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Abstract

Skin friction or viscous drag is currently considered the major barrier to the further

optimization of the most aerodynamics and hydrodynamics bodies. One of the most

appealing method to reduce the skin friction consists in texturing the body surface

with micro-grooves aligned to the �ow direction. Such a corrugations take the name

of riblets, and, according to experiments, they are able to reduce the skin friction drag

from 4% up to 10%.

The present work aim at evaluating the in�uence of the nanoscopic surface fea-

tures in a turbulent boundary layer. The small geometric structure is taken under

consideration by means of a particular riblet shape: the fractal riblet.

The investigation is subdivided in two parts, the microscopic and the macroscopic

problem. In the �rst problem, the viscous �ow near the grooved surface is concerned.

Its solution allows to �nd out the longitudinal and the transverse protrusion heights,

two fundamental quantities which describe the riblets e�ectiveness.

The macroscopic problem aims at quantifying the drag reduction induced by a �at

surface coated with fractal riblets. The computations are performed through direct

numerical simulations of a rectangular channel at moderate Reynolds number. In order

to take under consideration the ribletted walls, the protrusion heights are used inside

the Navier boundary conditions in both the stream-wise and span-wise directions.

The results reveal that the nanoscopic structure of the riblet has a positive in�uence

on the riblet e�ectiveness, and that fractal riblets can enhance the skin friction drag

reduction up to 2%.
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Sommario

Ad oggi, la resistenza �uidodinamica viscosa rappresenta l'ostacolo maggiore all'ulteriore

ottimizzazione dell'aerodinamica e dell'idrodinamica dei mezzi di trasporto. Una delle

soluzioni di maggior interesse è l'utilizzo di super�ci che presentano scanalature lungo

la direzione del �usso, chiamate riblets e capaci di ridurre l'attrito viscoso in un range

che va dal 4% al 10%.

Il presente lavoro di tesi si propone di valutare l'in�uenza delle strutture nanoscopiche

sulla capacità dei riblet di ridurre l'attrito. Questo tipo di strutture sono prese in con-

siderazione tramite lo studio di corrugazioni frattali.

Lo studio è suddiviso in due parti: il problema microscopico e quello macorscopico.

Il primo prende in considerazione il �usso vicino alla parete, dove le forze viscose

sono dominanti. La soluzione ottenuta permette di calcolare l'altezza di protrusione

longitudinale e quella trasversale, che forniscono un'indicazione dell'e�cacia dei riblets.

Il problema macroscopico viene risolto per determinare la resistenza �uidodinamica

delle pareti con i riblet semplici e frattali. A tal �ne, viene risolto numericamente

il �usso in un canale, a basso numero di reynolds e consideranto tutte le scale della

turbolenza (DNS). Inoltre, per rappresentare i riblet vengono utilizzate delle condizioni

al contorno di Navier, in cui come lunghezze di slip vengono considerate le altezze di

protrusione.

I risultati mostrano che le nanostrutture super�ciali in�uiscono fortemente sull'e�cacia

dei riblet, inoltre viene motrato come i riblet frattali sono in grado di aumentare la

riduzione di attrito anche del 2%.
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1.1 Drag reduction

Transport is the movement of people, animals and goods from one location to an-

other, and it is important because it enables trade between people, which is essential

for the development of civilizations. Unfortunately performing its fundamental role,

transportation produces a lot of air pollution, it impoverishes local air quality, causes

acidi�cation and it is a major emitter of CO2. The last report of the International En-

ergy Agency and the Internationl Union of Railways point out that the 23, 1% of the

CO2 world emission in 2012 was due to the whole sector of transportation (Zambini

[28]). Although the technologies employed in this sector grow up exponentially, the

negative e�ects on the ambient still increase; for example, in 2014 the whole emission

of the transportation sector in the European Union increase of 20 % with respect to

the 1990. For the aforementioned and even economical reasons, the fuel consumption

reductions is pursuited from years by all the companies involved in this sector. The

thrust in this way has brought a lot of innovative solutions, upon to the development

of the electric car, that certainly will be the future of transportation. However, there

are a lot of other mechanisms that allow to obtain a reduction of the fuel consumption,

and among these it is possible to �nd the viscous drag reduction.

Skin friction or viscous drag is currently considered the major barrier to the fur-

ther optimization of most aerodynamic and hydrodynamic bodies. For various reasons,

several classes of transport, notably automobiles, trucks, and helicopters, are still im-

pacted by pressure drag and therefore these devices would not bene�t materially from

viscous drag reduction at the present time, since viscous drag is a small portion of their

overall drag budget. Instead, the skin friction reduction is of interest for such appli-

cations as: high-speed aircraft, aerospace planes (order of 30-40 % skin-friction drag),

transport aircraft, ships operated at low Froude number (order of 50 % skin-friction

drag), most underwater bodies (70 % or greater skin-friction drag) (Bushnell [8]).

In the quest for drag reduction three methods seem to be the major contenders today

(Luchini et al.[20]):

• Delaying the separation of the boundary layer by triggering an early transition

to turbulent �ow.
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• A�ecting the boundary layer by injection or suction of �uid.

• Modifying the viscosity of the �uid in the boundary layer by injection of a suitable

di�erent �uid or by changing its temperature.

• Texturing the wall with micro-grooves (with a dimension of about 100 µm)

aligned along the main �ow direction. Such a grooves take the name of riblets.

The �rst of these methods is technologically the most advanced, and used for a long

time in airplane wings in at least some form; the second has been proposed mainly

for internal �ows, such as the transportation of very viscous �uids in long pipelines

(Preziosi et al. [16]). Its application to external �ows being considered too expansive.

The fourth method, is very appealing because of its completely passive nature, but

its mechanism of operation is not well understood, and in fact one may even wonder,

a priori, why it should reduce drag at all. Nevertheless, the observation that such

corrugations occur naturally in shark skin (Burdak [3]; Chernyshov et al. [4]) triggered

the interest of researcher on the riblets. During the 80s it was experimentally shown

(Bechert et al. [26]; Sawyer [23]; Choi [5]; McLean et al. [17]) that a reduction of

4-7 % compared to the drag of a smooth surface can indeed be achieved in turbulent

�ows. The percent of reduction seems to be small, but, for example, even viscous drag

reductions as small as 10 % on the fuselage alone are signi�cant when it is realized

that these small reductions translate into a 350 million per year of fuel savings for

the airlines companies (Walsh et al. [25]). The present work is focused on the drag

reduction through a particular shape of riblets.



CHAPTER 1. INTRODUCTION 4

1.2 The riblets

In 1972 the NASA Langley Research Center begun a new skin-friction program in order

to reduce the aircraft fuel consumption. After a lot of studies, in 1976, Dr. L. R. Ash

had the idea that small �ow-aligned fences might modify the near-wall structure of the

turbulent boundary layer, thus reducing the skin-friction. The small fences were called

"riblets", and a small research study was initiated at NASA Langley Resech Center

(Bushnell [8]).

k

Figure 1.1: A model of a triangular riblet surface; the yellow arrow indicates the �ow
direction.

The idea that a longitudinally grooved surface could reduce the turbulent skin friction

drag arises from a lot of experimental studies. Among these, the measurement of

Klebano� [15] which indicate that over 50 % of the turbulence energy is generated

within the 5 % of the boundary layer, and the study of Kennedy et al. [14], that shows

that turbulent shear stress is reduced by 40-45 % in the corners of a square duct.

Another important �eld of research that increase the interest in riblets surfaces, was

the study of the shark skin. The interest of engineers in such a matter appared because

the Reynolds number of fast sharks is comparatively high (Re ∼ 106 − 107, calculated

with the body length), and potential drag reducing mechanisms derived from shark

skin are of technological interest (Bechert [26]). Moreover, there are some peculiarities

with sharks. They are the oldest �sh in terms of their evolutionary history; the an-

cestors of present day sharks already existed 350 million years ago and some families

of living sharks have already existed since 190 million years. Thus, there has been a



CHAPTER 1. INTRODUCTION 5

Figure 1.2: The Isurus Oxyrinchus, even called Mako, is one of the fastest shark on
the planet. It can reach a maximum speed of 70 km/h.

comparatively long time for optimal adaption during their evolution. This optimiza-

tion is also shown by other features related to swimming, like, e.g., the operation and

the shape of the �ns. In addition, because of their particular mode of intake of oxygen

through their gills, which works only in forward motion, they move constantly, day

and night, furthermore, the burst speed of o�-shore predatory sharks (�gure 1.2) is

comparatively high, it is believed to be about 10 - 20 m/s. The relation between the

ridge structure of shark scales of fast sharks and the drag reducing mechanism of riblets

had been recognized by Reif and Dinkelacker [21]. Reif compiled information on shark

scales for more than 40 species and from di�erent growth stages, and the scales were

taken from di�erent parts of the shark bodies. With that material he could establish a

correlation between ridge structure and velocity of di�erent species. The results of this

classi�cation reveal that all fast o�-shore sharks have scales with �ne ridges (spacing

35-105 µm) shown in �gure 1.3, whereas reef sharks have a similar scale structure but

slightly wider ridge spacing. In contrast to that, slow sharks have completely di�erent

and largely varying scale patterns which may be interpreted as devices for protection

against abrasion, parasites and predators. Therefore, in the spirit of biomimetics, a lot

of "arti�cial shark-skin" have been built and tested. All the experimental measurement

con�rm that such a surface can reduce the skin-friction from 4 % up to 10 % depending

on the surface. Other technique can be used to reduce the skin friction, however the

grooved surfaces are the most appealing because of the following features:
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Figure 1.3: Di�erent sharks have di�erent kind of skin, but the faster sharks have all
the same microscopic ridges.

• they are a passive drag-reduction technique (requires no additional energy).

• Their e�ectiveness is relatively una�ected by misalignment with the direction of

the ow (Walsh et al. [25]; Choi et al. [5]) or by compressibility e�ects (McLean

et al. [17])

• They are insensitive to the longitudinal pressure gradient (Baron et al. [1])

Although the e�ectiveness of the riblets is con�rmed by experimental data, its mecha-

nism of operation was not well understood.

When a turbulent �ow develops on a ribletted surface, the lower part (valleys) of

the small micro-grooves lie into the viscous sublayer, whereas the upper part (tips)

protrude into the bu�er layer. Such a confguration is advantageous for two principal

reasons. First of all the sharp peaks damp the turbulence level, in fact they interact

with the vortical structures (that take place in the bu�er layer) and reduce the cross-

�ow. Moreover, the high velocity zones generated by the strem-wise vortex do not reach

the riblet valleys, and this produces a low shear stress. Recent numerical simulation

by (Douglas et al. [9]) con�rm the aforementioned mechanism.

The foregoing argument is intuitively convincing, but it is only qualitative and it
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(a) Triangular riblet. (b) Spaced triangular riblet.

(c) U-shaped riblet. (d) Blade riblet.

Figure 1.4: Four kind of riblets shape.

can't be used to carry out a theory that allow to obtain the optimal shape of the riblets.

Therefore, many variation in the basic riblet geometry have been testes in attempts to

obtain an higher drag reduction; the most signi�cant geometries are shown in �gure

1.4: the v-groove riblets (sawtooth riblets) with various aspect ratios, the u-groove

riblets (scalloped riblets), a spaced groove riblet, and rectangular riblets (blade riblets).

However this is not an easy achievement, since the riblets give a small drag reduction

(on the order of 6-8 %), therefore, the measurements require high accuracy. It is even

more di�cult to observe changes in drag reduction due to variations in geometry, since

the changes in drag may be within the scatter of the measurements. In addition, the

riblet performance can be quite sensitive to the quality of the machined surface: poor

quality may result in rounding at the peaks, riblet aspect ratio varying across the

surface, etc. Eventually, the machines resolution does not allow a perfect reproduction

of the wanted riblet shape. All these problems may have an unknown in�uence on the

performances.

Although the di�culties, a general trend of the drag reduction depending on the

riblets spacing has been achieved. Figure 1.5 shows a typical drag reduction ( DR =

−∆τ0/τ0) curve as a function of the spacing (s+), in which di�erent drag regimes can

be de�ned. In the viscous regime, formally s+ << 5 but in practice s+ < 10 − 15
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Figure 1.5: De�nition of the drag-reduction regimes observed over triangular riblets
with 60◦ tip angle, as a function of the peak-to-peak distance s+.

, the contribution of the nonlinear terms to the �ow within and in the immediate

neighbourhood of the riblet grooves is negligible and, the drag reduction is proportional

to s+. The viscous regime breaks down near s+ = s+
opt, the optimum spacing for which

drag reduction is maximum, and, eventually, the reduction becomes a drag increase,

adopting a typical k-roughness behaviour. When riblet are too small the tips cannot

well interact with the bu�er layer and they cannot damp the secondary �ow. However,

if they are too large, the stream-wise vortex fall inside the riblet cavity and generate

an high skin friction.

The numerical approach also presents some problems, in fact the small dimension

of the grooves requires an extremely �ne and complex grid. Therefore the time for the

simulation may become very long.
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1.3 The fractal geometries

In this section we leave momentarily the riblet topic in order to explain a particular

geometry shape: the fractal. The reason will be clear in the next section, where this

work purpose are explained.

The study of fractals is a very wide �eld, therefore this section aims to explain only

the principal concepts, in order to understand why such a shape is taken under consid-

eration. It is possible to get a rough idea of fractals, giving the following de�nition: a

fractal is a geometric �gure which exhibit similar patterns at increasingly small scales.

In other words, magnifying such a object, one can always identify the same shape.

This particular feature take the name of self-similarity, and can be employed to built

a fractal object. Before proceeding with an example, it is worth to empathize that

fractals exist only in a mathematical concept, in fact, fractals repeat itself at in�nitely

small length scale, generating an in�nite long curve, that can enclose a �nite area.

Figure 1.6: Original mold and �ve iterations of the Koch snow�ake.

A quite famous fractal, the Koch curve shown in �gure 1.6, can be constructed

by starting with an equilateral triangle, then recursively altering each line segment as

follows:

1. Divide the line segment into three segments of equal length.

2. Draw an equilateral triangle that has the middle segment from step 1 as its base

and points outward.

3. Remove the line segment that is the base of the triangle from step 2.

We will use the these steps to construct fractal riblets.
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1.4 Aim of the work

1.4.1 Case of study

This work aim at numerically studying the particular shape of riblet show in �gure

1.7b that, until now, has not been taken under consideration: the fractal riblet.

0 0.5 1
-0.5

0

0.5

(a) Classical triangular riblet.

0 0.5 1
-0.5

0

0.5

(b) Fractal riblet.

Figure 1.7: Span-wise section of the classical triangular riblet shape and the fractal
riblet, subject of this work.

This particular shape is carried out from the common triangular riblet through the

application of the same steps presented in section 1.3, that have been used to built the

Koch snow�ake.

At this point, it is very important to stand out the reasons that bring us to choose

such a geometry. In 1975, the mathematician Benoît Mandelbrot invented the name

"fractal", and used it to extend the theoretical concept to the geometric patterns in

nature, where it is possible to �nd a lot of self-similar shapes. Since then, fractals

spreading throughout the science and became useful in a lot of �elds of study. Thanks

to the strong connection with all natural shapes, and according with others works [7],

fractal are herein used to simulate the micro and nanoscopic structure of the riblet

surface. The present study is based on the idea that the real surface is one of the

key parameter to well reproduce the riblet e�ect. The aforementioned consideration is

con�rmed by the Baron et al. [1], which compares the drag reduction results between

the ideal and the real riblet geometry.
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Over the shape sketched in �gure 1.7, we shall study others shapes, in order to

have a comparison of results. All the geometry involved in this study are presented in

section 2.7. In the next section we shall explain how the study of the fractal riblet is

performed.

1.4.2 Description of the work

The study herein performed aim at carrying out the skin friction over a grooved fractal

surface through the computational �uid dynamics (CFD). To do so we have decided

to takle the problem in two parts: the microscopic and macroscopic problems.

The microscopic problem deals with the computation of the �ow inside the boundary

layer, very near the wall. In this region the momentum equation can be simpli�ed

in the Stokes equation and two fundamental quantities, the protrusion heights, can

be determined. Afterwards, the computed protrusion heights are used as boundary

condition for the marcoscopic problem, which allow to carry out the skin friction drag

on the riblet plates taken under consideration.
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2.1 Viscous sublayer

The e�ect of drag reduction generated by the riblet surfaces has been discovered in

the seventies, however the physical reasons that explain this phenomenon have been

unknown for years. The route to a deeper understanding of the e�ects of grooved

surfaces has been opened by Bechert's observation that the typical size of corrugations

which appear to be experimentally e�ective is of the same order of magnitude as the

height of the viscous sublayer of the turbulent stream [20]. In this work we consider a

fully developed turbulent boundary layer (�gure 2.1). It has a fundamental role in the

present work, therefore we give a brie�y description of it. To do so the dimensionless

distance from the wall is introduces

y+ =
y

ν

√
τw
ρw
, (2.1)

thereby, the turbulent �ow near a �at wall can be divided into four regions:

• The viscous sublayer (0 ≤ y+ < 5) : thin layer near the wall where the velocity

is linear with the distance from the wall (if scaled properly); in this region the

viscous e�ects are dominant.

• Bu�er layer (5 ≤ y+ < 30): in this region the �ow begins the transition to the

turbulence and the viscous e�ects are of the same order of the convective one.

The velocity pro�le is no longer linear.

• The Log-law region (30 ≤ y+ < 500): after the bu�er region the transition is

complete, the �ow is fully turbulent and the average �ow velocity is related to

the logarithm of the distance to the wall. This is known as the log-law region

and the convective e�ect are dominant on the viscous.

It is interesting to note that riblet are about 10− 15 unit wall, so the valleys stay in

the viscous sulayer and tips in the bu�er. We are interested to the layer just adjacent

to the wall, the viscous sublayer. Whereas the main part of a turbulent boundary layer

exhibits chaotic �uid motion, the viscous sublayer shows quite regular longitudinal

vortex, which play a fundamental role in the momentum exchange and the turbulence

generation. These regular patterns lead to the generation of the so called low-speed
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Figure 2.1: Structure of the turbulent boundary layer.

streaks, that will burst in the upper zones of the boundary layer and will promote

turbulence.

The riblet are capable to obstacle the cross �ow that generate such a structures,

thereby they can hamper the turbulence production and increase the viscous sublayer

thickness, as demonstrated by Hooshmand [10].
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2.2 Mathemetical formulation

2.2.1 Stokes equation

In this section we present the passages that lead us to the governing equation of the

�ow in the viscous sublayer.

First of all we write the well known Navier-Stokes equations under the following

hypothesis : Newtonian �uid, incompressible �uid and isothermal �ow. Thanks to

these assumption Navier-Stokes equations can be expressed in the following form:


∇ · u = 0

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ µ∇2u.

(2.2)

However, we focus the attention on the viscous sublayer, therefore, further simpli�ca-

tions are possible. Into such a region, the forces due to the viscosity of the �uid control

the �ow, and the inertial forces become negligible. In order to exploit this fact and

simplify the equations, it is convenient to assess the importance of the various terms

in the equation of motion. To achieve this goal, it is necessary to re-write the former

equations 2.2 in the dimensionless form.

First of all we need to choose the characteristic dimension that allow us to yields

all variables in dimensionless form; choosing L for the length scale, U for the velocity

and T for the time, it is possible to introduce dimensionless variables and operators

denoted by an hat, and de�ned as

û ≡ u

U
, x̂ ≡ x

L
, ∇̂ ≡ L∇, t̂ ≡ t

T
, p̂ ≡ pL

µU
. (2.3)

Solving equations 2.3 for the physical variables in terms of the dimensionless ones and

substituting into the equation of motion 2.2 results

ρfU
∂û

∂t̂
+
ρU2

L

(
û · ∇̂

)
û = −µU

L2
∇̂p̂+

µU

L2
∇̂2û. (2.4)
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Eventually multiplying for L/ρU2 the equation take the form

St
∂û

∂t̂
+
(
û · ∇̂

)
û = − 1

Re
∇̂P̂ +

1

Re
∇̂2û, (2.5)

where

St = f
L

U
, Re =

ρUL

µ
. (2.6)

St is called Strouhal number and represent the unsteady e�ect due to the turbulent

�uctuations, and Re is the Reynolds number, whose physical interpretation is the ratio

of the inertial forces and the viscous ones. Thanks to this form of the equation, is now

possible to evaluate the weight of each term.

Bechert et al. [27] conclude, also on the basis of experimental measurements by

other authors, that the frequencies typically encountered in turbulent �ow are low

enough for the viscous sublayer to be treated as quasi-steady. Therefore, we suppose

that St ∼ 0 and we neglect the unsteady term.

The most important hypothesis, which is the heart of this study, concern the

reynolds number. As explained in section 2.1 in the viscous sublayer the viscous forces

are the most important ones, then it is possible to argue that Re ∼ 0 or 1/Re → ∞.

This bring to a very strong simpli�cation: convective term is negligible respect to the

di�usion and pressure term leading to

∇̂P̂ = ∇̂2û. (2.7)

The relation 2.7, called Stokes equation, is the governing equation for all the creep-

ing �ow, in which the viscous forces are dominant. From now on, the hat over the

dimensionless quantities is dropped for brevity, and the variables must be considered

dimensionless.

2.2.2 Decoupling of the Stokes equation

We wish to study the Stokes �ow of a viscous �uid alongside an in�nite corrugated wall

in the presence of a given shear, or velocity gradient, in the region far from the wall.

For the sake of simplicity, we shall assume the wall surface to be translation-invariant
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Figure 2.2: Wall texture and the reference coordinates.

in the z-direction, and periodic along the x-direction. The direction normal to these

will be the y-axis as shown in �gure 2.2. The geometric wall invariance along the z-axis

suggest that physical quantities are too in the same direction. Under the assumption

above, the equations 2.7 can be further simpli�ed setting to zero all the derivatives in

z 

∂P

∂x

∂P

∂y

�
�
�∂P

∂z


= µ



∂2u

∂x2
+
∂2u

∂y2
+

�
�
�∂2u

∂z2

∂2v

∂x2
+
∂2v

∂y2
+

�
�
�∂2v

∂z2

∂2w

∂x2
+
∂2w

∂y2
+
�
�
�∂2w

∂z2


(2.8)

It is easy to observe that the problem become two dimensional, furthermore, the equa-

tion for w decouples from the system and it is just the Laplace equation. Therefore, the

periodicity allows us to recast an initially 3D problem governed by the Stokes equation

in two decoupled di�erential problems:

1. The longitudinal problem for the unknown velocity w
∇2w = 0

w(x, y0) = 0

wy(x,∞) = 1

(2.9)

where y0 is the periodic function that represent the pro�le of the wall in the plane



CHAPTER 2. MICROSCOPIC PROBLEM 18

y

x

Figure 2.3: Domain contour (red line). The arrows on the upper part of the domain
indicate that it must be considered far from the riblet wall.

(x,y).

2. The transverse problem for the unknowns u, v and P
∇p = ∇2u,u = (u, v)

u(x, y0) = (0, 0)

uy(x,∞) = 1

(2.10)

These di�erential problems have been solved inside the domain shown in �gure 2.3.

The no slip boundary condition has been used at the wall, and a constant shear has

been imposed far from the cavity.
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2.3 Protrusion heights

It is important to de�ne the concept of protrusion heights because we will use them

as boundaries conditions for the macroscopic problem. We can de�ne one protrusion

height for each problem de�ned in section 2.2.2: the protrusion height associated with

the parallel problem will be called parallel protrusion height, and that associated with

the transverse problem will be called perpendicular protrusion height.

Now, let us proceed with the mathematical de�nition of the parallel protrusion

height following the Luchini's passages [20]. Since w is periodic along x-axis, we can

express it using the Fourier series

w =
+∞∑

n=−∞

Wne
inx, (2.11)

where Wn = ane
−|n|y + bne

|n|y, n 6= 0

Wn = a0 + b0y, n = 0.

(2.12)

The condition that wy = 1 for y → +∞ �xes all b-coe�cients as b0 = 1 and bn = 0

for n 6= 0, and leaves the a-coe�cients to be determined by the condition at the wall

surface. Since all the coe�cients of the series 2.11 but W0 vanish exponentially at

in�nity, the solution obtained will approach the linear behaviour w ∼ a0 + y, and

thus it imitates the linear velocity pro�le produced by a plane wall located at y = −a0.

Parallel protrusion height is de�ned as h|| = a0, and therefore it represents the distance

of the aforementioned virtual plane wall from the y-axis origin (which is located on the

riblet tips). This quantitiey have been �rst derived by Bechert et al. [27], that de�ned

it as the apparent origin of the velocity pro�le on a grooved surface. Luchini shows

that a similar protrusion height may be de�ned for the cross-�ow as well, therefore it

is even possible to write

w ∼ h|| + y (2.13)

u ∼ h⊥ + y (2.14)

being h⊥ the perpendicular protrusion height, conceptually de�ned as the parallel one.

They can be used to represent the in�uence of the riblets on the viscous sublayer. In
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h

x

y h||

Figure 2.4: Cross-section of a riblet plates and protrusion heights.

�gure 2.4 is shown the virtual plane wall which create the linear velocity pro�le.

It is important to note that the value of both parallel and perpendicular protrusion

height depends on the origin f the coordinate system, hence we de�ne a new quantity

which does not depends on it

∆h = h|| − h⊥. (2.15)

The di�erence between the two protrusion heights (∆h) has been related to the e�ec-

tiveness of riblets (Luchini et al. [20]). An high value of it imply an e�cient riblet,

hence an high drag reduction (DR). On the contrary, a low value of ∆h is associated

to lower drag reduction. This theory cannot reveals the drag reduction amount, but

it can be used for a qualitative analysis. In the present work the relation between the

drag reduction and the protrusion height di�erence is used to qualitatively analyze the

fractal riblet e�ectiveness, moreover in the last chapter, a way to quantitatively relate

∆h and DR is shown.
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2.4 Boundary integral method

Over the last 30 years, a very popular method for solving partial di�erential equations

has developed and matured. This elegant approach is the Boundary Integral Method

(BIM) and it can be applied in many areas of the engineering and science, including

�uid mechanics, acoustics, electromagnetics and fracture mechanics. The method aim

at transforming a di�erential equation in an integral equation, called Boundary Integral

Equation (BIE), which relate the unknown function into the domain to only the value

on the boundary values. We now derive the boundary integral equation for the Laplace

and the Stokes equation.

2.4.1 BIE for the Laplace equation

In this section we turn the Laplace equation, considered into a domain D with boundary

C, into the integral form. To do so, we introduce the Green's second identity

ψ∇2w − w∇2ψ = ∇ · (ψ∇w − w∇ψ), (2.16)

where ψ is an arbitrary scalar function. Usually we set ψ = G, where G is the

Green's function for the Laplace equation; by de�nition G satisfy the singularity forced

Laplace's equation

∇2G(x,x0) + δ(x− x0) = 0, (2.17)

where

• x = (x, y) is the coordinate vector.

• x0 = (x0, y0) is a speci�c point into the domain called pole or singularity point

or just the singularity.

• δ(x− x0) is the Dirac's delta function in two dimensions.

In the next step, we integrate the Green's second identity 2.16 over the domain D′ =

D−Dε, sketched in �gure 2.5; in fact we delete from D a small disk Dε of radius ε and

centered at x0, to avoid the enclosing of the point x = x0, which does not belong to

the Green's function domain.
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D

D
dl

dl

x0

C

C

n

D'

Figure 2.5: Domain of integration D′.

∫∫
D′

(G∇2w − w∇2G)dS =

∫∫
D′
∇ · (G∇w − w∇G)dS. (2.18)

Left-hand side of the equation 2.18 is equal to zero, since ∇2w = 0, and ∇2G = 0

when x 6= x0 because of the Dirac's delta function properties. Applying the divergence

theorem at the left-hand side of the equation 2.18 we obtain

∫
C+Cε

(G∇w − w∇G) · ndl = 0, (2.19)

where C is the boundary to D, Cε is the boundary to Dε, and l measures arc length

along either C or Cε. Considering the integral along Cε and de�ning r = |x− x0|, this

expression can be simpli�ed substituting the scalar product between n and both the

gradients, with the r-derivative as follow

Iε =

∫
Cε

(G∇w − w∇G) · ndl =

∫
Cε

(G
∂w

∂r
)dl −

∫
Cε

w
∂G

∂r
dl, (2.20)

This passage can be done because Cε is a circumference with normal n. When x 6= x0

or r 6= 0 the singular forced Laplace's equation become ∇2G = 0, and assuming G

dependent only on r, it can be found that the solution reads

G = λlogr, (2.21)

where λ is an arbitrary constant. This fundamental solution of the equation 2.17 is

called free-space Green's function. We can employ the free-space Green's function in
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order to simplify the expression of Iε, in fact, substituting 2.21 into 2.20, we obtain

Iε =

∫
Cε

(λlogr
∂w

∂r
)dl −

∫
Cε

w
λ

r
dl. (2.22)

Since the radius of the circumference is equal to ε, and the integral is performed on

the circumference, it is possible to substitute r with ε, moreover, letting ε→ 0 we �nd

Iε = λlogε
∂w(x0)

∂r

∫
Cε

dl − w(x0)
λ

ε

∫
Cε

dl =

= λlogε
∂w(x0)

∂r
2πε− w(x0)

λ

ε
πε = −2πλw(x0). (2.23)

Returning to the equation 2.19, we can substitute the integral on Cε with the 2.23,

and choose λ = −1/2π. We derive the velocity w from equation 2.19, that become the

Boundary Integral Equation (BIE) for potential �ow

w(x0) =

∫
C

w(x)n · ∇G(x,x0)dl −
∫
C

G(x,x0)n · ∇w(x)dl, (2.24)

This is the integral formulation for the Laplace equation; the �rst integral on the

right-hand side is called Double-Layer Potential (DLP) and the second one is called

Single-Layer Potential (SLP). The equation 2.24 can be used to solve the longitudinal

problem, and �nd the velocity �eld w in all the domain. We note that on the right-

hand side, the unknown function w appears inside integrals which are de�ned over the

boundary C. So the right-hand side involve only the boundary value of w. In general

when a di�erential problem must be solved, the boundary condition are provided and

this suggest the following way to proceed, that represent the heart of boundary integral

method:

1. Take the point x0 to lie on the boundary C. Then the integral equation involves

only values on the boundary.

2. Solve the integral equation for the unknowns boundary values, that depends by

the boundary condition provided.

3. Compute the right-hand side of 2.24 in order to �nd w anywhere in the domain.
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The �rst step require us to take the singularity to lie on C. It can be shown that the

SLP is continuous as the point x0 approaches and then crosses C, in contrast, as x0

crosses C, the DLP undergoes a jump discontinuity. In order to �nd an expression for

DLP when x0 lie on C, we take the limit x0 → C and �nd

DLP =

∫ PV

C

w(x)n · ∇G(x,x0)dl ± 1

2
w(x0), (2.25)

where PV indicates that we are taking the principal value of the integral. If x0 ap-

proaches the boundary from the inside plus sign is valid, and if it approaches from the

outside it must be chosen the minus sing. Supposing to be in the former situation, we

can substitute 2.25 in 2.24 in order to obtain the boundary integral equation with x0

lying on the boundary

1

2
w(x0) =

∫ PV

C

w(x)n · ∇G(x,x0)dl −
∫
C

G(x,x0)n · ∇w(x)dl. (2.26)

This equation only involves values on the boundary of the domain. The second step

deals with the solution of the equation 2.26 and there are three possible situations

depending on the boundary condition

• Dirichlet boundary condition: equation 2.26 is used to obtain the values of the

∇w on the boundary.

• Neumann boundary condition: equation 2.26 is used to obtain the values of w on

the boundary

• Robin boundary condition: equation 2.26 is used to obtain the value of ∇w where

is given the values of w and viceversa.

Once the step two is done, it is possible to solve equation 2.24 for the unknown w(x0)

with x0 ∈ D. It can be highlighted the principal feature of the BIM: the value of the

velocity in a speci�c point in the domain can be found using only the boundary values,

without solving for all the domain.
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2.4.2 BIE for the Stokes equation

As well as for Laplace's equation, we have to �nd the integral representation of the

Stokes equation
∂p

∂xi
= µ

∂2ui
∂xj∂xj

. (2.27)

We use the Lorentz reciprocal relation, that has the same role of the second Green's

identity 2.16 presented in the previous section

∂

∂xj

(
u′iσij − uiσ′ij

)
= 0. (2.28)

u′i and σ
′
ij are respectively the velocity vector and the stress tensor of a Stokes �ow,

whereas ui and σij are again the same quantities but for another di�erent Stokes �ow.

To derive the boundary integral representation of two dimensional Stokes �ow, we

apply this identity for a particular Stokes �ow of interest with velocity vector ui and

stress tensor σij and for the �ow due to a point force (u′i, σ
′
ij). The velocity and stress

tensor of the latter �ow corresponds to the solution of the singularity forced Stokes

di�erential equation
∂p′

∂xi
− µ ∂2u′i

∂xj∂xj
+ biδ(x− x0) = 0, (2.29)

where bi stands for the i-th component of the constant vector that determines the

strength and orientation of the point force. As described in the previous section, the

solutions of a singularity forced equation are called Green's function, hence we can

de�ne the velocity Green's function and the pressure Green's function which are the

solution �elds of equation 2.29

u′i(x) =
1

4πµ
Gij(x,x0)bj, p′(x) =

1

4π
pj(x,x0)bj. (2.30)

Gij is a second order tensor called velocity Green's function and pj a vector called

pressure Green's function. The stress tensor in equation 2.30 can be expressed using

the constitutive law for a Newtonian �uid, which reads

σ′ij = −δijp′ + µ

(
∂u′i
∂xj

+
∂u′j
∂xi

)
. (2.31)
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Substituting the equations 2.30 into the 2.31, we obtain a representation of the stress

tensor in terms of velocity and pressure Green function

σ′ij =
1

4π

[
−δijpk +

∂Gik

∂xj
+
∂Gjk

∂xi

]
bk. (2.32)

For convenience, we de�ne the following tensor

Tijk =
1

4π

[
−δijpk +

∂Gik

∂xj
+
∂Gjk

∂xi

]
, (2.33)

thus

σ′ij(x) = Tijk(x,x0)bk. (2.34)

We can now substitute the relation 2.30 and 2.34 into the Lorentz relation 2.28, and

dropping the vector bj/4π we obtain

∂

∂xj
(Gikσij − µuiTijk) = 0. (2.35)

In the next step, we integrate 2.35 over a domain D′ = D−Dε, sketched in �gure 2.5,

and use the divergence theorem, obtaining

∫∫
D′

∂

∂xj
(Gikσij − µuiTijk) dS =

=

∫
C′

(Gikσij − µuiTijk)njdl = 0. (2.36)

Since the boundary of D′ is C ′ = C + Cε, the linearity of the integral allow us to split

the left-hand of 2.36 in an integral performed on C and another integral performed on

Cε. In order to simplify equation 2.36, we take under consideration the latter expressed

in polar coordinates

Iε =

∫ 2π

0

(Gikσij − µuiTijk)njrdθ, (2.37)

and we take the limit ε → 0. Before to proceed with the limit we do some consider-

ations. The integration domain of 2.37 corresponds to the circumference of radius ε,

hence the relation ε = |x− x0| is valid, and therefore, the limit ε → 0 means that x

moves closer to x0, or mathematically, x→ x0. If we examine Gij and Tijk as x→ x0,
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we �nd out that these always behave respectively as a stokeslet velocity Green's func-

tion and a stokeslet stress Green's function, which read respectively as follows

Gij = δijlogr +
x̂ix̂j
r2

, Tijk = −4
x̂ix̂jx̂k
r4

, (2.38)

where x̂ = x − x0 and r = |x− x0| = ε. Employing all these consideration we can

write

lim
ε→0

Iε = lim
ε→0

∫
Cε

[(
δiklogε+

x̂ix̂k
ε2

)
σij + 4µui

x̂ix̂jx̂k
ε4

]
njεdrdθ =

= lim
ε→0

∫
Cε

(
δikεlogε+

x̂ix̂k
ε

)
σijnj +

∫
Cε

4µui
x̂ix̂k
ε3

x̂jnjdrdθ. (2.39)

Other simpli�cations can be achieved observing that

lim
ε→0

εlogε = 0, (2.40)

x̂ix̂k ∼ ε2 ⇒ lim
ε→0

x̂ix̂k
ε

= 0, (2.41)

n =
x− x0

|x− x0|
=

x̂

ε
⇒ nj =

x̂j
ε
⇒ x̂jnj =

x̂jx̂j
ε

=
|x̂|2

ε
=
ε2

ε
= ε. (2.42)

Applying these three relations to the equation 2.39, we have

lim
ε→0

Iε = lim
ε→0

∫
Cε

4µui
x̂ix̂k
ε2

dθ. (2.43)

We remembering that ui is a function of x, and ε→ 0 (i.e. x→ x0), therefore

lim
ε→0

ui(x) = ui(x0). (2.44)

The i-th component of the velocity vector computed in the singularity is a constant,

and it can drop the integral

lim
ε→0

Iε = lim
ε→0

4µui(x0)

∫
Cε

x̂ix̂k
ε2

dθ (2.45)
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We use this result in order to rearrange the relation 2.36 and express the velocity vector

computed on the singularity

ui(x0) =
1

4π

∫
C

ui(x)Tijk(x,x0)njdl −
1

4πµ

∫
C

Gik(x,x0)σij(x)njdl. (2.46)

Equation 2.46 is the integral formulation for the Stokes equation, and in line with the

integral formulation of the Laplace equation, we can call the terms on the right-end side

DLP and SLP. Moreover, as we saw in section 2.4.1, we can put x0 on the boundary

and derive an expression that involves only boundary quantities

1

2
ui(x0) =

1

4π

∫ PV

C

ui(x)Tijk(x,x0)njdl −
1

4πµ

∫
C

Gik(x,x0)σij(x)njdl (2.47)

The boundary conditions allow to solve equation 2.47, and subsequently the solution

can be found in all the domain with the equation 2.46.
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2.5 Boundary element method

The integral equations obtained for the longitudinal and the transverse problems are

numerically solved. The numerical counterpart of the BIM is called Boundary Element

Method (BEM), and generate a numerical solution of the integral equations. The

numerical implementation of the BEM involves the following steps:

1. Discretize the boundary into a collection of discrete elements, and approximate

the boundary integrals with the sum of the integrals over each the boundary

segments.

2. Introduce an approximations for the unknown function over the individual bound-

ary element.

3. Apply the integral equation at some collocation points located over the boundary

elements

4. Perform the integration of the single- and double-layer potential over the bound-

ary elements.

5. Solve the linear system for the unknown functions of at the collocation point.

In the next sections, we shell describe in details all these steps; the �rst one is the same

for both the Laplace and Stokes equations (the geometry over which the equations are

applied is the same), but all the next steps are slightly di�erent. We have decided to

show the application of the boundary element method only for the parallel problem;

the application to the perpendicular problem is done in a similar fashion, however it is

much harder because of the vectorial nature of the Stokes equation.

2.5.1 Boundary discretization

The boundary-element method derives its name from the practice of describing the

boundary of a solution domain with a collection of elementary geometrical units called

boundary elements. A variety of boundary elements are available in two dimensions.

Three popular choices are linear elements with straight shapes, circular arcs, and ele-

ments of cubic splines. Since the last one is the most �exible in terms of representation

of di�erent geometries, we have decided to employ it in our implementation.



CHAPTER 2. MICROSCOPIC PROBLEM 30

x i

x i +1    

si

Figure 2.6: Example of the discretized domain.

To implement this discretization, let us describe the boundary with N nodes, and

de�ne si as the current length of the polygonal line connecting sequential nodes from

the �rst node (arbitrarily chosen) to the i-th node. An example of the discretized

domain is shown in �gure 2.6. The i-th element of the discretization is between the

i-th and the (i+ 1)-th node, and it can be described by the the cubic polynomial as

xi(s) = axi (s− si)3 + bxi (s− si)2 + cxi (s− si) + xGi ,

yi(s) = ayi (s− si)3 + byi (s− si)2 + cyi (s− si) + yGi , (2.48)

with xi = (xGi , y
G
i ) the global Cartesian coordinates of the i-th node and si ≤ s ≤ si+1

the curvilinear abscissa. Cubic spline discretization involves three unknown coe�cients

for each coordinate parametrization, therefore, we have six unknown coe�cients for

each elements. Since the number of elements is N−1, the total number of the unknown

coe�cients is 6(N−1). In order to �x all the coe�cients, we impose the following three

conditions for both the x- and y-coordinates; we report them only for the x-coordinate:

• the geometry continuity

xi(si+1) = xGi+1 ⇒

⇒ axi h
3
i + bxi h

2
i + cxi hi + xGi = xGi+1, i = 1, ..., N − 1 (2.49)

• the slope continuity
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dxi
ds

∣∣∣∣
si+1

=
dxi+1

ds

∣∣∣∣
si+1

⇒

⇒ 3axi h
2
i + 2bxi hi + cxi = cxi+1, i = 1, ..., N − 2 (2.50)

• the curvature continuity

d2xi
ds2

∣∣∣∣
si+1

=
d2xi+1

ds2

∣∣∣∣
si+1

⇒

⇒ 6axi hi + 2bxi + = 2bxi+1, i = 1, ..., N − 2 (2.51)

where hi = si+1 − si. Rearranging properly these relations we can �nd the following

relations for the unknown coe�cients:

ai =
bi+1 − bi

3hi
, (2.52)

ci =
xGi+1 − xGi

hi
− 1

3
hi(bi+1 + 2bi), (2.53)

hi
3
bi + 2

hi + hi+1

3
bi+1 +

hi+1

3
bi+2 =

xGi+2 − xGi+1

hi+1

−
xGi+1 − xGi

hi
. (2.54)

The system 2.54 involves N − 3 equations, and the number of b-coe�cients is N − 1,

therefore, two additional conditions are required. In this work we will take under con-

sideration a closed boundary, hence we impose periodicity conditions for the �rst and

second derivative at the �rst and last nodes expressed, respectively, by the equations

3aN−1h
2
N−1 + 2bN−1hN−1 + cN−1 = c1 (2.55)

bN = b1 (2.56)

Now we can solve the system 2.54 and subsequently determine a and b-coe�cients

through the relations 2.53. After these passages all the coe�cients are known, and

hence the polynomial for each element of the discretization is known. After the dis-

cretization of the boundary, whatever kind it is, we can exploit the linearity of the

integral in order to obtain a discrete representation of the boundary integral equations:
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1

w(x0) =
N∑
i=1

∫
Ei

w(x)n · ∇G(x,x0)dl −
N∑
i=1

∫
Ei

G(x,x0)n · ∇w(x)dl, (2.57)

1

2
w(x0) =

N∑
i=1

∫
Ei

w(x)n · ∇G(x,x0)dl −
N∑
i=1

∫
Ei

G(x,x0)n · ∇w(x)dl. (2.58)

Next step deal with the interpolation of the unknown functions inside the integrals.

2.5.2 Approximation of the boundary quantities

Once the boundary discretization is completed, we can pass to the second step of the

boundary element method: the approximation of the unknown quantities which appear

inside the integrals (i.e., in the case of Laplace's equation, w(x) and ∇w(x)). The

approximation aims at writing the unknown functions through their value evaluated to

speci�c points of the boundary. Thereby, integral equations become a linear algebraic

system, and, as we shell explain, it can be numerically solved. Before proceeding

with the approximation, it is important to map the global coordinate x into the local

coordinate ξ ∈ [−1, 1] de�ned over each element. This is a necessary condition for the

numerical calculation of the integrals. To do so, we start by expressing the integrand

function in term of the curvilinear abscissa de�ned over an element Ei

DLPi =

∫
Ei

w(x)n · ∇G(x,x0)dl =

∫ si+1

si

w[x(s)]n · ∇G[x(s),x0]hi(s)ds, (2.59)

SLPi =

∫
Ei

G(x,x0)n · ∇w(x)dl =

∫ si+1

si

G[x(s),x0]n · ∇w[x(s)]hi(s)ds, (2.60)

where hi(s) is the metric associated with the i-th element, while si and si+1 are the

polygonal arch lengths of the element at starting and ending points respectively. For

a cubic spline element, calling ∆s = s− si the metric coe�cients takes the form:

hi(s) =

√(
dxi
ds

)2

+

(
dyi
ds

)2

=

=
√

(3axi ∆s
2 + 2bxi ∆s+ cxi )

2 + (3ayi∆s
2 + 2byi∆s+ cyi )

2. (2.61)

1The same passages can be done for the stokes integral equation.
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We apply another coordinate transformation which maps an element from the global

coordinate system based on the curvilinear abscissa to a local coordinate system such

that the i-th element's boundary points are mapped into the inteval [−1, 1]. This

mapping will can be simply done using the following relation

si(ξ) =
si+1 + si

2
+
si+1 + si

2
ξ = smi + sdi ξ, (2.62)

from which we can easily de�ne the associated metric hξi = sdi . Introducing this new

parametrization into the integrals 2.59 and 2.60 we obtain:

DLPi = hξi

∫ 1

−1

w[x(s(ξ))]n · ∇G[x(s(ξ)),x0]hi(s(ξ))dξ =

= hξi

∫ 1

−1

w(ξ)n · ∇G[ξ,x0]hi(ξ)dξ, (2.63)

SLPi = hξi

∫ 1

−1

G[x(s(ξ)),x0]n · ∇w[x(s(ξ))]hi(s(ξ))dξ =

= hξi

∫ 1

−1

G[ξ,x0]n · ∇w(ξ)hi(ξ)dξ. (2.64)

Until now, no assumption about the interpolation method of the unknown functions

over the element has been done. For our purposes, we propose to use a piecewise linear

variation, which is a good compromise between accuracy and programming di�culty;

thus let us consider the function w(ξ) for the i-th element in the following linear

approximation

wi(ξ) ≈
w(ξ2)− w(ξ1)

ξ2 − ξ1

(ξ − ξ1) + w(ξ1) =

= wi(ξ1)

(
ξ1 − ξ
ξ2 − ξ1

+ 1

)
+ w(ξ2)

(
ξ − ξ1

ξ2 − ξ1

)
=

= Ψ1(ξ)wi(ξ1) + Ψ2(ξ)wi(ξ2), (2.65)

with ξ1 and ξ2 the two collocation points where the function is evaluated on the i-th

element, and Ψ1(ξ) and Ψ2(ξ) the two shape functions. The same linear approximation

can be written for the function f = ∇w(x)

fi(ξ) ≈ Φ1(ξ)fi(ξ1) + Φ2(ξ)fi(ξ2). (2.66)
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For the seek of simplicity, we call

wi1 = wi(ξ1), wi2 = wi(ξ2), fi1 = fi(ξ1), fi2 = fi(ξ2), (2.67)

and, substituting the equation 2.65 and 2.66 respectively into the double and single

layer potential, we obtain

DLPi = hξi

(
wi1

∫ 1

−1

Ψ1n · ∇Ghidξ + wi2

∫ 1

−1

Ψ2n · ∇Ghidξ
)
. (2.68)

SLPi = hξi

(
fi1

∫ 1

−1

Φ1Ghidξ + fi2

∫ 1

−1

Φ2Ghidξ

)
(2.69)

It is possible to note that all the functions inside the integrals of the 2.68 and 2.69

are known, therefore the integrals can be computed numerically, and the two relations

become linear. It is now possible to de�ne the in�uence coe�cient as as follows

W 1
i = hξi

∫ 1

−1

Ψ1n · ∇Ghidξ, W 2
i = hξi

∫ 1

−1

Ψ2n · ∇Ghidξ,

F 1
i = hξi

∫ 1

−1

Φ1Ghidξ, F 2
i = hξi

∫ 1

−1

Φ2Ghidξ, (2.70)

and substituting equations 2.68 and 2.69 in the equation 2.58, it is possible to write the

�nal equation derived by the discretization of the boundary and the piecewise linear

approximation of the unknown functions on the boundary. At the end of the procedure

we have
1

2
w(x0) =

N∑
i=1

(
w1iW

1
i + w2iW

2
i

)
−

N∑
i=1

(
f1iF

1
i + f2iF

2
i

)
. (2.71)

To the left-hand side of the equation 2.71 the function w is evaluated in x0, that we

have chosen to lie on the boundary. This means that all the functions in equation 2.71

are to be evaluated on the boundary, and this is the speci�c feature that will allow us

to solve the equation.

It is now worth to note the role of collocation points, which are the points in

which the two unknown functions will be evaluated (i.e. the solution of the linear

system will give us the value of the unknown functions in all the collocation points

on the boundary). In general we will choose two collocation points for each element,
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laying respectively at the beginning and at the end of the segment. However, there is

the special case of a corner, for which the choice of them is a bit di�erent. When a

boundary element is adjacent to a true boundary corner (but not an arti�cial corner

due to the discretization), the boundary distribution of the function f and its normal

derivative are likely to exhibit discontinuous or singular behavior, and a continuous

distribution of those quantities is no more appropriate. The used approach involves

distributing the near-corner nodes at positions corresponding to the roots of the Radau

polynomials de�ned over the interval [−1, 1]. The �rst few members of this family are

R0(ξ) = 1, R1(ξ) =
1

2
(3ξ − 1) R2(ξ) =

1

2
(5ξ2 − 2ξ − 1)

R3(ξ) =
1

8
(35ξ3 − 15ξ2 − 15ξ + 3) (2.72)

Since we choose the linear approximation of the function, we will use the R1 polynomial.

The boundary conditions �x the all the quantities computed on the boundary. In

the end, we can locate the singularity in di�erent points, in order to obtain the same

number of equation and unknowns. A solvable linear system of equations has been

obtained.

2.5.3 Singular integrals

All the integral involved in the computation of the in�uence coe�cients Fij and the

known terms Wj are numerically solved with the well known Gauss-Legedre method.

However, we have to pay attention to some particular integrals, that result to be

singular.

The j-th line of the system represent the equation obtained from the positioning of

the singularity on the j-th element. In order to compute the coe�cients of this j-th

row of the matrix F , we have to numerically solve for each element the integrals given

by the equations 2.70. The problem of the singular integral arise when the element

on which the integration is performed, is the same on which the singularity lies. We

deal with this situation when the subscript i (that identify the element) is equal to j

(that identify the element on which the singularity lie). The singular behaviour of the

integrals is due to the presence of the Green's function (inside the F coe�cients) and
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its gradient (inside the W coe�cients) inside them. In fact it is possible to write

x→ x0 ⇒

G→ +∞

∇G→ +∞
(2.73)

Singular integrals need a special treatment; to compute them we add and subtract the

free-space kernels in the integrand and split the expression of F and W coe�cients in

two integrals

Fjj =

∫
Ej

(
G(x,x0) +

1

2π
ln |x− x0|

)
dl − 1

2π

∫
Ej

ln |x− x0| dl, (2.74)

Wj =

∫ PV

Ej

(
n · ∇G(x,x0) +

1

2π

n · (x− x0)

|x− x0|2

)
dl − 1

2π

∫ PV

Ej

n · (x− x0)

|x− x0|2
. (2.75)

The �rst integrals on the right-hand side of the 2.74 and 2.75 are non-singular and

may be computed with high accuracy using Gauss-Legendre quadrature. Moreover,

even the second integral on the right-hand side of the equation 2.75 is non-singular,

in fact, as the integration point x approach the singularity x0, the normal vector n

tends to became to the nearly tangential vectorial distance (x − x0). Consequently,

the numerator of the fraction of the integrand behaves quadratically with respect to

the scalar distance |x− x0|, and the singularity does not appear.

Thus the problem has been reduced to compute the second integral of the right-

hand side of the equation 2.74. The treatment of this term depend on the kind of the

element discretization, so we shell describe the procedure for the cubic-spline elements.

In order to compute the kernel in Fjj we express it in the parametric form an

k =

∫
Ej

ln |x− x0| dl =

∫ j+1

sj

ln |x(s)− x(s0)|hi(s)ds, (2.76)

where s0 represents the singularity position (sj < s0 < sj+1). Now it is possible to split

the integral with the following passage

k =

∫ j+1

sj

ln

(
|x(s)− x(s0)|
|s− s0|

)
hi(s)ds+

∫ j+1

sj

ln |s− s0|hi(s).ds (2.77)

In this case the �rst member can be integrated with numerical procedures, but the
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second one remains singular. Therefore the afterwards treatment is necessary.

∫ j+1

sj

ln |s− s0|hi(s)ds =

=

∫ j+1

sj

ln |s− s0| (hi(s)− hi(s0)) ds+ hi(s0)

∫ j+1

sj

ln |s− s0| ds. (2.78)

The �rst member is numerically integrated, whereas the second one can be computed

by elementary analytical method.

2.5.4 Matlab algorithm description

In order to solve the longitudinal and the transverse problem, the boundary element

method has been implemented in Matlab. In this section we will explain the features

of the input that the code receives and the output that it return, moreover, the method

by which the protrusion heights are computed is explained.

The code take in input the coordinates of a series of points that describes the board

of the domain taken under consideration. In particular each point represents the limit

of a segment used to discretize the geometry of the domain. For example, in �gure 2.7

it is possible to observe the domain and the points used to discretize it.

First of all it is important to note that both the lateral sides of the domain are

not covered by points. In fact, the code take into account the periodicity of the riblet

exploiting the periodic Green function 2.79, and not through the boundary conditions.

G = − 1

4π
log {2 [cosh (k(y − y0))− sinh (k(x− x0))]} (2.79)

where k = 2π/L, and L is the period of the Green function. Obviously, the period of the

Green function must coincide with the period of the riblet. It has been chosen L = 1,

therefore the geometrical parameter that yields the riblet geometry dimensionless is

the period. Moreover, it is possible to observe that the distribution of points in �gure

2.7 is not uniform, and they increase near the edges. This kind of distribution is

fundamental because allows to reduce the error due to the absence of the points that

lay on the edges. In the end, The upper part of the domain must be theoretically

located at an in�nitely distance from the wall. From a practical point of view, the
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H

L

Figure 2.7: Domain border and discretization points.

upper side must not in�uence the �ow near the wall, and to do so the code shift it

su�ciently up.

Once the algorithm has taken in input such a geometry, it compute the values on

the boundary of the domain; in particular it compute the value of the gradient of the

velocity on the lower wall (in fact the velocity is here de�ned by the no-slip condition),

and the velocity on the upper boundary (in fact the gradient of the velocity is hear

de�ned equal to one). This last goal allow us to compute the protrusion heights. Before

to proceed with the explanation of the computation of the protrusion heights, we have

to note that the code can even compute the velocity inside all the domain; to do so it

is possible to given in input a grid of point 2 and the code will compute the velocity

on it.

Regarding the protrusion heights, the parallel one has been computed through the

equation 2.80 and the perpendicular one through the equation 2.81.

h‖ =

wtop

∂w/∂y

∣∣∣
top

−H

L
(2.80)

2It is interesting to note that the grid can be done without respect any principle.
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h⊥ =

vtop

∂v/∂y

∣∣∣
top

−H

L
(2.81)

where the subscript 'top' indicates that the parameter is computed on the upper side

of the boundary, L is the period of the riblet geometry (set equal to one) and H

is the distances between the tip of the riblet and the upper side of the boundary.

The boundary condition set to one both the y-derivatives. The expressions for the

protrusion heights can be easily derived from the de�nition given in the section 2.3:

the protrusion height is the distance between the riblet tip and the point where the

velocity become zero. Both expressions 2.80 and 2.81 can be understood looking at the

�gure reported below

x

y

z

y
z

x

wtop

h//

H

Figure 2.8: Computed protrusion height.
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2.6 Validation of the code

Before to proceed with the simulations, it is important to validate the code; in other

words we have to check that our code works. To do so, we have to compute an already

solved case present in the literature and compare the results. If our calculation will be

in accordance with the literature, our code will be validated. For this goal we study

the riblet shape shown in �gure 2.9

(a) Cosinus riblet. (b) Parabolic riblet.

Figure 2.9: Riblet shapes used for the validation.

they are described by the following relations

y0 =
2s

π
x2 − 4sx, y0 = πscosx− πs (2.82)

where s represent the ratio between the depth and the period of the riblet, and 0 ≤ x ≤

2π. These riblets have been studied by Luchini [20]; he has implemented the boundary

element method (though with a di�erent mathematical approach in the calculation

of the transverse protrusion height), and he has computed the transverse and the

longitudinal protrusion heights in function of s, as shown in �gure 2.10.

First of all we can note that the results of Luchini make sense. In fact, when s = 0

the riblet cavity disappear and all the protrusion heights are zero. Instead, when the

s parameter becomes higher then one, the riblet cavities become deeper and the riblet

e�ect start to work. When the depth of the riblet is too high, the protrusion heights

do not depends on s anymore; this behavior can be recognized in the exponential trend

of all the curves.
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In order to validate our code, we have computed the protrusion heights for both the

riblets in �gure 2.9 and for some value of s; it is possible to observe from the �gure 2.10

that our results are in perfect accordance with the Luchini's one. The code is therefore

validated.

Figure 2.10: Validation against Luchini et al. [20]
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2.7 Results

2.7.1 Constructed geometries

This work aim at computing the skin friction over a fractal riblet plates due to a

turbulent �ow, in particular, eight di�erent riblet shapes have been built and simulated.

All the constructed geometries are described in the following lines.

First of all it is worth to remember that the BEM solves the dimensionless equations

2.10 and 2.9, therefore, the geometries given in input to the code must be considered

dimensionless. Moreover, we have chosen to build riblet geometries with period equal

to one, and this imply that Stokes equation have been dimensionalized with the period

(L). Two fractal geometries have been generated by the two di�erent triangular mold

sketched in �gure 2.11a and �gure 2.11b; the �rst one has an angle to the vertex of 120◦

(that imply L/H = 0.29, where H indicates the riblet cavity depth), and the second of

90◦ (that imply L/H = 0.5). These geometries have been built with a suitable CAD

software and following the same steps used to build the Koch snow�ake in section 1.3.

For examples, in order to built the �rst fractal iteration both the sides of the triangular

mold have been divided in three equal parts, and the resulting central segment has been

substituted by an appropriately scaled original molds. The same procedure has been

followed for the afterwards iterations. This type of construction is possible thanks to

the self-similarity of the fractals. Once all the riblet shape have been carried out, we

have used a suitable meshing software in order to obtain an optimal points distribution

on the fractal shape. The distribution must in agreement with the rules described in

section 2.5.4, thereby we can obtain an excellent approximation of the velocities in the

corners. Doing so the points that describe each geometry are obtained and given in

input to the Matlab code that implement the BEM.
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(a) 120◦ triangular mold.
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(b) 90◦ triangular mold.
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(c) First iteration of the 120◦ triangle.
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(d) First iteration of the 90◦ triangle.
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(e) Second iteration of the 120◦ triangle.
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(f) Second iteration of the 90◦ triangle.
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(g) Third iteration of the 120◦ triangle.
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(h) Third iteration of the 90◦ triangle.

Figure 2.11: Fractals geometries under investigation.
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2.7.2 120◦ triangle

In this section the results obtained for the triangular riblet (which has an angle to the

vertex equal to 120◦) sketched in �gure 2.12a are shown.

0 0.5 1
-0.5

0

0.5

(a) Triangular riblet.

0 0.5 1
-0.5

0

0.5

(b) Blade riblet.

Figure 2.12: Geometries under investigation.

In order to have a reference value for the protrusion heights and the di�erence between

them, we have taken under consideration the blade riblet sketched in �gure 2.12b, with

the same depth of the triangular one. In table 2.1 are reported the protrusion heights

computed for the triangular and the rectangular riblet; the data shows that the ∆h is

higher in the blade riblet case.

Case h|| h⊥ ∆h

Blade riblet 0.1723 0.0801 0.0922

Triangular riblet 0.1026 0.0704 0.0322

Table 2.1: Protrusion heights of blade-riblet and 120◦ triangular riblet.

In line with Luchini's theory, it is possible to understand that drag reduction achieved

with the triangular riblet will be smaller then that obtained with the blade one. The

result is in accordance with a lot of experiment performed on the two riblet shapes

and even with the theoretical work by Bechert and Bartewerfer [27]. From a physical

point of view, the viscous �ow over triangular riblet geometry generates an higher skin

friction then that over the blade riblet [1]. It is extremely interesting to note that the
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triangular riblet wall surface is smaller then the blade riblet one, so that one expect

an higher drag on the blade riblet. Therefore a viscous mechanism which compensate

the area increase exist.

Now let us look to the results reported in table 2.2, they have been obtained applying

the boundary element method at each fractal iteration of the 120◦ triangle show in

�gure 2.11a.

Iteration h|| h⊥ ∆h

0 0.1026 0.0704 0.0322

1 0.0819 0.0604 0.0215

2 0.0755 0.0554 0.0201

3 0.0737 0.0541 0.0196

Table 2.2: Protrusion heights for all fractals iterations of the 120◦ triangle.

First of all it is important to note that

|∆h3 −∆h0|
∆h0

<
|∆hblade −∆h0|

∆h0

(2.83)

where ∆h3 and ∆h0 are the di�erence between the parallel and the perpendicular

protrusion heights respectively of the iteration 3 and the iteration 0, whereas ∆hblade is

that of the blade riblet. The blade riblet and the triangular one (iteration 0) generate a

drag reduction that di�ers of a few percent points (about 5), and the di�erence between

their ∆h is |∆hblade −∆h0| /∆h0 = 1.86. Since we have |∆h3 −∆h0| /∆h0 = 0.39, it

is possible to argue that the change in the drag obtained passing from the triangular

to the fractal riblet will be small, and certainly not higher then a few percent points.

The protrusion heights and the di�erence between them decrease going on with the

iterations. The last trend is certainly due to a viscous e�ect, in fact the equations that

allow us to compute the protrusion heights do not present the convective term. In

other words the e�ect of the riblet shape on the protrusion height cannot be ascribed

to the turbulence reduction. Therefore the microscopic feature of the riblet surface are

capable to modify the viscous �ow near the wall. It is even worth to clarify that the

change in the viscous �ow may a�ect the turbulence level, but protrusion height cannot
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take into account such a modi�cation. However, the aforementioned consideration

does not exclude a possible relation between protrusion heights and the turbulence

modi�cation. Figure 2.13 and �gure 2.14 reveal that the protrusions heights have an

exponential behavior, and they approach a �nite value. The motivation can be found in

the dimension of the additional triangular pieces that are used to build each next fractal

iteration. In fact, going on with the iteration these pieces become increasingly small, as

long as they do not a�ect the �ow anymore. In order to have an idea of the magnitude

order of the disturbance which does not a�ect the �ow, we can compute the base B3

and the height H3 of the most little triangle that make up the third iteration. The base

scale every iteration with a factor equal to 1/3, therefore we have B3 = B0/3
3, where

B0 represent the base of the original triangle, which typically has a value of 100µm

and therefore it is possible to obtain B3 ≈ 4µm. Eventually it is possible to compute

the height exploiting its relation with the base H3 = B3

√
3/6 ≈ 1µm. García-Mayoral

et al. pointed out that riblet area is the most important parameter for the riblet

e�ect evaluation, therefore it is even possible to conclude that a riblet cavity variation

of about 4µm2 does not a�ect the viscous �ow, and consequently the turbulent one.

This is only a qualitative result, but it is important because reveals that the nanoscopic

structure of the surface does not a�ect the �ow and hence the drag reduction; therefore

the surface can be machined until the nanoscopic dimension (it is important to underlie

that the nanoscopic structure of the surface can be neglected for the fully wet case,

but not for the superhydrophobic one as we will see in the last chapter).

The fractal riblets until now taken under consideration have been carried out

through the addition of triangles with the vertex that point outward the wall; as the

data shown, such a fractalization has a negative e�ect on the drag. It is now interest-

ing to study the behavior of a fractal riblet constructed exploiting the same triangular

mold but with each small triangle that point inward. The geometries obtained are

sketched in �gure 2.15.
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Figure 2.13: Parallel and perpendicular protrusion heights for the 120◦ triangle.
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Figure 2.14: Di�erence between two protrusion heights for the 120◦ triangle.
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(a) 120◦ triangular mold.
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(b) First inward iteration of the 120◦ triangle.
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(c) Second inward iteration of the 120◦ triangle.
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(d) Third inward iteration of the 120◦ triangle.

Figure 2.15: Riblet geometries with inward fractalization.

The results reported in table 2.3 reveals that each iteration generate an increment of

all the protrusion heights; in �gure 2.16 and �gure 2.17 are shown their trends.

Iteration h|| h⊥ ∆h

0 0.1026 0.0704 0.0322

1 0.1112 0.0715 0.0397

2 0.1138 0.0723 0.0415

3 0.1146 0.0725 0.0421

Table 2.3: Protrusion heights for all inward fractals iterations of the 120 ◦ triangle.

Comparing these exponential curves with �gure 2.13 and �gure 2.14, it stands out the

change in the slope. We can therefore argue that the inward fractalized cavity a�ect



CHAPTER 2. MICROSCOPIC PROBLEM 49

0 1 2 3

Number of iteration

0.07

0.08

0.09

0.1

0.11

0.12

P
ro

tr
us

io
n 

he
ig

ht

h|| data

 fit
h  data

 fit

Figure 2.16: Parallel and perpendicular protrusion heights for inward fractals iterations
of the 120◦ triangle.
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Figure 2.17: Di�erence between two protrusion heights for inward fractals iterations
of the 120◦ triangle.
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the viscous �ow so that the drag reduction is increased. It emerges that the enhance

of the cross-sectional riblet area (due to the outward fractalization) correspond to the

increase of the drag reduction potential, whereas the reduction of the area (due to

the inward fractalization) is related to the reduction of the drag reduction potential.

The results is in agreement with that obtained by Garcia-Mayorcal [22], in which

they indentify the cross-sectional area as the most important parameter in the riblet

e�ectiveness evaluation. As well as the outward fractalization the protrusion heights

approach a �nite value, therefore we can observe again that a too small disturbance of

the surface does not a�ect the protrusion heights and eventually the drag reduction.

Another one di�erence between the two fractalization can be pointed out; though

the fractalizations are symmetric respect to the original mold, the value obtained for

the protrusion heights are not. Comparing the magnitude of the decrements of the

protrusion heights obtained in the outward fractalization with the magnitude of the

increment obtained in the inward fractalization, it can be noticed that the �rst one is

larger then the second one. From this observation we can conclude that the viscous �ow

is more susceptible to the reduction of the riblet cavity rather then the increment of it;

therefore the riblet e�ect can be easier reduced then increased. The wetted surface is

equal in both the inward and outward fractalization, but the �rst one seems to promise

a lower drag. It is therefore possible to argue in that case the existence of a mechanism

which compensate the wetted wall surface.

The implemented boundary element code can even compute the velocity �eld inside

the domain. The visualization of the velocity �eld contour allows to appreciate the

e�ect of the riblet on the near wall �ow. It is important to underlie that the BEM

solves the Stokes equation, which does not present the convective term. Therefore,

we are assuming that the convective term is negligible even away the wall, but such a

simpli�cation should be only valid near the wall, in the viscous sublayer. In consequence

of this, the computed velocity �elds must be used to evaluate the �ow in the proximity

of the wall. Such a limitation does not allow to understand the e�ect on the bu�er

and logarithmic layer as wall as the turbulent level, but it can be useful for the near

wall �ow structure understanding. The stream-wise velocity �elds are shown in �gure

2.18, �gure 2.19 and �gure 2.20. In all cases the gradient of the velocity on the peaks

is di�erent by that over the valleys, so that in the last region the low velocity zone
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Figure 2.18: Stream-wise velocity �eld (w) for the simple 120◦ triangular riblet.

Figure 2.19: Stream-wise velocity �eld (w) for the third outward fractal iteration of
the 120◦ triangular riblet.
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Figure 2.20: Stream-wise velocity �eld w for the third inward fractal iteration of the
120◦ triangular riblet.

is more width. This is a positive e�ect because keep the viscous �ow away from the

turbulent spots, which generate high velocity and hence high skin friction. Moreover,

the high gradient on the peaks reveal the importance to have a perfect sharp (it reduce

the surface where the high gradient is present).

In each case the black band lie on the bottom of the riblet cavity and it follow

the boundary. Therefore the modi�cation of the boundary shape even a�ect the black

band shape.

In both the fractal riblet (�gure 2.19 and �gure 2.20) the geometry modi�cation

due to the �rst and second fractal iteration seems to a�ect the �ow, because the low

velocity region (represented by the band attached to the riblet bottom) is modi�ed. The

third fractal iteration does not a�ect the �ow (as already seen thank to the protrusion

heights). In the outward fractalization the black band is shifted up and this make

for a lower longitudinal protrusion height. On the contrary the inward fractalization

shift down the black band. In �gure 2.21, �gure 2.22 and �gure 2.23 are reported the

y-velocity component contour and the stream-lines in the z-y plane. The transverse

�ow over the riblet is sustained by the imposed linear velocity, which animate the

�ow from the left to the right of the domain. Such a imposition generate a down-

wash of the normal velocity on the left riblet tip, and an up-wash on the right one.

This e�ect change the stream-lines path, and force them to the bottom of the riblet.
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Figure 2.21: Span-wise velocity �eld (v) and streamlines for the simple 120◦ triangular
riblet.

Figure 2.22: Span-wise velocity �eld (v) nad streamlines for the third outward fractal
iteration of the 120◦ triangular riblet.
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Figure 2.23: Span-wise velocity �eld (v) and streamlines for the third inward fractal
iteration of the 120◦ triangular riblet.

The v component of the velocity bring down even the stream-wise component, and

contribute to hold the �ow in the riblet cavity. The inward fractal riblet generate the

highest normal velocity magnitude, so that it is better capable to hold down the �ow in

the riblet cavity, and this can may be associated with the higher drag reduction. The

stream-lines on the riblet bottom reveal in all three cases a corner eddy (Mo�att et

al. [19]) with various dimension. The outward fractal riblet present the biggest vortex,

and it can may be related to the bad drag reduction performances.
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2.7.3 90◦ triangle

In order to study the period on depth ration e�ect, another triangular riblet shape has

been studied (�gure 2.24a). It has the angle to the vertex of 90◦ (L/H = 0.5) instead

of 120◦ (L/H = 0.29), therefore, since the period must be equal to one in both cases

(as explained in section 2.7.1), the new geometry is deeper, and consequently it has an

higher cross-sectional area.

0 0.5 1
-0.5

0

0.5

(a) Triangular riblet.

0 0.5 1
-0.5

0

0.5

(b) Blade riblet.

Figure 2.24: Geometries under investigation.

Since riblet e�ect depends on (but not only) the cross-sectional area of the wall cavity,

it is reasonable to suppose that the drag reduction will be higher then that obtained

for the 120◦ triangle. The data reported in table 2.4 show the value of ∆h; it is higher

than that found for the previous shape, and this means a better drag reduction as

argued with the consideration about the riblet area.

Case h|| h⊥ ∆h

Blade riblet 0.207 0.0834 0.1236

Triangular riblet 0.1396 0.0788 0.0608

Table 2.4: Comparison between rectangular and triangular riblet.

All the 90◦ fractal iteration are shown in �gure 2.11, and the computed protrusion
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heights are reported in table 2.5, whereas their trend are sketched in �gure 2.25 and

�gure 2.26.

Iteration h|| h⊥ ∆h

0 0.1396 0.0788 0.0608

1 0.1117 0.0744 0.0373

2 0.0989 0.068 0.0309

3 0.0949 0.0659 0.029

Table 2.5: Protrusion heights for all the fractals iterations of the 90◦ triangle.

It can be immediately understood the similarity with the 120◦ triangular case. The

protrusion heights decrease rapidly going on with the iteration and approach a �nite

value. Again it is possible to con�rm that a small disturbance does not a�ect the

protrusion heights and the drag reduction. Another similarity can be found in the

∆h value of the original mold and that of the �rst iteration; both are a�ected by the

biggest decrease. The decrease magnitude is slightly di�erent (it is bigger for the 120◦

case), because the 90◦ triangular mold brings to a stronger reduction of the cavity.

As with as the 120◦ triangle, an inward fractalization has been constructed. The

shapes obtained are sketched in �gure 2.27.
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Figure 2.25: Parallel and perpendicular protrusion heights for the 90◦ triangle.
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Figure 2.26: Di�erence between two protrusion heights for the 90◦ triangle.
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(a) 90◦ triangular mold.
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(b) First iteration for the 90◦ triangle.
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(c) Second iteration for the 90◦ triangle.
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(d) Third iteration for the 90◦ triangle.

Figure 2.27: Constructed inward fractals geometries.

Even in this case the data reported in table 2.6 and shown in �gure 2.28 and �gure

2.29 con�rms the previous results.

Iteration h|| h⊥ ∆h

0 0.1396 0.0788 0.0608

1 0.1464 0.0779 0.0685

2 0.1495 0.0782 0.0713

3 0.1506 0.0783 0.0723

Table 2.6: Protrusion heights for all inward fractals iterations of the 90◦ triangle.
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Figure 2.28: Parallel and perpendicular protrusion heights for inward fractals iterations
for the 90◦ triangle.
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Figure 2.29: Di�erence between two protrusion heights for inward fractals iterations
for the 90◦ triangle.
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Figure 2.30: Stream-wise velocity �eld for the simple 90◦ triangular riblet.

The velocity �elds have been computed. The stream-wise velocity is shown in �gure

2.30, �gure 2.31 and �gure 2.32. Comparing the 90◦ �ow �elds with that obtained

in the paragraph, it is possible to point out some di�erences. The velocity gradient

on the valley is smaller, and this reduces viscous skin friction. The e�ect is due to

the enhance of the riblet cavity, that allow a deeper penetration of the �ow. The low

velocity zone is wider, so it is possible to suppose that the high velocity spots due to

the turbulence are dumped in a better way. The normal velocity contour, shown in

�gure 2.33, �gure 2.34 and �gure 2.35, reveal a bigger corner eddy in all the cases.
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Figure 2.31: Stream-wise velocity �eld for the third outward fractal iteration of the
90◦ triangular riblet.

Figure 2.32: Stream-wise velocity �eld for the third inward fractal iteration of the 90◦

triangular riblet.
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Figure 2.33: y velocity component �eld for the simple 90◦ triangular riblet.

Figure 2.34: y velocity component �eld for the third outward fractal iteration of the
90◦ triangular riblet.



CHAPTER 2. MICROSCOPIC PROBLEM 63

Figure 2.35: y velocity component �eld for the third inward fractal iteration of the 90◦

triangular riblet.



Chapter 3

Macroscopic problem

64



CHAPTER 3. MACROSCOPIC PROBLEM 65

3.1 Numerical method

The macroscopic problem represent the second part of this work. It aim at carrying

out the drag over a fractal riblet plates, and compare it with that obtained with simple

triangular riblets. To do so, a rectangular channel is studied through direct numerical

simulation.

3.1.1 Finite volume method

The Finite Volume Method (FVM) is a discretization approach in which the solution

domain is subdivided into a �nite number of contiguous Control Volumes (CVs), and

the N-S equations are applied to each CV. At the centroid of each CV lays a compu-

tational node at which the variables values are to be evaluated. Before proceeding to

the mathematical description of the method, we show the equations 3.1, that are the

dimensionless continuity and momentum equations herein used to perform the direct

numerical simulation.

∂ui
∂xi

= 0

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xj
+

1

Re

∂2ui
∂xj∂xj

+ fi.

(3.1)

The variables used to yields dimensionless equations 3.1 are δ and uτ . The �rst one

represents the half width of the channel in the y direction, whereas the second is the

shear velocity de�ned as uτ =
√
τwall/ρ. Re denotes the Reynolds number de�ned as

Re = U0δ/ν.

The �rst step of the method deals with the integration of this dimensionless N-

S equations over a single control volume called Ω. We use a Cartesian grid and a

collocated arrangement, therefore all the variable are calculated in the cell center. In

�gure 3.1 is shown a three-dimensional Cartesian control volume together with the

notation used. The CV consist of six plane faces, denoted with lower case letters

(e,w,n,s,t,b) corresponding to their orientation with respect to the central node P.
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Figure 3.1: Three dimensional control volume for a Cartesian grid.

Once the integration on the control volume 3.1 is performed, the method exploits the

Gauss's theorem (and the incompressibility condition for the di�usive term) to do the

following transformations:

• The continuity equation became

∫
∇ · udΩ =

∫
S

u · ndS = 0 (3.2)

• The convective term of the momentum equation become

∫
Ω

uj
∂ui
∂xj

dΩ =

∫
S

uiu · ndS (3.3)

• The di�usive term of the momentum equation become

∫
Ω

1

Re

∂2ui
∂xj∂xj

dΩ =

∫
S

1

Re
∇ui · ndS (3.4)

After the integration and the application of above transformation, the N-S equations
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read

∫
S

u · ndS = 0

∫
Ω

∂ui
∂t

dΩ +

∫
S

uiu · ndS = −
∫

Ω

∂p

∂xj
dΩ +

∫
S

1

Re
∇ui · n +

∫
Ω

fidΩ.

(3.5)

The equation 3.5 presents integrals performed on the CV's surface S or on the volume

Ω, and both must be approximated. For the �rst type, we can call the generic quantity

that �ows through the surface as φ and thanks to the linearity of the integral we can

write ∫
S

φdS =
6∑

k=1

∫
Sk

φdS, (3.6)

where 6 is the number of control volume faces and φ can be both the convective or

di�usive �ux. Equation 3.6 is still exact, but we need now to introduce the �rst

approximation. The surface integral of φ, for an arbitrary face k is estimated with

the mid-point rule, that is the integral on the square surface is approximated with the

following: ∫
Sk

φdS ≈ φkSk, (3.7)

where Sk is the area of the k-th square face of the cube, and φk is the value of φ at the

center of the square face. It is possible to show that this approximation is of second

order accuracy. Whereas Sk is a geometrical information and it can be easily computed,

φk contains the unknowns that we want to determine. Moreover, since φk is taken on

the square face center, the unknowns inside it are too, therefore we must express φk in

terms of the nodal value. To do so, we can do an interpolation between two numerical

nodes; for example, if we want to determine the value of φk on the east side, we do

the interpolation between the P node and the E node. Hence, referring to the �gure

3.1, the value of φ at CV-face center is obtain by linear interpolation between the two

nearest nodes, as follows (e.g e face):

φe = λφP + (1− λ)φE, λ =
xe − xE
xE − xP

. (3.8)

This scheme is called central di�erence scheme (CDS) and it is of second order accuracy.
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For clarity, the discretization of the convective �uxes will be shown only for the e-face

of the Cartesian CV shown in �gure 3.1 and only for the �rst component of the velocity

vector. The �uxes at the other surfaces can be treated in the same fashion applying

the appropriate subscripts permutation. Before to apply the above approximation we

have to explain the particular treatment of the non-linear convective term; inside it

the velocity unknown appear two times, and in order to avoid problems, we compute

the term u · n with the value at the previous time-step. Doing so, u · n is a constant

and it can drop the integral. The discrete convective �ux read:

∫
Se

uiu · ndS = u · n
∫
Se

uidS ≈ u · n
∫
S

[λφP + (1− λ)φE] dS =

= u · n
∫
S

dS [λφP + (1− λ)φE] = ṁe [λφP + (1− λ)φE] , (3.9)

and the di�usive one ∫
S

1

Re
∇ui · ndS ≈ S(uE − uP )

Re(xE − xP )
(3.10)

ṁe = u ·n
∫
S

dS is the mass �ow rate through the surface e. The spatial discretization

is completed by the approximation of pressure gradient and body forces, also called

source terms. For an arbitrary source term q the following approximation is applied:

∫
Ω

qdΩ = ∆ΩqP (3.11)

The integral is estimated by the product between the central value of q in the control

volume center and the cell volume. This is again a second order accurate approxima-

tion. After the space discretization, a time advancement strategy is necessary, and we

will analyze the method herein adopted in the next section.

3.1.2 Fractional step

The fractional step method is a technique to advance in time the �uid �ow governing

equations and was �rstly developed by Chorin [6] and then improved by other authors.

The algorithm is based on Helmholtz�Hodge decomposition or simply Hodge decom-

position; it states that the vector �eld u de�ned on a simply connected domain can
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be uniquely decomposed into a divergence-free (solenoidal) part and an irrotational

part. Typically, the algorithm consists of two stages: prediction and correction. In

the prediction step, the momentum equation is solved without the pressure terms, but

the resulting velocities does not satisfy the continuity equation. In the correction step

the previous solution is corrected and the velocity �eld is projected onto a divergence-

free �eld. Several numerical implementation are available in the literature,and we will

present the fractional step version proposed by Kim and Moin [11]. The method is

semi-implicit and not all the terms of the momentum equation are discretized in time

in the same manner. In particular the second order Crank-Nicolson scheme is used for

the wall-normal di�usive term and the second order Adams-Bashforth scheme for all

of the other terms in momentum equation. The �rst step of the method aim at solving

the following equation

ûi − uni
∆t

= C(uni , u
n−1
i ) +

1

Re
D(ûi, u

n
i ) +

δp

δx
, (3.12)

where C and D represent respectively the discretization of the convective and di�usive

terms. In the predictor step we solve the system of equations 3.12 for ûi, but it will

not satisfy the continuity equation. Therefore, the �eld ûi has to be projected onto

a divergence-free �eld un+1
i and to do so we employ the so called projection step that

follows. We write the complete discretized N-S equation

un+1
i − uni

∆t
= C(uni , u

n−1
i ) +

1

Re
D(ûi, u

n
i )− δp

δxi
(3.13)

and we substitute the sum of the convective and di�usive terms with the equation 3.12

un+1
i − ûi

∆t
= − δp

δxi
(3.14)

Taking the divergence of the equation 3.14

δ

δxi

δp

δxi
=

1

∆t

δûi
δxi

(3.15)

we obtain the Poisson equation for the pressure-like variable, from which we can com-

pute φ, and afterwards we can �nd the velocity �eld un+1
i solving the equation 3.14.
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3.2 Computational domain and grid spacing

The �ow geometry and the coordinate system are shown in �gure 3.2. The arrow show

the �ow direction, and the upper and the lower plates represent the wall, therefore the

no slip condition is here applied.

x

y

z

Figure 3.2: Geometry taken under consideration for the direct numerical simulation.

In the streamwise and spanwise direction the periodic boundary condition is used.

The aforementioned condition can be justi�ed if the computational box (period) is

chosen to include the largest eddies in the �ow. In order to choose a su�ciently larger

domain, we examine the experimental two-point correlation measurements used in Kim

et al. [12] and shown in �gure 3.3 and �gure 3.4.

Figure 3.3: Two-points correlation of the velocity vector along the stream-wise direc-
tion.
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Figure 3.4: Two-points correlation of the velocity vector along the span-wise direction.

Looking at these correlations, it has been established the channel dimension as 2π x

π in dimensionless unit, thereby the end of the channel in the periodic direction lay

where the correlation of the velocities is almost zero. Therefore the domain enclose the

largest eddies in the �ow, and the integral scale is taken into account. In terms of unit

wall the domain is 1106×352×552 1. The computation is carried out with a resolution

of grid points 161× 201× 129 (more then 4 million points) for a Reynolds number of

2800, which is based on the bulk velocity, and the channel half-width δ (a Reynolds

number of 176 based on the wall shear velocity uτ ). With this grid, the spacing in

the streamwise and spanwise directions are respectively ∆x+ = 7 u.w. and ∆z+ = 4

u.w.. Moreover, a non-uniform mesh is used in the normal direction; it is stretched

through a hyperbolic tangent function and the �rst point near the wall is located at

y+
min = 0.052. Such a grid is su�ciently �ne to solve the essential turbulent scale, and

no subgrid model is used.

1The channel can be considered su�ciently large even because of the length of it in each direction
are higher then the minimal channel lengths [13].
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3.3 Navier boundary conditions

Until now, we have described the methods used to implement the direct numerical

simulation, but we have not yet introduced the boundary conditions; this is a funda-

mental point because allow us to take into account the triangular riblet wall and its

fractalizaition in a simple way. In fact, the groove of the riblet surface are extremely

small, and the grid used to study it should be too �ne and complex, therefore we can-

not take into account such a geometry. In order to avoid the problem, we simulate

the riblet plate through the application of the Navier boundary conditions 3.16 (in

both the stream- and span-wise direction), in which the slip lengths coincide with the

protrusion heights. In �gure 3.5 are sketched the velocity pro�le from which the slip

lengths arise.

Figure 3.5: Velocity pro�le from which the protrusion heights are computed.

This particular condition can be simulated applying the two slip boundary condition

3.16

uwall = kh||
∂u

∂y

∣∣∣∣
wall

wwall = kh⊥
∂w

∂y

∣∣∣∣
wall

(3.16)

where uwall and wwall are respectively the stream-wise and span-wise velocities at the

wall (their value is non-zero), k is a scale coe�cient, h|| and h⊥ are respectively the

parallel and the perpendicular protrusion heights and ∂u/∂y and ∂w/∂y are the deriva-

tives of the velocities computed on the wall. The k coe�cient is needed because the

quantities used to yields dimensionless the Stokes equation (the governing equation of
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the microscopic problem from which we carried out the protrusion heights) are di�erent

from that used for the Navier-Stokes equations solved in the DNS. Therefore we cannot

directly give in input the value carried out with the boundary element method, but we

must adjust it so that it results adimensionalized through the half channel width δ as

follow
h||
δ

=
b

δ
hBEM|| = khBEM|| , k =

b

δ
(3.17)

where b indicate the riblet spacing, h|| and h
BEM
|| represent respectively the dimensional

longitudinal protrusion height and that computed with the BEM. The value of k must

be �xed, and once it has been chosen, the dimensions of the riblet period respect to

the channel has been �xed. We have chosen k = 0.05, which corresponds to a b+ = 10.

The boundary conditions 3.16 assign a non-zero value to the streamwise and span-

wise velocities at the wall. The e�ect of these two boundary condition has been studied

by T. Min and J. Kim [24]; they have taken under consideration three di�erent cases:

only streamwise slip boundary condition, only spanwise slip condition and both the

condition together. As expected in the �rst case the drag reduction was obtained,

whereas in the second case, when the slip-boundary condition is used in the spanwise

direction, the mean drag increases. The physical reason behind the last behavior is

that the longitudinal vortex are dumped with a no slip condition, and are less dumped

with a slip condition, so that the turbulent oscillation are free to develop. Regarding

the last case, there is a balance between the reduction of the drag due to the streamwise

slip condition and the increase of it due to the slip spanwise condition so that the e�ect

of the riblet is reproduced.

Eventually we must empathize that this kind of approach in the study of the riblet

has never been tested and validated, hence the results should be con�rmed through

experiment. Nevertheless this method seems to be correct from a conceptual point of

view, in fact the e�ect of the spanwise slip boundary condition on the �ow is similar

to that performed by the riblet, both act on the cross �ow.
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3.4 Validation of the code

In order to validate the code implemented for the DNS, we have taken as reference the

study performed by Kim, Moin and Moser in 1986 [12] at the NASA Ames Research

Center, in which they carried out one of the �rst direct numerical simulation of a

turbulent channel �ow. They chose a 4πδ × 2δ × 2πδ channel, where δ is the channel

half width in the y-direction. They numerically solved the unsteady Navier-Stokes

equations with a Reynolds number of 2800, based on the bulk velocity and the channel

half-width δ (a Reynolds number of 180 based on the wall shear velocity uτ ), with a grid

resolution of 192× 129× 160 in x, y, z. With this grid, the spacing in the stream-wise

and span-wise directions are respectively ∆x+ = 12 u.w. and ∆z+ = 7 u.w.. Moreover,

a non-uniform mesh is used in the normal direction, and the �rst mesh point away from

the wall is at y+ = 0.05. Doing so they solved all essential turbulence scales on the

computational grid and no subgrid model was used. Moreover, they computed a large

number of turbulence statistics that are even now in agreement with the experimental

data.

The case solved in the present work have some di�erences respect to the Kim and Moin

case: the grid herein used is �ner then Kim and Moin one and the method used to

solve the equations is di�erent 2. In order to validate the dns code, we have carried

out the velocity root mean square in each direction and we have compared them with

that obtained by Kim and Moin, as presented in �gure 3.6, 3.7 and 3.8

2In [12] a spectral code was employed.
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Figure 3.6: Root mean square of the stream-wise velocity u′ �uctuation.
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Figure 3.7: Root mean square of the normal velocity v′ �uctuation.
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Figure 3.8: Root mean square of the spanwise velocity w′ �uctuation.

The �gures show a very satisfying agreement of the results.

3.5 Results

In order to perform the direct numerical simulations, we have taken under consideration

the 90◦ triangular riblet and its third inward fractalzation, both sketched in �gure 2.27.

Luchini's theory relate an high value of ∆h to an high drag reduction; since the 90◦

show an higher ∆h then the 120◦ riblet, it seems to be the more promising geometries

in terms of drag reduction. Therefore we have chosen it. Moreover, this shape show

the highest increase of the ∆h value when the fractalization procedure is applied.

This is an important feature, because the fractalization modify the riblet geometry

on the scale of nanometers, hence we can suppose to have small variation of the �ow.

Therefore, higher is the change in the ∆h and better we can appreciate the changing

in the �ow. We have only studied the third iteration because it represent the limit at

which the protrusion height do not vary anymore. In table 3.1 are shown the value of

the protrusion heights for the selected cases.
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Iteration h|| h⊥ ∆h

0 0.1396 0.0788 0.0608

3 0.1506 0.0783 0.0723

Table 3.1: Protrusion heights for the 90◦ triangular riblet and for its third fractalization.

In this section the DNS results are shown and commented. Three di�erent channels

have been studied: the completely smooth channel (the same used for the validation),

the channel with simple 90◦ triangular riblet and the channel with the third fractal

iteration for the 90◦ riblet. It is worth to remember that the lower plates of the riblet

channels is the one with the grooved wall. The results obtained are reported in table

3.2.

Case Re |∂p/∂x| uτ τwall Reτ DR

Smooth 2777 0.00397 0.0634 0.0040 177 −

Triangular tiblet 2777 0.00376 0.0613 0.0038 170.4 5.3%

Fractal riblet 2777 0.00370 0.0608 0.037 168.9 6.8%

Table 3.2: Results obtained from the DNS simulation. Re is the Reynolds number
based on the bulk velocity, ∂p/∂x is th mean pressure gradient, uτ is the friction
velocity, τwall is the skin friction, Reτ is the Reynolds number based on the friction
velocity, DR is the drag reduction percentage.

The �rst parameter taken under consideration is the pressure gradient between the

outlet and the inlet. It is fundamental because allow us to compute the drag applied

by the �ow on the plates of the channel. It is worth to underlie that the code computes

the value of the pressure gradient every iteration, and it aim at maintaining the bulk

velocity, computed as shown in equation 3.18, equal to one.

Um =
1

2

∫ 2

0

ūd(y/δ) (3.18)



CHAPTER 3. MACROSCOPIC PROBLEM 78

0 100 200 300 400 500

Time step

-5

-4.5

-4

-3.5

-3

dp
/d

x

10-3

Figure 3.9: Pressure gradient time history for the channel with the smooth plates.

Therefore, going on with the timestep the pressure gradient oscillate in order to pursue

the aforementioned condition. Figures 3.9, 3.10 and 3.11 show the �uctuation of the

pressure gradient depending on the time. In order to obtain the drag reduction for

each case, we need to compute the mean value of the pressure gradient; in fact, it is

related to the drag performed from the two plates on the �ow. The drag reduction for

each case has been computed as follow,

DR =

∂p

∂x

∣∣∣∣
0

− ∂p

∂x

∣∣∣∣
i

∂p

∂x

∣∣∣∣
0

x100, (3.19)

where the subscripts 0 refers to the validation case, and the subscripts i indicates the

case under consideration. Data reported in table 3.2 reveal that the simple triangular

riblet surfaces produce a noticeable drag reduction respect to the smooth plates. More-

over, as expected from the value of ∆h, the fractal riblet generate an even higher drag

reduction. It seems reasonable the hypothesis of Luchini that an higher ∆h produces

an higher drag reduction. We recall that the drag reduction is obtained from the slip

condition on the stream-wise velocity, that give the mean velocity pro�les sketched in

�gure 3.12 and �gure 3.13. It is clear in �gure 3.12 and �gure 3.13, that the stream-

wise slip boundary condition a�ects the mean velocity pro�le as expected, in particular
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Figure 3.10: Pressure gradient time history for the channel with the 90◦ triangular
riblet plate.
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Figure 3.11: Pressure gradient time history for the channel with the third fractal
iteratio 90◦ triangular riblet plate.
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Figure 3.12: Mean stream-wise velocity pro�les.

they are upward shifted. All the ribletted surfaces alter the logarithmic law as

u+ =
1

k
logy+ + C + ∆U+, (3.20)

where k ≈ 0.41 is the von Kármán constant and C ≈ 5.2 and ∆U+ characterizes

the shift of the logarithmic region. A positive shift corresponds to drag reduction,

whereas a negative shift corresponds to a drag increase, as on standard rough surfaces.

This velocity shift is the key parameter to characterize riblet e�ects (Aupoix [2]), and

the boundary condition adopted are able to reproduce it. Looking at �gure 3.13 it

is possible to note that the pro�le of the riblet cases are not only upward shifted, in

fact the logarithmic zones of the pro�les are nearer to the validation case then the

near the wall pro�le. As carried out by T. Min and J. Kim [24], the pure stream-wise

slip condition reveals a perfectly upward shifted mean velocity pro�le, whereas from

the pure span-wise slip condition a�ect the logarithmic region with a downward shift.

Eventually, when both the slip conditions are applied, a combination of behavior arise,

as we have obtained in �gure 3.13. The upward shift is noticeable between the smooth

channel and the riblet channels, whereas it is almost zero between the fractal and the

simple riblet channel.

The quantity that really contribute to the drag reduction is the gradient of the
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Figure 3.13: Mean stream-wise velocity pro�les plotted on the y+ coordinate (express
in wall units) in semi-logaritmic scale.

velocity in the y direction, in fact it is related to the skin friction by well known

relation 3.21

τwall = ρν
∂u

∂y

∣∣∣∣
wall

+ ρu′v′, (3.21)

where ∂u/∂y represent the mean pro�le slope at the wall. As sketched in �gure 3.14

fractal riblet shows the lower slope. Again the di�erence between the two riblet channel

is quite small, and it cannot alone justify the drag reduction obtained with tha fractal

riblet, therefore it is important looking at the turbulent e�ect. The skin friction is

directly related to the shear velocity,

τwall
ρ

= u2
τ , (3.22)

which decrease in the same way. The shear velocity trend is shown in �gure 3.15 and

�gure 3.16. The root mean square of the istantaneous velocities are presented in

�gure 3.17, �gure 3.18 and �gure 3.19. The �gures present the values of the root

mean square on only the one half of the channel with the riblets wall, in fact the other

half remain almost unchanged. The stream-wise component, presented in �gure 3.17,

show that each di�erent case reach the maximum of the root mean square at the same

y coordinate, however, in both the simple riblet and fractal case, the maximum has
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Figure 3.14: Near wall tangents to the mean stream-wise velocity pro�les.

0 100 200 300 400 500

Time step

0.05

0.055

0.06

0.065

0.07

S
he

ar
 v

el
oc

ity

Figure 3.15: uτ time history for the simple 90◦ triangular riblet.
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Figure 3.16: uτ time history for the third fractalization for the 90◦ triangular riblet.
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Figure 3.17: Root mean square of the stream-wise velocity. Each case is normalized
by the actual value of uτ .
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Figure 3.18: Root mean square of the normal velocity. Each case is normalized by the
actual value of uτ .
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Figure 3.19: Root mean square of the span-wise velocity. Each case is normalized by
the actual value of uτ .
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Figure 3.20: Contour of the stream-wise vorticity in the z − y plane for the simple
riblet channel.

an higher value. It is possible to argue that the Navier boundary condition generate

an increment of the turbulent intensity of the stream-wise components of the velocity.

This seems to be in contrast with the drag reduction, however if we look at the �gure

3.18 and �gure 3.19 we can �gure out the problem. It is possible to note (in both

the �gure) that the three curves of the root mean square of the span-wise velocities

coincide near the wall, but at certain y coordinates the simple riblet root mean square

grow up slowly then the smooth case, and the root mean square of the fractal riblet

grow up even more slowly then the simple triangular riblet. The velocities components

plotted in �gure 3.18 and 3.19 are responsible of the stream-wise vortex, therefore a

reduction of both the root mean square indicates a dumping of the cross �ow. The

rms features reveal that the slip condition are able to reproduce the riblet e�ect, which

works through the reduction of the cross-�ow.

The reduction of the turbulence level can be con�rmed by the values of the stream-

wise and the span-wise vorticity. In �gure 3.20 is presented the contour of the stream-

wise vorticity in the z − y plane; the bottom side of the channel present the grooved

surface (here is applied the slip condition), and the top side the smooth wall (here

is applide the no-slip condition). It is possible to note that near the no-slip wall

are located a lot of spots of high vorticity, whereas the riblet surfaces show a lower

generation of turbulence spots and the magnitude of vorticity is smaller. The behavior

is due to the reduction of the bursting cycle.. Figure 3.20 con�rms that the turbulent

intensity is reduced by the riblet wall. In �gure 3.21 it is possible to observe the span-
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Figure 3.21: Contour of the span-wise vorticity in the x− y plane for the simple riblet
channel.

wise vorticity in the x−y plane; again, the lower wall presents the riblet and the upper

one is smooth. It is clear that in the upper zone of the channel an higher distribution

of vortex is present. This e�ect can be related to the generation of vortices in the near

wall region.

In order to asses the e�ect of the reynolds number, the DNS has been performed at

Re = 2200 and Re = 3500. The results obtained are presented in table 3.3 and shown

in �gure 3.22.

Case Re |∂p/∂x| uτ Reτ

Smooth 2200 0.00395 0.0628 142

Smooth 2800 0.00397 0.0634 177

Smooth 3500 0.00370 0.0607 217

Riblet 2200 0.00385 0.0621 141

Riblet 2800 0.00376 0.0631 170

Riblet 3500 0.00351 0.0652 232

Table 3.3: DNS results for the smooth geometry and the 90◦ triangular riblet at dif-
ferent reynolds number.

It is possible to note the linear trend for both the smooth and the riblet plates, which
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Figure 3.22: Pressure gradient at di�erent reynolds number.

indicate a reduction of the drag when the Reynolds number increase. The riblet plates

results shifted down, and this con�rm that it is possible to obtain a drag reduction for

each reynolds number herein considered.
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4.1 Conclusion

In this work we have studied, through numerical simulations, the drag reduction po-

tentiality of a series of riblet surfaces generated by the fractalization of two di�erent

triangular riblet molds. In order to perform such simulations, we have subdivided the

study in two parts: the microscopic and the macroscopic problem.

The �rst problem has been studied through the boundary element method. It is

well known because of its capability to solve equations inside complex domains. It is

turned out to be extremely e�cient for the study of a two dimensional fractal geom-

etry. The time required for the simulations was of the order of minutes; the longest

simulation has required a time of only �ve minutes.

The microscopic problem has been solved for the two triangular riblet and their frac-

talization, in order to carry out the parallel and the perpendicular protrusion heights

for each shape. The aforementioned values revealed an exponential trend, and that all

the protrusion heights approach a �nite limit when the fractalization go on, in partic-

ular, after the third iteration the protrusion heights didn't change anymore. This is a

meaningful goal because con�rm that the riblet e�ect is not a�ected by the nanoscopic

feature of the surface, therefore, the roughness of the surface can be neglected when it

is too �ne. Another interesting results has been obtained thanks to the comparison of

two kind of fractalization, one that protrude the geometry inside the �uid domain, and

the other that protrude it inside the wall. The inward fractalization generates an incre-

ment of the protrusion heights and the di�erence between them; instead the outward

fractalization generates a reduction of all the aforementioned quantities. Although the

inward and the outward fractalization are symmetric respect to the triangular mold,

the protrusion heights variation magnitudes are not. This indicates that the �ow over

a triangular riblet plates is more a�ected by a disturbance that protrude into the �uid

rather then one that protrude into the wall. Moreover, the inward fractalization gen-

erate an increase of the di�erence between the parallel and the protrusion heights, and

it is possible to argue, in line with the Luchini's theory, that the inward fractal riblet

generate an higher drag reduction then the simple triangular one.

The second part of this work concerned the macroscopic problem; it allowed us to

complete the study of the riblet plates and carry out the drag reduction. The triangular
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riblet with the highest ∆h and its third fractal iteration have been solved through the

direct numerical simulation. In order to avoid all the di�culties that arise from the

complexity of the riblet plates, the span-wise and the stream-wise Navier boundary

conditions have been used. The simulation revealed that the simple triangular riblet

plates and the fractal riblet plates are a�ected respectively by a drag that is 5.3% and

6.8% smaller then the smooth plates. As expected from the literature the simple riblet

plates have a drag reduction in the range of 4−7%; it is clear that it would be possible

obtain a better drag reduction with the triangular riblet, however this work does not

aim at optimizing the shape of the riblet, rather it aim at studying the e�ect of nano-

features of the riblet surfaces. Therefore, the important achievement consists in the

percent of drag reduction obtained for the fractal riblet, that is almost 2 percent points

higher then that obtained for the simple riblet. This results seems to con�rm the role

of the protrusion heights: they can be used to predict the e�ciency of a riblet surface.

The last statement must be yet carefully evaluated, in fact there are not experimental

data in support of the representation of the riblet through the slip conditions. However,

the computation of the root mean square of the velocity components seems to reveal

that the physical mechanism generated by the presence of the slip conditions is the

same that allow riblet to works.

The study herein performed seems to con�rm the role of the protrusion heights,

and that the slip conditions are capable to represent the riblet surfaces. However, the

study of Taegee Min and John Kim [18] carry out that tough the di�erence between

the parallel and the perpendicular protrusion heights (more precisely the stream-wise

slip length and the span-wise slip length) is equal to zero, it is even possible to obtain

a drag reduction.



CHAPTER 4. CONCLUSION 91

4.2 Future developements

In the last years the researchers have focused their attention on a new kind of surfaces,

which allow an higher drag reduction then riblets: the Super-Hydrophobic surfaces

(SH in the following). The mechanism by which such a surface operate is completely

di�erent by the riblet one, and it is based on the high capability in repel water. This

particular feature is due to the nano-structures present on the surface, that allow the

surface to remain in the unwetted state, so that the �uid �ow over the trapped air. SH

surfaces are present in nature, for example, the two-scale structure of the bird's feather

(�gure 4.1) which renders it exceptionally waterproof, with air trapped underneath the

network of barbs and barbules.

Figure 4.1: Bird's feather at microscope.

SH materials have received tremendous attention in recent years for the large variety

of applications in which they could be put to pro�table use, ranging from antiwetting

to anti-icing, from self-cleaning to anti-corrosion, and obviously the drag reduction

capabilities. Early experiments suggested that they reduce drag in both laminar and

turbulent boundary layer �ows. The SH surfaces are studied by a lot of researchers for

the application in the naval �eld, in which a drag reduction up to 40% is possible.

The major problem with the SH surfaces concern the transition from the unwetted

state to the wetted one, in which the drag reduction is compromised. This phenomenon

is due to the dispersion of the air in the upper �uid. Nowadays, the principal solution
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Figure 4.2: Unwetted state on the left and wetted state on the right.

consists in generating a fractal-like nano-structured surfaces, so that the air is trapped

and the transition become slower.

The combination between materials and nano-technologies represent one of the most

important �eld of study. It allows the construction of complex surfaces which are able

to reduce the drag and contribute to the global energy saving.
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