviour of particles used as tracers for experimental measurement
techniques;

• the dynamics of fuel droplets in combustion systems.

All these applications belong to the family of particle-laden flows, which are part
of multiphase fluid dynamics. There are many interesting topics related with
this framework, even for fundamental research. Among these, it is interesting to
identify the role of the different forces acting on particles. The purpose of this
work is to give a contribution to this topic.

1The word “particles” is general and it is used to denote both solid particles, bubbles and
droplets.
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(a) Droplets in clouds (b) Microorganisms in the ocean

Figure 1.1: Examples of particle-laden flows in nature.

1.1 Basic features of particle-laden flows

We start by briefly mentioning some important concepts to introduce the reader
to the framework of particle-laden flows. Exhaustive presentations can be found
in literature [20, 25].

The first essential definition concerns the different components of the system
we want to model. The fluid flow, conceived as usual like a continuum, will be
indicated as the carrier phase. Particles, on the other hand, are represented by
an ensemble of discrete point-like bodies; they will be denoted as the dispersed
phase. The densities of the carrier and dispersed phase are generally different and
particles are small but have finite dimension. It is evident that a major difference
exists between these two phases; that’s why they will be studied with totally
different approaches.

1.1.1 Dilution

An essential point in the analysis of particle-laden flows is the description and
understanding of the dilution level of the dispersed phase. A measure can be given
by the volume fraction and the mass loading. However, because of complicated
effects such as the formation of particle clusters that are responsible of locally
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nonuniform concentrations, a rigorous description of the dilution level is not so
obvious [20].

1.1.2 Coupling

An interesting aspect concerns the flow modification due to the presence of
particles. We briefly present the possible situations and approaches in this regard:

• for adequately small particles and dilute conditions the carrier phase is
usually thought not to be modified by particle presence (one-way coupling);

• in the two-way coupling approach the countereffect on the carrier flow is
taken into account. According to this approach flow stability and turbu-
lence modifications induced by the interaction with dispersed particles are
frequently investigated;

• finally, in the four-way coupling mutual interactions between different parti-
cles are also taken into account. This approach is interesting for the so-called
dense suspensions.

Different methods of analysis are used depending on the coupling effects we
consider. In the present work we will use a one-way coupling approach, since it is
consistent with our purposes.

1.2 Assumptions on particles

In the present work the following assumptions are made:

• particles are assumed to be spherical2;

• particles are assumed to be small compared to the smallest flow scales3;

• a one-way coupling configuration is assumed.

These assumptions are determinant for the mathematical model to be used and
are representative of an interesting branch of research.

2No variations in the shape or volume are allowed.
3We will rigorously define this condition later.
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1.3 Literature review

Before proceeding further, we recall hereunder the most important results in
the reference literature to provide an overall picture and a framework for our
contribution.

The derivation of the governing model for the motion of a sphere immersed in
a flow comes from a long path. The works by Basset, Boussinesq and Oseen [7, 9,
26] describing the dynamics of a sphere falling in a quiescent fluid are early and
well-known studies. Efforts were made to extend these results to nonuniform and
unsteady flows [37, 11, 33]; finally Maxey and Riley [23] proposed a formulation
that has been widely accepted and used since then4. An essential fact is that
the resulting governing model features many forces acting on the particle, and
computational difficulties arise when considering the complete form that accounts
for all the terms.

In the matter of applications, many works examined the distribution of the
dispersed phase in space, especially for the case of turbulent flows. Earlier
contributions include experiments [35], analytical studies [30, 31, 24] and numerical
simulations [36, 13]. The relevant insight was that particles showed dispersion
properties different from fluid elements. Unlike an uniform distribution, the
formation of clusters in certain regions of the flow was observed. This behavior
takes the name of preferential accumulation and appears to be really an intriguing
feature.

Another topic of interest concerns the settling of particles under the effect of
gravity and the effect of turbulence on the mean sedimentation rate of particles.
This problem has been studied numerically for different flow types, including
rotating cells [22], gaussian random fields [21] and homogeneous isotropic turbu-
lence [39]; the latter work showed a remarkable increase of the settling velocity of
heavy particles with respect to the particle terminal velocity in still fluid.

All the works cited so far neglected some of the forces acting on particles. This
could have been done since particles much heavier than the fluid were considered;
in this limit situations, some approximations appear to be justified. On the other
hand, in the investigation of particle-to-fluid density ratios of O(1÷ 10) all the

4An historical review about the derivation of the model can be found in [25].
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forces are to be taken into account.
Methods and computational resources for the evaluation of the complete

dynamics are becoming available only recently. Results of this kind include the
analysis of the role of the different forces for turbulent channel flow [4] and the
quantification of the dispersion properties of particles in stratified turbulence [2,
1]. The present work deals with these latter issues, with a particular focus that
will be explained in the following sections.

1.4 Homogeneous isotropic turbulence

Our aim is to present a contribution which can be useful for many situations and
in a general sense. As we have already stated, encountered fluid flows are very
often in a turbulent condition. In fact, it is an intrinsic behaviour predicted by
the governing equations for fluid motions. Essential features of turbulence are the
apparently random behaviour and the wide spectrum of scales. The flow setting
chosen for our investigation is homogeneous isotropic turbulence. This is done for
several reasons:

• it is an ideal but quite general scenario, hence it has importance on the
theoretical side and it is frequently adopted in fundamental research;

• it represents a valid framework for investigating small-scale phenomena like
the interaction between particles and the surrounding flow.

We briefly recall some basic features of this model. Further information
can be found in exhaustive textbooks [15, 27]. An unbounded tridimensional
space, without solid boundaries, is considered; this situation can be reproduced
choosing a cubic domain of side L with periodic boundary conditions. The
peculiar feature is that the statistical properties do not depend on position and
time (homogeneity) and on the chosen frame of reference (isotropy). The mean
flow velocity is consequently zero, together with many averaged quantities. Even
if the assumptions can hold strictly only for an ideal configuration, this can be a
first approximation for many situations.
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1.5 Main issues on particle dynamics

The dynamics of a spherical particle, immersed in a nonuniform unsteady flow,
is known to be ruled by the presence of many forces. Using the second law of
motion, we can write [23]:

mp
dV
dt = FSD + FPG + FAM + FGr + FBa (1.1)

where mp and V are respectively the mass and the velocity of the particle. At the
right-hand side we have the forces, respectively known as: Stokes Drag, Pressure
Gradient, Added Mass, Gravity and Basset History force5.

In the existing numerical investigations, some of the forces are often neglected.
This can be done for two reasons. The first is a reasoned approximation based
on the value of some parameters, such as the ratio between the densities of the
two phases; for much heavier-than-fluid particles, as an example, the governing
equation could actually be approximated to a form in which only the Stokes drag
and gravity are non-negligible quantities. However, this assumption can be done
only for high density ratios.

The second point is represented by the difficulty of computing each of the
forces, especially the Basset History force. Without going into details for now,
we only mention its dependence from all the previous history of the particle, a
delicate aspect from the computational point of view. The specific problem of the
efficient calculation of the Basset force will therefore need to be analyzed.

The issues just mentioned hold for many flow configurations, including non-
turbulent flows. When dealing with turbulence, a further degree of complexity is
introduced. Some questions could be outlined in order to introduce the scope of
the present work:

• Is the evaluation of all the forces really needed?

• How can we efficiently compute all the forces?

• Which is the contribution from each force?
5A discussion of the physical meaning of each force will be given in §2.2.1.

7



• Are there some characteristic parameters that dramatically affect the dy-
namics of particles?

We aim to face these questions and to give some interesting answers. The following
paragraph explains the main points and goals of the activity that has been carried
out.

1.6 Scope and structure of the work

The main goal of the present work is to investigate the role of all the known forces
acting on small spherical particles dispersed in homogeneous isotropic turbulence.
Investigations are performed by means of Direct Numerical Simulations. After
the implementation of a proper numerical method that accounts for all the forces
acting on particles, simulations are performed in order to investigate parametrically
the role of the different forces for different types of particles. Statistical results
are elaborated in order to show the prevailing forces and the major insights are
discussed. As a further interesting case of application, we will later investigate
the effect of turbulence on the mean settling velocity of nearly neutrally-buoyant
particles, a representative case for microorganisms in the ocean. Contents of the
present document are organized as follows:

• the present chapter is an introduction of the problem;

• Chapter 2 explains the assumed mathematical model, presents the governing
equations and discusses the physical meaning;

• Chapter 3 describes the adopted numerical method and its peculiar features;

• Chapter 4 gives general informations on the performed simulations;

• Chapter 5 presents the results of the parametric investigation;

• Chapter 6 deals with the sedimentation of slightly heavier-than-fluid parti-
cles;

• conclusions and outlook are finally discussed in Chapter 7.
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Chapter 2

Mathematical Model

This chapter presents the mathematical model with the governing equations.
Moreover, some important concepts of physical significance are discussed.

Several approaches have been developed for the analysis of particle-laden
flows [6]. The present one can be defined as Eulerian-Lagrangian because of the
respective ways of analysis adopted for the fluid and for the particles. Flow
quantities are described as fields, the fluid velocity field is therefore written as
u = u(x, t). The motion of particles, on the other hand, is investigated following
the material particle: X = X(t). We notice the fundamental main difference: x is
an indipendent position in the domain, X(t) is the position assumed by a particle
at the time t.

2.1 Carrier flow

The fluid flow dynamics is governed by the incompressible Navier-Stokes equations,
respectively describing the conservation of mass and momentum:

∇ · u = 0 (2.1)

∂u
∂t

+ u · ∇u = − 1
ρf
∇p+ ν∇2u + f (2.2)

where u(x, t) is the fluid velocity field, ρf is the fluid density, p(x, t) is the pressure
field, ν is the fluid kinematic viscosity, f(x, t) is the external forcing field. The
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assumed domain is a cube of side L with periodic boundary conditions. The
external forcing has a given law and its presence is essential in order to assure the
development of statistical stationarity.

One major concept of turbulent flows is certainly the energy cascade. The
energy injected at the large scales is transported through a continuous range
of scales (the inertial subrange) until a finite limit where the viscosity acts to
dissipate energy. The smallest scale is known as the Kolmogorov microscale
(usually denoted with η or “K”). Its average values are found with dimensional
arguments [27]:

η =
(
ν3

ε

) 1
4

(2.3)

uK = (ε ν)
1
4 (2.4)

τK =
(
ν

ε

) 1
2

(2.5)

where η, uK, τK are respectively the length, velocity and time of the the Kolmogorov
scale, ε is the mean energy dissipation rate of the flow and ν is the fluid viscosity.

Using dimensional arguments, an important prediction on the energy spectrum
E(k) (where k = 2π/λ is the wave number) can be found:

E(k) ∼ k−
5
3 (2.6)

which gives an important insight on the energy distribution over the range of scales
of the flow motion and finds a good agreement with experimental verifications.
We can see the characteristic form in Fig. 2.1, where we report the averaged flow
energy spectrum from our code.

2.2 Particle dynamics

The study of the dispersed phase is done through a Lagrangian description: each
of the Np particles initially released into the flow is tracked by evaluating the
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Figure 2.1: Averaged flow energy spectrum for the performed simulations as a function
of the wavenumber k.

position of its center at a certain time, X(t), from:

dX
dt = V(t) (2.7)

The particle velocity is generally different from that of the surrounding fluid and
obeys to the following equation:

mp
dV
dt = 6πrpµ[u(X(t), t)−V(t) + 1

6r
2
p∇2u|X(t)] +mf

Du
Dt

∣∣∣∣∣
X(t)

+ (mp −mf)g+

+ 1
2mf

Du
Dt

∣∣∣∣∣
X(t)
− dV

dt + 1
10r

2
p

d
dt(∇

2u)
∣∣∣∣∣
X(t)

+

+ 6r2
pρf
√
πν
∫ t

0

1√
t− τ

d
dτ [u(X(t), t)−V(t) + 1

6r
2
p∇2u|X(t)] dτ (2.8)

which is historically known as the Basset-Boussinesq-Oseen equation. The most
general form was derived by M. R. Maxey and J. J. Riley in 1983, hence it is
also called as the Maxey-Riley equation [23]. Here, u(X(t), t) is the flow velocity

11



sampled at the particle position, ρf is the fluid density, ρp is the particle density,
rp is the particle radius, µ and ν are respectively the dynamic and kinematic
viscosities of the fluid, mp = 4

3πr
3
pρp is the particle mass, mf = 4

3πr
3
pρf is the mass

of the fluid element of same volume and g is the gravitational acceleration vector.
Eq. (2.8) holds strictly for small spherical rigid particles in nonuniform and

unsteady flows, under the following conditions:

rp

η
� 1 (2.9)

Rep = rp|V0 − U0|
ν

� 1 (2.10)

where η is the Kolmogorov length scale, V0 and U0 are representative magnitudes of
the particle velocity and the surrounding fluid, respectively. Eq. (2.9) means that
the particle needs to be much smaller than the smallest flow structure while (2.10)
means that the particle has to experience a creeping flow i.e. a flow governed by
viscous forces [25].

An important remark has to be done regarding the different material derivatives
which are involved: d

dt means the Lagrangian derivative following the solid particle
while D

Dt the Lagrangian derivative following the fluid particle. Hence:
d(·)
dt = ∂(·)

∂t
+ V · ∇(·) and D(·)

Dt = ∂(·)
∂t

+ u · ∇(·). We can relate the two quantities:

D(·)
Dt = d(·)

dt −w · ∇(·) (2.11)

where w = (V− u) is the relative velocity of the particle with respect to the flow.
In (2.8) the correction terms for finite size effects are shown; in the following

they will be neglected since particles are assumed to be sufficiently small.

12



2.2.1 Forces description

The Maxey-Riley equation expresses the second law of motion, with the different
forces on particles appearing at the right-hand-side:

mp
dV
dt =

FSD︷ ︸︸ ︷
6πrpµ[u(X(t), t)−V(t)] +

FPG︷ ︸︸ ︷
mf

Du
Dt

∣∣∣∣∣
X(t)

+
FGr︷ ︸︸ ︷

(mp −mf)g +

+ 1
2mf

Du
Dt

∣∣∣∣∣
X(t)
− dV

dt


︸ ︷︷ ︸

FAM

+ 6r2
pρf
√
πν
∫ t

0

1√
t− τ

d
dτ [u(X(t), t)−V(t)] dτ︸ ︷︷ ︸
FBa

(2.12)

= FSD + FPG + FAM + FGr + FBa

The forces respectively take the following names: Stokes Drag, Pressure Gradient,
Added Mass, Gravity and Basset History force. We hereunder briefly discuss each
of these terms.

The first term models the friction exerted on the particle due to viscosity.
It is useful to think at the case of a settling sphere in a quiescent fluid. The
famous result from G. G. Stokes (1851) is that the sphere asymptotically reaches
a terminal velocity that is expressed as VT = 2

9r
2
p
ρp−ρf
µ
g. Gravity is balanced by

the viscous force equal to FSD = 6πµrpVT.
The second term is usually called as the Pressure Gradient force and represents

the force at which a sphere of fluid with the same volume of the particle is
subjected in the undisturbed flow. The present form was derived by Riley [33].

Gravity is a well-known, constant volume force acting on bodies. We note that
the buoyancy effect is also taken into account within the equation.

The Added Mass effect is due to the fact that the particle displaces the fluid
during its motion. Usually this term is modelled by considering an additional
fluid mass moving together with the object. For a spherical object, this is found
to be half of its mass. Also for the added mass, several derivations have been
presented, starting from the first studies by Bessel in 1828 to the form proposed
by Auton [5], which is widely accepted and used in the most recent studies.
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Finally, the Basset History force is perhaps the less known term; it models
unsteady viscous effects such as the transient development of the boundary layer.
Its analytical expression was derived indipendently by Boussinesq in 1885 and
Basset in 1888 [9, 7]. The Basset force has an integral form, which involves the
previous time instants. Its computation is both theoretically and numerically hard
to deal with, that’s why this term is often neglected; however it can be relevant
in some cases such as highly accelerated creeping flows.

2.2.2 Rearrangement and nondimensionalization

Dividing (2.12) by mp = 4
3ρpπrp

3 and after some manipulations, one finds the
Maxey-Riley equation written in terms of accelerations, instead of forces:

dV
dt = 1

τp
(u−V) + ρf

ρp

Du
Dt + (1− ρf

ρp
)g+

+ 1
2
ρf

ρp
(Du

Dt −
dV
dt ) +

√
9

2π
ρf

ρp

1
τp

∫ t

0

1√
t− τ

d
dτ (u−V) dτ (2.13)

where we have defined the particle response time:

τp = 2
9
r2

p

ν

ρp

ρf
(2.14)

which is an important parameter measuring the inertia of the particle. In the
limit of τp → 0 the point-like particle follows exactly the flow i.e. it is a perfect
tracer.

As a next step, we can scale with a general set of reference quantities Lref,
tref,Vref in order to obtain a dimensionless form of the equation. We further define:

St = τp

tref
(2.15)

Fr = Vref/tref

g
(2.16)

which are respectively the Stokes and Froude dimensionless numbers. The resulting
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equation is:

dV
dt = 1

St (u−V) + ρ
Du
Dt + (1− ρ)

Fr eg+

+ 1
2ρ(Du

Dt −
dV
dt ) +

√
9

2π
ρ

St

∫ t

0

1√
t− τ

d
dτ (u−V) dτ (2.17)

where eg is the unit vector parallel to the gravity direction and ρ = ρf/ρp.
In the context of small particles in turbulent flows, the Stokes number is

usually defined using the Kolmogorov time scale:

StK = τp

τK
(2.18)

2.2.3 Limit cases

We stated in the introduction that this work aims to solve the full equation
governing the particle dynamics. However, there are some situations in which the
Maxey-Riley equation could be reasonably simplified. We briefly explain these
cases. This will also be useful when discussing our results.

The first situation is to consider high density ratios (ρp/ρf � 1). Due to this
assumption, by neglecting all the terms divided by the density ratio, (2.13) has
been often approximated by [39]:

dV
dt = 1

τp
(u−V) + g (2.19)

This is the case of the so-called heavy particles, which is suitable for example in
the modelling of aerosol particles. Due to the strong mathematical simplifications,
this regime could have been deeply investigated and several important results
were found (see §1.3).

Another situation that is useful to compare with is the Lagrangian description
of the fluid particle, an important topic of one-phase fluid mechanics and mixing [38,
18]. It is known that the relative mathematical description comes from:

dX
dt = u(t) (2.20)
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which rigorously describes the motion of a fluid element, but can also be assumed as
a valid approximation for tracer-like particles. Several experimental techniques are
based on the use of particles that trace the fluid flow [3], behaving approximately
like fluid elements do. The Stokes number here represents the control parameter
and has to be taken as low as possible.

Both above identified limit cases and some intermediate conditions will be
investigated in the following chapters.
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Chapter 3

Numerical Method

Two elements clearly indicate the need of numerical simulations. First, we deal
with the Navier-Stokes equations and turbulent flows, the complexity of which is
well-known. On the other hand, it has been shown that the governing equation for
the motion of particles is also complicated. Theoretical studies of the Maxey-Riley
equation are an interesting and active subject but no general solution has been
found until now. Hence the adopted strategy for this investigation will be of
computational nature. In the following the chosen numerical method will be
explained.

3.1 Overall description

The flow is solved with the so-called pseudospectral method, writing the solution
as a finite Fourier series. Trasformations between real and Fourier spaces are
involved. High accuracy is reached with this kind of approach, the resolution
being related with the number of considered modes.

The particle velocity and trajectory are evolved at each time step by discretizing
the governing equations. Flow quantities are evaluated at the nodes of a regular
grid while the particle can be located anywhere, thus a quadratic interpolation is
performed.

As a particular issue inside the particle evolution we mention the computation
of the Basset history term, which is the integral term that appears in the Maxey-

17



Riley equation; we present the implementation of a recently developed method to
reach good computational efficiency and accuracy.

3.2 Pseudospectral flow solver

The present investigation is done by means of Direct Numerical Simulations
i.e. the Navier-Stokes equations are fully solved at all scales of motion. This
is frequently achieved by applying the so-called pseudospectral method. In the
following the basis of this kind of solver are recalled. Further resources can be
found in [27].

Spectral methods are characterized by the fact that computations are not
made in the real space but in a spectral one using Fourier transform. This is an
interesting choice in fluid dynamics since the Fourier transformed form of the
Navier-Stokes equations no longer involves derivatives in space, but only in time.
However, problems could arise from the computation of the nonlinear terms in
the equation, which should be done through a convolution integral. This weighty
operation is normally avoided with an inverse transformation back to the real
space. This particular procedure takes the name of pseudospectral method.

The velocity field is written as a Fourier series:

u(x, t) =
∑

k
eik·xû(k, t) (3.1)

where k is the wavenumber vector, û(k, t) is the Fourier coefficient and use of the
complex exponential function is made. The generic wavenumber can be expressed
as:

k = k0n = k0(e1n1 + e2n2 + e3n3) (3.2)

with 1−N/2 < ni < N/2 and k0 = 2π/L (L is the side of the cubical simulation
domain). The integer N indicates the range of considered modes and, at the same
time, determines the grid resolution. In fact, the latter is related with the highest
wavenumber that is considered:

∆x = L
N

= π

kmax
(3.3)

18



where kmax = 1
2Nk0 = πN

L .
When dealing with the discretized form, trasformations between the real and

the Fourier space are operated by the Fast Fourier Transform. Due to the finite
number of modes taken into account, an adequate dealiasing processing has to be
applied. Finally, in the present code advancement in time is performed with a
low-storage third-order Runge-Kutta algorithm where the time step is determined
by the CFL stability condition.

3.3 Particle tracking

3.3.1 Basset force computation

Before we present how the particle tracking is performed numerically, focus has
to be made on a particular component. When solving the Maxey-Riley equation,
in fact, a challenging issue comes out with the computation of the Basset History
force:

FBa(t) = 6r2
pρf
√
πν
∫ t

0

1√
t− τ

d
dτ [u(τ)−V(τ)]dτ (3.4)

Theoretically, at each time step an integral over the whole velocity history of each
particle should be performed, this resulting in high computational cost. In many
studies the Basset force has been neglected. Other situations show however the
peculiar importance of this kind of force [4, 24]. In the present work, the role the
Basset force is one of the major targets of investigation.

For our computations, we chose to use the method recently developed by
Hinsberg et al. in [16]. In the following the method will be briefly explained and
results of performed validations will be shown.

Method

We rewrite (3.4) in a more compact form:

FBa(t) = CBa

∫ t

0
KBa(t− τ)g(τ) dτ (3.5)
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where CBa = 6r2
pρf
√
πν, KBa(t−τ) = 1√

t−τ , and g(τ) = d
dτ (u−V). It is important

to notice the singularity of the kernel function KBa(t−τ) for τ = t, a delicate issue
in the development of methods for computing the Basset term. The computation
of FBa is done by splitting the integral into two parts, which will be denoted
respectively as the window and the tail:

FBa(t) = CBa

∫ t−twin

0
KBa(t− τ)g(τ) dτ + CBa

∫ t

t−twin
KBa(t− τ)g(τ) dτ (3.6)

FBa,win(t) = CBa

∫ t

t−twin
KBa(t− τ)g(τ) dτ

FBa,tail(t) = CBa

∫ t−twin

0
KBa(t− τ)g(τ) dτ

(3.7)

FBa(t) = FBa,win(t) + FBa,tail(t) (3.8)

Numerical integration is performed over the window interval [t− twin, t] while the
approximation of the tail is done by using recursive exponentials, obtaining lower
computational cost and higher accuracy with respect to previously developed
methods.

The window interval [t − twin, t] is divided into Nw subintervals in order to
apply numerical integration. However, the above mentioned singularity does
not allow the use of trapezoidal rule on the whole integrand, hence only g(τ) is
approximated by its linear interpolant, so that:

FBa,win(t) = CBa

Nw∑
n=1

∫ τn−1

τn

g(τ)√
t− τ

dτ

≈ CBa

Nw∑
n=1

∫ τn−1

τn

gn + (gn−1 − gn)(τ − τn)/∆t√
t− τ

dτ
(3.9)

where τn = t− n∆t, n = 0, 1, 2, . . . , Nw and ∆t = twin/Nw. The latter expression
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Table 3.1: Coefficients for the tail of Basset History term (from Hinsberg et al).

t̃i ai

0.1 0.23477481312586
0.3 0.28549576238194
1 0.28479416718255
3 0.26149775537574
10 0.32056200511938
40 0.35354490689146
190 0.39635904496921
1000 0.42253908596514
6500 0.48317384225265
50000 0.63661146557001

is then solved exactly, giving:

FBa,win(t) ≈ 4
3CBa

√
∆tg0+

+
Nw−1∑
n=1

CBa
√

∆t
[

4
3(n− 1)

√
n− 1− 8

3n
√
n+ 4

3(n+ 1)
√
n+ 1

]
gn+

+ CBa
√

∆t
[

4
3(Nw − 1)

√
Nw − 1 + (2− 4

3Nw)
√
Nw

]
gNw

(3.10)

A detailed derivation of this result is given in Appendix A.
The tail component is written as a series of exponential functions:

FBa,tail(t) =
m∑
i=1

aiFi(t) (3.11)

Each exponential Fi is composed of a direct and a recursive part, which are
expressed as follows:

Fi,di = 2CBa
√
eti e

− twin
2ti

{[
1− φ(−∆t

2ti
)
]
gNw + e

−∆t
2ti

[
φ(∆t

2ti
)− 1

]
gNw+1

}
(3.12)
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Figure 3.1: Window-only test. Relative error as a function of the grid resolution (the
dashed line represents a second order slope).

Fi,re = e
−∆t

2ti Fi(t−∆t) (3.13)

Here, φ(z) = ez−1
z

, ti = t̃i twin, ai and t̃i are positive constants found by considera-
tions on the error minimization. The adopted set of values, given by the authors
of the method, for the case m = 10 is reported in Table 3.1.

Validation

The implementation of the method into our code has been first tested with simple
cases, considering only the computation of expression (3.5) separately from the
overall scheme.

First we have reproduced the same test in [16], example 1. Here, g(τ) = cos(τ),
the chosen time interval is [0, 50π] which is discretized using N points. For this
case, an exact solution for (3.5) is available from literature:

FBa(t) = CBa

∫ t

0
KBa(t−τ)cos(τ) dτ = CBa

√
2π
(
C(
√

2t/π) cos t+S(
√

2t/π) sin t
)

(3.14)
where C(t) and S(t) are respectively the Fresnel cosine and sine integral. Fig. 3.1
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shows results of calculations considering different N . We found values for the
relative error err =

∣∣∣FBa−FBa,ex
FBa,ex

∣∣∣ very similar to those reported in [16], as well as
second-order accuracy.

For a better understanding, we have performed a specific test to investigate
the effectiveness of the tail component. We used the set of exponential functions
previously presented (with coefficients from Table 3.1). The time interval is
retained [0, 50π]; for a fixed resolution N , the portion represented by the window
is varying. The tail then fits to the part of the interval uncovered by the window.
We chose different laws for g(τ) and two different resolutions. Results are shown in
Fig. 3.2: the error magnitude keeps constant asNw decreases while a computational
saving is achieved. For the fine grid, however, we can notice an amplification of
the error when the number of window points becomes too small.

3.3.2 Overall scheme

We are now able to present how the Lagrangian tracking of the dispersed phase is
numerically performed. The evolution of the velocity and position of the particle
is done with the third order Adams-Bashfort method:

Vn+1 = Vn + cf1

[
dV
dt

]n
+ cf2

[
dV
dt

]n−1

+ cf3

[
dV
dt

]n−2

(3.15)

Xn+1 = Xn + cf1 Vn + cf2 Vn−1 + cf3 Vn−2 (3.16)

where the square brackets with the superscript denote that each quantity is
evaluated at a certain discrete time instant as for example tn = n∆t. The
characteristic coefficients of the method are assumed to be: cf1 = 23

12∆t, cf2 = −4
3∆t

and cf3 = 5
12∆t [19].

The derivative in 3.15 is evaluated from a rearranged form of the Maxey-Riley
equation:

[
dV
dt

]n
= k1[w]n + k2

[
du
dt

]n
+ k3

1
Fr eg + k4[w]n ·

[
∇u

]n
+ k5[a′Ba]n (3.17)
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where the coefficients appearing collect:

k1 = − 1
CD · St

k2 =
3
2ρ+ 4

3C
′
Ba
√

∆t
CD

k3 = ρ− 1
CD

k4 = −
3
2
CD

ρ

k5 = −C
′
Ba
CD

CD = 1 + 1
2ρ+ 4

3C
′
Ba
√

∆t

(3.18)

with ρ = ρf/ρp and C ′Ba = CBa/mp; a′Ba contains all the Basset history term
except the part at the present time which is collected into CD together with the
added mass part. This has to be done in order to improve numerical stability [16].

After each time-step, we need to verify that the new positions are still included
in the domain. If the particle virtually crossed the border, it is basically reintro-
duced from the opposite side by a consistent update of the values. Finally, for
certain values of the characteristic parameters, we need to evolve particles using a
submultiple of the time step used for the flow to avoid numerical instability.

3.4 Validation

3.4.1 Test 1: falling particle in quiescent fluid

After the development of the code, several validation tests for the complete scheme
were performed. The first one that we present concerns the classical case of a single
particle falling under gravity in a fluid at rest (i.e. u = 0). The particle is initially
at rest (V (0) = 0) and then approaches asymptotically its terminal velocity VT.
Considering the presence of the Basset History force the problem is even more
challenging, also from a theoretical point of view. An analytical solution, which
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Figure 3.3: Validation Test 1: comparison between analytical and numerical solutions
in time for ∆t = 0.001

the numerical results are to be compared with, is given by Belmonte et al. in [17]:

V (t)/VT(τ) = 1 +
√
κ

α− β

[
eατ erfc(

√
ατ)√

α
− eβτ erfc(

√
βτ)√

β

]
(3.19)

where VT is the terminal velocity, τ = t/(τp(1 + 1/2R)), κ = 9/(2R + 1), and
R = ρp/ρf ; α and β are the roots of equation m2 + (2−κ)m+ 1 = 0. The relative
error is computed on the particle velocity component in the gravity direction
Vz(t = T ), with the final time T = 0.1. Results are shown in Figs. 3.3 and 3.4 for
the case St = 1 and R = 1000. Fig. 3.3 presents a time history of the particle
velocity, which is approaching the terminal velocity. A good agreement between
numerical and analytical solution is shown. Fig. 3.4 reports the relative error for
different resolutions, with a first-order accuracy that is noticed.

3.4.2 Test 2: periodic uniform fluid flow

The second test is based on the example 3 included in the Hinsberg’s paper [16].
A single particle is immersed in a uniform, time-dependent periodic flow, with
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Figure 3.4: Validation Test 1: Relative error as a function of the simulation time step.
Red points are the results of the code while the black dashed line represents
a first order slope.

the following velocity field:

u(t) = (mp −mf)g
6πrpµ

cos 2t = α cos 2t (3.20)

with the total force acting on particle at t = 0 to be null and Stokes and gravity
in balance. The analytical solution is given in equation (B.7) of [16]. Fig. 3.5
shows how the numerical solution captures the analytical one.
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Part II

Results and Discussion
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Chapter 4

General Outlook

After the description of the method given in Part I, before presenting our re-
sults, in this chapter we will report some common features for all the performed
computations. These latter are basically divided in two parts:

1. a parametric investigation, exploring a wide range of the Stokes number
and density ratio, in order to classify the contributions from the different
forces and obtain a general review;

2. a specific focus on sedimentation of nearly neutrally-buoyant particles in
turbulence.

Simulations were performed at KTH Mechanics1 and Matrix supercomputer at
CASPUR2, using an OpenMP parallelization. Before illustrating in detail each
part, the common features are described.

4.1 Flow solver features

All simulations were performed using 2883 wavenumbers on a cubic domain of
side L = 2π. The turbulence is characterized only by the Taylor Reynolds number
Reλ = u′λ/ν ' 136, based on the Taylor lengthscale λ =

√
ε/(15νu′2) and the

root-mean-square of the fluid velocity fluctuations u′.
1http://www.mech.kth.se
2http://www.caspur.it/infrastrutture/cluster-hpc-matrix
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4.2 Particle tracking features

Fixing the flow conditions, i.e. the Reynolds number, the particle dynamics
depends only on three dimensionless parameters: the density ratio R = ρp/ρf , the
Stokes number StK = τp/τK, and the Froude number Fr = U/(gτref).

For all simulations:

• fully developed turbulent regime is first obtained without the presence of
particles;

• Np particles are then released into the domain with an uniform random
distribution;

• particles are initially set at the same velocity of the flow (zero relative
velocity), plus the terminal falling velocity in the gravity direction:

V(0) = u(X(0), 0) + VT (4.1)

with VT = VT eg

• their evolution is then computed over a time T , saving snapshots of particles
quantities at each 0.1 time units in order to compute statistics.

4.3 Statistical postprocessing

Results of simulations are then elaborated and some specific statistical quantities
are obtained, which we define for completeness in the following.

4.3.1 P.d.f.’s of the acceleration ratios

An important quantity in the analysis of turbulent flows is the p.d.f. (probability
density function), that gives a clear indication on many statistical properties, not
only the mean value but also higher-order characteristics. We focus on the p.d.f.
of the accelerations, that are stricly related to the forces.

Since we are in homogeneous and isotropic turbulence, the expected values of
the acting forces and accelerations (including the total one) are null. Therefore
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we will examine the p.d.f. of the different acceleration sources, considering the
p.d.f. of each term on the r.h.s. of the Maxey-Riley equation divided by the total
particle acceleration (i.e. the l.h.s.),

1 = aSD

ap
+ aPG

ap
+ aGr

ap
+ aAM

ap
+ aBa

ap
(4.2)

where ap = dV
dt and the other terms denote vector components and not the

modulus. By computing the p.d.f. of each of the quantities appearing above, a
clear indication of the dominant force will be obtained. Expected values around 1
will indicate a component that basically determines alone the overall instantaneous
particle acceleration.

4.3.2 Radial distribution function

The radial distribution function, usually denoted g(r), measures the probability
of finding a particle pair at a distance r normalized with that of a purely random
Poissonian arrangement and is calculated in order to investigate the particle
distribution in space and the clustering intensity.

In other words, it can be expressed as the ratio between the actual number of
particles inside an infinitesimally thin shell of radius r centred on a given particle
and the number that would be expected if the particles were uniformly distributed.
Hence, the radial distribution function indicates the existence of accumulation
effects (i.e. particles creating clusters in specific regions).
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Chapter 5

Parametric Investigation

Several forces act on particles dispersed in turbulent flows. The relative importance
of each force strongly depends on the values of the characteristic parameters: the
density ratio R = ρp/ρf and the Stokes number StK. The first aim of our work
is to review the widest possible range of these values, focusing on the relative
particle dynamics.

5.1 Simulation features

A parametric survey was therefore performed considering 10 different combinations
of R = ρp/ρf and StK. Tables 5.1 and 5.2 show the set of considered values. R = 1
and R = 10 well reproduce the behaviour of small solid particles in liquids, while

Table 5.1: Crosstab reporting the investigated cases. The bold number represents the
case number. The row and column position indicate respectively its density
ratio and Stokes number.

aaaaaa
R

StK 0.01 0.1 1 10

0.1 1

1 2 5

10 3 6 8

1000 4 7 9 10
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Table 5.2: List of the investigated cases. The bold number represents the case number.

Case R StK

1 0.1 0.01
2 1 0.01
3 10 0.01
4 1000 0.01
5 1 0.1
6 10 0.1
7 1000 0.1
8 10 1
9 1000 1

10 1000 10

R = 1000 is typical of aerosol/droplets in gases. The Stokes numbers are selected
to avoid particles larger than the hydrodynamic lengths, so within the limits of our
model. The gravitational force is here neglected in order to decrease the number
of indipendent variables, i.e. Fr =∞. For each case, Np = 100000 particles are
considered. For each parameter set, we performed simulations with and without
the Basset History force for comparison. We have simulated the unladen fluid
phase until reaching the fully developed turbulent regime, when the particles are
introduced with a random spatial distribution and the velocity of the fluid at
the same position. We evolve the particle-fluid system for a time T ' 700τK and
save snapshots of particles quantities every 0.7τK time units in order to compute
statistics.

5.2 Results

5.2.1 Force contributions

The p.d.f.’s of the ratios between each acceleration and the total1, representative of
the force contributions, are reported systematically, case by case, in Appendix C,

1The choice of this quantity to be investigated has been discussed in §4.3.1
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(d) StK=10 (case 10)

Figure 5.1: P.d.f.’s of the different acceleration ratios ai/ap for particles with R = 1000
(heavy particles).

while here we recollect those with the same density ratio R together. From the
figures we deduce the following points:

• for the highest density ratio R = 1000 (proper of particles usually denoted
as heavy), the dominant term is found to be the Stokes Drag, in agreement
with the often recurring practice [38]. However, we notice that the Basset
force has always a certain, although relatively small, relevance. A related
overall picture is given in Fig. 5.1;

• the case of neutrally-buoyant particles (R = 1) presents a totally different
behaviour (Fig. 5.2), with the Pressure Gradient as the leading term; particles
tend to approximate the behaviour of fluid elements, even if the Stokes Drag
interestingly increases when the Stokes number becomes smaller;
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Figure 5.2: P.d.f.’s of the different acceleration ratios ai/ap for particles with R = 1
(neutrally-buoyant particles).

• for intermediate density ratios (R = 10) we do not have one dominant force,
while we find a cross-over between the different, as shown in Fig. 5.3;

• for lighter-than-fluid particles (case 1) the mean value of the Pressure
Gradient term is several times the particle acceleration while other forces
counteract (mainly Basset and Added Mass);

• the Basset History force has a small but non-zero mean value for almost all
cases;

• the Added Mass term is the smallest in nearly all cases except for lighter-
than-fluid particles.

Some of these trends are not surprising if we look at the Maxey-Riley equation, as
we discussed its limits (§2.2.3). In this regard, the numerical results confirm the
validity of some often done approximations, especially for heavy particles. Taking
into account all the forces, however, we find some insights for a more general view,
such as for example the existence of a small contribution from the Basset force,
still referring to high density ratio cases. We will deepen this latter point in the
next section.

The semi-log views (reported in the insets of the previously cited figures)
indicate the type of probability distribution we are dealing with: a non-gaussian
behaviour is always found for all cases. The dispersion is wider with respect to
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Figure 5.3: P.d.f.’s of the different acceleration ratios ai/ap for particles with R = 10
(intermediate density ratio).

the equivalent gaussian distribution, with the same mean value and standard
deviation. An explanatory example is built up in Fig. 5.4. We notice in particular
that the viscous forces (Stokes Drag and Basset) constantly exhibit the largest
tails.
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curve of case 6 (R = 10, StK = 0.1).
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5.2.2 Role of the Basset History force

As we stated several times so far, the Basset History force represents a challenging
term both from a theoretical and computational point of view and is often
neglected. For this reason it could be interesting to compare the results between
computations that take into account or neglect the Basset History force. The
same cases were therefore simulated again deactivating the computation of the
Basset term and the results compared with the Basset-activated simulations.

Fig. 5.5 shows a comparison for two of the heavy particles cases. In the
simulations without the Basset force, the Stokes Drag present a narrow distribution
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Figure 5.5: P.d.f.’s of the different acceleration ratios ai/ap for particles with R = 1000
(heavy particles). Comparison between simulations with and without the
Basset History term computation.
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whose average lies around 1, while the distribution of the Pressure Gradient and
the Added Mass both could be approximated by Dirac-delta functions centered
on 0. In other words, the Stokes Drag is the leading term driving the particle
acceleration, in agreement with the usual assumptions in literature. The Basset
force, however, does have an impact on the inertial particle dynamics as displayed
in the bottom panels. Its presence widens the p.d.f. of the Stokes Drag, and more
importantly, moves its average to a value of about 0.9 (vertical dashed lines in
the figure). Even at this high density ratio, the Basset force influences the overall
particle acceleration in an appreciable way. In addition, the lin-log plots in the
insets reveal that both the SD and the BH exhibit long tails; rare intense events
are even more influenced by the Basset History term. Particles with different
Stokes number show a similar behavior (not reported here).

For particles of density ratio R = 1, we see in Fig. 5.6 that, for the case with
smallest Stokes number, the leading term in the balance is the Stokes Drag when
Basset is not considered, whereas it becomes the Pressure Gradient with the full
model. Even for this case, we note the very long tails in the distribution of the
Stokes Drag.

Finally, the behavior of particles with an intermediate density ratio, R = 10,
is presented in Fig. 5.7. Unlike the case of particles with R = 1000, we do not find
one dominant term, but the particle dynamics emerge from the contribution of
the different forces, with significantly long tails. Examining the simulations where
BH is not considered, figs. (a) and (b), we note that the PG becomes more and
more important with respect to the SD when increasing the Stokes number. Most
importantly, the impact of the BH is relevant for all Stokes numbers considered
(see figs. (c) and (d)). Indeed, the average impact of the other terms, SD in
particular, is strongly altered by the presence of the BH. Hence, at density ratios
of the order R ≈ 10, BH cannot be neglected to capture the correct particle
dynamics.

5.2.3 Particles distribution

As stated in the introduction, a point of interest in the study of particle-laden
flows concerns the particle distribution in space, since some peculiar behaviours
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Figure 5.6: P.d.f.’s of the different acceleration ratios ai/ap for particles with R = 1
(neutrally-buoyant particles). Comparison between simulations with and
without the Basset History term computation.

are found, such as the possible formation of clusters, also denoted in literature as
preferential accumulation [38].

Some illustrative screenshots of the particle position are given in Figs. 5.8
to 5.10, depicting a slice of finite thickness from the domain (parallel to the xy
plane and taken at the middle of the z-axis2) and showing the particle distribution
at a certain time. Results in fig. (a) are obtained without the Basset History term
as it was often assumed in previous numerical studies on particle-laden turbulent

2We recall however that the system is isotropic and gravity is neglected, hence the choice of
the plane is arbitrary.
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Figure 5.7: P.d.f.’s of the different acceleration ratios ai/ap for particles with R = 10
(intermediate density ratio). Comparison between simulations with and
without the Basset History term computation.

flows, while fig. (b) is relative to simulations with the complete evaluation of all
the forces. Small-scale clustering characterizes the particle distribution: clusters
and void regions large enough to be clearly appreciated at first sight. When
the BH term is included, the particle segregation appears to be less intense, i.e.
the Basset History term acts to smear out the clusters, as it was also recently
observed in chaotic bi-dimensional flows [12]. Interestingly this effect appears also
for particles at high density ratios, i.e. R = 1000.

In this regard, the radial distribution function is a useful tool for measuring
the clustering intensity; calculated values for all cases are reported in Fig. 5.11,
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both for simulations with and without the Basset force taken into account. The
highest accumulation is found for heavy particles with response time of the same
order of the small-scales (case 9), in agreement with literature indications [39].
Lighter-than-fluid particles (case 1) show significant clusters, especially if the
Basset term is neglected. Cases with the lowest Stokes number and R = 1÷ 1000
(cases from 2 to 4) and neutrally-buoyant particles (case 2 and 5), on the other
hand, always exhibit a flat g(r) which means a nearly uniform, tracer-like, local
distribution. For every density ratio, we find the highest levels of small-scale
clustering when StK = 1, while the accumulation is weaker for the other Stokes
numbers considered, in agreement with previous findings [38]. The major insight
is that the Stokes number acts as the primary governing parameter.

In a similar way as we did before, we focus on the effect of the Basset History
term. The RDF for some of the most representative cases is reported in 5.12 where
we compare the data obtained with (lines) and without (symbols) considering
the Basset force. For all cases, the effect of the Basset term is to weaken the
clustering, confirming the visual impression given in the screenshots presented
before. Particles with R = 1 or tiny StK do not show clustering, and this does

(a) without Basset term (b) with Basset term

Figure 5.8: Screenshots of particles distribution at R = 10, StK = 1 (case 8). Com-
parison between simulations with and without the Basset History term
computation.
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(a) without Basset term (b) with Basset term

Figure 5.9: Screenshots of particles distribution at R = 0.1, StK = 0.01 (case 1).
Comparison between simulations with and without the Basset History term
computation.

(a) without Basset term (b) with Basset term

Figure 5.10: Screenshots of particles distribution at R = 1000, StK = 1 (case 9).
Comparison between simulations with and without the Basset History
term computation.

not change including the Basset term.
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Figure 5.11: The radial distribution function g(r) versus particle distance r/η. Com-
parison between simulations with and without the Basset History term
computation.

5.3 Remarks

The results of the present chapter aim to give a clear indication of the very
different dynamics that particles can experience depending on the density ratio
and Stokes number. Furthermore a special focus is made on the role of the Basset
History force, by comparing results between simulations that neglect or not its
presence.

Different Stokes numbers and density ratios have been considered. For heavy
particles (R = 1000) the Stokes Drag is the dominant term with a small con-
tribution of the Basset force, while for neutrally-buoyant particles (R = 1) the
Pressure Gradient becomes the prevailing term. For intermediate density ratios no
dominant force is found and a complete evaluation of all terms will be appropriate.
The clustering intensity is found to depend mainly on the Stokes number, with a
maximum intensity around StK = 1, in agreement with many results in literature.

The BH is found to be relevant in the dynamics of particles with moderate
density ratios, R = 1 and R = 10, where its presence alters the balance of the
different terms that determine the particle acceleration. This has a relevant
impact on the small-scale clustering observed at R = 10. The result on the impact
of BH on the dynamics of particles with high density ratio, R = 1000 is even
more unexpected. Also here, the clustering intensity is found to decrease for
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Stokes number in the range StK = 10.1÷ 10. Examining the p.d.f.’s of the terms
determining the total particle acceleration, BH amount to ∼ 10% of the total.
For the rest, the particle acceleration is determined by the Stokes Drag. It is also
worth noting that the p.d.f.’s of the BH show long tails, meaning that this force is
crucial for a correct representation of rare intense events on the particle dynamics.
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Figure 5.12: The radial distribution function g(r) versus particle distance r/η for
different R. Results including the Basset term are displayed by solid
lines, results without Basset with symbols
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Chapter 6

Sedimentation of nearly
neutrally-buoyant particles

6.1 Introduction

One interesting topic within the framework of particle-laden flows is the effect of
turbulence on the mean settling rate of particles. Basically the question is: “Does
turbulence enhance the settling (or floating) of particles?”. It is a well-known
fact that a spherical object immersed in a quiescent fluid, in the presence of
gravity, will asymptotically reach a so-called terminal velocity. What happens
if the fluid is moving and, in particular, in the case of a turbulent flow? The
answer is not trivial and it has been investigated by several works [14, 40]. If we
refer to homogeneous, isotropic turbulence, it is not easy to make a prediction
of this effect in an intuitive way, since the mean values of the fluid velocity and
acceleration are null. Wang and Maxey [39] showed that in the case of heavy
particles (ρp/ρf > 100) turbulence induces a relevant increase of the mean settling
velocity.

A field in which this problem becomes particularly relevant is the study of
microorganisms dispersed in water such as phytoplankton in the ocean. In marine
biology, the understanding of the role of turbulence on these species, and in
particular on their sinking or floating properties, is a debated topic with relevant
connections to ecological processes [32, 34, 28]. We decided to focus on this
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specific range. As a first approximation, we treat plankton like particles, even if a
more detailed approach should consider a proper shape description and possible
swimming properties. Nevertheless, we can give a useful contribution to the
investigation of this interesting problem by using the tools we have developed so
far.

On this purpose will be to calculate the average settling velocity of particles
and we will compare this result to the terminal velocity of the falling particle in a
fluid at rest, in order to see if a significant difference exists.

6.1.1 Terminal velocity

We briefly recall the reference situation with which the effect of turbulence, if
any, will be assessed. We consider a single particle immersed in still fluid, hence
u(x, t) = 0. It is well-known that the viscous drag will gradually increase with
the particle velocity. For t → ∞ this force will balance the gravitational and
buoyancy effect so that the falling particle will asymptotically tend to a finite
limit, the so-called terminal velocity VT [8]. This limit can be found by setting to
zero all the unsteady terms in the Maxey-Riley equation, hence:

VT = τp(1− ρf

ρp
)g (6.1)

which is the classical result from G. G. Stokes. Here, τp is the particle relaxation
time, ρp and ρf are the particle and fluid densities, respectively, and g is the
gravity vector.

6.1.2 Range of parameters

We need to estimate the representative values for phytoplankton in the ocean. We
note that for these microorganisms a detailed measurement of certain properties
such as the geometric dimensions is very difficult [32]. However, we can delineate
an adequate set of parameters to be as follows:

• the density ratio varies within ρp/ρf = 1.01÷ 1.05;
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• values of the turbulent mean dissipation rate for the ocean can be assumed
to vary within ε = 10−7 ÷ 10−4 m2/s3;

• the equivalent Stokes diameter, i.e. the particle diameter, is assumed to
vary within d = 1÷ 100µm;

• the kinematic viscosity of water is assumed to be ν = 10−6m2/s.

6.2 Simulation features

In order to investigate the problem, we performed Direct Numerical Simula-
tions with the same basic features presented in Chapter 4. The following set of
nondimensional parameters was chosen for our computations:

Case ρp
ρf

StK
VT
uK

A 1.05 0.01561 0.0133
B 1.01 0.00096 0.0419

which can be equivalent to the following dimensional values:

Case ρp
ρf

εT [m2/s3] d [µm]

A 1.05 10−4 166
B 1.01 3 · 10−6 100

with ν = 10−6m2/s and g = 9.81m/s2.
In this case, the procedure is characterized by these particular features:

• 3 populations (Np = 200000 particles each) are considered in order to speed
up the statistical convergence, with gravity respectively directed towards
−x, −y and −z;

• the settling velocity, which is the result of main interest, is calculated as
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follows:

〈VS〉(t) = 1
Np


Np
3∑

p=1
Vx(t) +

2
3Np∑

p= Np
3 +1

Vy(t) +
Np∑

p= 2
3Np+1

Vz(t)

 (6.2)

where the three summations reflect the different populations mentioned
above and p is a counter for particle. Eq. (6.2) provides an average over the
total number of particles and over the different populations. Furthermore a
third average is performed in time:

〈VS〉 = 1
Tf − Ti

∫ Tf

Ti
〈VS〉(t) dt (6.3)

with Ti and Tf are the initial and final time of evaluation.

• the simulation time reached T ' 1540τK.

6.3 Results

6.3.1 Settling velocity

Figs. 6.1 and 6.2 report the time history of the average settling velocity 〈VS〉,
together with the further average over time 〈VS〉 (blue dashed line), showing
its progressive convergence. The relative variation of the mean settling velocity
(〈VS〉 − VT)/|VT| evaluated at the final time T 1 is found to be about −14% for
case A (the minus means that turbulence increases the sedimentation rate) while
for case B we found a value about +2% i.e. sedimentation is slightly weakened.
We could affirm that no dramatic variation of settling velocity is noted.

As a further deepening, we can derive the following relation from the Maxey-
Riley equation:

〈VS〉 − VT = 〈u〉
∣∣∣∣∣
p
− τp (〈aPG〉+ 〈aBa〉+ 〈aAM〉)

∣∣∣∣∣
p

(6.4)

1computed from t = 280τK in order to avoid the initial transient.
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where the various quantities are sampled at the particle position and averaged
over particles and time. We find that the first term at the right-hand-side is much
larger than the second term related with the three accelerations. Hence, the tiny
increase of settling velocity has to be related with a certain preferential sampling
of the flow and not to a direct effect from any of the forces. On the other hand,
the overall picture could suggest the relevance of a statistical error.

These results could be compared with recent experimental results [34], with
surprising differences. However, what we found seems to be in agreement with
expectations based on the present values of the Stokes number and density ratio.
As we discussed in the previous chapter, this range is typically characterized by
low clustering effects and a tracer-like behaviour.

Finally, it is important to note that the results by Wang and Maxey [39],
cited in the introduction of this chapter, are relative to values of StK and ρp/ρf

substantially different from those we have chosen for this investigation. The
overall situation is thus: the mean settling rate is strongly modified when StK
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Figure 6.1: Settling velocity, case A. The red curve is the settling velocity averaged
over the particles, the blue dashed line its time average, while the black
dashed line indicates the theoretical terminal velocity.
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Figure 6.2: Settling velocity, case B. The red curve is the settling velocity averaged
over the particles, the blue dashed line its time average, while the black
dashed line indicates the theoretical terminal velocity.

approaches 1 and the magnitude of the densities of the phases are different, while
for low StK and ρp/ρf ' 1 no enhancement is found.

6.3.2 Force contributions

In order to complete the analysis, the p.d.f.’s of the single to total acceleration
ratios are reported in Figs. from 6.3 and 6.4, both for the gravity direction and
another one that is said to be “homogeneous”.

For case A, plots are very similar to case 2 of the parametric investigation
presented in chapter 5, with the Pressure Gradient as the leading term and a
non-negligible mean contribution from the Stokes Drag. Indeed, the values of
the Stokes number and density ratio are quite similar. No difference between the
gravity direction and the other ones is noticed: since these particles are nearly
neutrally-buoyant, the effect of gravity is relatively weak.

For case B, the resulting hierarchy of the forces could appear to be surprising.
The PG has a smaller, nearly-null mean value, while the viscous forces (SD and
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Figure 6.3: P.d.f.’s of the different acceleration ratios ai/ap for case A.
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Figure 6.4: P.d.f.’s of the different acceleration ratios ai/ap for case B.

BH) increase considerably. This can be explained with the very small Stokes
number: probably we are somehow stressing the model, hence the correct physics
could not have been captured.

6.4 Remarks

In this chapter we have investigated the effect of a turbulent flow on the mean
settling rate of dispersed particles. We focused on the range of Stokes number
and density ratio that is typical of phytoplankton in ocean and performed several
simulations. The resulting average settling velocity is compared with the terminal
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velocity of the particle in still fluid. For characteristic values of plankton, we do
not find a significant variation of the settling rate due to the effect of turbulence,
unlike what is known e.g. for heavy particles. Furthermore, the dynamics of
plankton-like particles appears to be similar to that of neutrally-buoyant tracers.
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Chapter 7

Conclusions

7.1 Final remarks

Through the results from our parametric investigation we wish to present a useful
review which is still not completely available at the present time, according to the
writer’s opinion. We remark that such broad investigation considered all the forces
acting on particles by using an appropriate numerical method to compute them.
The most general outcome is that the prevailing force acting on particles strongly
varies with the particle properties. Indeed, the primary governing parameter
is found to be the density ratio. Particles can therefore show very different
behaviours, varying from tracers approximating very well fluid elements to highly
inertial and clustering particles, with the Stokes number as the essential governing
parameter for the formation of clusters.

A very intriguing feature is the role of the Basset History force, that is
frequently neglected since it is difficult to deal with. By comparing simulations
with and without the BH term, some very interesting results were found, that
suggest that this term can be relevant for several reasons.

As a further application, a specific study considering the influence of the
turbulent flow on the settling rate of nearly tracer-like particles showed results
in accordance with the parametric survey, without any dramatic variation of the
settling rate. This investigation aims to give a useful contribution to the field of
plankton ecology.
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7.2 Future developments

From the observation of the obtained statistical quantities one can note the highly
intermittent behaviour of the several acceleration sources. It could be interesting
to investigate this aspect for theoretical reasons but also for some deepenings
regarding the improvement of flow measurement techniques, which make use
of dispersed particles and where a deeper integration between experimental
investigation and numerical simulations is relevant. In this regard, the role of
the Basset force is a really challenging topic on which many research works are
focusing on, since this force appears to be crucial for a correct representation of
rare intense events. The effect of BH could help to clarify some of the discrepancies
between numerical and experimental results on particle dynamics that are still
not fully understood [10].

Concerning the topic of sedimentation, a more complete investigation could
improve microorganisms description in shape and other properties. This is on the
other hand a promising and developing branch of research activity, featuring e.g.
simulations of bacteria behaviours. The application of the dynamical description
of the present work to the modelling of biological processes could be a future
challenging effort.
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Appendix A

Derivation of coefficients for the
Basset window evaluation

This appendix shows how the analytical integral in (3.9) is exactly evaluated.
Taking out of the integral all the quantities that are constant in each subinterval
we obtain:

N∑
n=1

∫ τn−1

τn

gn + (gn−1 − gn)(τ − τn)/∆t√
t− τ

dτ =

=
N∑
n=1

[
gn
∫ τn−1

τn

1√
t− τ

dτ + (gn−1 − gn)
∆t

∫ τn−1

τn

τ − τn√
t− τ

dτ
]
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Solutions of the resulting integrals are available from literature [29], hence it
follows:

N∑
n=1

[
gn
∫ τn−1

τn

1√
t− τ

dτ + (gn−1 − gn)
∆t

∫ τn−1

τn

τ − τn√
t− τ

dτ
]

=

=
N∑
n=1

{
gn
[
− 2
√
t− τ

]τn−1

τn

+ gn−1 − gn
∆t

[
− 2

3
√
t− τ(−3τn + 2t+ τ)

]τn−1

τn

}
=

=
N∑
n=1

{
2gn

[
√
t− τn −

√
t− τn−1

]
+

+ 2
3

gn−1 − gn
∆t

[
√
t− τn(−3τn + 2t+ τn)−

√
t− τn−1(−3τn + 2t+ τn−1)

]}
=

=
N∑
n=1

{
2 gn

[√
n∆t−

√
(n− 1)∆t

]
+

+ 2
3

gn−1 − gn
∆t

[√
n∆t 2n∆t−

√
(n− 1)∆t(2n+ 1)∆t

]}
=

=
N∑
n=1

√
∆t
{

gn
[
2
√
n− 2

√
n− 1− 4

3n
√
n+ 2

3(2n+ 1)
√
n− 1

]
+

+ gn−1

[
4
3n
√
n− 2

3(2n+ 1)
√
n− 1

]}
=

= 4
3 g0
√

∆t+
N−1∑
n=1

√
∆t
[

4
3(n− 1)

√
n− 1− 8

3n
√
n+ 4

3(n+ 1)
√
n+ 1

]
gn+

+
√

∆t
[

4
3(N − 1)

√
N − 1 + (2− 4

3N)
√
N

]
gN

where in the last passage an appropriate switching of the index has been performed
in order to have a more suitable form for the implementation.
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Appendix B

Laminar Cases

In this appendix we report results from some simple but meaningful tests we
performed using the developed code:

1. Falling particle in quiescent fluid: the particle is initially at rest and ap-
proaches its terminal velocity, as defined in §6.1.1.

2. Particle with nonzero initial velocity arrested in quiescent fluid. The particle
velocity starts from V (t = 0) = 1 and approaches zero. Interestingly, the
resulting dynamics is symmetric to the previous situation.

We performed the tests for all the cases presented in the parametric investi-
gation of Chapter 5, with and without taking into account the Basset History
force. Analytical solutions for these problems are available in literature, and in
particular one has been recalled in §3.4.1. In fact, these results also represent
a further validation argument since a good accordance between numerical and
analytical solutions is always verified (not shown here).

Figs. B.1 and B.2 report the particle velocity time history for the first test,
respectively for the case with and without the Basset term. The same is done for
the second test with Figs B.3 and B.4. Finally, only for the second test, in Figs
from B.5 to B.7 we recollect the plots in order to have a clear sight of the effect
of the Basset force. What is found is that this term appears to always delay the
transient of the particle velocity i.e. we could affirm that the particle relaxation
time is somehow modified by the presence of this force.
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Figure B.1: Falling particle in quiescent fluid: particle velocity time history, Basset
force included.
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Figure B.2: Falling particle in quiescent fluid: particle velocity time history, Basset
force neglected.
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Figure B.3: Particle arresting in quiescent fluid: particle velocity time history, Basset
force included.
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Figure B.4: Particle arresting in quiescent fluid: particle velocity time history, Basset
force neglected.
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Figure B.5: Particle arresting in quiescent fluid: comparison between the case with
and without the Basset History force for cases with R = 0.1, 1. Results
including the Basset term are displayed by solid lines, results without
Basset with symbols.
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Figure B.6: Particle arresting in quiescent fluid: comparison between the case with
and without the Basset History force for cases with R = 10. Results
including the Basset term are displayed by solid lines, results without
Basset with symbols.
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Figure B.7: Particle arresting in quiescent fluid: comparison between the case with
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Appendix C

Acceleration Ratio P.D.F.s of the
Parametric Investigation

This appendix reports systematically the probability density function of the
acceleration ratio as defined in §4.3.1 for each case of our parametric investigation.
In the following pages, the top figure is for the simulation accounting the Basset
history force while the bottom one is for the case in which this force has been
neglected.
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Figure C.1: Case 1 (R = 0.1, StK = 0.01), Basset force included.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-20 -15 -10 -5 0 5 10 15 20

p
d
f(
a
i/
a
p
)

ai/ap

-20 0 20

SD

PG

AM

Figure C.2: Case 1 (R = 0.1, StK = 0.01), Basset force neglected.
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Figure C.3: Case 2 (R = 1, StK = 0.01), Basset force included.
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Figure C.4: Case 2 (R = 1, StK = 0.01), Basset force neglected.
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Figure C.5: Case 3 (R = 10, StK = 0.01), Basset force included.
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Figure C.6: Case 3 (R = 10, StK = 0.01), Basset force neglected.
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Figure C.7: Case 4 (R = 1000, StK = 0.01), Basset force included.
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Figure C.8: Case 4 (R = 1000, StK = 0.01), Basset force neglected.
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Figure C.9: Case 5 (R = 1, StK = 0.1), Basset force included.
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Figure C.10: Case 5 (R = 1, StK = 0.1), Basset force neglected.
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Figure C.11: Case 6 (R = 10, StK = 0.1), Basset force included.
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Figure C.12: Case 6 (R = 10, StK = 0.1), Basset force neglected.

71



0

5

10

15

20

25

30

35

40

45

50

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

p
d
f(
a
i/
a
p
)

ai/ap

-10 -5 0 5 10

SD

PG

AM

Ba

Figure C.13: Case 7 (R = 1000, StK = 0.1), Basset force included.
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Figure C.14: Case 7 (R = 1000, StK = 0.1), Basset force neglected.
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Figure C.15: Case 8 (R = 10, StK = 1), Basset force included.
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Figure C.16: Case 8 (R = 10, StK = 1), Basset force neglected.
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Figure C.17: Case 9 (R = 1000, StK = 1), Basset force included.
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Figure C.18: Case 9 (R = 1000, StK = 1), Basset force neglected.

74



0

2

4

6

8

10

12

14

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

p
d
f(
a
i/
a
p
)

ai/ap

-10 -5 0 5 10

SD

PG

AM

Ba

Figure C.19: Case 10 (R = 1000, StK = 10), Basset force included.
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Figure C.20: Case 10 (R = 1000, StK = 10), Basset force neglected.
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