
Università di Genova

Scuola Politecnica
DIME

Dipartimento di Ingegneria Meccanica, Energetica

Gestionale e dei Trasporti

Master’s Degree inMechanical Engineering
-

Energy and Aeronautics

Investigation of thermoacoustic instabilities in
a simple model of a gas turbine combustor

Students

Lorenzo Carrattieri
Giulia Innocenti

Supervisor
Prof. Alessandro Bottaro

December 19, 2022



Alla mia famiglia,
a chi mi è stato vicino.

L. C.

Alla mia famiglia,
a chi mi è stato vicino.

G. I.

I



Abstract

This work aims to investigate the thermoacoustic behavior, both linear and nonlin-
ear, of the premixed combustor model described by Dowling and Stow [1]. It is
composed of three ducts: a plenum, a premixer, and lastly a combustion chamber.
The first part of the work involves the application of a low-order lumped param-
eter model to the system, treated as one-dimensional. The purpose is to solve an
eigenvalue problem to predict the resonant modes. Consequently, these results are
validated with the solutions provided by the reference paper.
Secondly, the nonlinear behavior of the modeled combustor is examined with the
help of the software Ansys Fluent; this investigation represents the main body of
the work. After defining a proper unstructured mesh, the combustion reaction is
characterized without a specific combustion model, but simply by defining a spe-
cific region of cells, downstream of the premixed duct, whose temperature or heat
release rate is controlled. Concerning the turbulence modeling, the k −ω SST model
is chosen to perform steady and unsteady simulations.
To gain experience with the thermoacoustic problem, the flame temperature is firstly
controlled by prescribing a specific law that varies with time.
Secondly, the unsteady heat release rate provided by the flame is defined. This is ac-
complished by implementing an expression analogous to Crocco’s model [2], which
depends on some flow variables sampled before the flame.
For both cases, the numerical tests result in a decay of the system to a stable state
or into an unstable state, characterized by growing oscillations, which then saturate,
reaching a limit cycle.
The last part of the work looks at ways to damp the thermoacoustic instabilities; the
first proposed option is to implement a porous diaphragm located in the premixer,
its operation, and its validity are analyzed by varying its porosity. Similarly, another
possibility to mitigate the instabilities is studied by inserting a porous medium after
the flame, in the combustion chamber. Three possible positions are investigated,
and the most effective results are discussed. As final solution, an axisymmetric
Helmholtz resonator is designed, and its ability to prevent instabilities is examined
for different operating conditions, again by varying its position inside the combus-
tion chamber, and its dimensions. The resonator appears to be a very effective tool
to damp even large amplitude acoustic fluctuations.
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Prefazione

Questa tesi si propone di studiare il comportamento termoacustico, lineare e non
lineare, del modello di combustore premiscelato descritto da Dowling e Stow [1].
Il modello è composto da tre condotti: un plenum, un premiscelatore e infine una
camera di combustione.
La prima analisi prevede l’applicazione di un approccio modellistico al sistema,
trattato come monodimensionale, a parametri concentrati di ordine ridotto. Lo
scopo è quello di risolvere un problema agli autovalori per prevedere i modi di
risonanza. Successivamente, questi risultati vengono convalidati con le soluzioni
fornite dall’articolo di riferimento.
In secondo luogo, il comportamento non lineare del modello di combustore viene
esaminato con l’aiuto del software Ansys Fluent; questa indagine rappresenta il
corpo principale del testo. Una volta definita un’adeguata mesh non strutturata,
la reazione di combustione è caratterizzata senza uno specifico modello di combus-
tione, ma semplicemente definendo una specifica regione di celle a valle del condotto
premiscelato, di cui si controlla la temperatura o il tasso di rilascio di calore. Per
quanto riguarda la modellazione della turbolenza, è stato scelto il modello di tur-
bolenza k − ω SST eseguendo simulazioni stazionarie e instazionarie.
Per acquisire esperienza con il problema termoacustico, la temperatura della fiamma
viene controllata in primo luogo prescrivendo una legge specifica che varia con il
tempo. In secondo luogo, si definisce il tasso di rilascio di calore instazionario fornito
dalla fiamma. Ciò si ottiene implementando un’espressione analoga al modello di
Crocco [2], che dipende da alcune variabili di flusso campionate prima della fiamma.
Per entrambi i casi, le prove numeriche danno come risultato un decadimento del
sistema verso uno stato stabile o il raggiungimento di uno stato instabile, caratter-
izzato da oscillazioni crescenti, che poi saturano, raggiungendo una condizione di
ciclo limite.
L’ultima parte del lavoro esamina i modi per smorzare le instabilità termoacustiche;
la prima opzione proposta è quella di implementare un setto poroso situato nel
premiscelatore, il suo funzionamento e la sua validità vengono analizzati varian-
done la porosità. Allo stesso modo, un’altra possibilità per mitigare le instabilità
è studiata inserendo un mezzo poroso dopo la fiamma, nella camera di combus-
tione, in tre diverse posizioni. Come ultima soluzione, si progetta un risonatore
di Helmholtz assialsimmetrico e si esamina la sua capacità di prevenire le instabil-
ità, variandone la sua posizione all’interno della camera di combustione e le sue
dimensioni. Il risonatore risulta essere un dispositivo molto efficace per smorzare
fluttuazioni acustiche anche di grande ampiezza.
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Symbology

Symbols

¯. . . . . . . . . . . . . . . . . . . . . . . . . Base quantity

′ . . . . . . . . . . . . . . . . . . . . . . . . . Perturbation quantity

¯ . . . . . . . . . . . . . . . . . . . . . . . . . Complex conjugate

T . . . . . . . . . . . . . . . . . . . . . . . . Transpose

· . . . . . . . . . . . . . . . . . . . . . . . . . Time derivative

δhk . . . . . . . . . . . . . . . . . . . . . . . Kronecker delta

i . . . . . . . . . . . . . . . . . . . . . . . . . Imaginary unit

cp . . . . . . . . . . . . . . . . . . . . . . . . Specific heat at constant pressure

cv . . . . . . . . . . . . . . . . . . . . . . . . Specific heat at constant volume

γ =
cp

cv
. . . . . . . . . . . . . . . . . . . . . ratio of the specific heats

u . . . . . . . . . . . . . . . . . . . . . . . . Velocity vector

p . . . . . . . . . . . . . . . . . . . . . . . . Pressure

t . . . . . . . . . . . . . . . . . . . . . . . . Time

ρ . . . . . . . . . . . . . . . . . . . . . . . . Density

Q̇ . . . . . . . . . . . . . . . . . . . . . . . Heat transfer rate

Q . . . . . . . . . . . . . . . . . . . . . . . . Heat transfer rate per unit volume

q . . . . . . . . . . . . . . . . . . . . . . . . Heat transfer rate per unit area

σi, j . . . . . . . . . . . . . . . . . . . . . . . Viscous stress tensor

ei . . . . . . . . . . . . . . . . . . . . . . . . Unit vector along coordinate i
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T . . . . . . . . . . . . . . . . . . . . . . Temperature

Rgas . . . . . . . . . . . . . . . . . . . . . . . Gas constant

k . . . . . . . . . . . . . . . . . . . . . . . . Conductivity

S . . . . . . . . . . . . . . . . . . . . . . . Entropy

c . . . . . . . . . . . . . . . . . . . . . . . . Speed of sound

ω . . . . . . . . . . . . . . . . . . . . . . . . Complex frequency

St . . . . . . . . . . . . . . . . . . . . . . . . Strouhal number

δL . . . . . . . . . . . . . . . . . . . . . . . . Laminar flame thickness

l0 . . . . . . . . . . . . . . . . . . . . . . . . Kolmogorov turbulence scale

lK . . . . . . . . . . . . . . . . . . . . . . . . Integral turbulence scale

Re . . . . . . . . . . . . . . . . . . . . . . . . Reynolds number

Da . . . . . . . . . . . . . . . . . . . . . . . . Damköhler number

Le . . . . . . . . . . . . . . . . . . . . . . . . Lewis number
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1 Introduction

The necessity to reduce nitrogen oxide emissions, in response to stricter regulations,
has led to the adoption of new combustion techniques, such as the lean premixed
prevaporized (LPP) combustion, a process that allows combustion with a lower
mean temperature that inhibits thermal NOx formation. This type of technology
has the downside to be more susceptible to thermoacoustic instability, an anomaly
characterized by large-amplitude velocity and pressure oscillations and possible un-
desirable effects, e.g. fatigue cracking, increased emissions, deterioration of the gas
turbine system performance, flame blowoff or flashback, higher heat transfer rates.
This is also a result of the high energy densities, in the order of 0.1 GW/m3, and the
low damping that characterizes a typical gas turbine combustor. Since nowadays
LPP combustion is one of the best ways to reduce dangerous pollutants, thermoa-
coustic instabilities have become one of the major topics of research in the design of
gas turbine combustors. In LPP combustors, liquid fuel vaporizes and mixes with
air before entering the combustion chamber. Ignition, flame anchoring, and safety
are provided by a pilot diffusion flame, because still today, a combustion based only
on an LPP technology is not safe enough.

Figure 1.1: Schematic representation of the positive feedback between acoustics and unsteady
combustion.

Combustion instability is, therefore, an unsteady phenomenon and occurs at well-
defined frequencies, it is caused by the positive feedback between acoustics and
combustion. When this happens, loud sounds develop in the combustion chamber,
which are different from the combustion noise that comes from turbulent fluctua-
tions. Essentially, unsteady combustion generates acoustic waves, which alter the
inlet flow rates of fuel and air. At lean premixed conditions, this changed fuel-air
ratio leads to significant unsteady combustion, and consequently an unsteady heat
release rate. If the phase relationship is suitable, self-excited oscillations grow in
a confined space [3]. This is the basic idea of positive feedback. The frequencies
of the combustion dynamics are proximate to the acoustic resonance frequencies of
the combustion system. Although the coupling between combustion and acoustics
alters the frequencies of the oscillations, in many situations this difference is not so
far from the resonance ones. This phenomenon is difficult to predict and the engi-
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neering approach to eliminate it is typically expensive.
The flame can be considered as a source adding energy in a resonator. If the acoustic
energy created is more than the one which is lost due to damping, then the oscilla-
tions will grow. If they balance, a limit cycle might be reached. A limit cycle is a
trajectory for which the energy of the system would be constant over a cycle - i.e. on
average, there is no loss or gain of energy [4].
The mechanisms involved in the interaction between the flame and the acoustics
include hydrodynamic instabilities, gas dynamics, chemical reactions, heat transfer,
multi-phase flows, and so on. Importantly, these mechanisms are not confined to
the vicinity of the combustion zone [5]. For example, bluff bodies shed vortices, as
consequence, there are hydrodynamic fluctuations scales, if these scales match with
the acoustic ones, there might be instability.
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2 Generalities on combustion instabilities

2.1 Brief recap on acoustics
As previously presented in the introduction, acoustics deals with the generation,
propagation, and effects of sound. Sound is defined as a disturbance of the pressure
field, which propagates at finite speed in a compressible medium, be it solid, liquid
or gas. In this work, the attention will be only on gas mediums. The propagation
of sound translates into pressure waves, they can be transverse, but typically they
do not develop in gases or longitudinal, which means that particles move along the
traveling direction of the wave.

Figure 2.1: Illustration of a transition in time from silence (steady base pressure) to sound
emission (generation of perturbations of pressure).

Pressure then is generally decomposed as the sum of a mean or base pressure, p̄,
(please note it is a time mean) and a fluctuating or acoustic pressure, p′(x, t).

p = p(x, t) = p̄ + p′(x, t) (2.1)

where t stands for time and x for the position vector. Afterward, the acoustic pressure
can be expressed in the frequency domain by a complex amplitude p̂ and an angular
frequency ω.

p′(x, t) = p̂(x)eiωt (2.2)

Obviously, to obtain the instantaneous value of pressure, we start from the complex
amplitude p̂(x), multiply for the term eiωt and then take the real part of this product.

p′(x, t) = p̂(x)eiωt = [p̂(x)real + ip̂(x)imaginary][cos(ωt) + isin(ωt)] =
= [p̂(x)realcos(ωt) − p̂(x)imaginarysin(ωt)] + i[p̂(x)realsin(ωt) + p̂(x)imaginarycos(ωt)]

(2.3)

Consequently,
Re[p′(x, t)] = p̂(x)realcos(ωt) − p̂(x)imaginarysin(ωt) (2.4)
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The instantaneous trend of acoustic pressure is not suitable for characterizing a
sound, because it is "cumbersome," i.e. it requires large storage media, is redundant
with information, and, among other things, does not highlights aspects of interest.
Therefore, it is necessary to identify quantities that will allow one to do so in a
manner appropriate to the accuracy of the analysis to be performed.
The first quantity to be considered is the mean square value, which is the square of
the root mean square value:

p2
RMS = lim

T→+∞

1
T

∫ T/2

−T/2
[p(x, t) − p̄]2dt = lim

T→+∞

1
T

∫ T/2

−T/2
p′(x, t)2dt [Pa2] (2.5)

For periodic signals of period T0, we can employ:

p2
RMS =

1
T0

∫ T0/2

−T0/2
p′(x, t)2dt [Pa2] (2.6)

Given that acoustics cannot disregard the perception of sounds by the human ear, it
is necessary to introduce a quantity that is closer to perception than pRMS. As a first
approximation, we can say that, on average, healthy humans perceive "pure tones,"
in a range of frequency within 20 to 20000 Hz and with pRMS values above 0.00002
Pa (20 Pa), the so-called threshold of audibility; around pRMS = 100 Pa there is the
so-called pain threshold (actually these values are relative to pure tones at 1 kHz
and vary significantly with frequency). As a result, the values of interest vary over
a range of 7 orders of magnitude, thus posing representation problems.
Please remember that the sensitivity of the human ear and, in particular the threshold
of audibility, depends on the frequency and also on the particular type of sound.
Sounds composed of several pure tones of different frequencies are called "complex
tones" and, there are then sounds so-called broadband sounds, in which no particular
frequencies predominate, but instead there are "frequency ranges" of greater or lesser
extent.
In addition to this, it should be considered that, roughly speaking, the perception of
sounds is logarithmic, that is, the sensation of the "sound volume" is not proportional
to pRMS but is related to its logarithm, that is, to its order of magnitude. Therefore,
reference is made to the so-called "level". Namely, the logarithm (in base 10) of
pRMS. To make the result used for pRMS nondymensional, one must refer it to a
reference value pre f , commonly assumed to be equal to 20 µPa, which is the threshold
of audibility. Essentially, one should work with log10(pRMS/pre f ), obtaining a level
expressed in Bel. However, this choice has two disadvantages:

• the entire scale of sounds of practical interest would reduce into only 7 integer
values, therefore, deciBel: 10 · log10(pRMS/pre f ) is used;

• in addition, the value obtained wouldn’t be directly related to the powers,
which are proportional to the square of pRMS

As a result of this, the sound pressure level (SPL) or acoustic pressure level is defined
as:

Lp = SPL = 10 · log10

p2
RMS

p2
re f

 = 20 · log10

(
pRMS

pre f

)
[dB] (2.7)
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Therefore, the threshold of audibility corresponds to 0 dB, and the threshold of pain
corresponds to 20log10(100 Pa / 0.00002 Pa) = 134 dB. It follows that the range of
sounds of interest can be represented by a scale of 134 integer values, thus offer-
ing good resolution. Sometimes, for convenience, the pain threshold is assumed to
correspond to 140 dB. Moreover, given the uncertainties to which pressure measure-
ments over such a wide range are subject, the variability of the phenomena involved,
the strong dependence of perception on frequency, and also subjective aspects, only
integer values of SPL are often reported and hardly more than decimal digits are
given.
For the same reasons, approximations unacceptable in many other fields of engineer-
ing, such as fluid dynamics, are common in acoustics, since, working with levels,
one is interested in orders of magnitude rather than in the values of physical quan-
tities. In practice, the quantity defined in the previous equations is called OASPL,
an acronym for overall sound pressure level, to distinguish it from SPL, which is
usually used to refer to the frequency distribution or the so-called spectrum [6].

Figure 2.2: Common values of sound pressure levels.

2.2 Linearized equations of motion
Following the definitions given in [1], for a compressible viscous fluid, without
external forces, conservation of mass and momentum bring to the Navier-Stockes
equations,

Dρ
Dt
+ ρ ∇ · u = 0; ρ

Du
Dt
= −∇p +

∂σi, j

∂x j
ei (2.8)

Here D
Dt =

∂
∂t + u · ∇ is the material derivative, ei is the unit vector in the direction

of coordinate i. For a perfect gas we have the gas law p = RgasρT, remembering that
Rgas = cp− cv is the gas constant. The internal energy per unit mass is e = cvT, and the
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enthalpy h = cpT = e+ p
ρ . The conservation of energy returns the following equation

ρ
D
Dt

(
e +

1
2

u2
)
= −∇ · (pu) +Q + ∇ · (k∇T) +

∂(σi, jui)
∂x j

(2.9)

where we remember k being the the conductivity and Q the heat release addiction
per unit volume. Combining the momentum equation with the energy equation,
this can be rewritten in terms of enthalpy:

ρ
Dh
Dt
=

Dp
Dt
+Q + ∇ · (k∇T) + σi, j

∂ui

∂x j
(2.10)

In addition, one can also define an entropy equation from the thermodynamic rela-
tion dh = TdS + 1

ρdp. Hence, from the previous equation it results:

ρT
DS
Dt
= Q + ∇ · (k∇T) + σi, j

∂ui

∂x j
(2.11)

From this, we can see that heat input, heat transfer, and viscous effects lead to
an entropy increase. Finally, by taking the curl of the momentum equation and
including the mass equation, the equation for the development of vorticity, ξ = ∇×u
is found,

D
Dt

(
ξ
ρ

)
=

(
ξ
ρ
· ∇

)
u +

1
ρ3∇ρ × ∇p +

1
ρ
∇ ×

(
1
ρ

∂σi, j

∂x j
ei

)
(2.12)

On the right-hand side of this last equation, the first term describes how the stretching
of vortex lines intensifies the local vorticity, the second term indicates that vorticity
can be created when there is a misalignment between the density and pressure
gradients, such as an acoustic pressure oscillation with a component normal to a
flame front (characterized by a density gradient). Ultimately, the third term expresses
the generation of vorticity by viscous effects.
From now on, we will assume the fluid to be inviscid, σi, j ≡ 0, the gas is ideal, so
there is also no heat conduction, and cv, cp are assumed to be constant. We then find
entropy S = log( p

ργ ), plus an arbitrary constant set equal to zero.
The flow is then taken to be decomposed into a steady uniform flow (denoted by
overbars, which stand for a time mean) and a small perturbation (indicated by
primes). As already mentioned, pressure is decomposed as,

p = p(x, t) = p̄ + p′(x, t) (2.13)

and similarly for the other flow variables. Consequently, the linearized version of
the equations of conservation for mass, momentum, energy, entropy, and vorticity
results in:

D̄ρ′

Dt
+ ρ̄ ∇ · u′ = 0 (2.14)

D̄u′

Dt
+

1
ρ̄
∇ p′ = 0 (2.15)
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ρ̄T̄
D̄S′

Dt
= Q′ (2.16)

D̄ξ′

Dt
= 0 (2.17)

where D̄
Dt =

∂
∂t + ū ·∇. Moreover, ξ̄ has been set to zero. Now, by using the definition

for S′ = cv
p′

p̄ − cp
ρ′

ρ̄ and combining the four previous equations, we come to an
inhomogeneous equation for pressure, the wave equation,

1
c̄2

D̄2p′

Dt2 − ∇
2p′ =

γ − 1
c̄2

D̄Q′

Dt
(2.18)

where c is the speed of sound. If there is no unsteady heat release rate, then the
linearized pressure equation and the linearized entropy equation are uncoupled.

An important aspect that needs to be kept in mind is that any perturbation can be
assumed as the sum of three types of disturbance [7]:

• an acoustic disturbance that is isentropic and irrotational.

• an entropy disturbance that is incompressible and irrotational.

• a vorticity disturbance that is incompressible and isentropic.

These three types are independent and can be considered separately. So, for the
pressure disturbance one has S′ = 0 and ξ′ = 0; hence ρ′ = p′

c̄2 . Considering no heat
release fluctuations (Q′ = 0), the wave equation becomes:(

1
c̄2

D̄2

Dt2 − ∇
2

)
p′ = 0 (2.19)

with the corresponding velocity fluctuation, u′ obtained thanks to the momentum
equation. These solutions are acoustic waves that propagate at the speed of sound,
relative to the fluid. Next, for the entropic disturbances, p′ = 0, u′ = 0. From the
linearized equation for entropy, the reader can see that the entropy wave is convected
with the mean flow, so it is stationary relative to the fluid, sometimes this is labeled
as hot spot. Likewise, for the vortical disturbance, p′ = ρ′ = 0 and ∇ · u′ = 0; the
linearized vorticity equation shows that also this type of disturbance is convected
with the mean flow. Consequently, if the mean flow is zero, we will have only
acoustic waves.

2.3 The Rayleigh criterion

2.3.1 Analytical derivation

By the end of the nineteenth century, Lord Rayleigh had formulated a criterion to
explain how acoustic waves could be excited and sustained by heat addition. Lord
Rayleigh stated his principle with the following words:
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”If heat be communicated to, and abstracted from, a mass of air vibrating (for
example) in a cylinder bounded by a piston, the effect produced will depend upon
the phase of the vibration at which the transfer of heat takes place. If heat be given
to the air at the moment of greatest condensation, or be taken from it at the moment
of greatest rarefaction, the vibration is encouraged. On the other hand, if heat be
given at the moment of greatest rarefaction, or abstracted at the moment of greatest
condensation, the vibration is discouraged”.

Rayleigh’s criterion can be described by the following mathematical relation,∫ T

0

$
V

γ − 1
c̄2 p′(x, t)Q′(x, t) dV dt >

∫ T

0

	
S

p′(x, t)u′(x, t) · n dS dt (2.20)

where T is the period of excitable harmonics, V will be the combustor volume, S the
boundary surface, and n is the normal to the surface boundary. Here, Q is intended
as heat release rate per unit mass. As seen in the previous section, the flow variables
can be decomposed as the sum of a mean term and a small perturbation term, e.g.
u = (u, v,w) = ū + u′(x, t). When Lord Rayleigh talks about "giving or taking heat"
in his criterion, that means Q′ > 0 or Q′ < 0, instead Q̄ will always be positive. The
term: $

V

γ − 1
c̄2 p′(x, t)Q′(x, t)dV

on the left hand side of the previous formula represents the acoustic driving, the
term on the right hand side, instead,	

S
p′(x, t)u′(x, t) · ndS

embodies the losses or the acoustic damping. So, if the acoustic driving is greater
than the damping effect over a time interval, then thermoacoustic instabilities will set
in. To derive the criterion in an easy and treatable way, a special set of assumptions
need to be done:

1. Uniform steady state properties along the ducts that constitute the combustor.

2. Constant mean pressure (which implies zero mean flow) and temperature,
although this is unrealistic for a combustor chamber.

3. The gas is inviscid and not heat conductive.

4. Oscillations are one dimensional.

5. cp, cv, γ are constant, which is almost valid for gas turbines combustors.

6. The fluctuations u′, p′, ρ′, Q′ are small, so to deal the with the linear theory.

With that being said, the equations for momentum and energy are respectively

ρ̄
∂u′

∂t
+
∂p′

∂x
= 0 (2.21)
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∂p′

∂t
+ γp̄

∂u′

∂x
= (γ − 1)ρ̄Q′ (2.22)

The first equation is multiplied by u′, obtaining

∂
∂t

(1
2
ρ̄u′2

)
+ u′
∂p′

∂x
= 0 (2.23)

The energy equation is multiplied by p′

ρ̄ , resulting in

∂
∂t

(
1

2ρ̄
p′2

)
+

(
γp̄
ρ̄

)
p′
∂u′

∂x
= (γ − 1)p′Q′ (2.24)

where we recognize γp̄
ρ̄ = c̄2. The equation is then divided by c̄2

∂
∂t

(
1

2ρ̄c̄2 p′2
)
+ p′
∂u′

∂x
=

(γ − 1)
c̄2 p′Q′ (2.25)

These last modified equations for momentum and energy are then summed together,
giving the following equation

∂
∂t

(
1
2
ρ̄u′2 +

p′2

2ρ̄c̄2

)
+
∂(u′p′)
∂x

=
(γ − 1)

c̄2 p′Q′ (2.26)

Finally we integrate over the control volume of the considered system, and thanks
to the Gauss’s theorem, this gives

∂
∂t

$
V

(
1
2
ρ̄u′2 +

p′2

2ρ̄c̄2

)
dV +

	
S

p′u′ dS =
$

V

γ − 1
c̄2 p′Q′ dV (2.27)

We now define the acoustic energy, W,

W =Wpotential +Wkinetic =

$
V

p′2

2ρ̄c̄2 dV +
$

V

1
2
ρ̄u′2 dV (2.28)

If p′ and Q′ are in phase, with the acoustic term bigger than the acoustic losses
(represented by the net flux of acoustic energy across the control surfaces), then the
acoustic energy of the system will grow in time. Let us neglect the loss term and
suppose that p′ and Q′ are defined in the following way,

p′ = p̂cos(ωt); Q′ = Q̂cos(ωt + ϕ) (2.29)

where ϕ is the phase. Let’s denote G as

G =
1
T

∫ T

0
p′Q′ dt (2.30)
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By substituting the previous definitions for p′ and Q′, we obtain:

G =
p̂Q̂
T

∫ T

0
cos(ωt)cos(ωt + ϕ) dt =

p̂Q̂
T

∫ T

0

cos(2ωt + ϕ) + cos(ϕ)
2

dt =

=
p̂Q̂
T

T
2

cos(ϕ) =
p̂Q̂cos(ϕ)

2

(2.31)

Consequently, if −90◦ < ϕ < 90◦ there will be acoustic driving, vice versa if ϕ is out-
side this range, there will be acoustic damping. If ϕ±90◦ no driving or damping will
onset. While if ϕ = 0◦, the amplification will be maximum because p′ is completely
superimposed to Q′ , thus the product p′ ·Q′ is positive in every location.
There seems to be four general circumstances under which thermoacoustic instabil-
ities arise in practical systems:

• sufficiently high densities of combustion energy release.

• introduction of pulses.

• unstable mean flow field or geometric configuration favourable to shedding
large vortices.

• operation near the lean blowout limit of combustion.

2.3.2 Thermodynamic interpretation of the Rayleigh criterion

We can make use of a thermodynamic cycle to better explain the Rayleigh criterion
[8]. Sound waves are isentropic, so in the p-v diagram a volume would advance
back and forth on an isentropic line. When heat is added periodically to a gas,
an increase of its specific volume v occurs. If this heat supplement is in phase
with pressure oscillations, then the state of the gas volume will move clockwise
around a thermodynamic cycle (please see curve 1-2’-3’-4’ in figure 2.3). This series

Figure 2.3: Thermodynamic interpretation of the Rayleigh criterion.
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of transformations can be defined as a thermoacoustic heat engine, transferring
mechanical energy into sound waves, and a self-excited instability could build up. If
heat release fluctuations are not perfectly in phase with pressure fluctuations, the area
delineated by the curve 1-2’-3’-4’ will be smaller and the efficiency reduced. For the
case where the heat release fluctuations are out-of-phase with pressure fluctuations,
the system will move along a counterclockwise direction, see curve 1-2"-3"-4", and
mechanical energy is removed from the acoustic wave. The resulting mechanical
work performed by the thermodynamic cycle can be expressed as follows,∮

pdv =
∮

(p̄ + p′)d(v̄ + v′) =
∮

p̄dv′ +
∮

p′dv′ = 0 +
∮

p′dv (2.32)

We now split the specific volume into an isentropic part, for which it is valid v′ = − v̄dp′

γp̄

and a second part related to the heat addiction (removal) v′(Q)∮
p′dv′ = −

v̄
γp̄

∮
p′dp′ +

∮
p′dv′(Q) = 0 +

∮
p′

dv′(Q)

dt
dt ∽

∮
p′Q′dt (2.33)

The rate of change of v′ in time is proportional to heat release perturbations. We see
that the work done by the thermoacoustic engine is positive (which corresponds to
an energy addition to acoustics), if the integral

∮
p′Q′dt is positive over one period

of oscillation, as proposed by Rayleigh. As previously stated, if the losses of acoustic
energy exceed the rate of energy input to the acoustic field, provided by a fluctuating
flame, a self-excited instability cannot arise, although p′ and Q′ are in phase. This is
why the Rayleigh criterion is a necessary condition, but not sufficient, for instability
to occur.
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2.4 Role of hydrodynamic instabilities
Hydrodynamic instabilities are one of the possible sources that can lead to an un-
steady heat release rate provided by the flame, they are generally initiated at the
injector and can cause perturbations that are advected downstream at convection
speeds of the order of the mean flow. When these arrive at the flame, they perturb
the flame surface causing heat release rate fluctuations far downstream of the region
of absolute instability. Coherent vortices, generated by these types of phenomenon,
have the ability to alter combustion stability in several possible ways:

• they perturb the flame area.

• the contribute to the turbulent burning velocity.

• they cause a delay in convection from the origin of the vortices.

Figure 2.4: Schematic of a turbulent flame front with vortex roll-up.

In figure 2.4, the reader can see a simple schematic representing the development
of a hydrodynamic instability (Kelvin-Helmholtz instability) at a flame front, sep-
arating a fresh mixture and burnt products. The vortex sheet roll-up is a periodic
phenomenon, so naturally everything periodic can lead to fluctuating heat release
rate.
In a general combustor, a recirculating region is required to guarantee that the flame
will be stable and not blown off. From this turbulent recirculating region, a vortex
shedding will establish. If the vortex shedding frequency is close to one of the natu-
ral modes of the combustor, then instability could likely be built up, and vice versa
there would be a detuning.
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Figure 2.5: Dump Combustor (left image). Schematic of a simple non-reactant turbulent jet
(right image).

In figure 2.5, a dump combustor is represented, it is a very simple combustor, charac-
terized by a straight section increase that has the objective to generate a recirculating
region for flame stability. It is taken as an example to illustrate the role of hydro-
dynamic instabilities in thermoacoustic problems. Please note that inside the duct
before the section increase, swirlers or bluff bodies might be implemented to facili-
tate and guarantee a stable flame for more complex incoming flows, please see figure
2.6.

Figure 2.6: Schematic of a dump combustor with a swirler or bluff body.

Keeping the focus on the simple dump combustor, from a hydrodynamic point of
view, there will be a vortex shedding starting at the intersection where the sectional
area increase. This phenomenon is described by a specific initial frequency , called
fi, it depends on the characteristic velocity profile at the intersection, which in turn
depends on the shape on the duct, on the turbulence level, on the initial momentum
thickness θ0, and on the jet velocity u0. We can then introduce a non-dimensional
initial frequency based on the Strouhal number,

Sti =
fiθ0

u0
(2.34)

From a linear stability theory [9], the initial Strouhal number has a value around
Sti ∽ 0.017. After this first shedding, the initial vortices will merge, grow, and be
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Figure 2.7: Schematics of the vortex shedding from the jet flow entering the combustion
chamber.

convected downstream. So as a consequence of the merging and entrainment, the
shear layer spreads and then the vortex frequency will decrease. With that being
said, the shear layer will therefore be characterized by several instability frequencies
associated with different sizes of the vortices. If we now focus on the end of the
region of the potential core of the outgoing jet, all of this will have been merged,
there will be one big vortex, governed by what is called jet column instability. The
fluctuations in this region have another characteristic frequency, f j, which is typically
the second or third sub-harmonic of the initial shear layer frequency: f j ∽

fi
3 . This

frequency is scaled again to a Strouhal number, but with different variables:

Sti =
f jD
u0

(2.35)

where D is the diameter of the duct before the combustion chamber. In this case, the
Strouhal number is St j ∽ 0.25−0.5. f j is a particular frequency, if one excites the flow
at this frequency, the vortices will become much more coherent, and the following
spectra much sharper. So, the development of large coherent structures depends on
the relationship between the acoustic frequency and the flow instability frequency.
An important point to keep in mind is that imagining dealing with a non-reactant
fluid, with no combustion, the vortices themselves will generate sound, but it is not
that much to create a positive feedback.

Figure 2.8: Illustration of combustion taking place after fine-scale mixing.

Looking from a combustion point of view, it is desired to have fine mixing between
the "cold" fresh mixture and the hot burnt gases, that is when combustion happens.
In particular, the large-scale structures will be beneficial for the enhancement of large-
scale mixing also called bulked mixing. Nevertheless, bulk mixing may not really
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intensify fine scale mixing or molecular mixing. Actually, only if mixing happens
at a molecular level, combustion will take place. Otherwise, one will just have big
pockets of air and big pockets of fuel. As a consequence, in presence of large scales
structures, we still need to transition to fine-scale mixing. This is often initiated
by the braids of vortices, where high strain rates between the high and low-speed
streams exist, together with the small scale turbulence provided by vortex merging.
When this occurs the reaction of combustion develops, characterized by a sharp heat
release. One should keep in mind that this is a periodic phenomenon, vortices are
convected by the mean flow, inside them there is a continuous mixing, and as soon
as we reach sufficiently small scales, the mixture will then burn. This will decide
the location and the moment of heat release, which then connects the feedback with
acoustics. Acoustics tends to reinforce the shear layer and the coherent structures
in it, which are, as explained before, strongly related to combustion, moreover some
parts of the flame can add acoustic energy, while others can subtract it, what counts
is the net addition. Finally, there are many other types of hydrodynamic instabilities.
For example, for small steps combustors, the developing vortex downstream the jet
exit can get impinged against the wall, this would bring to some kind of flapping
instability, which could then combine with the Kelvin-Helmholtz instability.
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2.5 Flame dynamics

2.5.1 Flame propagation

Figure 2.9: Important parameters characterizing turbulent premixed combustion. Condi-
tions satisfying the Williams-Klimov criterion for the existence of wrinkled flames lie above
the solid line lk = δl, and conditions satisfying the Damköhler criterion for distributed reac-
tions fall below the solid line l0 = δl.

The study of dynamic models is very important for understanding the physics
of combustion because they describe the interaction between heat release and the
perturbations in the flames.
In order to achieve awareness about flame dynamics, it’s necessary to analyze the
interaction between turbulence and combustion.
It’s possible to describe three different kinds of interactions:

• reaction sheets or wrinkled laminar flames;

• flamelets in eddies;

• distributed reactions.

Reaction sheets occur when the turbulence scale lk is greater than the relative scale
to combustion. Reactions develop in a range internal to the Kolmogorov scale, thus
turbulence is able only to wrinkle the surface of the flame, so there’s a laminar flame
in a turbulent flow.
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Gas turbine combustion fits in the wrinkled laminar flames due to the high Damköh-
ler number (fast chemical reaction) together with reduced turbulence Reynolds num-
ber.
Flamelets in eddies are an intermediate state and it occurs when lk < δL < l0; in this
case combustion may take place inside small enough vortical structures, and the
flame front is no longer continuous, and it is partially destroyed by turbulence.
Flamelets in eddies assume interest in a few applications such as some four-stroke
internal combustion engines.
Distributed reactions occur when the turbulence integral length scale l0 is smaller
than the scale relative to combustion forcing turbulence time to be larger than the
chemical one. This fact implies that chemical kinetics is influenced by the features
of the flow. The flame front doesn’t exist.
Distributed reactions are less used for engineering applications since they require
high flow velocities in pipes with small diameters, generating unacceptable losses,
in addition they are very hard to model because of the strong interaction between
chemical and turbulent reactions.

2.5.2 Flame and acoustic waves in combustion system in CFD

Figure 2.10: Photograph of flame disturbances generated by acoustic velocity oscillations,
courtesy of [10].

Some of the many mechanisms of flame–acoustics interaction are listed below:

• flame front kinematics, which relates to the distortion and perturbation of the
flame area;

• flame speed modifications, caused by an alteration of the incoming turbulence
intensity, which consequently influence the heat release rate;

• equivalence ratio perturbations, due to fluctuations of velocity or pressure,
which then alter the heat of reaction ∆H.
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It’s easy to understand that the interactions between flames and acoustic waves are
very difficult to predict, model and test.
To make a correct numerical simulation, it’s necessary to know the flame shape and
its position, since there is a deep dependence of the unsteady phenomena on the
interaction between turbulence and the flame fronts.
In this way, it’s possible to define a model able to properly describe the interplay
between flames and acoustic waves occurring in the combustion system.
As an interesting example, figure 2.11, reports the results of a direct numerical
simulation (DNS) that investigates the interaction between acoustic waves and a
flame, localizing the flame front thanks to isolevels of heat release.

Figure 2.11: Acoustically-induced pressure fluctuation (dashed lines). The instantaneous
position of the flame front is shown with isolevels of heat release (black solid lines).

However, there are two main problems. The first is related to the fact that a model
that doesn’t consider the integral length scales isn’t a good predictor of the flame
front, because of their strong influence on the phenomenon. CFD allows to inves-
tigate many thermoacoustic instability problems, which are difficult and extremely
expensive to test experimentally. But at the same time, performing Large Eddy Sim-
ulations (LES) or DNS require large computational time and resources.
Up to this point, the interest of the scientific community is moving more and more
in the direction of defining good transfer functions, in order to find a relation that
easily describes this difficult thermoacoustic interaction.
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2.5.3 Flame transfer functions

A system can be generally defined using a mathematical relationship, called transfer
function, which is a mathematical model that relates and predicts the output of the
system for each possible input.
The flame dynamic response to a perturbation can be represented by a Flame Trans-
fer Function (FTF) , which relates the heat release rate fluctuations to the velocity
oscillations at a reference location upstream of the flame (for instance at the exit of
the injection system). As a matter of fact, for turbulent premixed flames, the direct
influence of pressure, temperature, and density variations on the heat release rate
is usually considered to be small. Taking into account that lean-premixed flames
are particularly prone to combustion instabilities, since their rate of heat release Q is
very sensitive to acoustic perturbations, it is interesting to relate this physical aspect
with a mathematical model in order to predict the thermoacoustic interaction.
That being the case, the flame frequency response or flame transfer function is defined
as the ratio of heat release rate and velocity fluctuations (or pressure fluctuations),
which are typically normalized with their mean values.
This completely characterizes the dynamic response of a flame to acoustic perturba-
tions, leading to the following expression:

F(ω) ≡
Q̇′/ ˙̄Q
u′/ū

(2.36)

Figure 2.12: Flame Transfer Function approach.

In particular, for a turbulent premixed flame, the heat release rate can be expressed
as:

Q̇ = ρu · A · S · ∆H (2.37)

where ρu is the unburnt gas density, A is the flame surface area, S is the turbulent
burning velocity or turbulent flame speed, and ∆H is the heat of reaction per unit
mass. The burning velocity S is defined by different flow quantities, such as laminar
flame speed SL, the length scale of turbulent fluctuations, chemical species and it can
be also written as a function of dimensionless quantities [11].
From equation 2.36 various comprehensive criteria have been introduced. The val-
idation of a model is in practice often challenging, this is due to the fact that many
parameters can not be selected from first principles. Instead, parameters must be
adjusted to match experimental or numerical data. In recent years, detailed laser
diagnostic studies in gas turbine combustors have significantly contributed to a bet-
ter understanding of phenomena like flame stabilization, combustion instabilities,
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pollutant formation and finite-rate chemistry effects.
Let us first consider a general FTF that correlates the normalized heat release fluctu-
ations relative fluctuations Q̇′/ ˙̄Q with N quantities Gi that could have influence on
it, together with N weights ki, with i = 1...N:

Q̇′

˙̄Q
= k1

G′1
Ḡ1
+ k2

G′2
Ḡ2
+ ... + ki

G′i
Ḡi
+ ... + kN

G′N
ḠN

(2.38)

where it can be assumed that:

lim
ω→0

N∑
i=1

ki = K (2.39)

The last equation is an easy way to verify the validity of any transfer function, where
K satisfies the quasi-steady limit deducible from global conservation laws.
Adopting a flame model leads to many difficulties because too many parameters
need to be taken into account simultaneously, moreover they are correlated only
by one equation, like 2.39. To overcome this issue, several simplified models have
been developed considering only the most pertinent quantities and neglecting all
the others.
Experimental analysis is extremely complex since it is very hard to get a good instru-
mentation of a critical flow field (temperatures are very high) and to get measurement
of certain quantities like heat release fluctuations. This is why nowadays researcher,
as stated before, count mostly on numerical simulations, that can grant a better com-
prehension of the flame-acoustics interaction.
As a consequence, few empirical models remain, some of them are briefly listed
below:

• The flame kinematics is independent of the flow field, and as a first approxi-
mation, taking into account this aspect leads to a very useful model as follows:

Q̇′

˙̄Q
= 0 (2.40)

• The heat release rate is proportional to mass flow rate perturbation, sampled
in section i:

Q̇′

˙̄Q
=

ṁ′i
˙̄mi

(2.41)

• Crocco’s model:
Q̇′

˙̄Q
= −k ·

ṁ′i
˙̄mi
· eiωτ (2.42)

where k is a constant interaction index, which represents a dimensionless pa-
rameter of proportionality between the heat release fluctuations and the mass
flow fluctuations, andτ is a specific time lag.

• A model that simulates a 3D flame surface through the parameter τ:

Q̇′

˙̄Q
= k ·

Φ′i
Φ̄i
= −k ·

u′i
ūi
·

sin(ω∆T)
ω∆T

· eiωτ (2.43)
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• Finally, the most complete model, which takes into account several dependen-
cies, although it’s hard to calibrate since it has many degrees of freedom:

Q̇′

˙̄Q
= kp ·

p′i
p̄i
· eiωτp + ku ·

u′i
āi
· eiωτu + kv ·

v′i
āi
· eiωτv + kw ·

w′i
āi
· eiωτw (2.44)

Crocco’s theorem (2.8) is one of the most important flame models and a sort of mile-
stone in transfer function evolution since it represents the delay time of perturbations
from a reference point to the flame sheet.
It is largely employed to study combustion instabilities in liquid-propellant rocket
engines. The model globally describes the dynamic relationship between fuel injec-
tion and heat release; the major difficult is to choose accurately the parameters k and
τ, otherwise the results will be incorrect.
At a general time t, the pressure in the chamber suddenly decreases, causing an
increase in the fuel flow through the injector. The fuel mass burns later, t + τ, where
τ is the time delay. Some quantities contribute to improve the time delay, they’re
related to the convection time needed to travel the spatial gap from the fuel injection
location to the flame front, the mixing time for fresh air and fuel to mix with hot
product gases, and the chemical time corresponding to the ignition delay.
This model can be applied with the hypothesis to consider a flat thin flame, more in
detail the flame thickness δL has to be much less than wavelength λ.
Below, are reported the limits of this model in order to assure to have correct results,
the subscript "ac" means acoustic waves and the other one "cv" means convective
waves:

λac =
cs

f
=⇒ f ≪

cs

δL
≈

800 m/s
2 cm

= 40 kHz (2.45)

λcv =
ū
f
=⇒ f ≪

ū
δL
≈

20 m/s
2 cm

= 1 kHz (2.46)

So if frequencyω≪ 1 kHz the hypotesis of thin flame is respected and the model can
be used as a good approximation, otherwise if the flame is too distributed into a 3D
surface (figure 2.13), this model isn’t a good choice.
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Figure 2.13: Three-dimensional flame surface, LES simulation.

In the last years, many flame frequency response models have been developed and
they take into account small oscillation amplitudes. This implementation is not
hard, because these models are often written as a linear superposition of different
contributions from the flame and acoustic interaction.
On the other hand, the main issue is to validate these models, because there are
many difficulties related to experimental measurements.
Another possibility is to extract the flame frequency responses from computational
fluid dynamics results (CFD data), in fact, the numerical simulations have the power
to take into account flame and acoustic interactions.

24



3 Linear and nonlinear stability analysis

3.1 Introduction
Before addressing the objective of this work, it is advised to recover some basic def-
initions of linear and nonlinear stability analysis.
A system is defined as linearly stable if any small amplitude disturbance (as small
as one wants) decays with time; vice versa if it grows, the system is told to be linearly
unstable. Within a linear framework, in the event of an instability, the perturbations
will grow exponentially, till nonlinearities become effective and consequently a limit
cycle could be reached, meaning that the oscillations would saturate.

Figure 3.1: Linear instability with succeeding limit cycle.

A system is defined as nonlinearly unstable if some finite amplitude disturbance
grows with time. In this case, for triggering instability, the initial amplitude should
be greater than a threshold amplitude, as a consequence there is a clear dependence
on initial conditions.

Figure 3.2: Nonlinear instability with decays and succeeding limit cycle.
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3.2 Linear analysis

3.2.1 Setting the eigenproblem

Let’s consider the evolution of a system described by the following expression.

dx
dt
= f[x(t), t; r] (3.1)

where x is the state vector (N components, column vector), f is the evolution func-
tion (another N-column vector), t is time and r is a control parameter. From here on,
only autonomous systems will be considered, where the evolution function doesn’t
depend on time.

dx
dt
= f[x(t); r] (3.2)

We now want to predict the asymptotic behaviour of the system, that means time
goes to infinite, as a function of the initial conditions and the control parameter.
The state vector is now considered as sum of a base state vector x̄ (please note that
the overbar denotes a time mean), and a perturbation x′(t), multiplied for a small
amplitude ϵ.

x = x̄ + ϵx′(t) (3.3)

So that they respectively satisfy:

dx̄
dt
= f[x̄(t); r]

dx′

dt
= Ax′(t) (3.4)

where A is the Jacobian matrix of the coefficients (NxN). It comes from the sub-
stitution of the new definition of the state vector inside the previous formulation,
followed by a Taylor expansion to second order:

dx̄
dt
+ ϵ

dx′

dt
= f[x̄ + ϵx′] = f(x̄) + ϵ

∂f
∂x

∣∣∣∣∣
x̄

x′ +O(ϵ2) (3.5)

where we call A = ∂f
∂x

∣∣∣
x̄
.

The focus is on the perturbed system. We first expand the perturbation vector
x′ with the aim of setting an eigenvalue problem.

x′(t) = x′(0) + t
dx′

dt

∣∣∣∣∣
t=0
+

t2

2
d2x′

dt2

∣∣∣∣∣
t=0
+ ... (3.6)

dx′

dt
= Ax′;

d2x′

dt2 = A2x′;
d3x
dt3 = A3x′; ...

dnx′

dtn = Anx′ (3.7)

Resulting in

x′(t) = x′(0) + tAx′(0) +
t2

2
A2x′(0) + ... =

+∞∑
n=0

tnAn

n!
x′(0) (3.8)
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We define the analytic function of the matrix

eAt =

+∞∑
n=0

tnAn

n!
(3.9)

and finally, the solution of the disturbance problem is obtained.

x′(t) = eAtx′(0) (3.10)

3.2.2 Left and right eigenvectors

For the purpose of assessing the stability of the system it is useful to decompose the
matrix A in the sum of products of left and right eigenvectors. We name λk the N
eigenvalues of the matrix A, they are the solution of the characteristic equation:

det(A − λkI) = 0 (3.11)

where I is the identity matrix. For each eigenvalue λk there exist an eigenvector such
that

Auk = λkuk (3.12)

uk is called a right eigenvector. If λk is complex then uk has complex entries. The
left eigenvectors vk are non-trivial solutions, defined up to an arbitrary factor of the
system

vT
k Ā = λ̄kvT

k (3.13)

The reader can note from the previous definitions that, the left eigenvectors vk of
matrix A are also the right eigenvectors of the conjugate transpose of A:

ĀT
k vk = λ̄kvk (3.14)

3.2.3 The adjoint matrix

We first give a definition of the scalar product between two vectors (in general
complex):

(uk,vk) ≡ ūT
k vk (3.15)

The adjoint matrix can be expressed as follows:

(Au,v) = Au
T
v = ūTĀTv = (ū,ATv) (3.16)

From which we call A† ≡ ĀT the adjoint matrix. If A = A† the matrix A is self-adjoint.
For this peculiar case, the matrix A results real and symmetric, the eigenvalues
are real, and the eigenvectors form an orthogonal base. Moreover, left and right
eigenvectors coincide. A non-self-adjoint matrix has usually complex eigenvalues,
plus its conjugates.
Eigenvectors are stated as orthogonal if their scalar product results: (uh,vk) = aδhk,
where δhk is the Kronecker delta, and a is some amplitude coefficient. If a it’s equal
to one, the eigenvectors are then orthonormalized.
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3.2.4 Modal analysis and the L propagator

Let us feature the N eigenvalues as distinct and the eigenvectors as linearly inde-
pendent (so as to form a basis). At t = 0 we have: x′(0) =

∑N
k=1 ukck.

(vh, x′(0)) =
N∑

k=1

(vh,ukck) =
N∑

k=1

ck(vh,uk) = ck(vh,uh) (3.17)

Whence we end in
ck =

(vh, x′(0))
(vh,uh)

(3.18)

Assuming the eigenvectors are orthonormalized, then ck = (vk, x′(0)) can be expressed
as follows

x′(0) =
N∑

k=1

uk(vk, x′(0)) =
N∑

k=1

ukv̄T
k x′(0) = Ix′(0) (3.19)

So, assuming x′(0) to be any kind of vector, one can retrieve the identity matrix from

I =
N∑

k=1

ukv̄T
k (3.20)

The matrix A can then be represented as

A = AI =
N∑

k=1

Aukv̄T
k =

N∑
k=1

λkukv̄T
k (3.21)

that means, assuming linearly independent eigenvectors and distinct eigenvalues,
that the matrix A can be expressed as the sum of the product of eigenvalues and
eigenvectors, this type of analysis is called modal analysis. We now name U the
matrix containing in its columns the N right eigenvectors of A, and V the matrix
containing in its columns the N left eigenvectors of A, considering again the eigen-
values to be distinct.
When the eigenvectors are orthonomal:

(vh,uk) = δhk → v̄T
h uk = δhk → V̄TU = I (3.22)

If now one examines the next product

v̄T
h Auk = λkv̄T

h uk = λkδhk (3.23)

Consequently
V̄TAU = Λ → A = UΛV̄T (3.24)
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with Λ the diagonal matrix of the eigen values of A.
Going back to the problem for the perturbed system:

dx′

dt
= Ax′(t) (3.25)

let us take x′(t) = Uq(t), hence dx′
dt = Uq̇.

Therefore
Uq̇ = AUq → q̇ = U−1AUq → q̇ = Λq (3.26)

as result, we obtain
q(t) = eΛtq(0) = U−1x′ = eΛtU−1x′(0) (3.27)

By substituting the previous definition for q(t), we get to the solution

x′(t) = UeΛtU−1x′(0) = UeΛtV̄Tx′(0) (3.28)

We now define the propagator L = UeΛtV̄T.

3.2.5 Stability conditions

Retrieving the definition for matrix A

A =
N∑

k=1

λkukv̄T
k (3.29)

One can calculate A2 as follows

A2 =

N∑
k=1

λkukv̄T
k

N∑
h=1

λhuhv̄T
h =

N∑
k=1

N∑
h=1

λkλhukv̄T
k uhv̄T

h = ... (3.30)

=

N∑
k=1

N∑
h=1

λkλhukδhkv̄T
h =

N∑
k=1

λ2
kukv̄T

k

This is consequently valid also for An =
∑N

k=1 λ
n
k ukv̄T

k . The matrix An has the same
eigenvectors as A, and as eigenvalues λn

k .
In general, for a linear combination of powers of A named g we have:

g(A) =
N∑

k=1

g(λk)ukv̄T
k (3.31)

and in particular, for the exponential of a matrix one has:

eA =

N∑
k=1

eλkukv̄T
k (3.32)
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As a result, the solution for the linear problem reads also

x′(t) = eAtx′(0) =
N∑

k=1

eλktuk(vk, x′(0)) =
N∑

k=1

eλktukck (3.33)

The reader can see that the left eigenvectors weigh the initial conditions.
The main objective of this demonstration is that the eigenvalues λk determine the
asymptotic behaviour (time goes to infinite) of the perturbed system.
The λk are generally complex numbers, so they can be seen as

λk = αk + iωk (3.34)

where the real part αk is named growth rate, and the imaginary part ωk angular fre-
quency. Therefore, if we consider an autonomous system, with the evolution matrix
A and N distinct eigenvalues. The system is told to be:

• Asymptotically stable if all eigenvalues of a have negative real part.

• Marginally stable if one (or more) eigenvalues have real part equal to zero
(and the others have negative real part).

• Unstable if at least one eigenvalue has real part larger than zero.

The aforementioned theory refers to [12].

3.3 Non-normality and transient growth
Keeping the focus on the perturbed system

dx′

dt
= Ax′(t) (3.35)

it is said to be non-normal when its evolution operator A doesn’t commute with its
adjoint A†:

AA† , A†A (3.36)

That means that the thermoacoustic interaction will be non-normal. The reader
should also notice that for some problems the boundary conditions can bring some
non-normality in the operator, even the heat release rate from the combustion process
can do that. Non-normality is always verified if the eigenvectors of the thermoa-
coustic system are non-orthogonal.
This property of the system can lead to transient growth of oscillations, even when
the eigenvalues indicate linear stability, please see figure 3.4. This eventuality could
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prompt thermoacoustic instability in a non-normal combustion system, since per-
turbations can linearly and transiently grow away from the steady base flow and
eventually grow transiently around an unstable periodic solution. That being the
case, individual eigenvalues are the wrong tool to analyze a non-normal system at
intermediate times, because they return the asymptotic stability of the system. In the
modal analysis, we look at the growth rate of each mode, if it’s stable or unstable.
The concept of transient growth is that one can have every mode stable, but in the
transient time, there is still some growth, figure 3.3.

Figure 3.3: Vector representation of transient growth. The magnitude of f = Φ1 − Φ2

intensify before diminishing to zero as the two Φ1 and Φ2 decay (courtesy of Schmid, 2007).

It should be emphasized that non-normality can give transient growth with the
correct initial conditions. The initial disturbance is generally projected over all the
eigenvectors, but if its projection is just over one of them, even a non-normal system
does not experience growth transiently in time.
We conclude this subsection by mentioning that it’s often interesting to determine the
specific condition that achieves the maximum energy amplification. It is generally
done by computing a singular value decomposition (SVD) of the evolution operator
A or by adopting a more general method, which is the Lagrange multiplier technique,
that seeks the extreme of a specific functional.

Figure 3.4: Schematic of linear and nonlinear evolutions of the acoustic energy for a Rijke
tube [13].
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3.4 Sensitivity analysis and bootstrapping
Once introduced the definition of a non-normal system, we briefly report another
type of analysis: the non-modal stability analysis. It is the description of disturbance
behavior governed by a linear non-normal evolution operator. This technique de-
scribes the complete dynamics of the flow as a superposition of many eigensolutions.
An important aspect of this type of approach is the sensitivity analysis, which con-
sists of a perturbation of the system matrix A by a random matrix E. In a real case,
this could be caused by disturbances in the boundary conditions or by a noisy base
flow, and it will produce perturbations in both the eigenvalues and the eigenvec-
tors. In particular, we can define z as an ϵ-pseudoeigenvalue of A if it satisfies
∥(zI −A)−1

∥ > ϵ−1, where ϵ is a small quantity that depends on the system itself.

Figure 3.5: Sensitivity analysis for (a) a non-normal system, and (b) a normal system [14].

Displaying in the complex plane the set of all eigenvalues which are ϵ-close to A,
returns the ϵ-pseudospectrum of A. If the contours of the spectrum protrude into
the right half of the plane (that means positive growth rate), the system might ex-
hibit transient growth. That is in fact, a necessary condition for transient growth.
Moreover, we conclude assessing that a marked sensitivity of the eigenvalues is a
first indication of non-normality. In figure 3.5, are presented two cases for a non-
normal fig. 3.5a and normal system fig. 3.5b perturbed by random matrices of norm
10−2. The black dots represent the eigenvalues for the unperturbed system, the blue
ones are for the perturbed system. The reader can see that for a non-normal system
perturbations have large effect on the eigenvalues, and subsequently could exceed
the stability limit. On the other hand, for a normal system the displacement of the
eigenvalues is bounded by the size of the perturbation.
Another extension of non-modal analysis is bootstrapping. This concept arises from
the possibility for the transient amplification to reach sufficiently large values to
trigger nonlinear effects. If the initial amplitude surpasses a critical value, nonlin-
ear effects will pull the system towards a non-zero steady state. Specifically, the
nonlinear terms present in a nonlinear system, which do not produce energy by
themselves, redistribute the energy of the system from decaying directions to tran-
siently growing ones. Thus harvesting the full potential for transient growth by a
nonlinear mechanism, that is bootstrapping [14].
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3.5 Nonlinear analysis
In nature, as well as in engineering, many phenomena have a nonlinear behaviour
and these appear commonly to be chaotic, unpredictable or counterintuitive. This
attitude may resemble a random behaviour, but it’s absolutely not. This is due
to nonlinear phenomena, which are complex to analyze because most of nonlinear
systems are impossible to solve analytically. For this reason, nonlinear systems are
commonly approximated by linear equations, this operation is defined as lineariza-
tion. This works well up to some level of accuracy and some range of the input
values, although some interesting phenomena such as chaos and singularities can
be hidden by linearization. The essential difference between linear and nonlinear
systems is that the first ones can be decomposed into two parts, each part can be
solved separately and finally recombined together to get the answer. This is a pow-
erful tool to study and predict a lot of phenomena, but unfortunately many things in
nature do not act in this way [15]. Combustion instability is also a typical nonlinear
phenomenon. Linear techniques can predict whether a thermoacoustic system is
stable or unstable, but as previously said, when the amplitude of an infinitesimal
perturbation becomes so large that the nonlinear behavior overwhelms the linear
one, the typical consequence is that the system reaches a constant amplitude pe-
riodic solution, known as stable limit cycle. In this case, a nonlinear analysis is
required for predicting and evaluating the self-sustained oscillations and limit cycle
amplitudes.

3.5.1 Source of nonlinearity in thermoacoustics

In gas turbine systems, both the pressure perturbations and the velocity perturba-
tions are related to the mean pressure and to the speed of sound, respectively. Also,
the mean flow velocity is minor compared to the speed of sound. As a consequence,
second and higher-order terms involving the mean flow Mach number and pertur-
bation Mach number in the nonlinear gas dynamic equations are negligible [16]. In
the framework of thermoacoustics, the possible sources of nonlinearity come from:

• nonlinear gasdynamics

• nonlinear damping

• nonlinear heat release rate

The third source is generally a function of pressure and velocity fluctuations, the latter
has the strongest influence on heat release fluctuations. One should also remember
that thermoacoustic nonlinearities are not energy-conserving. The main cause of
nonlinearity in gas turbine combustors is the nonlinear behavior of the unsteady heat
release rate coming from the flames. Generally, it is possible that acoustic waves can
interact with entropy or vorticity waves. However, when the unsteady perturbations
are small the acoustics can be approximated to behave independently from entropy
and vorticity, except for the boundaries and at the zones of heat release [17]. Acoustic
waves could also be generated by the acceleration of entropy waves in nozzles, in
this work this condition won’t be taken into account. As previously stated, today
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most modern gas turbine systems operate with lean premixed or partially premixed
flames. The heat release rate of a premixed flame depends on:

• the density of the reactant flow;

• the burning rate or flame speed;

• the heat of reaction;

• the flame surface area.

Hence, fluctuations in these quantities will provoke unsteadiness in the heat release
rate. Perturbations in temperature, stretch rate, and mixture composition of the
reactant flow, affect in turn the fluctuations of the flame speed. The fluctuations in
the flame surface area depend on the disturbances that alter the location and shape
of the flame, which rely on the fluctuations either of the flame speed or of the inflow
velocity. Finally, the fluctuations in the heat of the reaction are due to perturbations
in the mixture composition. A detailed discussion of the heat release rate response
to fluctuations in each of these physical quantities is given by Lieuwen [2].
Seven reasons determine the nonlinear dynamics of premixed flames. First, the
propagation of the flame normal to itself, also known as kinematic restoration,
depends nonlinearly on the amplitude and wavelength of a flame wrinkle. The
amplitude and wavelength of flame wrinkles, in turn, depend on the amplitude and
frequency of velocity disturbances that perturb the flame [2]. Second, the flame
behavior relies not only on the instantaneous velocity field around the flame but also
on the history of the velocity perturbations [18]. The reason is that wrinkles generated
on the flame surface are advected at the velocity tangential to the flame surface and
then spread along the flame until they are destroyed by flame propagation. As a
third reason, fluctuations in the velocity field can cause an oscillating flame surface to
pinch off, causing a sharp change in the flame surface area and, therefore, in the heat
release rate [19]. Fourth, fluctuations in the velocity field cause local flow straining
which leads to a flame stretch, which alters the flame speed, and as a consequence the
heat release rate, in a nonlinear way [20]. Fifth reason, in attached flames the change
in position of the flame attachment point depends nonlinearly on the amplitude
of velocity perturbations. At low-amplitude velocity perturbations, the attachment
point does not relocate itself, instead at high-amplitude velocity perturbations, the
attachment point moves over a part of the cycle [21]. Furthermore, in this situation,
flashbacks may occur thus introducing an additional nonlinearity [19]. For the next
reason, flame geometry affects the degree to which local nonlinear effects influence
the global nonlinearities in the heat release rate (integrated over the entire flame
surface) [22].
In an axisymmetric flame, the degree to which local nonlinear effects affect the global
nonlinearities depends on the flame shape, for example conical, wedge-shaped, etc.
Seventh, fluctuations in the equivalence ratio cause fluctuations in the flame speed
and heat of reaction, which are in turn nonlinear functions of the equivalence ratio
[23].
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3.5.2 Bifurcations

Dynamical systems theory has been often employed to study nonlinear flow and
flame dynamics in combustion systems [24], [25]. The trajectory of a system repre-
sents the evolution in time of the system. Depending on the stability or instability
of the system, a different type of trajectory is expected.
Let us consider a one-parameter autonomous (time-invariant) nonlinear dynamical
system as follows

dx
dt
= f[x; P] (3.37)

where x is the state vector variable and P is a scalar parameter. The equilibrium
point x0 for the autonomous system of the previous equation, given some value of
P, is the real root of the equation

dx
dt
= f[x0; P] = 0 (3.38)

The equilibrium solution x0 has the property that whenever the state of the system
starts at x0, it will stay there for all future time. If the system is perturbed, in case of
stable behaviour it will always return to its initial condition, while in case of instabil-
ity the system solution will diverge. The stability of an equilibrium point is assessed
by the eigenvalues of the Jacobian matrix J = ∂f

∂x evaluated at the considered point.
For the equilibrium solution to be stable, all the eigenvalues must have negative real
parts. These type of dynamical systems may have not only equilibrium solutions
but also periodic solutions: the limit cycles.
They are intrinsically nonlinear phenomena, as consequence they cannot occur in
linear systems. The amplitude of a linear oscillation is set entirely by its initial con-
ditions. On the other hand, limit cycle oscillations are prescribed by the structure of
the system itself and, if the system is slightly perturbed, it will always return to the
limit cycle. The qualitative behaviour of an autonomous dynamical system is thus
determined by the pattern of its equilibrium points and periodic orbits, as well as
by their stability properties, which further depend on the parameter P. Depending
on the type of system and on the control parameter, three types of limit cycle can be
expected, please see figure 3.6.

Figure 3.6: Different types of limit cycle [15].

As the reader can see in figure 3.6, for a stable limit cycle the perturbed system
will return to the limit cycles’s oscillations, while if we consider the unstable limit
cycle, the system will depart from the limit cycle condition and eventually reach
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an equilibrium point or maybe diverge. If there is a neighboring trajectory which
spirals into the limit cycle as time approaches infinity, and another one which spirals
into it as time approaches negative infinity, a half-stable limit cycle occurs. Nonlin-
ear dynamic systems can have multiple solutions for a given system configuration.
About this topic, we can define a bifurcation plot, which is a visual representation
of all the solutions, and their stability, as a function of one or more parameters that
change smoothly.
Bifurcations are divided into two major classes: static bifurcations and dynamic
Hopf bifurcations. Static bifurcatons can then be subdivided into: pitch fork bifur-
cations, transcritical bifurcations or saddle note bifurcations. However, these types
of configurations are not the case for combustion instabilities, which are instead
characterized by oscillations.
Dynamic Hopf bifurcations can be divided into: supercritical and subcritical bifur-
cations. As the reader can see in figure 3.7, in the two diagrams are presented two
systems with the same control parameter P, with some measure of the steady-state
amplitude of the system plotted on the vertical axis, as. Taking into consideration an
oscillating system, as is frequently the peak-to-peak amplitude of the oscillations.

Figure 3.7: The steady state oscillation amplitude, as, as a function of a control parameter, P,
for (a) a supercritical bifurcation and (b) a subcritical bifurcation [14].

We call fixed point the solutions characterized by a zero amplitude, which coincide
with the horizontal axis in the following diagrams.
For low values of the control parameter the fixed point results to be stable in both
cases. Once P is equal to Pl, at a location named Hopf bifurcation point, the fixed
point becomes unstable. The system starts oscillating and ultimately ends up at the
solid line, which represents the steady-state amplitude. As already anticipated, this
state corresponds to a periodic solution named limit cycle. It is important to bear in
mind that besides the stable periodic solution, there are other types of solutions, such
as multi-periodic, quasi-periodic or chaotic attractors, even in this case the system
can trigger sustained oscillations, but these are not characterized by a simple period
[26].
The nonlinear response around the Hopf bifurcation point at Pl defines which type
of bifurcation it is. The first pattern is a supercritical bifurcation (figure 3.7a) and is
characterized by an amplitude that grows gradually with P for P > Pl. The second
pattern is a subcritical bifurcation (figure 3.7b) and is characterized by an amplitude
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that grows suddenly as P increases through Pl. This second type has two stable
solutions for Pc ≤ P ≤ Pl, defining a bistable region. In this range, every little
perturbation will die down, on the contrary, if they are large enough to cross the
dashed line, which delineates an unstable periodic solution, then the perturbations
will grow to the limit cycle [26].
Regarding subcritical bifurcations, the reason why the system can have a periodic
stable solution for values of P < Pl is due to hysteresis, whose presence, in conse-
quence, is the signature of triggering instability. Undoubtedly, for P > Pl, concerning
each type of bifurcation, even the slight perturbation can become unstable.

Figure 3.8: A cartoon of the manifold that separates the states that evolve to the stable fixed
point from those that evolve to the stable periodic solution [14].

Another important aspect to keep in mind is that most of the time these types of
analysis involve systems with many degrees of freedom. So, the bifurcation plot
will be obtained from a section of a multi-space representation. As an example, in
figure 3.8 we can find a representation for a three-dimensional space of the bistable
region, typical of subcritical bifurcations. The potato-shaped surface corresponds to
the manifold that separates the states that evolve to the stable fixed point from those
evolving to the stable periodic solution, illustrated as the large loop allocated outside
the surface [14]. The nonuniformity of this surface is related to the non-normality of
the examined system. Moreover, the point that lays precisely on the manifold will
stay on it permanently. For a state to end up to the limit cycle, it has to start outside
the manifold. The unstable periodic solution is again depicted by a dashed line, if
there would be an infinitesimal addition of energy to any state in balance on this
loop, it would soon evolve to the stable periodic solution.
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4 Linear analysis of the case study

4.1 General description

Figure 4.1: Jet engine combustor geometry. Mixer assembly for gas turbine engine combustor.
Source: From US Patent US8171735B2, Mancini and Mongia , GE [27].

The starting point of this work is to investigate the thermoacoustic instabilities of
a toy model LPP combustor. As the reader can see in figure 4.1, representing a
combustor with a main LPP burner for an aero engine application, at the inlet of the
combustor the high-speed flow coming from the preceding compressor is decelerated
in a diffuser and made at the same time more uniform for the next component, the
premixer. At this stage, the fuel is injected and mixed with air, to react and burn in
the subsequent section, the combustion chamber.

Figure 4.2: Sketch of the three-ducts combustion model.
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4.2 The TALOM approach
To carry out a mathematical analysis on a more treatable problem, a simple three-
ducts combustion model is investigated, consisting of a plenum, followed by a
premixer, and finally by a combustor chamber, using the premixed combustor pro-
totype described by Dowling and Stow [1], figure 4.2.
The flow evolving in this control volume is considered to be one-dimensional. The
inlet is choked, so regardless to downstream perturbations of pressure, the energy
and mass flow rates are practically constant. The outlet is defined as a pressure
outlet.
In the following table the details of the geometry are presented.

Description Symbol Value

Plenum cross-sectional area a1 0.0129 m2

Plenum length l1 1.7 m
Premixer cross-sectional area a2 0.00142 m2

Premixer lentgth l2 0.0345 m
Combustor cross-sectional area a3 0.00385 m2

Combustor lentgth l3 1.0 m

Table 4.1: Geometry of the simple combustor.

The mean flow parameters are considered to be uniform in each of the three ducts
that form the system. The flow is treated as inviscid.
As the reader can notice, the flame is considered a compact flame sheet located at
the intersection between the premixer and the combustion chamber, that means it is
axially short compared to the wavelengths of the perturbations.
In addition, it reaches a temperature of 2000 K, which is uniformly distributed
in all section three. The chemical reactions are consequently instantaneous, so in
the governing equations, the flame model is not added as a source term, but only
introduced in the jump condition between the last two ducts.
The system is solved as an eigenvalue problem in the complex domain using an
approach denominated TALOM (Thermo-Acoustic Low-Order Modelling). This
approach has been developed because on the reference paper from Dowling and
Stow, it is not specified what type of method is used to compute the eigenmodes.
This is a lumped approach which expresses the system through a set of suitable
equations deduced from boundary and jump conditions, it computes the eigenvalues
in an iterative way, with a proper tolerance, in a neighborhood of a starting solution,
found with a graphical method based on the determinant of the coefficient matrix.

4.2.1 Base flow equations

We first put our attention to the base flow. As already done before, the flow variables
are decomposed as the sum of a base term (time mean) plus a small fluctuating term,
e.g.

p = p(x, t) = p̄ + p′(x, t); u = u(x, t) = ū + u′(x, t); ecc. (4.1)
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the unknowns are ūi, p̄i, ρ̄i, T̄i, where i = 1, 2, 3 represents each section, the last un-
known is the mean rate of heat input per unit area q̄, introduced in the jump condition
between the premixer and the combustion chamber. The total number of unknowns
is therefore 13. So, the base flow equations for mass, momentum and energy conser-
vation, without heat input are

ρ̄
dū
dx
+ ū

dρ̄
dx
= 0 (4.2)

ρ̄ū
dū
dx
+

dp̄
dx
= 0 (4.3)

ū
dp̄
dx
+ γp̄

dū
dx
= 0 (4.4)

This set of equations is written for every duct. Next, the perfect gas equation is
written for each duct

p̄i = ρ̄iRgasT̄i (4.5)

where Rgas = cp - cv is the perfect gas constant.
For the intersection at x = l1 (plenum-premixer), three jump conditions are intro-
duced, one equation for mass conservation, one for energy conservation and one
isentropic condition attributable to the cross sectional area decreases

ρ̄1a1ū1 = ρ̄2a2ū2 (4.6)

ρ̄1a1ū1H̄1 = ρ̄2a2ū2H̄2 (4.7)

p̄1

p̄2
=

(
ρ̄1

ρ̄2

)γ
(4.8)

where H̄ = cpT̄ + 1
2u2 is the total enthalpy.

For the intersection at x = l2 (premixer-combustion chamber), three jump conditions
are introduced, one equation for mass conservation, one for energy conservation,
and one Borda equation attributable to the cross sectional area increase

ρ̄2a2ū2 = ρ̄3a3ū3 (4.9)

ρ̄1a2ū2H̄2 = ρ̄3a3ū3H̄3 + a3q̄ (4.10)

ρ̄3a3ū2
3 − ρ̄2a2ū2

2 = a3(p̄3 − p̄2) (4.11)

Finally, from the boundary conditions we can get some values for the starting con-
ditions:

¯̇m1 = 0.05 kg/s; T̄1 = 300 K; p̄3 = 101000 Pa; T̄3 = T f lame = 2000 K (4.12)
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This previous set of 13 equations gives the following results for the base variables:

Section ū [m/s] p̄ [Pa] ρ̄ [ kg
m3 ] T̄ [K]

Plenum 3.269 103121 1.186 300
Premixer 29.809 102616 1.181 299.563

Combustion Chamber 73.818 101000 0.1759 2000

Table 4.2: Results for the mean flow.

Together with q̄ = 22216000 [W/m2], and after multiplying by the flame area, we
obtain the heat transfer rate provided by the flame, ˙̄Q f = q̄ · a3 = 22216000 [W/m2] ·
0.00385[m2] = 85531.6 [W]

4.2.2 Perturbation equations

Once the mean flow is solved, we can start with the following conservation equations,
for an inviscid compressible flow, for mass, momentum, energy, respectively.

∂ρ′

∂t
+ ū
∂ρ′

∂x
+ ρ̄
∂u′

∂x
= 0 (4.13)

ρ̄
∂u′

∂t
+ ūρ̄

∂u′

∂x
+
∂p′

∂x
= 0 (4.14)

∂p′

∂t
+ ū
∂p′

∂x
+ p̄γ

∂u′

∂x
= 0 (4.15)

The perturbed flow is solved in a similar manner as the base flow after having
converted the variables in the frequency domain.

p′(x, t) = p̂(x)eiωt; u′(x, t) = û(x)eiωt; ρ′(x, t) = ρ̂(x)eiωt q′(x, t) = q̂(x)eiωt (4.16)

where ω = ωreal + iωimaginary is the complex frequency, whose real part (ωreal) corre-
sponds to the frequency of the oscillation and the negative imaginary part (−ωimaginary)
represents the growth rate.
We now remember that any disturbance can be decomposed as the combination of an
acoustic, entropy, and vorticity disturbance, independent from one another respec-
tively. This possibility is admitted by the presence of a mean flow, that can convect
entropy and vorticity disturbances. Moreover, another effect of the mean flow is
that it admits modes with much lower frequencies, of the order of 40-150 Hz. We
know from section 2.2, that unsteady combustion is able to generate entropy waves
or local hot spots, at low-frequency oscillations, the entropy wavelengths result to be
long, and these waves undergo little attenuation, thus generating sound. At higher
frequencies instead, entropy waves will diffuse, so the amplitude of high-frequency
entropic disturbances may be judged inconsiderable when the wave arrives at the
exit of the combustor.
In this one-dimensional case the vorticity disturbances will not be considered. That
being so, the complex amplitudes are decoupled as

p̂(x) = A+ e k+x + A− e k−x (4.17)
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ρ̂(x) =
1
c̄2

(
A+ e k+x + A− e k−x

)
−

1
c̄2 Ae e k0x (4.18)

û(x) = −
(

k+
ρ̄α+

A+ e k+x +
k−
ρ̄α−

A− e k−x

)
(4.19)

where A+ and A− are the amplitudes of forward- and backward-travelling acoustic
waves, respectively, Ae is the amplitude of the entropy wave and the speed of sound

is c̄ =
√(

∂p
∂ρ

)
s
. The dispersion relations are

k± =
M̄ω ∓ |ω|
c̄(1 − M̄2)

; k0 = −
ω
ū

; α± = ω + ūk± (4.20)

with the Mach number defined as M̄ = ū
c̄ . Following that, the jump conditions for

each duct section are proposed, linearized to the first-order.
For the first intersection (x = l1), we have

a1(ρ̄1û1 + ū1ρ̂1) = a2(ρ̄2û2 + ū2ρ̂2) (4.21)

γ
ρ̂1

ρ̄1
−

p̂1

p̄1
= γ
ρ̂2

ρ̄2
−

p̂2

p̄2
(4.22)

cpT̂1 + û1ū1 = cpT̂2 + û2ū2 (4.23)

The next intersection is at x = l2:

a2(ρ̄2û2 + ū2ρ̂2) = a3(ρ̄3û3 + ū3ρ̂3) (4.24)

a2ρ̂2ū2
2 + 2a2ρ̄2ū2û2 = a3ρ̂3ū2

3 + 2a3ρ̄3ū3û3 + a3(p̂3 − p̂2) (4.25)

a2(ū2ρ̄2Ĥ2 + H̄2ū2ρ̂2 + ρ̄2H̄2û2) = a3(ū3ρ̄3Ĥ3 + H̄3ū3ρ̂3 + ρ̄3H̄3û3 − q̂) (4.26)

with the complex amplitude of the unsteady heat release rate per unit area q̂, ex-
pressed with the following FTF:

q̂ = −kq̄
ˆ̇m2

¯̇m2
e−iωτ (4.27)

where, the mass flow rate in the premixer is intended as ṁ2 = ¯̇m2 + ˆ̇m2eiωt, k is a term
that let us switch on or off the unsteady heat release rate term. τ is a time lag, which
will be set equal to 0.006 seconds and represents the fuel convection time, from its
injection to combustion. The mass flow rate fluctuation ṁ2 = ˆ̇m2eiωt, is sampled right
before the flame.
Finally, the boundary conditions for the choked inlet (x = 0), that comes from a
constant nondimensional mass flow, and the pressure outlet (x = l3) respectively are:

ρ̂1(0)
ρ̄1(0)

+
û1(0)
ū1(0)

= 0; p̂3(l3) = 0 (4.28)
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The correct frequencies will be the ones that satisfy the boundary conditions.
In order to close the problem, one more equation is needed, we will use the isentropic
condition at x = 0:

p̂1(0) = c̄2
1ρ̂1(0) (4.29)

The perturbed flow is ready to be solved. The previous set of equations can be
rewritten in a matrix form of the type Mq = 0. Where q is a vector containing the
decoupled acoustic and entropy amplitudes: A+,A−,Ae; M is the coefficient matrix.
This eigenvalue problem is solved by the inverse iteration algorithm [28]. The
starting condition for the iteration algorithm is obtained from a graphical approach.
It essentially consists of finding the determinant of the previous matrix M. We have a
solution when the determinant is equal to zero, because the determinant is a complex
number, both its real and imaginary parts need to be null at the same time. This
is why we look for the intersection of the zero contours of Re(detM) and Im(detM).
As a consequence, we draw the contour lines for the real and imaginary part of the
computed determinant in a two-dimensional space that has frequency (Hz) on the
x-axis, and the growth rate (s−1) on the y-axis, please see figure 4.3.
The input values for the succeeding algorithm are extracted from the intersection of
the two types of contour lines.
Next, once completed the iterations and found the wave amplitudes, they can be
substituted in the previous formulations for the acoustic and entropy waves, in order
to find the mode shapes, see equations 4.17, 4.18, and 4.19.

Figure 4.3: Grafical method for the case with fluctuating heat release rate (k=1).

In figure 4.4, is presented the spectrum for the case of constant heat release rate,
that means the fluctuating term is set equal to zero. The results obtained from the
previous system and resolved with the proposed algorithm are then compared with
the ones calculated by Dowling and Stow, used as reference [1].
In this first case, all the growth rates are negative, as one would expect, because there
is no fluctuating heat release rate, as a consequence, the system will be asymptotically
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Figure 4.4: Spectrum for the case of zero fluctuating heat release rate (k=0).

Figure 4.5: Spectrum for the case with fluctuating heat release rate (k=1).

stable. Although some values of the growth rates are not perfectly coincident with
the reference results, the frequencies are almost equivalent.
The next case, please see figure 4.5, takes into account the unstable heat release rate
presented in the previous section (equation 4.27). Also in this condition, the TALOM
spectrum captures well the frequencies of the dominant modes provided by Dowling
and Stow. In addition, the reader can now notice that some modes are characterized
by a positive growth rate, especially between 0 and 500 Hz. That means, according
to the linear stability theory, that the solution will be unstable, with a consequent
exponential growth. We can also notice that the TALOM approach doesn’t return the
same growth rates as the ones computed by Dowling and Stow, this may highlight
a strong sensibility of the system to the mean flow.
The asymptotic behavior of the system is dominated by the least stable eigenmode,

44



the one that has the largest growth rate, which here appears at a frequency of 169.5
Hz with a growth rate around 189 s−1.

4.2.3 Variation of the time lag τ

In the previous subsection, we have investigated the thermoacoustic behavior of the
system for a given time lag τ (the fuel convection time from its injection to c), set
equal tombustiono 6 milliseconds. We now investigate the stability of the system for
different values of the time lag, please see figure 4.6. The parameter τ has been varied
from 0.1 to 10 milliseconds. For every new time lag, we have individuated a starting
condition with the graphical method and then obtained the exact eigenvalues with
the inverse iteration algorithm.

Figure 4.6: Eigenmodes for different time lags, τ = 0.1 − 10 ms.

From these results, one can see that, by altering the time lag, particularly by reducing
τ, higher frequencies and growth rates are obtained. This aspect highlights the strong
variability of the resulting modes, which are greatly dependent on the time lag τ.
The most critical mode, circled in red, is found for a time lag of 1 millisecond at a
frequency around 775 Hz.

4.2.4 Implementation of a different flame model

To make a comparison with the results from future simulations, a new flame transfer
function has been implemented on the MATLAB code for calculating the linear
stability of the simple combustor. The new flame model has been extracted from the
reference paper of Dowiling and Stow and resembles the Crocco’s model, please see
section 2.5.
The new formula for the unsteady heat input is related to the oncoming air velocity
fluctuation with a time delay τ:

q′(t) = −β
ρ̄2c̄2

2

(γ − 1)
u′b f (t − τ) (4.30)
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The subscript 2 indicates the mean values of section 2, the premixer, an bf stands for
before flame. β is a nondimensional parameter and is expected to lie in the range
from 0 to 10 [1].

Figure 4.7: Eigenmodes for different time lags, τ = 0.1 − 10 ms, β = 1.7.

Figure 4.8: Eigenmodes for different time lags, τ = 0.1 − 10 ms, β = 2.

In the succeeding figures 4.7, 4.8, are presented the eigenmodes for β set equal to 1.7
and 2, with a time lag τ varying from 0.1 to 10 milliseconds.
Similar conclusions to the previous case (paragraph 4.2.3), with a dependency of the
unsteady heat transfer rate on the mass flow rate fluctuations, can be drawn here.
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Again, one can see that reducing the time lag brings to new eigenmodes, located at
higher frequencies. Additionally, the general trajectories of the eigenmodes in both
cases for β=1.7 and 2, result to be similar to the ones obtained with Crocco’s flame
model.
In addition, increasing the value of the constant β grants higher growth rates. The
most critical mode is circled again in red. For β=1.7, it is characterized by a frequency
close to 350 Hz, for β=2, it is triggered at a frequency around 775 Hz, as found before
with a different FTF, but with a bigger growth rate.
What we can conclude is that, the flame transfer functions are strongly dependent
on parameters such as τ or β, and different choices of these two could give distinctive
results, with distant eigenfrequencies. So, without knowing in advance what specific
flame transfer function to use, there is good probability to obtain ambiguous results.
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5 Nonlinear analysis of the case study

The successive part of this work is based on the numerical tests conducted with
Ansys, a commercial software for computational fluid dynamics (CFD). The fol-
lowing numerical analysis aims to investigate the nonlinear behavior of the model
combustor introduced in section 4. The workflow starts from the definition of the
control volume geometry, subsequently, a proper mesh is defined, based on the type
of simulation that is going to be performed, and lastly, the results are post-processed.

5.1 Geometry
The first step to follow to accomplish a CFD simulation is to generate a proper
geometry. The program used is SpaceClaim. The numerical tests that have been
conducted are for a two-dimensional flow. Moreover, having in mind to compute
an axisymmetric simulation, which means that there will be no gradient along the
circumferential direction, just half of the combustor has been designed. This has also
the advantage to reduce the computational cost because the following mesh will be
generated for half of the two-dimensional control volume. From the reference paper
of Dowling and Stow, when it comes to the geometry of the model combustor the
cross-sectional areas of the three ducts are given. As the reader can observe in the
following figure 5.1, with the intention to draw a two-dimensional geometry, these
cross-sections are intended to be circular, from which the radii of the three ducts
have been extracted.

Figure 5.1: Geometry of the model combustor designed on SpaceClaim.

The next issue has been an adequate definition of the flame sheet. In this case,
the flame cannot be of infinitesimal thickness as supposed by Dowling and Stow.
Given the dimensions of the control volume, its thickness has been set equal to 2.5
millimeters, so that it can be estimated as adequately thin. In figure 5.2, highlighted
in red, the flame geometry is presented. One could notice that, differently from
Dowling and Stow, in this case, the flame has been limited in radial extension up to
the second duct and not to the third one. Because, from the first simulations, it has
been noticed that the flow recirculation established after the cross-section increase
would have caused an overheating close to the walls.
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Figure 5.2: The modeled flame geometry.

5.2 Mesh
The second step is the mesh. For this particular case, an unstructured mesh with
triangular elements has been designed, having in mind to conduct an URANS sim-
ulation, which models all the turbulent scales without solving them directly as with
a DNS, or partially as with a LES. The number of cells is 135467, and the minimum
orthogonal quality is 1.79838e − 01. In the following figure 5.3, a zoom on section
two is represented, in addition, the flame region is highlighted in red. An inflation
layer has been added at the walls aiming at properly computing the boundary layer
with a value of the y+ around 1.

Figure 5.3: The mesh (zoom).

5.3 Setup of the simulation
The next software that has been adopted is Ansys Fluent. The solver type is pressure-
based, the velocity formulation absolute and the two-dimensional space axisymm-
teric. The adopted turbulence model is the Shear-Stress Transport (SST) k − ω tur-
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bulence model, with the energy equation that has been activated. In addition, no
combustion model has been employed. In order to mimic a combustion reaction
we act on the flame zone, for example controlling its temperature. For the solution
method, the coupled scheme has been implemented, together with a second order
upwind spatial discretization.
The setup of the simulations aims at reproducing the same conditions of the model
combustor of Dowling and Stow (section 4).
The fluid simulated is air, the specified properties are the following:

• Density: calculated thanks to the ideal gas law.

• cp: constant and equal to 1010 J
kgK .

• Thermal conductivity: constant and equal to 0.0242 W
mK .

• Viscosity: calculated thanks to the Sutherland’s law.

• Molecular weight: constant and equal to 28.966 kg
kmol

The boundary condition for the inlet is specified as a mass flow rate inlet of 0.05 kg
s ,

the inlet temperature is set equal to 300 K. For the outlet, a pressure outlet has been
set, with a pressure of 101000 Pa and a backflow total temperature of 2000 K. The
walls are set to be adiabatic.

5.4 Control of the flame temperature
In order to reproduce the base flow conditions of the model combustor of Dowling
and Stow, and properly calibrate the model, as first attempt the temperature of the
flame has been fixed and controlled in time thanks to a specific expression introduced
for the flame zone, please see figure 5.4 as an example.

Figure 5.4: Example for the flame zone temperature expression.
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5.4.1 The steady natural case

The first case that has been tested is the natural case, where the temperature of the
flame is constant with time and set equal to 2000 K. Initially, steady simulations have
been conducted, with the principal aim of reaching an almost uniform temperature
in the combustion chamber. Moreover, an examination has been done also for the
mean flow variables calculated in section 4, with reference to the table 5.2. In order
to do this, four lines have been defined at 1.5, 1.72, 2, and 2.5 meters to perform
an area weighted average of the resulting temperature, density, pressure and axial
velocity profiles (figure 5.5).

Figure 5.5: Reference lines at 1.5, 1.72, 2, and 2.5 meters from the inlet.

After about 500 iterations, convergence of the RANS simulation is reached. The
results for the area averages in the different ducts are:

Area weighted average Axial velocity [m/s] p [Pa] ρ [ kg
m3 ] T [K]

1.5 m 3.137 106163 1.232 299.995
1.72 m 28.760 104889 1.220 299.286

2 m 74.430 100997 0.1746 2015.532
2.5 m 74.402 101046 0.1746 2016.817

Table 5.1: Results from the steady simulation for T f lame = 2000 K.

The net total heat transfer rate provided by the model combustor is -85905 W, this
value is negative because the heat flux is globally outgoing from the control volume.
For the purpose of clarity, we report the table of results for the base flow of the
model combustor of Dowling and Stow. The reader can see that there is a notable

Section ū [m/s] p̄ [Pa] ρ̄ [ kg
m3 ] T̄ [K]

Plenum 3.269 103121 1.186 300
Premixer 29.809 102616 1.181 299.563

Combustion Chamber 73.818 101000 0.1759 2000

Table 5.2: Results for the mean flow.

agreement between the results. In the third duct, two lines have been defined in
order to evaluate the effect on the flow variables of the hot jet flow coming from duct
two. As expected, due to thermal diffusion at the end of the combustor the outgoing
flow has a temperature around 2000 K. Finally, it is advised to point out that the
comparison has been done with the mean flow variables, because the Reynolds-
Averaged Navier-Stokes (RANS) simulations are based on averaged flow variables
[D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, 2006].
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5.4.2 The unsteady natural case

Once the steady natural case has been analyzed and the temperature of the flame
zone defined, the following step is an unsteady simulation of the same case. Which
will be the starting condition for the future numerical tests, once a statistically steady
condition has been achieved. For the pressure-velocity coupling, in order to promote
the stability of the solution, the factional step scheme has been implemented together
with a second order spatial discretization. Finally, a bounded second order implicit
transient formulation has been chosen, along with the non-iterative time advance-
ment (NITA), this approach results to be faster than the ”segregated methods”, but
needs much more memory. It is important to point out that a CFL number with a
value less than one is necessary to grant convergence, as a consequence a time step
of 6.7e − 6 seconds has been set.
In order to check the simulation in time, we have set monitors for the net mass flow
rate between the boundaries, likewise for the net total heat transfer flux (which is
defined as the flux of total enthalpy). Among various monitors, we have some for
static pressure, calculated in five specific points located in the combustion chamber
duct, please see figure 5.6. Their coordinates are, where we remember the origin of
the reference system to be at the inlet on the axis,

Point x [m] y [m]

1 1.82 0.009
2 1.92 0.009
3 1.82 0.025
4 1.92 0.025
5 2.7 0.025

Table 5.3: Pressure points coordinates.

Figure 5.6: Pressure points (in white).

Figure 5.7: URANS simulation, general temperature distribution [K].
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Figure 5.8: URANS simulation, temperature distribution in the combustion chamber duct
[K].

In figure 5.8, the reader can appreciate the temperature distribution for the jet flow
entering the combustion chamber section after the premixer duct, heating up through
the flame sheet, and leaving the combustor with a temperature profile close to 2000
K.

Figure 5.9: URANS simulation, turbulent intensity distribution [%].

From figure 5.9, we can see that the maximum turbulent intensity is registered at
the interface between the high-speed flow and the low-speed flow close to the walls,
mostly at the jet inlet. Together with this, in figures 5.10, 5.11 are presented the
contours velocity magnitude distributions of the URANS simulation.

Figure 5.10: URANS simulation, general velocity magnitude distribution [m/s].
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Figure 5.11: URANS simulation, velocity magnitude distribution in the premixer and
combustion chamber [m/s].

For future comparisons, the monitor of the total heat transfer rate has been consid-
ered, followed by a Fast Fourier Transform (FFT) of the final portion of a signal, once
reached a statistically steady condition. Hereinafter, the reader can see in figure 5.12,
the portion of the signal that has been considered, from 0.65 to about 0.70 seconds. In
figure 5.13 the FFT of the signal is proposed, with the power spectral density (PSD)
on the vertical axis.

Figure 5.12: Monitor of the total heat transfer rate, and portion of the signal for the FFT
(blue).
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Figure 5.13: Fast Fourier Transform of the total heat transfer rate.

From figure 5.13, without taking into consideration the value of the PSD that goes
to infinity as the frequency approaches the zero value, one can see that the main
frequency is about 100 Hertz, followed by its harmonics distinguishable at about 200
and 300 Hertz.

5.4.3 Numerical tests for different forcing terms

In this subsection, the thermoacoustic instabilities of the combustor are investigated.
With the aim of doing this, the temperature of the flame is now controlled in time. For
the next simulations, it has been used the same setup of the unsteady natural case,
with the difference that a forcing term has been introduced. The general formula
that has been implemented is

T = 2000 + A · 2000 · cos(2π · f · t) [K] (5.1)

where A is a percentage of 2000 Kelvins, set equal to 0.1, 1, 10%, in this way three
cases have been defined, t is time, and f stands for frequency, which varies from 50
to 450 Hz, with a step of 50 Hz. As example, a graphical solution of the temperature
distribution is displayed in figure 5.14, for the case of 200 Hz and 10% of 2000 K.
Twenty-seven cases in total have been tested, each of them has brought the system
to a stable limit cycle.
Again, as example, in the the subsequent figures are presented the limit cycles
reached for the 10% case at 100 Hz. In figure 5.15 is presented a limit cycle for the
total heat transfer rate, which involves the entire control volume. Instead, in figure
5.16 one can see the limit cycle expressed with the absolute pressure measured at
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Figure 5.14: Temperature contour for the 10% case at 200 Hz.

Figure 5.15: Total heat transfer rate limit cycle for the 10% case at 100 Hz.

point 4 located in the combustion chamber duct (for the coordinates of point 4, please
see table 5.3).

Figure 5.16: Pressure in point 4 for the 10% case at 100 Hz.
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We now want to compare the different amplitudes of the limit cycles for the total
heat transfer rate obtained for each case. We have to keep in mind that the signals are
characterized by high peaks, they are not physical but only a result of the numerical
calculations, thus they are not relevant. For this purpose, it is needed to introduce
a proper formula for calculating the peak to peak amplitude of the signal. Once a
statistically steady condition is obtained, we follow a series of steps:

• Selection of a time interval inside the stabilized signal.

• Calculation of the mean value of the cropped signal and subtraction to the
signal itself to highlight the oscillations.

• Calculation of the root mean square (RMS) of the new signal.

• Research of the local maxima bigger than the RMS, and the local minima smaller
than -RMS.

• Mean of the peaks values.

This should give a generalized value of the peak to peak amplitude of the limit
cycle. In figure 5.17, a graphical explanation of the previous steps is shown. For this
explanation, the case for 0.1% of forcing term at 350 Hz has been chosen. For this
case, the peak to peak amplitude results to be equal to 218.3 W.

Figure 5.17: Peak to peak amplitude definition (350 Hz, 0.1%).

The same process has been followed for each case, and for different monitors, such
as pressure and heat transfer rate. In the following figures are presented the trends
of the peak to peak amplitudes of the limit cycles for the heat transfer rate and the
pressure evaluated at point 4, located in the combustion chamber duct, for the three
different cases and for different frequencies. From top to bottom: 0.1, 1, 10% case.
In figure 5.18, the plot for the heat transfer rate is presented. We can see that, as
expected, all the three plots show the same trend. With a global maximum at 50 Hz,
and a subsequent local maximum at 300 Hz. The global minimum is for 100 Hz.
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This is valid for all the three three cases, the corresponding values for the differ from
one another by about a power of ten. In figure 5.19, the reader can find the plot of
the limit cycle amplitudes for the pressure signals measured at point 4. In this case,
differently from the heat transfer rate, we have a global maximum at 300 Hz, the
global minimum is found at 50 Hz. The interpolation of the sample points has been
conducted thanks to a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
on the software MATLAB.

Figure 5.18: Interpolation of limit cycle amplitudes of heat transfer rate signals. From top to
bottom: 0.1, 1, 10% case.

Figure 5.19: Interpolation of limit cycle amplitudes of pressure signal in point 4. From top
to bottom: 0.1, 1, 10% case.
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5.5 Control of the flame energy source term
Once gained some experience with a fixed temperature variation of the flame, the
next step has been acting on the source term of the energy equation for the combustion
region. The next steps are similar to the ones followed for the control of the flame
temperature.

5.5.1 The steady case for a constant heat source

Figure 5.20: RANS simulation, general temperature distribution [K].

The first one has been finding a proper constant value for the source term of the
energy equation, able to grant a temperature distribution in the combustion chamber
around 2000 Kelvins. This first investigation has been conducted thanks to RANS
simulations. After some attempts, a value of 24218000000 W

m3 has been chosen as the
right starting value. In figure 5.21, the reader can see the temperature distribution
inside the all domain for the steady case of a constant heat source.

Figure 5.21: RANS simulation, static temperature distribution [K].

We can see that, after the potential core of the hot jet flow the temperature near
the outlet is around 2000 K. We now consider the same locations used in section
5.4.1, table 5.1, in order to compare the mean results with the ones obtained with the
TALOM approach. As one can observe in table 5.4, the results are very close to the
ones of the table 5.2.
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Area weighted average Axial velocity [m/s] p [Pa] ρ [ kg
m3 ] T [K]

1.5 m 3.172 105082 1.220 299.995
1.72 m 29.046 103946 1.210 299.328

2 m 73.718 101042 0.1811 1952.227
2.5 m 73.695 101046 0.1764 1995.825

Table 5.4: Results from the steady simulation for a constant heat source of
24218000000 W

m3 for the flame energy equation.

The net total heat transfer rate provided by the model combustor is -85971 W, this
value is negative because the heat flux is globally outgoing from the control volume.

5.5.2 The unsteady case for a constant heat source

In this subsection, we present the results for the unsteady case of a constant heat
source of 24218000000 W

m3 for the flame energy equation. The aim of this calculation
is to have a better starting condition for future numerical tests and investigate the
frequencies that characterized the unsteady case. The same setup and monitors of
the URANS simulation of the fixed temperature case has been implemented for this
test and the successive ones, please see section 5.4.2. It is important to point out that
a CFL number with a value less than one is necessary to grant convergence, as a
consequence a time step of 2.5e− 5 seconds has been set.
The software Fluent let us evaluate the overall sound pressure level (OASPL) as
defined in section 2.1. So, in order to have an idea of the loudness of the model
combustor during its operating condition, we have considered the trace of acoustic
pressure sampled in points 1 and 5 (please check their coordinates at table 5.3) once
reached a statistically steady condition. The OASPL results to be equal to 56 dB for
point 1, similar to a normal conversation, and 9 dB for point 5.
In the following figures 5.22, 5.23 are presented a contour for the turbulent intensity
and one for the axial velocity distribution.

Figure 5.22: URANS simulation,turbulent intensity distribution [%].
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Figure 5.23: URANS simulation, axial velocity distribution [m/s].

Again, we can observe a similar pattern to the ones of the fixed temperature case.
Once reached convergence, we cropped the signal for the total heat transfer rate from
0.7 to 0.93 seconds.

5.6 Unsteady heat addition
We now want to investigate the unstable behavior of the model combustor from a
thermoacoustic point of view. with this intention, the first thing to do is to imple-
ment an unsteady heat addition model. Considering the source term of the energy
equation of the flame zone, it has been added to the constant value of 2.4218 · 1010 W

m3

a fluctuating term, yielding to a new formula of the type:

Qsource = 2.4218 · 1010
− β

ρb f c2
b f

(γ − 1) s f
[u(d) −U(d)]

[ W
m3

]
(5.2)

The fluctuating term of this formula aims at resembling the flame transfer function
described in section 4.2.4, we chose this flame model because it resulted to be easier to
implement on Ansys Fluent. β is a constant and it has been set equal to 1, 1.5, 1.6, 1.7,
2. The subscript bf stands for before flame, it represents the area-weighted average
of density and sound speed profiles sampled at a distance of 1.7345 meters, right
before the flame, which starts at 1.7345 meters. Instead of a time delay τ, which is
hard to implement directly on the code, we have chosen a spatial delay d considering
the instantaneous fluctuations of axial velocity, sampled not before the flame. This
axial distance from the flame has been set equal to 5, 17, and 20 mm, as to distinguish
three main cases, please see figure 5.24. The variation of the two parameters β and d
gives brings to a total of 15 cases. Another important aspect is that the flame transfer
function adds to the constant heat source term a fluctuating term, which in turn
depends on a fluctuating axial velocity. This fluctuation is mimicked by considering
the instantaneous area-weighted average of the axial velocity profile u(d), sampled
at a specific distance d during the URANS simulation, minus the area-weighted
average of axial velocity obtained thanks to a RANS (steady) simulation at the same
location, U(d). The flame thickness is indicated with s f , the utilized value is not the
flame thickness defined in the mesh section (2.5 mm), s f is obtained starting from the
mean heat source term calculated with the TALOM approach, see subsection 4.2.1
(q̄ = 22216000 W/m2). Once assessed 24218000000 W

m3 as the proper mean source
term for having an almost uniform temperature of 2000 K at the end of the combustor,

61



s f is obtained thanks to the ratio of these two values: s f =
22216000 W/m2

24218000000 W/m3 = 0.92
mm.

Figure 5.24: Sampling lines at different distances for the implementation of an unsteady heat
addition.
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5.7 Stable cases
With regard to the decaying cases, in the next sections are presented the results of the
various numerical tests done for different distances d that represent a readaptation
into a space delay of the time delay τ (the convection time from fuel injection to
combustion), together with a variation of the constant β. Every simulation starts
from the statistically steady condition obtained from the URANS simulation with
a constant heat release rate provided by the flame (24218000000 W/m3), together
with a fluctuating term where a specific value of β and spatial delay d has been
chosen. The same workflow is followed also for the analysis of the unstable cases.
Once reached a statistically steady condition, from an acoustic point of view, the
overall sound pressure levels measured in point 1 and 5 have an average value of 81
dB and 65 dB, respectively.

5.7.1 d = 5 mm

Considering the case for d= 5 mm, the first three simulations for β equal to 1, 1.5, and
1.6, have decayed to the statistically steady state characterizing the first simulation
with constant heat source. In figure 5.25 is presented the mass flow rate and total heat

Figure 5.25: Mass flow rate and total heat transfer rate signals for d=5 mm and β = 1.

Figure 5.26: Acoustic pressure contour for d=5 mm and β = 1 [Pa].

transfer rate signals for the case of β equal to 1, the reader can see that are practically
no fluctuations, and no limit cycle condition is reached. In figure 5.26 is presented
a contour of the acoustic pressure inside the modeled combustor. Once reached a
statistically steady condition, no pressure waves are detected, instead the value of
the pressure fluctuations is almost zero everywhere. The same considerations can
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be done for the case of β=1.5 and for β=1.6, figures 5.27, 5.28, 5.29, 5.30.
For the β=1.5 case, the simulation has been stopped earlier than the β=1 case, because
it was already clear that a decay condition has been established.
Considering the β=1.6 case, the simulation has lasted longer and it has been stopped
before the complete statistically steady condition, although a clear decay is notable.
The longer simulation time results to be a sign of vicinity, in terms of the parameter
β, to an unstable condition.

Figure 5.27: Mass flow rate and total heat transfer rate signals for d=5 mm and β = 1.5.

Figure 5.28: Acoustic pressure contour for d=5 mm and β = 1.5 [Pa].

Figure 5.29: Mass flow rate and total heat transfer rate signals for d=5 mm and β = 1.6.
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Figure 5.30: Acoustic pressure contour for d=5 mm and β = 1.5 [Pa].

5.7.2 d=17 mm

Analogous considerations can be done for the other distances. In the following
figures are presented the decaying results for d=17 mm, please see figures 5.31-5.34.
The main difference with the d=5 mm case is that there is decay just for β equal to 1
and 1.5. For the latter case, the simulation has been interrupted early, as soon as a
decay condition has been detected.

Figure 5.31: Mass flow rate and total heat transfer rate signals for d=17 mm and β = 1.

Figure 5.32: Acoustic pressure contour for d=17 mm and β = 1 [Pa].
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Figure 5.33: Mass flow rate and total heat transfer rate signals for d=17 mm and β = 1.5.

Figure 5.34: Acoustic pressure contour for d=17 mm and β = 1.5 [Pa].

5.7.3 d=20 mm

In the following figures are presented the decaying results for d=20 mm, please see
figures 5.35-5.37. Likewise, for this condition, there is decay for β equal to 1 and 1.5.

Figure 5.35: Mass flow rate and total heat transfer rate signals for d=20 mm and β = 1.
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Figure 5.36: Acoustic pressure contour for d=20 mm and β = 1 [Pa].

Figure 5.37: Mass flow rate and total heat transfer rate signals for d=20 mm and β = 1.5.
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5.8 Unstable cases
With the aim of finding an unstable condition of the model combustor, the parameter
β has been raised more for every of the three main cases. In the following subsections
are presented the principal results for each of the numerical tests, in the next section,
the focus goes on the limit cycle condition, analyzed and quantified employing the
acoustic energy.
Once reached the limit cycle condition, from an acoustic point of view, the overall
sound pressure levels measured in point 1 and 5 have an average value of 156 dB
and 146 dB, respectively, which are way over the threshold of pain.

5.8.1 d=5 mm

Switching the parameter β from 1.6 to 1.7 has lead to significant outcomes, in this
situation a limit cycle condition is reached. The same can be said for the β=2 case.
The first transient signal proposed is the volume-average temperature of the flame
zone, intending to correlate this value with the fixed temperature cases of section
5.4. For d equal to 5 millimeters, the first unstable case found is when switching from
β=1.6 to β=1.7, and also going from 1.7 to β=2, figure 5.38.
For the first case, d=5 mm and β=1.7, the flame temperature starts to have significant
fluctuations from one second; at around 1.4 s the limit cycle condition is reached and
the peak-to-peak amplitude is about 650 K. Please note that for these cases the heat
provided by the flame is controlled, not its temperature, so it is normal to have a
starting value of 1250 K, this is because the flow passes through the flame, heats up,
and then arrives at 2000 K in the successive combustion chamber. For the β=2 case,
similar conclusions can be drawn. Here the peak-to-peak amplitude of the limit cycle
is of the order of 1100 K and this state is achieved earlier, from 0.5 s. Concerning the
previous case, for β equal 2, we also observe more oscillations in the signal.

Figure 5.38: Signals for the temperature volume-average of the flame zone for d=5 mm,
β = 1.7, and β = 2 [K].
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Figure 5.39: Acoustic pressure contour for d=5 mm and β = 1.7 [Pa].

Figure 5.40: Temperature fluctuations contour for d=5 mm and β = 1.7 [K] (sections 2 and
3).

In figures 5.39, and 5.40 are presented the contours of the acoustic pressure and
temperature fluctuations inside the modeled combustor, for d=5 mm and β = 1.7 .
These contours are extracted at the end of the corresponding numerical simulation,
when the limit cycle is well established. The first contour highlights the pressure
waves, in the first section three of them are clearly distinguishable, and in the
combustion chamber, only one strong wave is present. In the second contour, the
reader can observe multiple portions of hot and cold fluid outgoing in the combustor,
the fluctuations are higher the closer to the flame. Finally, a varicose configuration
is notable, this is probably due to the axisymmetric flow condition imposed.

Figure 5.41: Acoustic pressure contour for d=5 mm and β = 2 [Pa].
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Figure 5.42: Temperature fluctuations contour for d=5 mm and β = 2 [K] (sections 2 and 3).

In figures 5.41, 5.42, are presented equivalent contours for the pressure and temper-
ature oscillations for the β=2 case. Again, one can see two pressure waves inside
the plenum and one stronger compression wave in section three. This is also em-
phasized in figure 5.43, where the acoustic pressure distribution on the axis of the
model combustor is plotted. It is a clear representation of a modeled combustion
instability, with a robust pressure wave downstream of the modeled flame.

Figure 5.43: Plot of the acoustic pressure distribution along the axis of the combustor for
d=5 mm, β = 1.7, and β = 2 [Pa].

5.8.2 d = 17 mm

The next case presented is for d=17 mm. For this spatial delay, a stable limit cycle
configuration is achieved by setting β equal to 1.6, 1.7, and 2. The larger the β, the
earlier the instability takes effect, together with larger temperature fluctuations. The
β=2 case is characterized by limit cycle oscillations which tend to be more unstable.
It could be reasonable to justify this behavior because the code may find difficulties
in obtaining convergence.
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Figure 5.44: Signals of the temperature volume-average of the flame zone for d=17 mm,
β = 1.6, and β = 1.7 [K].

Figure 5.45: Signal of the temperature volume-average of the flame zone for d=17 mm and
β = 2 [K].

Figure 5.46: Acoustic pressure contour for d=17 mm and β = 1.6 [Pa].
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Figure 5.47: Temperature fluctuations contour for d=17 mm and β = 1.6 [K] (sections 2 and
3).

In figures 5.46, 5.48, and 5.50 are illustrated similar contours for the acoustic pressure
for β equal to 1.6, 1.7, and 2, with d= 17 mm. Together with this, in figures 5.47, 5.49,
and 5.51 are presented the temperature fluctuations contours. Again, these reported
contours are extracted from the last instant of each numerical simulation.

Figure 5.48: Acoustic pressure contour for d=17 mm and β = 1.7 [Pa].

Figure 5.49: Temperature fluctuations contour for d=17 mm and β = 1.7 [K] (sections 2 and
3).
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Figure 5.50: Acoustic pressure contour for d=17 mm and β = 2 [Pa].

Figure 5.51: Temperature fluctuations contour for d=17 mm and β = 2 [Pa] (sections 2 and
3).

Finally, the plots of the acoustic pressure registered on the modeled combustor axis,
are displayed in figures 5.52, 5.53, the vertical lines in grey represent the intersections
plenum-premixer, premixer-combustion chamber, respectively. Here one can see that
the waveforms in the plenum are different wit respect to the previous case of d set
equal to 5 millimeters. Moreover, as reasonable, the pressure amplitudes in the third
section are larger for a larger β.

Figure 5.52: Plot of the acoustic pressure distribution along the axis of the combustor for
d=17 mm, β = 1.6, and β = 1.7 [Pa].
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Figure 5.53: Plot of the acoustic pressure distribution along the axis of the combustor for
d=17 mm and β = 2 [Pa].

5.8.3 d = 20 mm

The last investigation involves the spatial delay d=20 mm, the furthest position from
the flame where is flow variables are sampled. The successive plots and contours are
similar to the previous results of the other numerical tests. The flame temperature
oscillations are close to the ones of the d= 17 mm case, again for β=2 the oscillations
result to be more unstable. For all the three β cases, the pressure contours highlight
two distinguishable acoustic waves inside the combustion chamber, to a smaller
extent this is also clear in the acoustic pressure distributions along the modeled
combustor axis , please see figures 5.62, 5.63. CHECK!!!

Figure 5.54: Signals of the temperature volume-average of the flame zone for d=20 mm,
β = 1.6, and β = 1.7 [K].
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Figure 5.55: Signal of the temperature volume-average of the flame zone for d=20 mm and
β = 2 [K].

Figure 5.56: Acoustic pressure contour for d=20 mm and β = 1.6 [Pa].

Figure 5.57: Temperature fluctuations contour for d=20 mm and β = 1.6 [K] (sect. 2 and 3).
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Figure 5.58: Acoustic pressure contour for d=20 mm and β = 1.7 [Pa].

Figure 5.59: Temperature fluctuations contour for d=20 mm and β = 1.7 [K] (sect. 2 and 3).

Figure 5.60: Acoustic pressure contour for d=20 mm and β = 2 [Pa].

Figure 5.61: Temperature fluctuations contour for d=20 mm and β = 2 [K] (sect. 2 and 3).
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Figure 5.62: Plot of the acoustic pressure distribution along the axis of the combustor for
d=20 mm, β = 1.6, and β = 1.7 [K].

Figure 5.63: Plot of the acoustic pressure distribution along the axis of the combustor for
d=20 mm and β = 2 [Pa].
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5.9 Further analysis on the unstable cases
In this section, a comparison between the three space lags for a given value of β is
firstly presented. In figure 5.64, are shown the flame temperature signals for the
unstable cases obtained for β equal to 1.7 and 2, already presented in the previous
section. This let us understand the influence of the space lag d. For both values of
the constant β, the closer to the flame is the sampling for studying the combustion
instability, the longer it takes to reach a limit cycle condition, together with reduced
fluctuations. One can also notice that increasing the value of β leads to a drastic
reduction in the time needed for instability to build up, with bigger peak-to-peak
amplitudes.

Figure 5.64: Unstable signals of the temperature volume-average of the flame zone [K]
(β=1.7, β=2).

The different numerical tests are now examined and analysed by means of the
acoustic energy. For this purpose, we recall the definition given in section 2.3, whose
formula is reported hereinafter for completeness.

Wacoustic =Wpotential +Wkinetic =

$
V

p′2

2ρ̄c̄2 dV +
$

V

1
2
ρ̄u′2 dV [J] (5.3)

The first investigation involves the calculation of the growth rates of the acoustic
energy signals. The case for d=17 mm and β=1.6 is considered to explain how the
growth rate has been calculated, please see figure 5.65.
Once concluded the simulation, fig.5.65.a, the first step to follow is to do the loga-
rithm of the signal, fig. 5.65.b. This will highlight a linear trend, corresponding to
exponential growth or decay of the acoustic energy. The initial part of the monitor
is not taken into account, because it shows the filtering of the disturbance by the
system. After this, the first linear portion of the signal is cropped, and separately an-
alyzed. The next step is illustrated in fig. 5.65.c, where the upper and lower envelope
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of the cropped signal are defined. The points of the envelopes are both interpolated
with a first-degree polynomial, from which we obtain the lines’ slope. The two coef-
ficients of the two polynomials, representing their slope, are respectively averaged,
and consequently, the growth rate of the signal is extracted. Finally, in 5.65.d it is
plotted the exponential function that represents the exponential progression of the
acoustic energy. An analogous approach can be applied to the decaying cases.

Figure 5.65: Determination of the growth rate of a specific acoustic energy signal.

In figure 5.66 are reported the growth rates of the monitored acoustic energy for
the various numerical tests. The reader can see that, given a specific space delay,
increasing the value of the parameter β leads to a progressive gain in the growth rate.
As we have investigated, between β equal to 1.5 and 1.6 all three cases transit from a
decaying condition to an unstable one, it is legitimate to think that this is also valid
for other space lags that lay between 5 and 20 millimeters. In addition, the bigger
the space delay the greater the consecutive growth rate.
If we now want to compare these results with the growth rates calculated in section

4.2.4 thanks to the linear theory, we first have to keep in mind that we are dealing
with an energy that is proportional to the square of velocity and pressure, so this is
why here the growth rates are divide by two.
In addition, by doing a Fast Fourier Transform (FFT) of the developing signal, we
see that they grow with a main frequency very close to 400 Hz, similar to the one
characterizing the limit cycle condition.
What it is possible to conclude is that these growth rates result to be much smaller
than the ones calculated with the linear theory, please see figures 4.7, 4.8. Moreover
close to 400 Hz, for both β equal to 1.7 and 2, decaying eigenmode are found. This
highlights a strong discrepancy with the linear solutions, although the comparison
is done between results obtained with a time lag and not a space lag.
The main reason for this discrepancy could be explained by focalizing on the mean
flow analyzed on Ansys Fluent. Unlike the mean flow of section 4.2, where we
already found a strong sensibility to the mean field, here we deal with a fluid that is
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Figure 5.66: Growth rates of acoustic energy divided by two.

treated as viscous, that has turbulence, and also presents flow separation. Viscosity,
for example, tend to extend the temporal scales.

Figure 5.67: A.e. peak-to-peak amplitude (LC) vs distance from the flame.

Next, the focus goes on the limit cycle condition. The results obtained from the
previous simulations are now reorganised and summarized in figure 5.67, where the
the limit cycle’s amplitude of the acoustic energy is plotted as a function of the space
lag d, with β set as parameter. It is clear to see that switching to a bigger space lag,
which means that the flow variables are sampled further from the flame, grants a
growth in the limit cycle amplitude. In addition, as one would expect, increasing
the value of the constant β correspond to larger limit cycle amplitudes.
Finally, a Fast Fourier Transform of each limit cycle signal has been done to highlight
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the frequencies that characterize the oscillations. In figure 5.68, on the y-axis is plot-
ted the power spectral density of the signal (PSD), which is a measure of the signal’s
power content, and on the x-axis are plotted the frequencies of the signal. The reader
can see that all the limit cycles are almost characterized by the same frequencies,
independently of the space lag or the value of β. The main frequency is around 385
Hz, moreover the first and third harmonics are visible.

Figure 5.68: Power spectral density of the limit cycle signals of acoustic energy.

5.10 Bifurcations diagrams
In this paragraph we present the bifurcation diagrams computed for all the three
cases. The investigation aims to find the type of bifurcation, whether supercritical
or subcritical. For further definitions, please check section 3.5.2.
When reached a limit cycle state, the square root of acoustic energy is used to make
a comparison between the different peak-to-peak amplitudes. The same approach
adopted in section 5.4.3 has been used to calculate the limit cycle amplitude. In
figures 5.69, 5.70, and 5.71, are presented the bifurcation diagrams defined for each
space lag, with the square root of the peak-to-peak amplitude of the acoustic energy
limit cycle on the vertical axis. The sample points are interpolated with a Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP).
In order to define this type of diagram, we have repeated the simulations starting
from the limit cycle condition of the previous case. Firstly, we have done this by
raising the value of β (forwards), and then by reducing it starting back from the
β=2 condition. We chose β as a control parameter, which represents the amount of
unsteady heat release rate, summed to the mean contribution, provided by the flame.
In all the three cases, the reader can distinguish a subcritical bifurcation diagram.
For d = 5 mm the bistable region extends from β=1.3-1.9, the backwards calculations
show a clear hysteresis, with smaller limit cycle amplitudes. Moreover, switching
from β=1.6 to 1.7, drives the system from a zero amplitude condition to a limit cycle
state. Similar conclusions can be drawn for the two other space lags, d=17 mm and
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d=20 mm. Here, the bistable region extends from β=1.9-1.2.

Figure 5.69: Bifurcation diagram, d=5 mm.

Figure 5.70: Bifurcation diagram, d=17 mm.
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Figure 5.71: Bifurcation diagram, d=20 mm.
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6 How to reduce thermoacoustic instabilities?

To control or even eliminate thermoacoustic instabilities, the coupling between
acoustic waves and unsteady heat release should be broken.
The combustion instabilities can be controlled through two main techniques, using
the passive control or the active control.
The passive control techniques tend to modify the combustor design changing the
relationship between the acoustic waves and the unstable heat release rate; this cou-
pling has to be interrupted by two different ways: the flame puts less acoustic energy
in the acoustic mode of the combustor prone to instability, reducing the susceptibility
of the combustion process to the acoustic excitation, or the combustor damping is
increased removing the acoustic wave energy.
Reducing the susceptibility of the combustion process may include changes in the
fuel injection system and in the combustor geometry, whereas the removal of energy
of the acoustic wave may be achieved by devices and acoustic cavities; two com-
mon damping geometries employed in gas turbines are Helmholtz resonator and
quarter-wave resonator. Usually these devices must be tuned to the frequency of
the thermoacoustic instabilities to achieve significant mitigation and they must be
designed at the locations where the pressure is maxima to adsorb a lot of energy
[29, 30].
In recent years, hybrid methods such as adaptive-passive devices have been pro-
posed to overcome this drawback, for examples:

• a tunable and variable volume Helmholtz resonator with a robust control al-
gorithm [31];

• perforated combustor liners [32];

• perforated skin of the liner combined with the volume of the backing forms
smaller annular Helmholtz resonators;

• acoustic radiator that actively produces acoustic waves in response to the pres-
sure pulsations [33];

• insertion of a porous disk in the combustor design or porous annular ring at
the dump plane of the swirl-stabilized LPM combustor.

The last configuration of a porous insert is effective in mitigating combustion noise
and thermoacoustic instability, without negatively affecting NOx and CO emissions.
Porous insert can absorb a fraction (about 30%) of the acoustic energy. Thus, the
thermoacoustic instability is mitigated thanks to the presence of the porous insert
which decreases the driving force of instability and increases the acoustic damping
of the system.
One of the main problem about this technique is that the passive control techniques
tend to be efficient only over a limited range of operating conditions and they are
ineffective at low frequencies because oscillations are very difficult to be damped.
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Figure 6.1: Example of experimental test of lean premixed pre-vaporized liquid-fuel combus-
tion in porous media burners: image of experimental facility and schematic of porous media
burner PMB test hardware [34].

The active control typically alters the equivalence ratio or reactant flow rates to avoid
the phase relationship between heat release rate and pressure fluctuations and thus,
avoid combustion instabilities.
Active controls have great potential to stabilize combustors even at off-design con-
ditions, they are very ‘adaptive’. They could be classified into open- or closed-loop
configurations, which involve a feedback control configuration.
A dynamic actuator is applied to modulate some system parameters, which is re-
sponding to a sensor’s measurement. Typical sensors include microphones, pressure
transducers, or photomultipliers. These sensors capture the combustor’s condition
in real-time. This information is then supplied to a designed controller, that deter-
mines an actuation signal, which is used to drive the dynamic actuator. The actuator
‘perturbs’ the state of the combustion system in a manner which prevents the onset
or mitigates the combustion instability [35].
Two main active control designs can be developed: modal based control and non
modal based control.
The first one requires detailed knowledge of the system; this model is designed with
the actuators and the sensors. The active control based on this model can provide
strong guarantees that the system will not become unstable. It can be optimized for
one or more operating points.
The second one can be universally applied but there is no guarantee that the model
will work. The system is considered a black box and its behavior has to be learnt
both as offline and online identification.
The best active control technique could be multiple modes.
The sensors, as microphones and piezo-electric transducers, can be used to measure
acoustics quantities at some distances; we need to capture fluctuations that it is not
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easy with other sensors, like thermocouples.
Some examples of actuators are:

• the loud speakers, that can be used to product antisound, but they have the
disadvantages of they require a lot of power, they do not work correctly in a
very hot and dirty environment;

• the fuel injectors, that can be produced fluctuating heat release rate.

Figure 6.2: Combustor Test Setup: example of loud speakers and other devices for active
control.
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7 Implementation of a porous medium

7.1 Brief recap on porous media
Porous media are solid and heterogeneous materials having voids, called pores, in
their microstructure and they can be passed through by fluids in motion.

Figure 7.1: High porosity ceramic material.

Porosity is one of the most important parameters of this type of materials, and it’s
defined as follow:

ϵ =
Vp

Vtot
(7.1)

It’s a fraction of the volume of void spaces Vp over the total volume Vtot, so its value
is between 0 and 1.
The permeability of a porous medium is another relevant quantity, it’s a function of
the type of material, and also other parameters like stress, temperature, ... etc.
According to Darcy’s law, reported below, the effective fluid permeability k and fluid
pressure gradient determine the flow rate:

Q =
k · A · ∆P
µ · L

(7.2)

where Q is the volumetric flow rate [m3/s], k is the permeability [m2], A is the area
[m2], ∆P is the pressure drop [Pa], µ is the dynamic viscosity of the fluid [Pa · s] and
L is a given distance [m].
The permeability is governed by the size and distribution of pores along with the
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defects present in the material’s microstrucdesigns
Reducing the porosity and pore size decreases permeability, thereby increasing the
mechanical strength of the porous media, like ceramic ones.
To better understand this property, the following formula reports the Kozeny–Carman
equation, which correlates the permeability with the size and distribution of pores:

k = Φs
2
·
ϵ3
·Dp

2

150 · (1 − ϵ)2 (7.3)

where Φs is the sphericity of the particles and Dp is the average particle diameter
[m].

7.2 Applications of porous media in combustion technology
Porous media are used in combustion technology and typically in order to better
control flame stabilization and other aspects. Typically two different porous disks
are located before and after the flame.
The two zones are respectively called combustion zone and preheating zone. The first
zone is made up of a material with larger pore sizes, high radiation and combustion
characteristics; while the second one is made up of a material with low conduction
capabilities and smaller pore size.

Figure 7.2: Schematic of a porous burner.

The disk located in the combustion zone has to support heat recirculation through
the porous media.
The disk placed in the preheating zone is made up of a porous material characterized
by a low thermal conductivity and small pore size in order to avoid the phenomenon
of flashback.
The choice of the material that will used in the preheating zone is fundamental for the
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overall combustion performance and pollutant formation, because these aspects are
governed by the length of the pores and the burner’s heat recirculation capabilities.
The phenomenon of heat recirculation is one of the most crucial factors that gives
porous burners interesting characteristics over the free flame burners, indeed a
porous burner uses both radiation and conduction to support the enhanced heat
transfer, in addition convection is improved because of the higher surface area.
However this aspect needs to be controlled, because an increase in heat exchange
produces an increase in the flame speed. Furthermore, the preheating zone allows
the mixture to reach a temperature that can sustain chemical reactions [36].
It is necessary to control two different parameter: the porosity ϵ and the particle
diameter Dp. Higher porosities mean larger pores, but less number of pores to allow
flame propagation, whereas lower porosities provide higher rates of energy transfer
through the solid.
So it’s important to study the correct equilibrium between this two quantities in
order to optimize the porous material properties and to control flame stabilization
and radiation efficiency together [37, 38].
Combustion in porous media has been identified as a promising technology for
achieving higher burning rates, extending flammability limits and reducing emis-
sions.
The characteristics of combustion within porous media are:

• excellent stability behaviour;

• ability to burn leaner and hotter than a free flame;

• lower NOx emissions associated with the low gas temperatures at lean condi-
tions;

• extension of the flammability limit at leaner conditions;

• faster flame speeds;

• possibility to operate free from combustion-induced noise;

• no cooling requirement for the combustor itself;

• PMB’s design can ensure the anchor of the flame.

This properties testify a wide variety of possible applications of porous media, for ex-
ample in internal combustion engines, gas turbines and propulsion, heat exchangers,
hydrogen production, liquid fuel combustion and many others.
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7.3 Ceramic materials for porous media
The selection of the correct porous material is central, among the high-performance
materials stand out the ceramic ones.
In particular, for the porous ceramic media (PCM) the selection of the right material
is one of the most significant burner design factors, due to the fact that thermophys-
ical properties play a vital role to achieve desired performance characteristics [36].
Ceramic materials have a large surface-to-volume ratio and this favors direct heat
exchange, moreover, the high porosities minimize the pressure drop.
Alumina, Silicon carbide, and Zirconia are generally the three main materials se-
lected for their applicability in porous burner technology, thanks to their intrinsic
characteristics such as high thermal shock resistance, high chemical stability, ex-
cellent creep resistance, higher melting points, high porosity, high durability, good
radiative properties, easy availability, and lower costs.

7.3.1 Alumina

Alumina Al2O3 can be employed in environments with high operating temperatures,
as high as 1900 °C. This peculiarity promotes its use in porous burner applications, in
particular, an application in the preheating zone. On the other hand, it has moderate
thermal shock resistance and low thermal conductivity characteristics.

Figure 7.3: Al2O3 based PCFs (Porous Ceramic Foams).

7.3.2 Silicon carbide

Silicon carbide SiC has excellent heat transfer properties and good thermal shock
characteristics, however, this material creates a silicon layer that reduces the corro-
sion resistance of the material under extreme operating conditions.
With that being said, as compared to Al2O3, it is the most used material thanks to
its higher heat transfer coefficient, because it supports better rates of heat transfer
through radiation and conduction.
Silicon carbide SiC can be employed in operating temperatures of 1750 °C.
These ceramic foams are used in numerous fields, such as energy, aerospace, met-
allurgy, machinery, environmental, chemistry, and medical fields, for many applica-
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tions as filters, membranes, thermal insulators, or heat exchangers, sound-absorbing
material, capacitors, damping buffers, sensors, catalysts and catalyst carriers, and
many others.

Figure 7.4: SiC lamellae.

7.3.3 Zirconia

Zirconia ZrO2 can be employed in operating temperatures as high as 1800 °C, thanks
to its high thermal conductivity.
One major limitation of using ZrO2 as PCM in burner applications is the relatively
high cost of the material. Finally, Zirconia exhibit relatively low thermal conductiv-
ities among ceramic materials.
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7.4 Case for a porous medium located before the flame
The next section is based on a new case, characterized by the implementation of a
porous medium located before the flame of the combustor model.
The purpose of this section is to investigate the behavior of the thermoacoustic
instabilities, flow quantities, and other parameters.
It is expected that the porous medium will damp the thermoacoustic instabilities,
on the other hand, one should take into account that this will cause an additional
pressure loss due to the presence of this physics barrier in the flow.
Again, the numerical tests are conducted using the commercial software Ansys for
computational fluid dynamics.
The workflow is similar to the nonlinear analysis conducted in section 5. Firstly, it
is required to introduce in the control volume a new geometry, in order to define
and locate the porous medium. Afterwards, a new mesh is properly adapted to
the case. Subsequently, the code settings come, here, it is important to focus on the
porous zone and how the software will model it. Finally, the numerical results are
post-processed.

7.4.1 Geometry

The geometry of the model combustor is the same as the previous case, where no
porous medium was implemented (figure 5.1).
The only difference is that now the geometry has a new section added in the premixer
duct in order to model the porous zone.
Below, it is reported the zoomed geometry of the porous zone marked in orange.

Figure 7.5: Geometry of the porous medium case localized before the flame.

The porous septum has the same radius as the premixer and has a thickness of 20
mm. These dimensions are related to a similar case found in literature that is taken as
reference, where we impose the same ratio between the two respective dimensions,
radius and thickness [39].
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The porous medium is localized just before the flame’s position, but the outlet section
of the porous zone doesn’t coincide with the flame’s region inlet. There is a small
gap of 1,26 mm between the porous zone and the flame.
This is related to the fact that it is better not to choose the same line to impose
simultaneously two different conditions.

7.4.2 Mesh

The second step is the mesh. As in the previous case, an unstructured mesh with
triangular elements has been designed. The number of cells is 127677, and the
minimum orthogonal quality is equal to 0.45323.
In the following figure, it’s reported a zoom on the premixer duct (section 2), where
the porous zone is highlighted in yellow and the flame region is highlighted in red.

Figure 7.6: Mesh of the porous medium localized before the flame.

7.4.3 Setup of the simulation

The flame energy source is controlled by imposing at first a constant heat source
equal to 24218000000 W

m3 and then implementing an unsteady heat addition model,
which takes into account a fluctuating term.
The porous zone is set in Fluent under cell zone conditions ; in particular, it is
necessary to define some porous properties, which characterize the porous medium.
These parameters are the viscous resistance, the inertial resistance, and the fluid
porosity. As a first approximation, for the heat transfer option it is set an equilibrium
condition, which means that the solid and fluid parts of the porous are at the same
temperature. This hypothesis is reasonable thanks to the porous medium location,
which is before the flame, and so the global influence of convective and conductivity
heat, in terms of the total heat transfer rate, is negligible.
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Figure 7.7: Cell zone condition for the porous medium case localized before the flame.

The permeability is evaluated using the equation 7.3 and the inertial loss coefficient
in each component direction can be identified as follows:

C2 =
3.5 · (1 − ϵ)

Dp · ϵ3 (7.4)

where Φs is the sphericity of the particle, Dp is the mean particle diameter and ϵ is
the fluid porosity [40].
The particle sphericity is imposed equal to 1 by hypothesis, so the inclusions are
considered spherics. Porosity is chosen equal to 0.75, this is due to the fact that in
literature porosity usually has a value between 0.6 to 0.9. Consequently, we have
decided 0.75 as a reasonable value, generally used in applications like this one.
In Fluent, it is necessary to set the viscous resistance, which is the inverse of the
permeability 1/α, and the inertial resistance, which is the coefficient C2; those values
are respectively 34722222 m−2 and 2592.6 m−1.
This case of study is developed using a flame energy source term and the followed
steps are similar to the previous case without the porous medium: a steady case and
an unsteady case for a constant heat source, followed by the implementation of the
same unsteady heat addition model.
The aim of this is to evaluate and compare the results with the previous ones.
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7.4.4 The steady case for a constant heat source

The first step is to run a RANS simulation, initialized at the inlet, with a constant
value of 24218000000 W

m3 as the source term of the energy equation for the flame zone.
After about 1000 iterations, convergence is reached.
In table 7.1 are presented the results for the area-weighted average of some flow
properties, like temperature, density, pressure, and axial velocity profiles. They are
sampled in correspondence of the four reference lines located at 1.5, 1.72 (this one is
now inside the porous medium), 2, and 2.5 meters.

Area weighted average [m] Axial velocity [m/s] p[Pa] ρ [ kg
m3 ] T[K]

1.5 2.574 129305 1.502 299.996
1.72 24.981 121044 1.407 299.682

2 73.814 100974 0.180 1962.759
2.5 73.669 101046 0.176 2000.721

Table 7.1: RANS results for a constant heat source.

The net total heat transfer rate provided by the model combustor is -85974 W, this
value is negative because the heat flux is globally outgoing from the control volume.
In the next three figures are presented some contours resulting from the current
numerical test, the reader can observe the static temperature distribution, the static
pressure distribution, and a zoom localized on the porous medium of the static pres-
sure distribution.
The static temperature contour is similar to the previous one, where the maximum
and minimum values are the same.

Figure 7.8: RANS simulation, static temperature distribution.
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There is a pressure drop before and after the porous medium which is plotted along
the porous medium axis (fig 7.11). At the inlet of the porous medium, the static
pressure is equal to 27473.7 Pa, and at the outlet is 3461.9 Pa, so the pressure drop
results in 24011.8 Pa.

Figure 7.9: RANS simulation, static pressure distribution.

Figure 7.10: RANS simulation, zoom static pressure distribution.

Figure 7.11: Pressure drop along the porous medium x-axis.
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7.4.5 The unsteady case for a constant heat source

The unsteady case for a constant heat source is running in order to have a better
starting condition for the URANS simulations.
The constant heat source doesn’t change for the flame energy equation. Some mod-
ifications are implemented, for example, the simulation becomes transient and the
fractional step method is used; it is also necessary to set a time step, which allows to
control the CFL number and to keep it under 1.
The following figures, 7.12 and 7.13, report two contours, one for the turbulent
intensity and one for the axial velocity distribution.

Figure 7.12: URANS simulation, turbulent intensity [-].

Figure 7.13: URANS simulation, axial velocity distribution [m/s].

It is interesting to see the formation of two distinct separation bubbles, one in the
second duct before the porous medium, and one at the beginning of the combustor
chamber, this is due to a local reduction of turbulent intensity and axial velocity.
Indeed, the wall shear stress goes to zero in these locations and it can also be seen
that velocity vectors reverse their directions; these features confirm the presence of
separation bubbles.

7.4.6 Unsteady heat addition

The following step is to investigate the unstable behavior of the combustor model,
so it is implemented an unsteady heat addition model described by the equation 5.2.
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The aim of this subsection is to test the porous medium in order to control if it works
properly. The main purpose is to damp thermoacoustic instabilities, and, as a result,
limit the value of β for which we expect to trigger instability.
The following table presents the main results of these simulations. As the parameter
d increases, which means that the spatial delay before the flame grows, there is a
decrement in the area-weighted average of axial velocity obtained from the corre-
sponding RANS simulation, used to calculate the axial velocity fluctuations. This is
a direct consequence of the pressure drop imposed by the porous septum. None the
less, there is an increment of the limit value of β, namely the value of the constant
above which the system becomes unstable.
The limit value of β grows with the spatial delay d because the porous medium
significantly affects velocity fluctuations, which are smaller further from the flame
where pressure is higher. Consequently, the value of β for which the system becomes
unstable needs to be greater, in equation 5.2 the fluctuating term depends on two
main contributions: the constant β and the axial velocity.
We also have to keep in mind that thermoacoustic instabilities occur if the acoustic
driving is greater than the damping effect (Rayleigh criterion).
Thanks to this investigation of the limit values of β, we have obtained a range of
values that contains βlim and those ranges are reported in the table 7.2, together with
the area-weighted averages of axial velocity from the RANS simulations, sampled
at the corresponding distance d.

d [mm] Axial velocity [m/s] βin f < βlim < βsup

5 27.6367 15 - 20
17 24.4010 25 - 30
20 23.7176 25 - 30

Table 7.2: URANS results with flame model implementation.

Figures 7.14 and 7.15 show mass flow rate and total heat transfer rate signals as rep-
resentative examples of the decaying behavior for β = 2. The reader will remember
that for this value of β the original case without porous medium becomes unstable.
So, for this case the porous medium works fine.

Figure 7.14: Mass flow rate and total heat transfer rate signals for d=5 mm and β = 2.
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Figure 7.15: Mass flow rate and total heat transfer rate signals for d=20 mm and β = 2.

In the next figure 7.16, are shown the acoustic energy signals for d = 5mm and
d = 20mm.
These plots are characterized by an exponential growth, which means that an unsta-
ble condition is triggered, unfortunately the code is unable to converge and so the
limit cycle condition isn’t achieved.

Figure 7.16: Acoustic energy signals for d=5mm, β = 20 and d=20 mm, β = 30.

The next table shows the results from the unsteady simulation varying the porosity
in order to study its effect on the other flow quantities. In this parametric study, the
spatial delay d is fixed equal to 20 mm. This choice is related to the fact that the 20
mm case has the biggest growth rates and limit cycle amplitudes among the other
cases.
Increasing porosity translates into an increment of the void spaces, and as a conse-
quence, the pressure drop between the porous medium decreases and, at the same
time, the axial velocity increases. The value of βlim decreases as porosity increases.
This is related to the fact that, considering the fluctuating term in equation 5.2, the
axial velocity fluctuating contribution becomes bigger, thus a smaller value of βlim is
sufficient to trigger instability.
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Porosity
[-]

Permeability
[m2]

Inertial
coefficient

[m−1]

Axial
velocity

[m/s]
∆P

[Pa]
βin f < βlim < βsup

0.75 2.88 · 10−08 2592.6 23.7176 24 012 25-30
0.85 1.16 · 10−07 1068.6 26.4118 10 505 15-20
0.9 3.11 · 10−07 600.1 27.4552 5 991 5-10

Table 7.3: URANS results with flame model implementation and varying porosity.

7.5 Case for a porous medium located after the flame
This section presents the implementation of a porous septum inside the combustion
chamber duct. It is located after the flame in three different positions in order to
investigate the influence of the medium’s location on thermoacoustic instabilities.

7.5.1 Geometry

The porous medium has different dimensions with respect to the previous case; in
particular, it has the same radius as section 3 and a thickness of 33 mm.
Three case are now defined, with the porous septum localized in three different
positions:

• configuration 1 - at 250 mm from the flame’s position, figure 7.17;

• configuration 2 - at 500 mm from the flame’s position, figure 7.18;

• configuration 3 - at 750 mm from the flame’s position, figure 7.19.

Figure 7.17: Geometry of the porous medium localized at 250 mm from the flame.
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Figure 7.18: Geometry of the porous medium localized at 500 mm from the flame.

Figure 7.19: Geometry of the porous medium localized at 750 mm from the flame.

7.5.2 Mesh

Again, an unstructured mesh with triangular elements has been designed for these
new porous medium configurations. The number of cells is 127860, and the mini-
mum orthogonal quality is equal to 0.5053.
In figure 7.20 is presented a zoom of the porous medium mesh, which is finer than
the other regions of the combustion chamber in order to better model and investigate
this case.

Figure 7.20: Mesh of the porous medium case localized after the flame.
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7.5.3 Setup of the simulation

The general setup is the same as the previous porous medium case.
The only difference is about the porous cell zone condition. Viscous resistance,
inertial resistance, and fluid porosity are equal to the previous chosen values, what
has been modified are the heat transfer settings.
There are two thermal models for a porous zone: the equilibrium model, the one
used for the previous case, which assumes thermal balance, that is fluid and solid
environments have the same temperature during the simulation. The other option
is to choose the non-equilibrium model, which assumes thermal imbalance, so the
solid part can have a different temperature or heat flux compared to the fluid zone
[40].
For this case, the non-equilibrium model is chosen in order to better predict and
model heat transfer in the porous medium during a possible instability . Indeed, the
septum is localized after the flame, thus one cannot overlook that the temperature
levels in the combustion chamber are higher, so this implies that it cannot be assumed
a constant temperature between the fluid and the solid parts.
As a consequence, for the next simulations, where the porous medium and the fluid
flow are not assumed to be in thermal equilibrium, a dual cell approach is used. In
such approach, a solid zone that is spatially coincident with the porous fluid zone is
defined, and this solid zone only interacts with the fluid by means of heat transfer.
Silicon carbide is the selected material for the solid porous zone and its properties
are presented below, please see figure 7.21.

Figure 7.21: Thermophysical properties of silicon carbide.

The conservation equations for energy are solved separately for the fluid and solid
zones, and the source term due to the non-equilibrium thermal model is defined as:

Q̇source = h f s · A f s · (T f − Ts) (7.5)

where T f and Ts are respectively the temperature of the fluid and the temperature of
the solid medium. Two other important parameters need to be implemented in the
non-equilibrium thermal model, as the porous medium material has to be defined:
the heat transfer coefficient for the fluid/solid interface h f s and the interfacial area
density A f s, defined as the ratio of the area of the fluid-solid interface to the volume
of the porous zone.
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The interfacial area density A f s is calculated thanks the following formula:

A f s =
6 ϵ
Dp

(7.6)

where in this case it is equal to 5625.
The convective heat transfer h f s in porous materials is still a formal and complex
subject due to the intricate microstructure and the heterogeneity of the pores. The
enhancement of heat transfer in porous media can be achieved by two major mecha-
nisms. Firstly, ligaments orientated normally to the flow direction provide tortuous
pathways to enhance the flow mixing and promoting vortices. Secondly, boundary
layer disruption increases the fluid turbulence.
In order to evaluate h f s, the porous medium is considered as a black box and, as a
measure of the amount of energy transferred from the fluid to the solid matrix or
vice versa, it is taken into account the Number of Transfer Units (NTU).
The NTU is evaluated from the experimental results presented in the paper [41]
against the permeability based Reynolds number Rek, which can be defined as:

Rek =
ρ f · V f ·

√
K

µ f · ϵ
(7.7)

where ρ f is the fluid density, V f is the fluid velocity, K is the permeability, µ f is the
fluid dynamic viscosity and ϵ is the porosity.
In our work, all the flow quantities are evaluated thanks to an area-weighted average
computed at a distance of 500 mm from the flame, for the case without porous
medium. The value of Rek results 47.5 thus, by taking into account figure 7.22, the
NTU can be set equal to 5.

Figure 7.22: Heat transfer coefficient against permeability based Reynolds number.
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The heat transfer coefficient can be expressed in terms of NTU, as follows:

h f s =
NTU · ṁ f · C f

Ah
(7.8)

where ṁ f is the fluid mass flow rate, C f is the fluid specific heat and Ah is the heat
transfer area (calculated multiplying A f s by the fluid volume).
The heat transfer coefficient h f s is calculated and then setted equal to 350 W/(m2 K).
The final heat transfer settings are shown in the next figure 7.23.

Figure 7.23: Cell zone condition for the porous medium case localized after the flame.

7.5.4 Unsteady heat addition

The steady and unsteady simulations for a constant heat source aren’t presented for
this case because the results are very close to the ones of subsections 7.4.4, 7.4.5.
The unsteady heat addition model described by equation 5.2 is implemented to
investigate the porous medium behavior after the flame. The constant β and the
spatial delay d are respectively fixed equal to 2 and to 20 mm.
The results are presented varying the septum position in order to find the best
configuration to reduce thermoacoustic instabilities. With reference to paragraph
7.5.1, configurations 1 and 2 reach a limit cycle condition, as it can be seen in figures
7.24 and 7.25. Instead, the last porous medium configuration has decayed, reaching
a stable condition.

Figure 7.24: Acoustic energy signal for the porous medium at 250 mm from the flame.
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Figure 7.25: Acoustic energy signal for the porous medium at 500 mm from the flame.

From an acoustic point of view, the overall sound pressure levels measured in point
1 and 5 for the case of the porous medium at 250 mm from the flame have an average
value of 145 dB and 116 dB, and for the other case the values are respectively equal
to 138 dB and 116 dB.
The limit cycle amplitudes of acoustic energy signals are reported in the following
table, where they are compared with the results of the previous case (β = 2 and
d = 20 mm), but without the porous septum. Although the first two setups develop a
thermoacoustic instability, the limit cycle amplitude results to be two or three orders
of magnitude smaller than the reference case. The third configuration is a decayed
case, here, the system is stabilized thanks to the presence of the porous medium.

Case Limit cycle amplitude [J]
Without porous medium 2.1 · 10−1

Configuration 1 1.3 · 10−3

Configuration 2 4.8 · 10−4

Configuration 3 0

Table 7.4: Limit cycle amplitudes of the acoustic energy with and without the porous
medium.

In the following figure 7.26, are presented the flame temperature signals of the first
two unstable cases compared with the case without porous medium.
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Figure 7.26: Unstable signals of the temperature volume-average of the flame zone [K].

Finally, in addition to the analysis of these two unstable cases, it is reported the
power spectral density of the acoustic energy signal in figure 7.27, obtained by doing
the FFT of the limit cycles to point out the frequencies of the signal.
The main frequencies are different from the previous case (385 Hz), please see figure
5.68. The main frequency for the case of the porous medium localized at 250 mm
from the flame is about 580 Hz and for the other case is 350 Hz.
The y-axis values are lower than the ones plotted in figure 7.27; this means that the
signal’s power has been reduced thanks to the presence of the porous medium.

Figure 7.27: Power spectral density of the limit cycle signals of acoustic energy.

One can also notice that introducing a porous medium into the combustion chamber
leads to a radical reduction of the fluctuations, e.g. in pressure and temperature.
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Moreover, the closer to the flame is the porous medium, the lower it takes to reach a
limit cycle condition.
When the limit cycle is well established, some data are extracted at the end of the
corresponding numerical simulation and then they are post-processed.
In figures 7.28, 7.29 and 7.30 are presented the plots of acoustic pressure inside the
modeled combustor, for d = 20 mm and β = 2.
Please note that these plots are extracted at a generic instant during the limit cycle
condition.

Figure 7.28: Plot of the acoustic pressure distribution along the axis of the combustor - case
1.

Figure 7.29: Plot of the acoustic pressure distribution along the axis of the combustor - case
2.
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Figure 7.30: Plot of the acoustic pressure distribution along the axis of the combustor - case
3.

The red area represents the porous medium, where acoustic pressure quickly de-
creases through.
Referring to figure 5.43 where the values of acoustic pressure along the combustor’s
axis are plotted for the case without the porous medium, in the following figures
it can be noticed that the porous septum damps the compression wave present in
section three, please see the y-coordinate. The further the porous medium from the
flame, the stronger is the reduction of acoustic pressure.
In figures 7.31, 7.32 and 7.33 are presented the plots of the temperature fluctuations
inside the modeled combustor, again sampled along the axis, for d = 20 mm and
β = 2. Also in this instance, they compared with the results from the previous case
without porous medium.

Figure 7.31: Plot of the temperature fluctuation distribution along the axis of the combustor
- case 1.
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Figure 7.32: Plot of the temperature fluctuation distribution along the axis of the combustor
- case 2.

Figure 7.33: Plot of the temperature fluctuation distribution along the axis of the combustor
- case 3.

One can also notice that after the porous disk the temperature fluctuations go to
zero thanks to the strong damping. In the third configuration, the porous medium
completely cuts off the oscillations.
The best configuration seems to be the third one, taking into account the strong
reduction of the limit cycle amplitude, pressure and temperature fluctuations.
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8 Implementation of a Helmholtz Resonator

8.1 Brief recap on Helmholtz Resonator
The Helmholtz resonator or Helmholtz oscillator is composed of two main parts: a
rigid container of gas, an enclosed volume nearly spherical in shape, and a small
neck or port, which communicates with the outside through a small opening.

Figure 8.1: A selection of Helmholtz resonators, at Hunterian Museum and Art Gallery in
Glasgow.

The Helmholtz resonance is the phenomenon of air resonance in a cavity, such as
when one blows across the top of an empty bottle. When air is forced into a cavity,
the pressure inside increases; when the external force pushing the air into the cavity
is removed, the higher-pressure air inside will flow out. Due to the inertia of the
moving air, the cavity will be left at a pressure slightly lower than the outside,
causing air to be drawn back in. This process repeats, with the magnitude of the
pressure oscillations increasing and decreasing asymptotically after the sound starts
and stops.
The resonant angular frequency is given by:

fo =
c

2π
·

√
Ao

lo Vo
(8.1)

where f0 is the resonance frequency [Hz], c is the speed of sound [m/s], Ao is the
cross-sectional area of the neck [m2], lo is the length of the neck [m] and Vo is the
volume of air in the cavity [m3] [42].
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Figure 8.2: Simple design of a Helmholtz resonator.

8.2 Applications of Helmholtz Resonator in combustion tech-
nology

As previously said, low NOx combustors are often associated with combustion in-
stabilities which can cause structural damage to the engine.
Helmholtz resonators are commonly used to damp incident acoustic waves in many
applications.
They have the advantage that they require a relatively small volume to damp os-
cillations at the relatively low frequencies found in combustion systems and thus
provide a useful damping mechanism for combustion oscillations.
To control oscillations, they must directly communicate with the combustor itself.
The need to incorporate the Helmholtz resonator, so that it can communicate with
the combustion chamber, places strong constraints upon the opening dimension, the
neck length, and the volume of the Helmholtz resonator [43].

Figure 8.3: Two types of Helmholtz-resonators tested in an annular gas turbine combustor
[44].

111



The application of Helmholtz resonators has also some disadvantages related to the
fact that it tends to be efficient in a small frequency range, it generally does not
respond to changes in the operating conditions and if the resonance frequency is
not the right one, an amplification behavior of the thermoacoustic instabilities may
occur.
The optimum damping of the eigenmodes is obtained when the resonance frequency
fo of the resonator is aligned with the natural frequency of the uncoupled combustor
system.
According to the above considerations, when a Helmholtz resonator is applied to a
combustion chamber, it must be tuned to the frequency that has to be damped in the
combustor [45].

8.3 Case for a Helmholtz resonator located after the flame
This section presents the implementation of a Helmholtz resonator located 500 mm
from the flame. Three different configurations have been designed, fixed in space,
changing the neck’s dimensions keeping constant the volume of the cavity.

8.3.1 Geometry

The sizing is developed thanks to the formula 8.1, fixing the resonance frequency
equal to 385 Hz, which is the frequency that the Helmholtz resonator has to damp.
The speed of sound is evaluated as an area weighted average in a line located in the
same position as the resonator. The cross-sectional area of the neck and the volume
of the cavity are calculated as follows:

Ao = 2π · dn · Rcomb (8.2)

Vo = 2π2
· r2

cavity · Rtot (8.3)

where dn is the "diameter" of the neck, Rcomb is the radius of the combustor in section
3, rcavity is the radius of the cavity and Rtot is the sum of Rcomb, lo and rcavity.
The neck’s dimensions dn and lo are varied, in order to obtain a resonance frequency
equal to 385 Hz and to keep the volume of the cavity Vo fixed to 0.01 m3, thus the
rcavity changes. Three different configurations are now defined and all of these are
localized at 500 mm from the flame’s position.
Furthermore, the second configuration 8.1, the intermediate one, is designed in the
same three different positions from the flame, as the porous disk in figures 7.17, 7.18,
7.19, in order to deepen the influence of the resonator’s position in the combustor
chamber.

CASE Figure dn [mm] lo [mm] rcavity [mm] H. r. distance [mm]

1 8.4 6.8 20 65 500
2 8.5 15 45 60 500
3 8.6 24 70 55 500
4 - 15 45 60 250
5 - 15 45 60 750

Table 8.1: Configurations of the Helmholtz resonator.
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Figure 8.4: Geometry of the Helmholtz resonator: CASE 1.

Figure 8.5: Geometry of the Helmholtz resonator: CASE 2.

Figure 8.6: Geometry of the Helmholtz resonator: CASE 3.
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8.3.2 Mesh and setup of the simulation

The second step is the mesh. Again, an unstructured mesh with triangular elements
has been designed. The number of cells is 104190, and the minimum orthogonal
quality is equal to 0.25668.
The mesh resonator detail is presented in the next two figures. The resonator’s inlet
is refined using face sizing, in particular, the chosen setting is a sphere of influence
with a radius of 0.02 m and an element size smaller than the other parts equal to
0.0008 m.
The setup of the simulation using Fluent is exactly the same as the primary case.

Figure 8.7: Mesh of the Helmholtz resonator.

Figure 8.8: Zoom mesh of the Helmholtz resonator.
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8.4 The steady and unsteady case for a constant heat source
The first two steps of the investigation have been conducted thanks to a RANS
and a URANS simulations, fixing a constant value of the heat source term equal to
24218000000 W/m3.
The steady case is initialized using a standard initialization from the inlet, which
aligned the value of static temperature at 300 K.
As a result of the RANS simulation, we note that the static temperature contour isn’t
uniform in section 3. In particular, inside the Helmholtz resonator, the temperature
is about 300 K thus the heat equilibrium condition isn’t reached; this aspect is related
to the fact that the velocity is approximately zero inside the resonator, so the heat
transfer occurs only thanks to diffusion.
In order to correctly initialize the combustor model, it is used a patch initialization
for the Helmholtz resonator which speeds the heat equilibrium condition, imposing
this area at the initial temperature of 1900 K, please see figure 8.9.
This setting allows to have a correct initialization of the simulation, note the RANS
result in figure 8.10.

Figure 8.9: Initialization, static temperature distribution.

Figure 8.10: RANS simulation, static temperature distribution.

Now the simulation becomes transient, the fractional step method is set and then the
unsteady case for a constant heat source is running in order to have a better starting
condition for the URANS simulations.
In the following figures 8.11, 8.12 are presented a contour for the turbulent intensity
and one for the axial velocity distribution. The behavior is very similar with the
previous case and inside the Helmholtz resonator both the turbulent intensity and the
axial velocity tend to zero, except for the resonator’s inlet where there’s a recirculation
zone.
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Figure 8.11: URANS simulation, turbulent intensity distribution.

Figure 8.12: URANS simulation, axial velocity distribution.

As before, we can evaluate the overall sound pressure level (OASPL), in order to
have an idea of the loudness of the model combustor during its operating condition.
We have considered the trace of the acoustic pressure, when a statistically steady
condition is reached, sampled in point 1 and 5. The OASPL results to be equal to 36
dB for point 1 and 17 dB for point 5.

8.4.1 Unsteady heat addition

This section aims to investigate the unstable behavior of the new combustor model,
redesigned with the Helmholtz resonator, a device used to damp the thermoacoustic
instabilities.
The source term implemented is the one used for the previous cases (5.2), fixing the
spatial delay d equal to 20 mm and β equal to 2.
The first three cases 8.1 have decayed and they reach a stable condition, thus this
result proves that, varying the neck’s dimensions but keeping costant the value of
the resonance frequency, the system works correctly.
Figures 8.17 and 8.18 present respectively the signal of the acoustic energy, the
mass flow rate and the total heat transfer rate only for the Helmholtz resonator
configuration number 2. The other two configurations are not reported because the
trends are almost identical to the ones presented.
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Figure 8.13: Signal of the acoustic energy for d=20 mm and β = 2.

Figure 8.14: Mass flow rate and total heat transfer rate signals for d=20 mm and β = 2.

The following contours present the acoustic pressure distribution 8.19 and a compar-
ison between this decayed case and the previous unstable case 8.21, using the same
scale, to highlight the reduction and the strong damping of the pressure fluctuations.
When the convergence condition is well established, some data are extracted at the
end of the corresponding numerical simulation and then they are post-processed.
Note that these contours are extracted at a generic instant, but remembering that
fluctuating waves are stationary so the amplitude can change but not their positions.

Figure 8.15: Acoustic pressure contour for d=20mm and β = 2 (CASE 2).
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Figure 8.16: Comparison between the acoustic pressure contour for d=20mm and β = 2 with
the Helmholtz resonator (CASE 2) and without.

Now, it’s interesting to analyze the influence of the resonator’s position in the com-
bustion chamber. In particular, the last two cases in table 8.1 become unstable, but
only the case 4 reach a limit cycle condition; for the case 5 the code diverges, thus
the limit cycle condition isn’t achieved.

Figure 8.17: Signal of the acoustic energy for d=20 mm and β = 2.

Figure 8.18: Mass flow rate and total heat transfer rate signals for d=20 mm and β = 2.
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The previous figures present the signals of the acoustic energy, the mass flow rate,
and of the total heat transfer rate, for the case 4.
As for the second configuration of the Helmholtz resonator design, the acoustic pres-
sure contours are presented below.
Although the system becomes unstable, we see a reduction in the pressure fluctua-
tions in comparison to the original unstable case.

Figure 8.19: Acoustic pressure contour for d=20mm and β = 2 (CASE 4).

Figure 8.20: Zoom of the acoustic pressure contour for d=20mm and β = 2 (CASE 4).

Figure 8.21: Comparison between the acoustic pressure contour for d=20mm and β = 2 with
the Helmholtz resonator (CASE 4) and without.

From an acoustic point of view, the overall sound pressure levels measured in point
1 and 5 have an average value of 162 dB and 144 dB.
Finally, we can summarize and compare the unstable results, in particular the limit
cycle amplitudes, for the initial case, the porous medium case and the Helmholtz
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resonator case, by fixing the position of the damper devices at 250 mm from the
flame.
The most efficient device is the porous medium, but we need to take into account
that the porous septum causes more pressure losses than the Helmholtz resonator,
thus it can be a good choice.

Case Limit cycle amplitude [J]

Original case 2.1 · 10−1

Porous medium 250 mm from the flame 1.3 · 10−3

Helmholtz resonator 250 mm from the flame 2.2 · 10−2

Table 8.2: Comparison of the limit cycle amplitudes of the acoustic energy.
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9 Conclusions

The purpose of this thesis is to analyze the thermoacoustic behavior of a simple
modeled combustor for gas turbine applications.
In the first section of this work, we have learnt something about the modal analysis
for this kind of problems. Additionally, we have understood the strong sensitivity
that flame models can display, and that one should be fairly confident about the
parameters to employ in the model, before fully trusting the results.
Next, as concerns, the Ansys Fluent analysis, dealing with this complex problem,
and having to face various difficulties, has given us the opportunity to learn more
about this CFD software. For example, we have learnt how to model a flame, and
how to implement an unsteady heat release rate directly related to some flow vari-
ables. Moreover, although we have run only URANS simulations, that model all
the turbulent scales, it has been an advantageous surprise to see that, a turbulence
model like the k−ω SST is capable of determining and computing a limit cycle state.
With regards to the necessity to damp thermoacoustic oscillations, once found the
right conditions that trigger instability, two damper devices are studied.
We have learnt how to size them and how to set up a simulation with a porous
medium and a Helmholtz resonator.
In addition, we have seen that porous diaphragms located before the flame success-
fully damp thermoacoustic instabilities for many unstable states; on the contrary,
porous sects located after the flame, if not positioned in the right spot, mostly reduce
the peak-to-peak amplitude of limit cycle states, without completely eliminating the
oscillations.
Helmholtz resonators are characterized by much smaller pressure losses than porous
media; if the sizing is accurate and their position is the correct one, they work very
well.
In conclusion, as future improvements some other flame models can be implemented
on Ansys Fluent, some new active or passive control devices can be simulated, and
some experimental tests deserve to be developed to verify the results obtained.
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