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CHAPTER 1

Overview Daher Socata

Daher Socata is a French aeronautic company based in Tarbes. Its ori-
gins belong to the year 1911 with the birth of Morane-Saulnier. In 1966
Morane-Saulnier was purchased by Sud Aviation and was renamed to
SOCATA. In 2000, Socata was bought by EADS, who sold 70% of the
company to Daher in 2008.
Since Socata was born, it has created a range of products and services
which combine its expertise in aircraft and aerostructures manufacturing.
Today the business turbo prop TBM 850 is the only aircraft that the
company makes (Figure 1.1).

Figure 1.1. TBM 850
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2 1. OVERVIEW DAHER SOCATA

With cruise speed up to 320 KTAS at flight level 260, the TBM 850 offers
travel time typical of light jets but with the efficiency of a single-engine
turbo prop.



CHAPTER 2

Introduction

Daher Socata, as all companies in the world of business jets, tries every
day to improve the performance of its aircraft to keep up the technological
progress.
Most of the studies to improve the efficiency of the aircraft concern fluid
mechanics and they involve the study of the small viscous region close to
the surface called boundary layer. This region is the principal cause of
viscous drag and its magnitude depends a lot on the shape of the body.
For this reason, the design of the shape in order to reduce dissipation and
friction drag is a priority in all the aircraft companies.

To reduce the design cost and time, it has become necessary to use Shape
Optimization, searching the better shape by minimizing a defined cost
function. Shape optimization is just one of the several classes of prob-
lems. The introduction of optimization tools has completely changed the
approach to solve the problems of many companies, representing a tool as
powerful as versatile for different engineering practices. The optimization
approach has allowed to save time during the design process by automat-
ically running multiple repetitive simulations and, even more important,
to reduce their cost by executing concurrent evaluations. Therefore, the
improvement and the optimization of the industrial design processes are
increasingly important for many companies.

Several optimization softwares have been developed by various companies;
one of them is the optimization and design environment modeFRONTIER
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4 2. INTRODUCTION

that was developed by ESTECO SpA in 1999, to couple CAD tools and
CFD software. Daher Socata bought the license of modeFRONTIER in
December 2012 to build various optimization platforms for problems con-
cerning fluid mechanics.

The work made during this internship uses modeFRONTIER to perform
a shape optimization in 2D. The objective of the optimization is to find
the best wing root airfoil of the TBM 850 for one flight condition, to
minimize its drag coefficient and have a value of the lift coefficient as close
as possible to a defined value to avoid changes in the global wing loading.
The choice to analyze the flow around a part of the wing is because of
the propeller located at the front. Although the presence of the frontal
propeller allows to produce thrust more economically than a jet engine,
it involves also large masses of air becoming turbulent downstream the
blades. This effect generates a big turbulent stream shrouding all the
fuselage. A turbulent flow is chaotic and unpredictable and this doesn’t
allow to study it in accurate way. Another surface that we could have
considered is the surface of the tail, but the effects on Lift and Drag are
small compared to the wing.



CHAPTER 3

Physical Phenomenon

1. Boundary layer and friction drag

When a generic body immersed in a fluid is accelerated, a very small
region borns close to the surface of the body. In fact, by the relative
motion between the body and the fluid, some particles of the flow very
close to it, adhere to the surface because of the viscosity of the flow and
generate a thin layer that is called boundary layer.1 The boundary layer
is the region where the viscous forces have a great importance and is
therefore responsible of the friction drag.

2. Laminar-Turbulent boundary layer

We can make a distinction between two different types of boundary lay-
ers: laminar boundary layer and turbulent boundary layer. Their nature
is linked to the viscosity, the velocity and the shape of the wing. The prin-
cipal difference between them is the thickness: it is larger for the turbulent
case, see Figure 3.1.
The irregular fluctuations (mixing) that characterize a turbulent stream
are responsible for the large resistance compared to a laminar stream[1].
For this reason, if we want a low friction drag it will be favorable to have a
laminar boundary layer extended as much as possible along the streamwise
direction.

1Considering an aircraft, the surface where the boundary layer is most important

is the wing
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6 3. PHYSICAL PHENOMENON

Figure 3.1. Transition between laminar and turbulent
boundary layer on an airfoil. To note the different thickness
that lead to different drag.

3. Transition

The region in which we have a change of the laminar boundary layer
into turbulent boundary layer is called transition. The laminar boundary
layer, like all the flows, can become unstable if affected by disturbances of
the free stream or surface roughness and generate turbulent flow on the
wing surface. Free-stream turbulence or acoustic disturbances represent
such external disturbances. These disturbances can enter the boundary
layer and generate unsteady fluctuations. These fluctuations can decrease
and vanish or increase and lead to transition. Therefore, the theory that
describes the stability of the laminar boundary layer2, considers small wave
disturbances and analyzes their growth in time and space.[2]
Several instability mechanisms have been identified, depending on the ge-
ometry that we consider. In fact, in the case of a 2D geometry, the only in-
stabilities that can lead to transition are called Tollmien-Schilchting waves
(TS). Their direction of propagation is aligned with the streamline direc-
tion.(Figure 3.2)
In 3D flows, the dominant instabilities are called CrossFlow disturbances.
The name comes from the fact that they appear due to the inflection

2Linear Stability Theory, Appendix D



4. PRESSURE DRAG 7

Figure 3.2. TS wave in a 2D geometry

Figure 3.3. Cross flow and TS instabilities in a three-
dimensional wing boundary layer. (Red: positive veloci-
ties, Blue: negative velocities)

point in the cross-flow component of the laminar flow. In these flows
the TS instabilities also exist and they are sometimes called streamwise
instabilities. (Figure 3.3)[3]

4. Pressure drag

In the global drag of a wing, there is another important component to add
to the friction drag, called pressure drag, and it is mainly linked to the
shape. The pressure drag is evaluated as a closed surface integral projected
in the desired direction. Any pressure difference along the surface, can
therefore add a component to the pressure drag. This is of course linked
to the pressure gradient on the wing. Both a favorable and an adverse
pressure gradient can influence the drag. Moreover before changing from
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laminar to turbulent, the boundary layer can separate from the surface
because of a great adverse pressure gradient. This phenomenon increases
a lot the pressure drag.

Figure 3.4. Separation on trailing edge due to an adverse
pressure gradient. Note that the separation creates a region
of reversed flow that increases the drag.

5. Control of the boundary layer

On an aircraft there are two different ways to reduce the friction drag on a
wing[5]. The first deals with designing an airfoil to have a laminar flow on
the largest region as possible on the wing (NLF - Natural Laminar Flow).
The second uses different technologies to maintain the flow laminar on
the wing, for example suction, blowing, wall cooling (LFC - Laminar Flow
Control)[6].
The work made in this thesis is focused on the first method. It is important
to keep in mind that all these phenomena involving fluid mechanics always
require numerical simulations.



CHAPTER 4

Numerical model

The optimization created during the internship is based on a numerical
study to locate the transition position of the boundary layer on a 2D ge-
ometry. This type of problem requires tools capable of solving numerically
the Navier-Stokes’s equations that describe the motion of fluid flow. Cou-
pling these tools with a method to parameterize the geometry, it has been
possible to create the platform for a shape design optimization. The pro-
cess has been broken into 4 key parts: a parameterization of the airfoil,
the flow solver, the solver of the boundary-layer equations and the solver
of the stability equations of the boundary layer.

1. Parameterization

A generic parameterization technique allows to describe a shape with a
small set of inputs. In an optimization process it is very important and
desirable to limit the number of the geometric design variables. Different
strategies have been implemented to do this. One of them considers a
geometric shape function where all the airfoil is described by analytic well
behaved and simple mathematical functions: CST, see Figure 4.1. CST
build the airfoil by summing the individual contribution of its basis func-
tion constructed by Bernstein polynomials[7].

This method allows to control the shape with general characteristics such
as the maximum thickness. Another technique requires to use a CAD soft-
ware, to create the profile with a few number of polynomial approximations
curves (splines). The spline is a smooth polynomial function piece-wise

9



10 4. NUMERICAL MODEL

Figure 4.1. CST parameterization.

defined and possesses an high degree of smoothness at the place where the
polynomial pieces connect (which are known as Nodes). A link between
these points and the splines is imposed to control the shape of the body
(Figure 4.2.)

Figure 4.2. Effects of different tensions of a spline near
to two fixed control points.

This second method allows to have a better parameterization if the shape
has to respect constraints regarding the thickness. Therefore, as explained
in the Chapter 8, we preferred this method instead of a CST parameteri-
zation.
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2. Flow Solver

A numerical simulation is often required to solve and analyze problems
involved in fluid mechanics. In fact the Navier-Stokes’s equations can
only be solved analytically in very simple cases.

Figure 4.3. Pressure distribution on the TBM 850 and
streamlines coming out from the exhaust stubs. Altitude
26.000 feet; Velocity 320 knots; Mach Number 0.51. Com-
putational fluid dynamics.

The branch that uses numerical methods to solve the N-S equations is
called CFD (Computational Fluid Dynamics) and many different indus-
trial softwares exist to solve them. We can see an example of results by
CFD on an aircraft in the Figure 4.3. In this figure the pressure distri-
bution on the aircraft is investigated. The basic methodology to simulate
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the interaction of a general fluid with surfaces requires to define the ge-
ometry of the domain, to discretize the volume occupied by the fluid, to
choose the physical model, to set the boundary conditions and perform the
simulation. In this thesis, the platform Ansys was used to discretize the
domain (Mesh) and to solve the Navier-Stokes’s equations (Fluent). One
of the most critical steps when studying a turbulent flow, is the choice of
the most suitable physical model. A very expensive strategy, in terms of
time, to solve the Navier-Stokes’s equations, is the DNS (Direct Numerical
Simulation). This technique considers all the temporal and spatial scales
belonging to the turbulent structure. To solve a problem with this tech-
nique is not simple because of the chaotic aspect of the turbulence and
because of all the big scale influence on the smallest ones, following the
theory of turbulent energy cascade[8]. A faster technique, that considers
only the mean motion of the turbulent scale is called RANS (Reynolds
Average Navier-Stokes)[9]. This strategy can be used if coupled with
turbulent models to consider the effects of the turbulent structures. A
software like Fluent provides several physical models capable of solving
the Navier-Stokes’s equations. From the solution we can extract all the
characteristics of the flow around a general a body, like aerodynamics
coefficients, velocity and pressure distribution.

3. Laminar Boundary Layer Solver

In this thesis the software bl3D is used to obtain the viscous laminar
boundary layer. Starting from a pressure or velocity distributions on the
profile, the code allows to calculate the most principal parameters of the
boundary layer such as thickness, shape factor and velocity distribution.
This software allows to investigate the laminar boundary layer for incom-
pressible/compressible and two/quasi-three dimensional flow.(Figure 4.4)1

1More details are given in Appendices A, B and C
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Figure 4.4. Distribution of three boundary layer thick-
nesses (δ99, displacement thickness and momentum thick-
ness) on a flat plate as a function of the streamwise coor-
dinate. Two-dimensional, steady and incompressible flow.

4. Transition Prediction Model

Theoretically, the transition is investigated by studying the equations of
mass, momentum and energy conservation. The solutions of these equa-
tions can not generally be found analytically[10]. Therefore, codes that
simplifies the equations with assumptions about the behavior of distur-
bances are required. In this thesis, the stability code named NOLOT
is used, based on nonlocal, nonparallel stability equations of parabolic
type(PSE). The NOLOT code was developed in 1993 at the Department
of Mechanics of the Royal Institute of Technology (Stockholm) as a col-
laboration between different research institutes. The numerical model
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is based on the linear stability analysis, considering that in general the
laminar-turbulent transition on a body is often due to the amplification
of small disturbances which amplify along the wing profile. Initially their
evolution is well described by linear theory.2 This theory concerns the
evolution of perturbations with infinitesimal amplitude superimposed on
a laminar flow. The flow is decomposed in mean flow and non-steady
disturbance:

u = U + uI

The goal is to determinate if the disturbances amplify or not in space
(spatial stability). A single oscillation of the disturbance is represented
by a stream function Ψ:

Ψ(x, y, z, t) = Φ(y)ei(αx+βz−ωt)

where α and β are the wavelength number of the disturbance respectively
on x- and z-directions. ω is the frequency of the oscillation. In a spatial
stability we consider α as a complex number (α = αr + iαi) and the sta-
bility will hold for the imaginary part of the wave-number, being positive.
−αi is called growth rate of the disturbance and its integral along the
chord is called N factor (Figure 4.5):

N =
∫ x

x0

(−αi)dx

The method that uses the N factor to study the stability is the semi-
empirical eN method. Coupling the PSE, the eN method and the Mack’s

2Linear stability theory is presented in Appendix D
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Law, the transition is supposed to occur at an empirical value of the N
factor defined as:

N = −8.43 − 2.4 ln (Tu)

where Tu is the turbulent intensity of the main flow:
0.0007 < Tu < 0.0298. Generally, in a calm atmosphere the turbulent
intensity is quite 0.1%. With this value the transition occurs at a value of
N near 8.
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CHAPTER 5

Optimization Process

This chapter presents an introduction on general optimization problems
with an attention to the Shape optimization. The principal algorithms for
DOE (Design of Experiment) and for the optimization will be presented.
After that, the process created with the platform modeFRONTIER will
be explained focusing on each step created.

1. Optimization: general speaking

In general we can consider an optimization composed by three elements:

(1) Optimization parameters: model parameters to be optimized.
(2) An objective function: mathematical expression describing

the quantity one desires to maximize or minimize.
(3) Constraints of the system: conditions defining a range for an

optimization parameter.

Hence the optimization can be viewed as a search for the parameters that
result in a maximum or a minimum of the objective function, respecting
the constraints. If we have only one objective function (single-objective-
function), the final results will represent the optimal of the problem.
Otherwise, if we have more than one objective function (multi-objective-
functions), we will have a set of solutions that represents a compromise
between all objective functions. All the results will be on what is called
the Pareto Front and it will be necessary to make a choice to consider only
one solution.

16



3. DESIGN OF EXPERIMENT 17

2. Shape optimization

Shape optimization is a particular problem of optimization. In an abstract
way, one can think the problem expressed like that:

F (W ) = optf(w)(1)

with w ∈ Ω; W is the optimal shape among all shapes w inside an ad-
missible domain Ω. The opt can represent a min or a max of a quantity
such as the drag (to minimize the drag if we want less friction) or a tran-
sition position (to maximize the position if we want a laminar boundary
layer extending further downstream). Therefore, the goal of this type of
optimization is to find the optimal shape for which the objective func-
tion is minimized or maximized and the constraints are satisfied. For
these particular problems, the shape is represented with a parameteriza-
tion technique. Therefore the control parameters of the parameterization
will be the control parameters of the optimization.

3. Design Of Experiment

The methodology to find the optimal shape can be generally divided in
two parts: a first part where several shapes are found, exploring all the
domain of the design parameters (DOE, Design of experiment)[12], and
the second one in which these shapes are used as starting points to find the
optimal final shape. The final shape is the best answer for the objective
functions and for the constraints. The DOE is essential to explore the
domain and to define the behavior of the objective functions. The goal is
to obtain as much information as possible starting with a limited number
of experiment. Several algorithms can be used for the DOE. The princi-
pal difference between the algorithms is the way in which the domain is
explored which can be random or uniform.
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4. Optimization algorithms

After exploring the domain, optimization algorithms are used to find the
best solution. This second part is in general more expensive than the
DOE because of the big number of existing solutions. It is important
to remember that the quality of the search depends on the robustness
and precision of the algorithm. These two properties are not in general
inside the same algorithm and hence it is better matching global research
(robustness) with a local one (precision). Depending on the study (goal,
single or multi objective functions, number of control parameters, presence
or not of constraints) there are different algorithms that can be used and
most of them are based on the fundamental principles of the nature like
natural selection, population development, genetic mutation or even on
the game theory[13]:

• Multi objective game theory: This technique transforms the
optimization problem into game strategic problem and uses adapt-
able game evolution process to obtain the optimized strategy.

• Genetic Algorithm: It is a Heuristic algorithm inspired by
natural evolution theorized by Charles Darwin. The evolution
usually starts from a population of randomly generated individu-
als and at each iteration (usually called Generation) the objective
function is calculated. After some generation, only the good so-
lutions are kept, to generate a new population and converge to a
possible best solution.

• Gradient Based: This algorithm is based on a direction of the
descent

(2) dk = −▽ f(Xk)

dk is the opposite direction of the gradient of function f in Xk.
Starting from a point in the space, its gradient is calculated to
know where the function goes to its minimum value. Following
this way, a new gradient of a new point is calculated until arriving
to the local minimum. This refinement method works well with
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only one local minimum, and for this reason it is often used after
other algorithms like the genetic one.

5. Flow chart

After presenting the main characteristics of an optimization problem, we
can present an overview of the steps to be performed for our shape opti-
mization, focusing the attention on the objective functions.

Figure 5.1. On the left side one can see the steps of the
automatic optimization process. On the right side there are
the objective functions considered in this problem: mini-
mize the value of Lift and Momentum coefficients relatives
to the value of the original profile; maximize the transition
position on the upper side of the airfoil.

The tools presented in Chapter 4 have been used to create all the process.
The CAD software Catia V 5 has been used to parameterize the airfoil.
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After, a discretization of the domain around the airfoil has been made to
study the flow with the flow solver Fluent. bl3D and NOLOT have been
used to study the transition phenomenon.
To close the cycle of optimization we have to set the objective functions.
For this type of problem we have chosen four different objective func-
tions. Thanks to the Multi Objective Function of the optimization plat-
form modeFRONTIER, we can consider more than one objective function
at the same time. As we can see from the flow chart (Figure 5.1), we
have chosen to maximize the position of the transition, according with the
phenomenon explained in Chapter 3 and to minimize the value of Cl and
Cm relative to the value of the original profile. In fact, if we change the
shape to reduce the drag coefficient, we also change lift and momentum
coefficients. These changes can lead to a different repartition of the global
lift on the wings, generating stability and stalling problems, see Figure
5.2.

Figure 5.2. Global lift repartition on the wings of the
TBM 850.

Therefore, an airfoil for which the value of Cl and Cm are close to the
value of the root airfoil of the TBM 850, guarantees that we do not have
changes in the global wing loading. Besides, we have considered Cl and
Cm as Objective functions instead of constraints, to not limit too much
the shape variations, in favor of the transition delay.
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Each step has required a challenging work to be performed for all the au-
tomatic optimization process. Therefore, before looking at the results and
the conclusion of the optimization, we are going to present how each step
has been created and how the process has been built inside modeFRON-
TIER.



CHAPTER 6

Parameterization: Catia V 5 profile

The starting point for our optimization is the root profile of the TBM 850.

Figure 6.1. Root profile of the TBM 850.

As introduced in the Chapter 4, the technique used to parameterize the
airfoil is made with curve splines. This parameterization allows us to
change the shape of the profile with a small number of control points.
The choice of this parameterization has been done due to the presence of
the constraints explained below.

(1) the chord is fixed at 1 meter
(2) the thickness at the 25% and 75% of the chord is constant

All the airfoil has been created with the 9 points, see on Figure 6.2.
A link between the points and the edges has been created to build the
shape. At each point the edges are controlled with a value of tension.
How different values of tension control the shape of the splines, can be
seen in Figure 6.3 :

22
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Figure 6.2. The profile of the TBM created with Catia software.

Figure 6.3. Example of different values of tension of the
spline near two fixed control points.

To respect the constraints and to allow the shape to change, only some
points have been taken as control points. The lines that follow explain the
procedure used.

To maintain the thickness at 25% and 75% of the chord we have fixed the
position of the points 3,4,7,8 as can be seen in Figure 6.4. This assumption
is realistic if we consider that the structure in this region is very important
and that we have also a volume to respect for a minimal fuel.

The area where the shape has a strong influence on the flow is the leading
edge, where we have the greatest variations of the shape. We have decided
to control the curvature of the radius of a circle inscribed in the airfoil.
The minimal value of the radius is thought to respect requirements for the
manufactory.
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We have imposed both the upper and the back side of the leading ledge
to be tangent to the circle.

The thickness of the trailing edge is controlled with a single variable. No
control of the shape near the trailing edge was imposed since it was con-
sidered of less importance in relation to the boundary layer transition.
This part will remain equal to the shape of original profile.

To allow the shape to change near the points 2,3,8,9 we control the tension
of the splines.
Moreover, points 2 and 9 of Figure 6.4 are free to move inside a square,
considering reasonable shape.

All the control parameters above explained are plotted in the Figure 6.4:

Figure 6.4. Control parameters for the optimization process.

Reproducing the edges of the shape of the TBM was time consuming and
we noticed a great sensibility of the Cp distribution with respect to the
shape of the leading edge. To better understand it, we have plotted two
different shapes, both of them very close to the TBM, with the respective
distribution of the pressure coefficient
As can be seen from the Cp distribution of Figure 6.6, we discovered a
small blemish on the pressure side of the model (green line). For this
reason, the red profile was used as reference for the optimization process.
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Figure 6.5. Zoom on the leading edge between 10% and
40% of the chord. Comparison between the shape of the
TBM (green) and other 2 profiles very closed to it (red and
blue).

Figure 6.6. Comparison between the distribution of the
pressure coefficient of the TBM (green) and two profiles
very close to it (red and blue). The pressure coefficient is
strongly affected from the shape of the leading edge.
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After creating the parameterization of the original profile for the optimiza-
tion, we checked that the control points didn’t introduce oscillations on
the profile looking at the derivate dy/dx as a function of x.



CHAPTER 7

Pre-processing: Domain, Meshing and CFD

The objective of this section is to describe how to find the domain for
the numerical solutions and the parameters to discretize it (parameters
of the mesh). The work is subdivided in two part: a first part where
we define the domain and the mesh for a laminar profile, and a second
one where a validation of the stability code with the mesh used on the
TBM profile is done. The choice to use a laminar profile, in particular the
OASL012 (Figure 7.1), is justified considering that the objective of the
optimization is to re-laminarize the TBM profile as much as possible. For
this reason, we can assume that the mesh parameters for the OASL012
should be suitable for the profiles found during the process. This profile
has been used for several study by ONERA (Office national d’études et
de recherches aérospatiales) to study its aerodynamic characteristics.

Figure 7.1. Geometry of the laminar profile OASL012
compared with the turbulent profile of the TBM 850.
Chord fixed at 1 m.
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1. Convergence and computational time

Ansys software Meshing is used to create the domain. The geometry can
be imported in two different ways:

• from a file containing a list of points that define the shape
• from a CAD file

Following the first way, we have imported the geometry in Design Modeler,
a software of Ansys Workbench platform, to create a domain around the
airfoil. The text file divided the profile in two parts: airfoil and trailing
edge. The procedure to create the domain is quite simple and it consists in
defining a geometry in the background from which to extract the geometry
of the airfoil. The structure of this domain was chosen as the kind called
C, see Figure 7.2:

Figure 7.2. Domain C around the airfoil. The length of
the rectangular is 150 meters, the high 90 meters and the
chord of the airfoil is 1 meter.

This domain is large enough to prevent interactions between the down-
stream and the boundary conditions.

1.1. Mesh. We have considered 5 different grids, from a coarse and
fine mesh with 72000 and 220000 cells respectively, to find the best solution
(Table 1).
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Table 1. Comparison between the mesh

Mesh 0 1 2 3 4
NonUni y y y y y
Cells 220000 180000 140000 110000 72000

Growth rate 1.022 1.022 1.04 1.08 1.12
Min. size 0.0001 0.0009 0.001 0.002 0.003
Max. size 0.001 0.002 0.003 0.004 0.005

Max skewness 0.7567 0.8798 0.8316 0.8676 0.7299
Times 18’ 12’ 10’ 5’ 4’

The best solution must be considered as the most reasonable in terms of
time and quality. In particular, we have determined the mesh for which
we can consider invariant the values of Cl, Cd, Cm and the position of the
stagnation point. In fact, this trade off gives reasonable computational
time, while an invariant value and position of the items above set, are an
assurance of good quality. We have used a non uniform distribution for
the meshes. (Figure 7.3)
The maximum value of the skewness for each mesh is under 0.9 like Ansys’s
guide suggests1.[15]
It was decided to begin with the most refined mesh ( 220000 cells) consid-
ering it as a reference for a good quality and good physical results. For
this first approach the mesh created is without inflation for an inviscid
study.

1.2. CFD. After creating the grids we ran the CFD simulation. The
flight conditions used are given in table 2.

Table 2. Cruise conditions

Mach Number Reynolds Number Altitude (feet) Velocity (knots)
0.51 8901189 26.000 320

1The skewness indicates the quality of the mesh
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Figure 7.3. A representation of the leading edge for a non
uniform mesh definition.

The flight conditions are the same as the TBM 850 in cruise condition. To
run the CFD simulation we used the software Fluent inside the platform
of Ansys. A journal file was used to write line by line the commands for
fluent. This procedure allows to run Fluent in an automatic way. Hence
in this journal file we have set the parameters explained in the following
lines.
First of all we set the flight conditions. For inviscid case, the algorithm
for the continuity and momentum equations is the pressure based coupled
solver. The boundary conditions are about the velocity that is the velocity
of the external flow to the inlet and to the outlet section and zero at the
other two parts of the domain. We have used pressure-velocity coupling
as algorithm for the solver. The airfoil has been analyzed for five different
angles of attack from 0 to 4 degree with a spatial discretization from 1st

to 3rd order.
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1.3. Results. After running the calculation with fluent we checked
the residual of the continuity and momentum equations and the conver-
gence of the force on the airfoil. As can be see from Figure 7.4, these
parameters did not converge.

Figure 7.4. Results of convergence of the aerodynamic
coefficients for the laminar airfoil OASL012. Cruise condi-
tion with 1 degree of angle of attack.

Looking at the Cp distribution (Figure 7.5), small oscillations were found
on the upper surface, close to the minimum value. A good quality of
the Cp distribution on the airfoil is a key point for a good solution of
the stability equation of the boundary layer. In fact, a non-smooth Cp
distribution can produce big oscillations on the disturbances inside the b.l.
and to lead to non-physical instability.
We further noticed that sometimes fluent had problems to solve the equa-
tions close to the airfoil because there were numerical problems in some
areas of the domain.



32 7. PRE-PROCESSING: DOMAIN, MESHING AND CFD

Figure 7.5. Distribution of pressure coefficient on the up-
per side of the laminar profile OASL012. We can see small
oscillations just after the beginning of the adverse pressure
gradient. 4 degree of angle of attack.

Figure 7.6. Numerical problem near to the corner of the
domain in the top-right side. Inviscid and incompressible
flow. The boundary conditions are the velocity of the flow
to sections inlet and outlet.
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1.4. Discussion. The problems of convergence were probably due to
the algorithm used for the numerical solutions. On the other hand, the
problems of the oscillations of Cp could be generated by two causes:

(1) The geometries from the original points and from the mesh could
have small oscillations.

(2) For an inviscid analysis, fluent introduces a numerical dissipa-
tion instead of the viscous terms[14], and this dissipation could
influence the Cp distribution by generating oscillations.

Therefore, we decided to monitor the pressure gradient on the airfoil by
Fluent. In fact, the coefficients of lift and drag don’t allow to see if we
have oscillations or not because they are integral quantities.
On the other hand, for the first point it was decided to check the derivate
dy
dx for the geometry of each grid.

Figure 7.7. A representation of the derivate dy/dx as a
function of the dimensionless coordinate x/c, for all the
grid. y is the normal coordinate to x/c. As can be seen,
all the meshes gave the same profile without oscillations.
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As one can see in the Figure 7.7, the original profile and all meshes give a
good geometry without oscillation, thus we can say that the problem of a
non-smooth Cp distribution is due to of the CFD analysis.

Besides, for the numerical problems near to the wall of the domain, it was
decided to change the domain.

2. New domain

The new domain is represented by a circle (Figure 7.8). The radius of the
circle is set at 90 meters.

Figure 7.8. New domain for the airfoil. The chord of the
airfoil is 1 m. and the radius of the domain is 90 m. Mesh
without inflation for an inviscid calculation.
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2.1. CFD. With the same journal file we have computed the energy
and momentum equations.
Looking at the Cp distribution we noticed that the maximum value in
the stagnation point, expected to be very closed to one for an inviscid
calculation, was about 0.009 (Figure 7.9).

Figure 7.9. Maximum value of the pressure coefficient at
the stagnation point. Inviscid and incompressible calcula-
tion. 2 degree for the angle of attack.

For this reason we decided to change the boundary condition considering
the pressure at the far field and not the velocity inlet.
Considering the pressure far field, we also changed the state of the density
and focused our study on a compressible flow.

2.2. Results. This set up gave a good convergence of the parameters
monitored (Figure 7.10) and a value of maximum Cp a slightly larger than
1 for the meshes in the Table 1(Figure 7.11 ).
The values of the Cd coefficients of the meshes in Table 1 are plotted as
a function of the number of cells on the surface of the airfoils.(Figures:
7.12)
In Figure 7.13 we can see a comparison between the position of the stag-
nation point for the 5 meshes.
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Figure 7.10. Convergence of the aerodynamic coeffi-
cients. OASL012. Cruise conditions with 1 degree of angle
of attack.

Figure 7.11. Maximum value of the pressure coefficient
at the stagnation point. The boundary condition is the
value of the pressure on the far field. Inviscid and com-
pressible calculation. 2 degree for the angle of attack.
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Figure 7.12. Value of Cd as a function of the number of
points on the surface of the airfoil.

Figure 7.13. Comparison between the position of the
stagnation point.

The most refined mesh (mesh 0) has been taken as a reference for a good
quality. For the coefficients and the stagnation point (Figures 7.12 and
7.13), we see that mesh 1 shows values close to the value of mesh 0. Con-
sidering that the computational time using mesh 1 (Table 1) is less than
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the time for mesh 0, we have chosen the mesh 1 as the better mesh in
terms of quality and time. Unfortunately, the problem of the oscillations
on the Cp distribution was not solved yet. Just to test how these oscil-
lations influenced a local stability, we have checked the stability of small
perturbations.
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Figure 7.14. Oscillations of the growth rate because of a
not smooth Cp distribution on the upper side of the airfoil.

Figure 7.14 shows that the growth rate of a perturbation in the flow is
very sensitive to the development of pressure distribution on the surface.

2.3. Conclusions. Although the good results found for mesh 1, the
Cp distribution still showed small oscillations close to minimum. Like
previously said, the numerical dissipations that Fluent introduces in a in-
viscid case have a great influence on the smoothness of the Cp distribution.
Therefore, a viscous analysis could lead to a more smooth distribution of
the pressure coefficient on the upper side.

3. Viscous grid

With the same new domain, flight conditions and boundary conditions of
the inviscid analysis, we have used the robust Spalart-Allmaras turbulent
model.[16].
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A viscous study requires a highly refined close to the profile, to consider
the effects of the viscosity. To do that, there is the command ”inflation”.
It creates a region close to the profile with thin prism cells.

Figure 7.15. Grid for viscous analysis. The inflation al-
lows to consider the viscosity effect close to the profile.

To well describe the phenomena in the near wall area, the first cell has to
be small enough. A formula exists to find the minimal height of the first
cell layer:

(3) y =
Y + ∗ ν

ν∗

where:
Y + = dimensionless wall coordinate, set to a value of 1
ν = Kinematic viscosity of air
ν∗ = wall friction velocity

The viscous mesh has been created taking into account the previous results
of the pre-processing.
With these assumptions for the grid and CFD, we have computed the Cp
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distribution for a viscous case for the profile OASL012, compared with the
inviscid one in the Figure 7.16.

Figure 7.16. Comparison between distributions of the
pressure coefficient on the upper side for viscous and in-
viscid case. Profile OASL012. Cruise conditions. 0 degree
of angle of attack.

This result allows us to consider a viscous analysis for our optimization,
having a good compromise between time calculation and physical results.

4. Validation on TBM profile

After the analysis of the laminar profile OASL012, we tested the grid,
CFD, bl3D and the stability code NOLOT for the TBM profile. The
flight conditions, like for the OASL012, are the cruise condition of the
TBM 850. Although the optimization platform will be made only for 0
degree of angle of attack on cruise conditions, the validation test has been
made at different angles of attack.
The results are showed below. As we can see the CFD results are good
and the Cp distribution on the upper side is very smooth (Figure 7.17).
The stability code finds that transition is around the 26% of the chord
(Figure 7.18). This value will be taken as reference for the optimization
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Figure 7.17. Cp distribution on the suction and pressure
side of TBM profile. Cruise conditions. 0 degree of angle
of attack.

process. As previously explained, the main objective will be to move
downstream this position as much as possible.
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Figure 7.18. N factor on the suction side of the TBM
profile. Cruise conditions. 0 degree of angle of attack. The
black arrow indicates the transition location according to
the Mack’s Law.
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CHAPTER 8

Platform Mode Frontier

After presenting the analysis performed, we can explain how the process
has been created inside the platform of modeFRONTIER. The process is
created inside the Workflow window and is formed by nodes connected to
each other. This italian software offers the possibility to use several types
of nodes including:

• Logic Nodes where we can find the node for the optimization
process

• Variable Nodes with the nodes for input and output variables
• Goal Nodes to create the objective functions
• Script Nodes used here for the Dos Batch Script
• CAD Nodes they allow to have a direct connection with CAD

software including Catia V 5.

With this procedure the process below has been developed.
In the horizontal direction we see in Figure 8.1 the four steps of the process
with Catia, Design Modeler and Mesh, Fluent and bl3D with Nolot. On
the other hand, in the vertical direction we have the input and the output
data with the Objective functions.

1. Catia node

Inside this Node we have to set the folder of the catia file and select
all the points of the geometry that we have chosen as design parameters
(symbolized by input variables nodes). As output data for this node we
have the geometry in .igs extension, compatible format for Design Modeler.

43
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Figure 8.1. Interface modeFRONTIER.

Figure 8.2. Interface of the Node Catia inside modeFRONTIER
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2. Design Modeler and Mesh nodes

Figure 8.3. Dos batch file inside modeFRONTIER to run
automatically Deisgn Modeler and Mesh.

A DOS batch has been used to run Design Modeler and the Mesh inside
the Ansys platform (Figure 8.3). As we can see, this batch searches the
folder of the executable of Ansys to run it. Ansys provides to run the
software with scripts. A suitable script has been written to open the .igs
file and create the grid in automatic way.

3. Fluent node

Two DOS batches are used to solve the Navier-Stokes’s equations and
extract the Cp distribution. In fact for the numerical calculation it is
better to run Fluent with 4 processors to solve it quickly, whereas to have
the distribution of the pressure coefficient need to open Fluent with 1
CPU to have the points in the proper order. For these reasons it will be
necessary open Fluent two times. Like the previous node, command lines
are used here to read the journal file. For Fluent we can see two different
output data: the first is the Cp distribution for the stability code and the
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second represents the force coefficients essential to create the objective
functions. To run Fluent more quickly, we have decided to use it inside
the server with 32 processors.

Figure 8.4. Example of script to run Fluent automati-
cally inside the platform modeFRONTIER

4. bl3d and NOLOT nodes

This step uses two different codes: one of them is bl3D and it allows to
create the viscous region of the boundary layer having the Cp distribution
or the Ue distribution around the profile; the second one is the stability
code NOLOT. Both of the codes can be used entering into the server and
hence a batch script is used to do this (Figure 8.5).
A python code has been created to obtain the Cp distribution on the upper
surface and write it to a file suitable for bl3D code, called geo.dat (Figure
8.6).
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Figure 8.5. Batch script in modeFRONTIER to open the
server and run NOLOT code.

This python code is thought to locate the stagnation-point value of the
Cp distribution and to start from the respective x/c position to create the
geo.dat file for bl3D (Figure 8.7). In this file we have to set the chord,
the Reynolds and the Mach number, the reference temperature and the
sweep on the wing. In the Figure 8.7 we see six columns: the coordinates
and the Cp distribution of the profile, two coefficients about the suction
at the wall and the heat transfer 1, and the last one is a respective index
useful to bl3D for the calculation.

1Effect of active control like suction or cooling is used, hence these two coefficient

are set to zero



48 8. PLATFORM MODE FRONTIER

Figure 8.6. Python code that finds the value and position
of the stagnation point and extracts the Cp distribution on
the upper side: from stagnation point to trailing edge.
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Figure 8.7. geo.dat file containing the Cp distribution on
the suction side of the airfoil.

From the results of the stability code, it is important to know the position
where the N-factor is 82. To extract this position, a Python code has
been created (Figure 8.8). This code considers the maximum position
corresponding to the range of N factor between 0 and 8. According to the
physical phenomenon, if the value of 8 is not reached, it is possible that we
have a separation before transition, and in this case it will be important

2Section 4 ”Transition Prediction Model” in Chapter 4
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find the position corresponding the separation to maximize it as well as
the transition one.

Figure 8.8. Python script to read the results from Nolot
code and to extract the transition position.



CHAPTER 9

Viscous Optimization Cruise Conditions

After presenting the physical phenomena, the numerical models and the
building of all the automatic process, we can present the results of the
optimization. Therefore, in this chapter we explained the procedure, the
choices and the results of the first optimization process.

1. Search DOE

In the first step we explore the domain of design parameters. This point
is indispensable to have the greatest amount of information from a limited
number of parameters and it is called DOE (Design Of Experiments).
To do that, we have used the algorithm Sobol that is a deterministic algo-
rithm with a type of sequence called quasi-random even if this algorithm
covers the design space in a good uniform manner. For the great influence
between the shape and the range of each design parameter, it was quite
predictable that in this first phase a lot number of designs gave unfeasible
shapes.
The objective of this first exploration of the design space was to see if
the designs covered all the range of design parameters and how the design
parameters influenced and changed the shape of the airfoil and, eventually,
to reduce or increase their domains. To check if all the range of the design
parameters was covered, modeFRONTIER allows to plot the value of all
parameters for each design.
From Figure 9.3 we can see that the Sobol algorithm covers well the do-
main of the parameters. On the other hand, from Figure 9.1 it was clear
that it was necessary to reduce the range of some points. For this reason

51
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Figure 9.1. Two unfeasible shapes from the first DOE
with the algorithm Sobol, compared with the TBM airfoil.

Figure 9.2. Example how DOE covered the domain of
parameter A in the first exploration. Vertical range as a
function of the horizontal range. The blue square repre-
sents the value of point 2 for the root airfoil of TBM 850.
Green points: feasible design; Red points: unfeasible de-
sign.
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Figure 9.3. Example how DOE covered the domain of
parameter B in the first exploration. Vertical range as a
function of the horizontal range. The blue square repre-
sents the value of point 9 for the root airfoil of TBM 850.
Green points: feasible design; Red points: unfeasible de-
sign.

the range of point 2 and the tension of point 3 were reduced. 1

With these new values, the DOE was used again. The DOE was stopped
after 100 design point. The shapes of the profile were more feasible (Figure
9.4) but for most of them the transition was found before the relative posi-
tion on the TBM profile. For this reason these profiles weren’t considered
suitable.
Although the shape is not so different from the TBM’s one, as already
explained, the pressure distribution is very sensitive to changes of the
shape. This is clear looking at the Figure 9.5 where we can see very
different Cp distribution along the chord of the profile.
The results obtained above didn’t allow to have good enough DOE to start
with an optimization algorithm. The quality of the optimum depends in
fact on the quality of the DOE. Therefore, to have better results from the
optimization we decided to start with only designs that had a transition
location after than TBM’s one. For this reason another DOE has been

1To know which part of the profile these point control, refer to6.2
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Figure 9.4. Some shapes from the second iteration of
DOE. The shapes are compared with the TBM’s one.

Figure 9.5. Cp distribution of the shape of 9.4. The pos-
sible transition for each shape is close to the first change
of the pressure gradient.

computed, finding a number of design adequate to run an optimization
algorithm.

2. Optimization Algorithms

2.1. MOGA II.
2.1.1. Minimal DOE and Generations. To run the optimization,

a Genetic Algorithm called MOGA II has been chosen. According to the
modeFRONTIER’s Guide, this algorithm requires a minimal number of
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DOE and of Generations to obtain a good evaluation of the results[17].
The minimum number of DOE is given by the following relation:

(4) minDOE = 2 ∗ n

where n is the number of input variables. Having 10 variables, we have
decided to start with 30 DOE, to have a safety margin. On the other
hand, the number of Generations is required between 10 and 30. It has
been set to 20.

2.1.2. Results. The process has required a duration of 8 days, ana-
lyzing 399 profiles. 190 profiles were considered failed because they had a
boundary layer that ended upstream compared to the TBM.
On the other hand, 209 profiles showed a boundary layer that ended down-
stream of the boundary layer of the TBM profile. Only 27 of them had a
transition location downstream of the TBM (Figure 9.6)
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Figure 9.6. N factor of some profiles with a transition
after the TBM.

For the remaining 182 good profiles, we didn’t find a transition location
before the end of the boundary layer (Figure 9.7).

Tobia 
N factor

Tobia 

Tobia 

Tobia 
S/C



56 9. VISCOUS OPTIMIZATION CRUISE CONDITIONS

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

de
lta

 [m
]

s/c

Blasius : boundary layer thickness

bl thickn.(0.99% Ue) TBM
bl thickn.(0.99% Ue) design80
bl thickn.(0.99% Ue) design90

bl thickn.(0.99% Ue) design139
bl thickn.(0.99% Ue) design209

Figure 9.7. Laminar boundary layer of some profile of
optimization as a function of the curvilinear axis.

This fact can be expressed physically: if the pressure gradient at the
leading edge is strong and adverse, the mixing process is too slow to keep
the lower part of the layer moving, and a dead-waged region starts to
form. The boundary layer doesn’t follow the direction of the surface and
separates before a transition[18].
Looking at the history of the process (Figure 9.8), we can notice a trend
to converge to values of the end of the boundary layer (e.b.l.) further
downstream than the TBM.
Figure 9.9 represents the value of the Objective Functions δCl and e.b.l
of all the acceptable profiles. The black line represents the Pareto Front
which is a state of allocation of resources in which it is impossible to make
any one individual better off without making at least one individual worse
off.
As Figure 9.9 shows, all the value of δCl are very small, and this means
that the value of Cl of the profiles is close to the Cl of the TBM (difference
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Figure 9.8. History of the process. The black line shows
a tendency to search shape with a e.b.l more downstream
than the TBM.

Figure 9.9. δCl as a function of the e.b.l. Black line:
Pareto front. Red point: TBM. Green point: best design.

between 0.01% and 3%). The same results have been found for δCm.
Therefore, these Objective Functions are not very penalized in the process.
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This fact has allowed us to consider the shape with the highest value of
e.b.l like the best profile. Figures 9.10 and 9.11 show the shape and the
Cp distribution of the best solutions in terms of e.b.l.

Figure 9.10. Shapes of the three best profiles compared
with the shape of the TBM.

Figure 9.11. Cp distribution of the three best profiles
compared with the Cp distribution of the TBM.

Looking at these Figures, the pressure reaches its minimum value some-
where around the position of maximum thickness on the upper surface.
After this, the pressure gradually rises again, until it returns to a value
close to the original free-stream pressure, at the trailing edge. This means,
that over the rear part of the upper surface, the air has to travel from low
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to high pressure (adverse pressure gradient) and it will lead to separation.
The more smooth the shape is, the more gradual will the variation of
pressure be and the risk of separation will be reduced. As we can see, the
algorithm MOGA II has tried to smooth as much as possible the leading
edge. Table 1 shows the value of the Objective Functions of the design
plotted above:

Table 1. Value of the Objective Functions of the best profiles

Design e.b.l. δCl δCm

TBM 0.264 - -
87 0.455 0.011 0.008
139 0.467 0.015 0.012
124 0.473 0.012 0.009

The profile 124 has the best solution in terms of e.b.l. and all the values
of the other two objective functions are very close to the values of the
TBM. For these reasons the profile 124 represents the best solution we
have found. The position of the boundary layer is plotted on Figure 9.12
and it is compared with the boundary layer of the TBM.

2.1.3. Discussion. The strategy used in this optimization has al-
lowed to obtain good results. In fact, the genetic optimization algorithm
MOGA II, coupled with the algorithm Sobol for the DOE were able to
explore all the domain of the design parameters and to find an airfoil
with a laminar boundary layer until the 47% of the curvilinear axis. It is
known that the laminar boundary layer is very sensitive to big variations
of the pressure gradient. It is important to remember that smooth shape
of the upper surface lead to a gradual variations of the pressure gradient.
Looking at the Figure 9.10, we can see how the process has tried to ob-
tain smooth shape, according with the constraints at 25% and 75% of the
chord, and therefore we can be satisfied for the results obtained.
As most of the optimization processes require, after a first global search of
the optimal solution, it is useful to refine the study with a gradient based
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algorithm. Therefore, we have decided to run the process with a gradient
based algorithm to refine our solution. This strategy allows also to have
a more robust solution, exploring and testing a lot of points close to the
local optimum.This latter point is very important in this process, if we
think at a possible production of the final airfoil.

2.2. Gradient Based.
2.2.1. Results. The process has required a duration of about 4 days,

analyzing 213 profiles. More than half (120) failed. 50 of them failed for
a problem of over flow on the gradient based algorithm. This problem
is given by a not correct choice of the step of descent dk2. The other

2View Chapter 5/Section 4 - Gradient Based -
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70 profiles had a laminar boundary layer that separated upstream of the
’starting design (design 124).’ (Figure 9.13)

Figure 9.13. Pressure coefficient of two failed profiles
compared with the starting design.

Looking at the acceptable profiles, the algorithm hasn’t found any point
with a e.b.l. better than the previous one. On the other hand, we have
found a profile with a e.b.l. close to the best one, but with a transition
position that occurs before the separation (Table 2).

Table 2. Value of the Objective Functions of the best profiles

Design trans e.b.l. δCl δCm

TBM 0.264 0.270 - -
124 - 0.473 0.012 0.009
75 0.458 0.470 0.012 0.009

The two shapes and their Cp distribution have been plotted on the Figure
9.14 and 9.15
The presence of the transition on the airfoil 75 is due to a weaker adverse
pressure gradient at point A.
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Figure 9.14. Comparison between the shapes of profile
124 (best by MOGA II) and 75 (best by Gradient-based).
The plot shows a small difference at the point A: the profile
75 has a variation of the shape most gradual.

2.2.2. Discussion. The gradient based algorithm has the big disad-
vantage to have a very slow convergence. Generally it requires a very
large number of test to converge to a optimal solution. Limited by time,
we have hence stopped the process after a reasonable time, obtaining re-
sults not so different from the previous one. Looking at the results, we can
notice the difficulty to find satisfactory profiles despite small variations of
the control points. This fact proves once again the great sensibility of the
laminar boundary layer to the shape variations. This problem generates
the real difficulty of building wings that respected the same characteristics
of the ideal model.
The Figure 9.16 shows a great sensibility of the transition to a small vari-
ations of the leading edge.
Therefore, the results proves that the optimal solution is not so robust.
On the other hand, the gradient based algorithm has allowed to obtain
a design a little smoother compared to the previous with a transition at
46% of the curvilinear axis.
Considering that for reasons of aircraft control, the transition phenomenon
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Figure 9.15. Comparison between the Cp distribution of
profiles 124 and 75. The profile 75 has a lower adverse
pressure gradient because of smoothness at point A (Figure
9.14).

Figure 9.16. Comparison between profile 310 and 75. A
small variation of the vertical position of the point that
control the leading edge (only 1.27 mm) leads forward the
transition of 50 %.
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is better that the separation, we have considered the profile 75 like our
optimal solution.
To have an idea of the reduction of the total drag between this profile and
the TBM, we have decided to solve the flow around the two profile swith
a Transition Model.

3. Drag Evaluation

3.1. Transition Models. A Transition Model allows the reliable
prediction of the onset and extent of laminar-turbulent transition. The
Ansys platform has developed two Transition Models, named the SST-
transition and the k-kl transition model[19]. Due to its combination with
the SST model, the SST-transition is favored. Coupling of Navier-Stokes
code with a global turbulence model, this model allows to predict the
position of the natural transition.

Figure 9.17. Example of transition model by Fluent.
Distribution of the mach number around the profile. Cruise
conditions: Mach 0.51; Altitude 26000 feet; Angle of attack
0.
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3.2. SST-transition model results and discussion. After creat-
ing a Journal File with the same flight conditions and boundary conditions
used for the RANS model, we have run a CFD simulation with the SST-
transition model for the wing root airfoil of the TBM 850 and for the
optimal solution (profile 75). As explained in the Chapter 3, the skin fric-
tion increases a lot because of the transition phenomenon. Therefore, a
simple way to see where the transition occurs is to plot the value of the
skin friction on the upper surface.

Figure 9.18. Comparison between the skin friction of the
TBM and of the design 75. SST-transition model. Cruise
conditions. 0 degree of angle of attack.

Figure 9.18 proves the results obtained by the stability code NOLOT. In
fact, for the profile 75 a transition occurs after the position on the TBM
profile. This difference in the transition location produces a reduction of
18,86% of the total drag, as one can see in table 3.
The results are in agreement with the physical phenomena. In fact, a more
extended laminar boundary layer has more effect on the skin friction than
on the pressure drag.
Looking at the Figure 9.19 we can see the value of the pressure drag and
skin friction of the two airfoil
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Table 3. Drag reduction between TBM and design 75.

Friction drag Pressure drag Total drag
Reduction 14.26% 4.6% 18.86%

Figure 9.19. Pressure drag and skin friction before and
after the optimization process.

4. Conclusions

The final results can be considered satisfactory. In fact, maintaining the
value of lift and momentum coefficient close to the original geometry, the
optimal solution decreases the total drag more than 18%. This reduction
is due to a transition moved from 26% to 45% of the curvilinear axis.
Therefore, we conclude that the optimization strategy used is suitable for
this type of problems.

The phenomena of transition and separation are very sensitive to the
smoothness of the profile and often occur close to the maximum thick-
ness of the airfoil. The constraints of the thickness at 25% of the chord
didn’t allow us to smooth very much the shape and to move the maximum
thickness downstream to 40% of the chord. For this reason we think that a
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shape with less constraints on the thickness could obtain better results in
terms of transition/separation. On the other hand, the parameterization
could be more taxing and the optimization more expensive.

Besides, large modifications of the thickness of a wing can lead to struc-
tural problems compared with the original wing. It is for these problems
that we have also tried to reduce the degrees of freedom of the shape. The
process, however, has shown problems in finding a robust solution. In fact
the best shape exhibits very different results for small variations of the
control points. Therefore, from a manufacturing point of view, we think
that the process should be considered insufficient.



CHAPTER 10

Viscous Optimization High and Low speed

After optimizing the profile at high speed, we decided to analyze its stall
characteristics at low speed. Therefore we improved the process for two
different flight conditions. One of them is the cruise condition, already
used for the previous optimization. The second one is the take off. The
goal was to optimize two profiles for the two different flight conditions at
the same time. The two airfoils analyzed were the root and the tip pro-
files because they represent the profiles generators of the wing. Therefore
a new platform was created in modeFRONTIER.

1. Take-off/Landing conditions

During the flight envelope the performance requirements of the aircraft
changes. In fact at cruise conditions we want the aircraft to be efficient in
terms of fuel consumption. On the other hand, at take off a great lift is
required to allow to the aircraft to climb (Figure 10.1).

1.1. Lift generation. For a aircraft, the lift is generated by produc-
ing a pressure different between the upper and lower side of the wing. This
pressure difference is produced by a inclination of the surface relative to
the air flow direction or with a curved surface (cambered) as the profile of
the TBM. The angle at which the wing is inclined relative to the air flow
is known as the angle of attack. The variation of lift with angle of attack
can be calculated by using a single graph of Cl plotted as a function of
the angle of attack[20].
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Figure 10.1. Take off of the TBM. A great value of lift
is required during take off.

Figure 10.2. Lift coefficient against the angle of attack
for the root of the wing of the TBM. Altitude 0.

As we can see, the amount of lift is directly proportional to the angle of
attack, for small angles. Figure 10.2 shows a straight line until a point
where the lift starts to fall off. This effect is known as stalling. In Figure
10.2 the stall occurs at an angle of attack of around 14 degrees. Stalling
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occurs when the air flow fails to follow the contours of the airfoil and
becomes separated. A delay of the stall allows to stretch the production
of lift at larger angles of attack.

2. Changes in the modeFRONTIER platform

Instead of delaying the stall, we have decided to maximize the highest
value of lift coefficient. To do that, we have created a loop inside the
CFD simulation to study the flow increasing the angle of attack until the
maximum Cl. (Figure 10.3)

Figure 10.3. Loop inside Journal file of fluent.

Therefore, in the optimization process, a new objective function with the
value of Cl has been considered. (Figure 10.4)
As we can see in the Figure 10.4, this new flight condition has been coupled
with the cruise. The objective of the process is to find a profile capable to
reduce the drag at cruising speed at 0 of angle of attack and, at the same
time, capable to increase the lift at low speed.

3. Root optimization

This new root optimization consider the same profile of the previous one.
For this reason, creating the new platform has not required much time.
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Figure 10.4. New interface modeFRONTIER for opti-
mization high/low speed

The only new feature was to integrate the CFD simulation at low speed in
the process. The new CFD simulation is very expensive in terms of time.
The time of each iteration of the optimization indeed is passed from 30 to
60 minutes.

3.1. Strategy. According to the good results obtained in the process
at cruising speed, the strategy used for this optimization is the same as the
previous one. Therefore, the domain of the control parameters has been
explored with the Sobol algorithm. Secondly, the optimization algorithm
MOGA II has been used to find the best solution. 80 DOE have been
studied before getting a reasonable number of design to start with MOGA
II. The Gradient Based algorithm has not been used to refine the solution.
In the previous process indeed it didn’t give good results.

3.2. Results. After about 5 days and 300 shapes analyzed, the pro-
cess was stopped. More than half (170) gave good results. The failed
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profiles presented no transition delayed compared with the TBM. In Fig-
ure 10.5 are plotted the value of the Lift coefficient at low speed against
the e.b.l. at high speed and their Pareto front.

Figure 10.5. Pareto front

As the plot shows, these Objective Functions are one in opposition to the
other. A profile that assures a low drag at cruising speed is not able to
give a high lift coefficient at taking-off speed and vice versa. We can see
the two different shapes in the Figure 10.6
After all, although the different flight conditions lead to opposite ways,
the process has found good results for each O.F. As regards cruising speed,
the best profile presents an e.b.l. at 44.8% of the curvilinear axis. This
value is pretty close to the 47% of the previous optimization. This fact
says that this O.F. has not been penalized so much by the CFD simulation
at low speed.
On the other hand, we have found a maximum Cl of 1.837. This value is
1.2% more that the TBM and it can’t be considered a good improvement.
These values, compared with TBM, are put on the table 1.
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Figure 10.6. Best shape for transition and best shape for
Lift coefficient compared with the TBM.

Table 1. Comparison between the objective functions of
TBM and the best shapes at low and high speed.

Profile e.b.l. Clmax

TBM 0.264 1.814
best high speed 0.448 1.666
best low speed 0.299 1.837

3.3. Discussion. This analysis has showed how the flight conditions
considered require different shapes for their optimization. Although, the
strategy applied has found good solutions to maximize the position of
transition, it has not been the same for the lift coefficient.
Generally an aircraft spends more time in cruise condition than take-off
or land one. For this reason we have preferred to choose a profile with a
drag reduced as much as possible but with value of Cl close to the starting
value. Therefore, the best choice has been on the profile 355. We can see
its shape and characteristics respectively in Figure 10.7 and Table 2.
The value of the max. Cl has been reduced of the 4.57% of the value
of TBM. In the Certification Specifications CS-23, the E.A.S.A. imposes
that the taking-off speed (Vt) must be at least 1.2 the stalling speed (Vs).
The latter must be less than 61 Knots and it is defined by the following
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Figure 10.7. Shape of the compromise between all the solutions.

Table 2. Best compromise

Profile e.b.l. Clmax

TBM 0.265 1.815
355 0.426 1.732

equation[21]:

M ∗ g =
1
2
∗ ρ ∗ S ∗ V 2

s ∗ Cl

As we can see, a too small value of Cl, without changing the others pa-
rameters, can increase a lot the value of Vs, not allowing to respect the
Certifications. Changes of the Cl of an airfoil lead to changes of the Cl of
the aircraft and therefore we have tried to stay as much as possible near
to the Cl max of the TBM.

4. Tip optimization

The main difference between the root and tip airfoils is the relative thick-
ness, defined as the ratio of maximum thickness and the chord. In fact,
for the first it is 16% and for the second one is 12%

Hence, to create the optimization platform for the tip has required to re-
view all the steps of the process to find the reference values. Since the

Tobia 
Y/C

Tobia 
X/C



4. TIP OPTIMIZATION 75

Figure 10.8. Comparison between the tip and root pro-
files. We can see the different relative thickness.

root optimization had given us good results, we have decided to keep the
same steps of the previous one. Therefore, the same parameterization, do-
main, mesh and CFD simulations for high and low speed have been done.
The reference values for the TBM show a maximum e.b.l. at 26% of the
curvilinear axis while the maximum value of Cl at low speed was 1.82.

4.1. Strategy. The strategy Sobol+MOGA II has been employed.
80 DOE have been studied before having a reasonable number to start
with MOGA II.

4.2. Results. The process has been stopped after 263 profiles. Only
67 of them were unfeasible, presenting a transition more upstream than
the starting profile. Like for the other optimizations, we have plotted the
Pareto Front.
Like for the root, even this process proves the opposition between the two
O.F. The best shape for the cruising speed has a e.b.l. at 39% of the
curvilinear axis. On the other hand, the best shape for low speed has a
Lift coefficient of 1.85. The values of the two best airfoils are put in the
Table 3
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Figure 10.9. Pareto front of the solutions.

Table 3. Comparison between the objective functions of
TBM and the best shapes at low and high speed.

Profile e.b.l. Clmax

TBM 0.264 1.819
best high speed 0.393 1.75
best low speed 0.287 1.85

4.3. Discussion. The optimization at low speed has showed better
results for the maximum value of Cl. As with the process for the root,
the solution must be taken like a compromise among the two O.F. Ana-
lyzing the Pareto front the profile 585 has been chosen. We can see its
characteristics in the table 4.
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Table 4. Objective functions of the best compromise,
compared with the TBM. Tip profile. High speed: cruise
condition; Low speed: take-off condition.

Profile e.b.l. Clmax

TBM 0.264 1.819
585 0.381 1.796



CHAPTER 11

Validation 3D: Wing

In this chapter a CFD simulation of the wing of TBM 850 is done. The
results are then compared with a CFD simulation of the same wing with
different root and tip profiles. In fact, considering the best solutions of
the last optimization processes, a ’ new ’ wing of the TBM is created with
these two profiles. This study is done to compare the drag of the two
wings at cruising speed with 0 of angle of attack.
It is important to keep in mind that the flows over a 2D and a 3D geometry
are very different. In fact 3D effects and trailing vortex can influence the
flow over the wing and add drag.

1. Trailing Vortex

First of all on a wing there are effects called trailing vortex that add a
contribute to the global drag, called induced drag[22].
The nature of this phenomenon is explained by the different pressure on
the sides of the wing. On the lower side of a wing, the pressure is higher
than the surrounding atmosphere, so the air flows outwards towards the
tip. On the upper surface, the pressure is low, and the air flows inwards.
This results in a twisting motion in the air as it leaves the trailing edge.

2. 3D effects

The TBM, like many modern aircraft, is equipped with a small swept-wing
configuration. This fact introduces another important effect on the flow.
Indeed, as already explained in the chapter 3, the boundary layer devel-
oping on swept wings is different from its two-dimensional counterparts
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Figure 11.1. Generation of trailing vortex behind the
wings of an aircraft.

in that it exhibits a crossflow profile[23]. This crossflow profile introduces
effects on the boundary layer changing the characteristics of the transition.

For the presence to these effects, the flow over the root and tip profiles can
give different results respect to the 2D analysis. Besides, it is important
to say that, although Fluent could solve the natural transition of the
boundary layer, the numerical method used to do that is less accurate
than NOLOT code. Therefore, this difference must be considered in the
analysis of the results.

3. TBM wing

The wing of the TBM has been taken as reference. Its characteristics are
the following:

• A span of 12161.3 mm
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• A dihedral of 6.5

A frontal, lateral and from above view is in the Figure 11.2.

Figure 11.2. Main dimensions of the TBM. We can see
the dimensions of its wings.

4. Catia V 5

Respecting the list of the main parameters of the wing, the CAD software
Catia V 5 has been used to create the ’ new ’ wing. The wing was built
being able to change its dihedral and its span ( Figures 11.3 and 11.4).

Figure 11.3. Variation of the dihedral.
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Figure 11.4. Variation of the span.

Figure 11.5. Half sphere for the fluid domain around the wing.
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5. Mesh

A half sphere has been created as the fluid domain. We can see it in Figure
11.5:
The domain has been discretized with Hybrid mesh. The command in-
flation has been considered close to the wing, to study the effects of the
viscosity. The domain so created has 3.8 million of cells. The maximum
skewness is 0.93.

Figure 11.6. Grid around the wing.

6. CFD simulation

The SST-transition model has been used to study the natural transition on
the two wings. The algorithm method for the continuity and momentum
equations is the pressure based solver. The boundary conditions are:

• pressure-far-field to the two surface of the half sphere
• symmetry to the symmetry plane of the half sphere

The algorithm for the solution is Coupled with low values for the under-
relaxation factors and a CFL set to 10.
The wings have been studied in the cruise conditions of the TBM 850:
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Table 1. Cruise conditions of the TBM 850.

Mach number Reynolds number Altitude (feet) Velocity (knots)
0.51 8901189 26.000 320

7. Results

The CFD simulation has given unexpected results in terms of drag. In fact,
as we can see in the Figures 11.7 and 11.8, high values of skin friction are
more extended on the surface of the new wing than on the TBM.

Figure 11.7. Skin friction over the surface of the TBM
wing; aoa= 0 degrees; cruise conditions

The numerical values of Cd and Cl are in the Table 2

8. Discussion

The results of the CFD simulation on the wing shows that there is a big
differences between 2D and 3D flows. To show how the presence of a small
sweep can generate a velocity gradient in the span direction and influence
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Figure 11.8. Skin friction over the surface of the New
wing; aoa= 0 degrees; cruise conditions

Table 2. Comparison of drag and lift coefficients between
TBM and new wing.

Wing Visc. drag Press. drag Total drag Lift coeff
TBM 0.00273 0.00754 0.01027 0.1919
New 0.00279 0.00755 0.01035 0.1903

the boundary layer, we have looked at the shear stress at the wall. (Figure
11.9)
The presence of a not zero value stresses that the flow at the wall is forced
also in the span direction. We can see also the high value of these stresses
close to the tip profile, suggesting the presence of trailing vortex. This 3D
effect generates crossflow instabilities that are absent in 2D dimension.
To see the difference between 2D and 3D flow, we have plotted the Cp
distribution of the root profile of the wing (Figure 11.10) and compared
it with the Cp from the 2D optimization (Figure 11.11).
Figure 11.11 shows very different Cp distribution. In the 3D validation
in fact, the Cp distribution on the root profile has a maximum value
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Figure 11.9. Shear stress along the span direction over
the New wing.

Figure 11.10. Root section of the New wing

slightly higher than the 2D, and the adverse pressure gradient starts more
upstream.
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Figure 11.11. Comparison between the Cp distribution
over the upper surface of the root profile in the 2D and 3D
validation. Cruise condition. 0 degrees of aoa. Blue points:
3D; Red line: 2D.
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CHAPTER 12

Conclusions and Future Works

1. Conclusions

An automatic shape optimization has been developed for an airfoil. The
platform allows to change the geometry of an airfoil with the chord and
the thickness at 25% and 75% of the chord fixed, to find an optimal shape
able to delay the transition phenomenon and increase the max lift coeffi-
cient.

The process has been running for one and two flight conditions at the
same time. The strategy used has showed a convergence for both of them:

• At cruise speed the results show good aerodynamic characteristics
for the optimal shape, with an delay of the transition phenomenon
from 26% to 47% of the curvilinear axis and with value of Cl and
Cm almost unchanged.

• At low and high speed, the results have showed the constraints in
finding a shape with low viscous drag at high speed and high max
Cl at low speed. Therefore, the process proves that each flight
condition requires different optimal shape and, an airfoil with
high Cl max (1.66% higher) requires a different shape respect an
airfoil with low value of viscous drag (transition from 26.4% to
44.8% of the c.a.)

The 3D validation has given unexpected results. The wing built with the
optimal root and tip profiles has a higher value of the viscous drag than
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that of the TBM 850. This result comes from the differences between 2D
and 3D flows. In fact, shear stresses in the span direction suggests the
presence of crossflow profiles that they add instabilities in the boundary
layer.

2. Future Works

The crossflow instabilities can be investigated by NOLOT. Setting the
sweep and considering an infinity span, NOLOT is able to study the ef-
fects of the crossflow disturbances on the stability of the laminar boundary
layer. Besides, especially with the crossflow profiles, the evolution of dis-
turbances is significantly affected by base-flow non-parallelism[2]. NOLOT
can also consider these effects but the method requires more time and is
less robust than the local method used in the optimization[10].
However, a non-local stability for a swept wing can be introduced in the
optimization platform to optimize a profile with these effects.

For the 2D optimization, we have seen how the transition location is linked
to the maximum thickness of the airfoil. For this reason, a profile with
different constraints at the thickness can be analyzed to see the possible
improvements in terms of transition. With different constraints, another
parameterization can be tested to reduce the design parameters or to im-
prove the changes of the shapes1.

1Reduce the risk to have unfeasible design
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Appendices

These Appendices deal with a work performed at the University of Genoa
regarding the study of the laminar boundary layer equations governing in-
viscid and incompressible flow in 2-dimension and in 2,5-dimension. The
boundary layers on a flat plate and on an infinite swept wing are investi-
gated with the bl3D code using the Boundary-Layer equations. This code,
starting from a pressure or velocity distributions, allows to calculate the
most important parameters of the boundary layer like thickness, shape fac-
tor, velocity and pressure distribution with their gradients. Different cases
have been investigated considering three different external flow: Blasius,
considering a constant velocity for the oncoming flow (or pressure, accord-
ing with Bernoulli’s equation for potential flow); accelerated flow with a
negative pressure gradient and decelerated flow with an adverse pressure
gradient. The influence of the pressure gradient on the separation has
been investigated on a flat plate and on an infinite swept wing.
After the validation of the bl3D code, a code called Nolot was used based
on the linear stability analysis with the semi-empirical eN method to find
out the transition of the boundary layer. This analysis considers small
infinitesimally perturbations inside the boundary layer and it studies their
spatial growth rate. The transition occurs when the integration of the
growth rate, starting from the neutral stability point, arrives at value of
8, according with the Macks law. The integration of the growth rate is
the amplification factor also called N factor. The code Nolot, developed
by Hanifi, Hennigson, Hein, Bertolotti and Simen in September 1993, is
validated for local and non-local stability.
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APPENDIX A

Linear boundary layer 2 D

1. Prandtl’s Boundary Layer Equations

Considering a two-dimensional incompressible and steady flow along a
semi-infinite flat plate, we can write the Navier-Stokes equations:

∂ū

∂t
+ (ū ·∇)u = −∇p

ρ
+ ν∇2ū(5)

∇ · ū = 0(6)

The wall is assumed to be flat and coinciding with the x-direction while the
y-axis is perpendicular to it. With the exception of the immediate neigh-
borhood of the surface, the velocities are of the order of the free-stream
velocity, U , and the pattern o streamlines and the velocity distribution
deviate only slightly from those in frictionless (potential) flow. From the
reality we have that the fluid does not slide over the wall, but adheres
to it. The transition from zero velocity at the wall to the full magnitude
at some distance from it takes place in a very thin layer, the so-called
boundary − layer. Very near the wall the velocity gradient normal to
it, ∂u

∂y , is very large. In this region the very small viscosity ν of the fluid
exerts an essential influence. The convection forces and the friction forces
must have the same order of magnitude in this region, hence

(7)
ρU2

L
≈ µU

δ2

From this equality we obtain that:
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(8) δ2 =
νL

U

In the remaining region the viscosity is unimportant and the flow is fric-
tionless and potential. The first approximation is that for the condition of
steady flow the ∂u

∂t = 0. We can assume that x ∼ L and y ∼ δ and u ∼ U .
For the partial derivates we have ∂

∂x = 1
L while ∂

∂y which we expect to be
very large (≫ 1).
The Navier-Stokes are then simplified by considering that the thickness of
the boundary layer, δ, is very small compared with the dimension , L, of
the wall (δ ≪ L). We don’t know anything about the order of magnitude
of v but, from the equation of continuity, we get that ∂u

∂x and ∂v
∂y must

have the same order of magnitude. About the previous consideration we
have ∂u

∂x ∼ U
L and ∂v

∂y ∼ v
δ and hence the v in the boundary layer is of the

order Uδ
L . For the pressure we can consider that its order of magnitude is

the order which allows the other quantities depend on ρ U2. Now we can
write the equations of Navier-Stokes under a order magnitude form:

U2

L
+

U2

L
=

U2

L
+ ν(

U2

L
+

U2

δ2
)

U2δ

L2
+

U2δ

L2
=

U2

δ
+ ν(

Uδ

L3
+

U

Lδ
)

U

L
+

U

L
= 0(9)

Estimating the order of magnitude of each term we can have a simplifica-
tion of the equations. Looking at the first equation ∂u2

∂x2 is neglected with
respect to ∂u2

∂y2 because δ ≪ L. From the expression of δ2 we have that the

order of the term ν(∂u2

∂y2 ) is U2

L . For the second equation we have that all

the terms except the pressure, have the order of magnitude U2δ
L2 ). Making

a comparison between the orders of magnitude of pressure and other terms
we obtain:
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(10)
U2

δ

L2

U2δ
= (

L

δ
)
2

Since δ ≪ L we can neglect all the terms of this equation with respect to
the pressure:

(11)
∂p

∂y
= 0

Considering these approximations and writing the Navier-Stokes equations
referring to the dimensionless terms :

(12) ẋ =
x

L
ẏ =

y

δ
u̇ =

u

U
ṗ =

p

ρU2

We obtain:

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1
Re

(
∂2u

∂y2
)

∂p

∂y
= 0

∂u

∂x
+

∂v

∂y
= 0

(13)

Re is the number of Reynolds which is assumed very large and it is equal
to:

(14) Re =
UL

ν

Now we have the important equation to determinate the thickness of the
boundary layer

(15)
δ

L
∼ 1√

Re
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The boundary conditions are: absence of slip between the fluid and the
wall u = v = 0 per y = 0 and u = U per y → ∞. Away from the boundary
layer, the parallel component u becomes equal to the free-stream velocity
U . So the viscous terms vanish for large values of Re, and consequently,
for the outer flow we obtain:

(16) U
∂U

∂x
= −∂p

∂x

We can see that the pressure depends only on x. This suggests that the
flow is accelerated by a pressure gradient.

2. Falkner-Skan

To study the laminar boundary layer we can consider a more simple
method used by Falkner-Skan. They introduce the expression of the
stream-function defined by:

u =
∂Ψ
∂y

(17)

v = −∂Ψ
∂x

(18)

The function Ψ(x, y) satisfy the continuity equation, hence we can write
the Prandtls boundary equation like only one equation:

(19) ΨyΨyx − ΨxΨyy = −UdU

dx
+ νΨyyy

with the boundary conditions ∂Ψ
∂x = ∂Ψ

∂y = 0 at the wall (y = 0) and
∂Ψ
∂y = U(x) for y → ∞. The important feature of this study is based on
the similarity solutions of the boundary layer equations. We shall define
here similarity solution as those for which the component u(x, y) of the
velocity doesn’t depend on x and y but only on a dimensionless function
η = y

G(x) that is a combination of the two coordinate where G(x) is pro-

portional to the boundary layer thickness G(x) =
√

xν
U(x) . The quest for
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similarity solutions is particularly important with respect to the math-
ematical character of the solution. In cases where similarity solutions
exist, it is possible, as we shall see in more detail later, to reduce the sys-
tem of partial differential equations to one involving ordinary differential
equations, which, evidently, constitutes a considerable mathematical sim-
plification of the problem. Now introducing the similarity transformation
η, we will obtain an ordinary differential equation for the stream function
f(η), instead of the original partial differential equation. The relation be-
tween f(η) and Ψ(x, y) is: Ψ(x, y) = U(x)G(x)f(η). Now we can define
the expression for Ψi = ∂Ψ

∂i and introduce them in the equation of the
boundary layer:

∂η

∂x
=

∂

∂x
(

y

G(x)
) = −GI(x)

y

G(x)2
= −GI(x)

G(x)
η(20)

∂η

∂y
=

∂

∂y
(

y

G(x)
) =

1
G(x)

(21)

u =
∂Ψ
∂y

=
∂Ψ
∂η

∂η

∂y
= U(x)f I(η)(22)

v = −∂Ψ
∂x

= − ∂

∂x
U(x)G(x)f(η)(23)

Ψyx = U I(x)f I(η) − U(x)GI(x)
G(x)

f II(η)η(24)

Ψyy =
∂

∂y
(U(x)f I(η)) = f II(η)

U(x)
G(x)

(25)

Ψyyy =
∂

∂y
Ψyy = f III(η)

U(x)
G(x)2

(26)

After introducing them in the boundary layer we obtain:

−U(x)U I(x) + νf III(η)
U(x)
G(x)2

(27)
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(28)

f III(η) +
G(x)(U(x)G(x))I

ν
f(η)f II(η) +

G(x))IU I(x)
ν

(1 − f I(η))2 = 0

α =
G(x)(U(x)G(x))I

ν
(29)

β =
G(x))IU I(x)

ν
(30)

Similarity solutions exist only when α and β do not depend on x and
hence they must be constant. Replacing the values for U(x) and G(x) like
below:

G(x) =
√

xν

(U(x)
(31)

U(x) = cxm(32)

we obtain:

α =
m + 1

2
(33)

β = m(34)

and the similar equation which governs the velocity profile in the boundary
layer became:

(35) f III(η) +
m + 1

2
f(η)f II(η) + m(1 − f I(η))2 = 0

with the boundary conditions for η = 0, u = 0 and we have f I(η) = 0.
For v = 0 we have f(η) = 0 while for η → ∞, u = U(x) and f I(η) = 1.
The equation found by Blasius is a particular case of this study because
he considered U(x) = cost. We can obtain his equation from the equation
of Falkner-Skan m = 0:
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(36) f III(η) +
1
2
f(η)f II(η) = 0

The coefficient m is representative of an acceleration of the flow. In fact
if we consider m > 0 we have an acceleration of the flow and considering
the Bernoulli’s equation we have a negative pressure gradient leading to a
boundary layer, which remains more attached to the wall. On the other
hand with a negative value of m we have a positive (adverse) pressure
gradient that decelerates the flow and potentially leads to separation. We
can see it with the graphs of the thickness, shape factor and also of the
velocity v in the boundary layer for three different value of m. In fact,
although very near the stagnation point the velocity v is positive for each
m, then for m > 0 the boundary layer remains more attached the wall,
while not in the others case. (Figure A.1)
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Figure A.1. Boundary layer thickness distribution on a
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a deceleration; the red line is relatives a constant flow.

We can see the dependence of the acceleration from the value of m in the
Figure A.4.
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We have made the study for a flat plate with three different value of m.
We must remember that when we made the simplifications introduced
into the Navier-Stokes’s equations it was assumed that the thickness is
very small compared with a still unspecified line dimension. It means that
very near at the stagnation point δ is very similar to the value of the
x−component and the Prandtl’s equations are not valid. This is the fact
that let us to take the first point to study the equation x = 0.3. m = 0 is
the case of Blasius and the velocity Ue is constant. For m > 0 we have
decided to take 0.2 and we can see the growth of the velocity. For m < 0
we have taken the value -0.09 that is a limit value for m as we explain
after. In the case of decelerated flow they exhibit a point of inflexion for
the velocity distribution. Separation occurs for m = −0.09. As we said
before, when a region with an adverse pressure gradient exist along the
wall, the retarded fluid particles can’t, in general, penetrate too far into
the region of increased pressure owing to their small kinetic energy. Thus
the boundary layer is deflected sideways from the wall, separated from it,
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and moves into the main stream. In general the fluid particles behind the
point of separation follow the pressure gradient and move in a direction
opposite to the external stream. The point of separation is defined as
the limit between forward and reverse flow in the layer in the immediate
neighborhood of the wall, or

(37)
∂u

∂y y=0
= 0

Trying different values for m we have found the point of inflection for
m = −0.091 which agrees with the results of the literature. This result
shows that the laminar boundary layer is able to support only a very small
deceleration without separation occurring.
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To see better the difference of the u profiles in the y direction for different
values of m, we have plotted, in Figure A.7, the distribution of
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(38)
∂u

∂y

where it is worth noticing, for example, that for m > 0 we have the bigger
variation of u near to the wall, and not for m < 0.
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APPENDIX B

Linear boundary layer 2,5 D

1. Prandtl’s Boundary Layer Equations

In the case of a three-dimensional boundary layer the external potential
flow depends on two coordinates at the wall surface (x, z) and the flow
within the boundary layer possesses all three velocity components which,
moreover, depend on all three space coordinates in the general case. An
important case of a three-dimensional boundary layer is that of an air-
craft’s wing, whose leading edge is not perpendicular to the stream. For
the purpose of establishing the boundary layer equations we shall confine
ourselves to the simplest case of a plane wall. x and z denote the coordi-
nates at the wall surface, y denoting the coordinate which is perpendicular
to the wall as we can see in Figure B.1:

Figure B.1. Reference axis x, y, z.

The velocity vector is assumed to have the component U(x, z) and W (x, z).
As we had seen in the two-dimensional study, for the frictional terms of the
equations for the x and z directions, it is possible to neglect the derivatives
with respect to the coordinates which are parallel to the wall compared to

103
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the derivative with respect to the coordinate y. Regarding the equation
in the y direction we again obtain the result that ∂p

∂y is equal to zero. So
the pressure has seen to depend on x and z alone and is imposed on the
boundary layer by the potential flow.

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+

1
Re

(
∂2u

∂y2
)

∂p

∂y
= 0

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1
Re

(
∂2w

∂y2
)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0(39)

The boundary conditions are u = v = w = 0 for y = 0 and u = U , w = W

for y → ∞. We can see that for w = W = 0 the system is the same
as the system of equations for the two-dimensional boundary layer flow.
Until now, no exact solution for this system of the equations for the three-
dimensional boundary layer is found, so a particular case for it is that the
potential flow depends on x but not on z: U = U(x) ,W = W (x). We
consider an aircraft’s wing with infinity length in the z-coordinate. For
this simplification the system is written:

∂u

∂x
+

∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1
Re

(
∂2u

∂y2
)

∂p

∂y
= 0

u
∂w

∂x
+ v

∂w

∂y
=

1
Re

(
∂2w

∂y2
)(40)
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2. Falkner-Skan-Cooke

Like we had seen for the two-dimensional boundary layer equations, we
can study the three-dimensional boundary layer equations considering a
similarity function. We shall consider the same stream function Ψ(x, y)
and the dimensionless similar stream function f(η). Looking at the system
we see that we have the same system of Falkner-Skan with a new equation
that we will call Cooke Equation :

(41) u
∂w

∂x
+ v

∂w

∂y
= ν(

∂2w

∂y2
)

With the first three equations we obtain the solution of Falkner-Skan.
Considering the equation in the z-direction we introduce relation between
w and a similar function which we call g(η). w = Wg(η) where W is a
constant and η is the similarity transformation y

G(x) . In order to introduce
the similarity relation in the equation finding the similar function for the
velocity profile we must deduce the derivates:

∂w

∂x
= W

∂

∂η
g(η)

∂η

∂x
= −WGI(x)

G(x)
ηgI(η)

∂w

∂y
= W

∂

∂η
g(η)

∂η

∂y
= −WgI(x)

G(x)
∂2w

∂y2 =
∂

∂y
(
WgI(x)
G(x)

) =
WgII(x)
G(x)2

(42)

After introducing (42) in the (41) we obtain:

(43) gII(η) + αf(η)gI(η) = 0

with the boundary conditions for η = 0, w = 0 we have g(η) = 0 and
for η → ∞, w = W we obtain g(η) = 1. Considering the Falkner-Skan
solution with the Cooke solution we obtain the velocity field of the three-
dimensional boundary layer:
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u = U(x)f I(η)(44)

v = U(x)GI(x)f I(η)η − (U(x)G(x))If(η)(45)

w = Wg(η)(46)

With this equation we can study the dynamic of the flow on a yawed wing
with infinity length in z-direction. In this case we’ll use only m < 0 and
m > 0 because for m = 0 the solution would be equal to the case without
sweep. In fact, for U(x) = cost the fact that the plate is yawed has seen
to have no influence on the formation of the boundary layer. The velocity
U(x) = xm while W (x) = W∞ = cost as we can see from the Figures B.2
and B.3.
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Figure B.2. Distribution of the external streamwise ve-
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green for negative pressure gradient; blue and purple for
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We have decided to take m = 0.2 and m = −0.05 and for these two cases
we have obtained the Figures B.4 - B.7. In the code bl3D used to make
the calculation of the boundary layer, the reference system has been taken
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following the streamline very near at the wall and not along the streamline
of potential flow.
As the Figures B.4 - B.7 show, increasing the sweep of the wing reduces
the boundary layer thickness at the same conditions (same distribution of
external flow).
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APPENDIX C

Thickness of the boundary layer

1. Displacement and Momentum thickness

A first approximation of the thickness of the boundary layer is consider
that for a fixed x, the end of the boundary layer in the perpendicular di-
rection respect with the flow, is at the point we have u = 99%U where U is
the velocity of the potential flow. Now we can consider better estimations
of the boundary-layer thickness by evaluating the quantity like mass and
momentum flux which through the boundary layer.
Displacement thickness:
This expression of the thickness is sometimes used and indicates the dis-
tance by which the external streamlines are shifted owing to the formation
of the boundary layer. To determine this equation we can consider the
equality between two streamlines:

∫ h

0
U(x)dy =

∫ h+δ

0
u(x, y)dy1(47)

=
∫ h

0
u(x, y)dy +

∫ h+δ

h
u(x, y)dy

= 2

∫ h

0
u(x, y)dy + U(x)δ1(x, h)

we have that:

U(x)δ1(x, h) =
∫ h

0
(U(x) − u(x, y))dy

and:
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δ1(x, h) =
∫ h

0
(1 − u(x, y)

U(x)
)dy

=
∫ ∞

0
(1 − u(x, y)

U(x)
)dy(48)

3

Momentum thickness:
Now we shall consider the momentum flux through the boundary layer.
Comparing the inviscid flow with the viscous flow, we obtain that in the
second case there is a loss of the momentum which we can write:

∆QM =

= ρ

∫ ∞

0
(U2(x) − u2(x, y))dy

= ρ

∫ ∞

0
[(U(x) + u(x, y))(U(x) − u(x, y))]dy

= ρ

∫ ∞

0
U(x)(U(x) − u(x, y))dy + ρ

∫ ∞

0
u(x, y)(U(x) − u(x, y))dy

= ρU2(x)δ1(x) + ρU2(x)
∫ ∞

0

u(x, y)
U(x)

(1 − u(x, y)
U(x)

)dy(49)

We can consider the subject of the integral as a correction for the first
term. Hence we shall introduce another expression for the thickness of the
boundary layer:

(50) δ2(x) =
∫ ∞

0

u(x, y)
U(x)

(1 − u(x, y)
U(x)

)dy

It is worth saying that δ2(x) it is not a thickness of the boundary layer
but it is a correction to make for the displacement thickness. In the figure
below we can se the distribution of the three thickness on a flat plate.

3for h→ ∞
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2. Von Karman’s integral equation

Looking at the Prandtl’s equation we can obtain an equation which gov-
erns the boundary layer thickness in the flow. We shall consider the two-
dimensional, incompressible, steady flow. We focus on a fixed x and we
integrate the Prandtl’s equation on the y-direction:

(51)
∫ ∞

0
[u

∂u

∂x
+ v

∂u

∂y
+

∂p

∂x
− ν(

∂2u

∂y2
)]dy = 0

From the third equation of (13) we have:

v = −
∫ y

0

∂u

∂x
dy

One of the terms of the momentum equation in the x-direction is:
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∫ ∞

0
v
∂u

∂y
dy = −

∫ ∞

0
[
∫ y

0

∂u

∂x
dy]

∂u

∂y
dy

= −u

[∫ y

0

∂u

∂x
dy

]∞

0

+
∫ ∞

0
u

∂u

∂x
dy

= −U(x)
∫ ∞

0

∂u

∂x
dy +

∫ ∞

0
u

∂u

∂x
dy(52)

Now we can introduce the shear stress at the wall τ = −µ∂u
∂y . Hence:

−
∫ ∞

0
ν(

∂2u

∂y2 )dy =
τ(x)

ρ

Replacing these expression in the momentum equation we obtain:

τ(x)
ρ

= −
∫ ∞

0
[2u

∂u

∂x
− U(x)

∂u

∂x
− U(x)

dU(x)
dx

]dy

τ(x)
ρ

= −
∫ ∞

0
[
∂u2

∂x
− U(x)

∂u

∂x
− u

∂U(x)
∂x

+ u
∂U(x)

∂x
− U(x)

dU(x)
dx

]dy

τ(x)
ρ

= −
∫ ∞

0
[
∂u2

∂x
− ∂

∂x
(U(x)u) + u

∂U(x)
∂x

− U(x)
dU(x)

dx
]dy

τ(x)
ρ

=
∫ ∞

0
[

∂

∂x
((U(x) − u)u) +

∂U(x)
∂x

(U(x) − u)]dy

τ(x)
U2(x)ρ

=
1

U2(x)
d

dx

∫ ∞

0
u(U(x) − u)dy +

1
U2(x)

∫ ∞

0

∂U(x)
∂x

(U(x) − u)dy

(53)

Now, we define:
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τ(x)
U2(x)ρ

=
Cf (x)

2
∫ ∞

0

u

U(x)
(1 − u

U(x)
)dy = δ2(x)

∂U(x)
∂x

= U I

∫ ∞

0
(1 − u

U(x)
)dy = δ1(x)

and obtain:

d

dx
δ2(x) +

U I(x)
U(x)

(2 + H1,2)δ2(x) =
Cf (x)

2
(54)

Where H1,2 is a shape coefficient and Cf (x) is a drag coefficient. This
equation is known as the momentum-integral equation of boundary-layer
theory, or as Von Karman’s integral equation. It is often used in the
approximate methods for the solutions of the boundary layer equation.



APPENDIX D

Linear stability theory of laminar boundary

layers

1. Orr Sommerfeld and Squire equations

Linear stability theory concerns the evolution of perturbations with infin-
itesimal amplitude superimposed on a laminar flow. The flow is decom-
posed in mean flow and non-steady disturbance. The goal is to determi-
nate if the disturbances amplify or not. If the disturbances decay with
time, the flow is considered stable; on the other hand, if the disturbances
are amplified with time, the flow is considered unstable. An important
object of this theory is to evaluate the critical Reynolds number for which
the flow become unstable. We describe the velocity components of the
mean flow as U ,V ,W and its pressure P . The corresponding quantities
for the non-steady disturbance will be denoted by uI , vI , wI , pI . So,
the resultant quantities will be:

u = U + uI

v = V + vI

w = W + wI

p = P + pI(55)

The magnitude of the disturbance is smaller than that of the mean flow
and for this reason the method investigating the stability is called method
of the small disturbances. We consider a three-dimensional flow and study
the Navier-Stokes’s equations seen previously.
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+

1
Re

(∇2u)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1
Re

(∇2v)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1
Re

(∇2w)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0(56)

A first simplification is to consider the velocity components of the mean
flow depending only on y and so U = U(y) and W = W (y).V = 0. It
can be considered a good approximation because in the equations of the
laminar boundary layer we had found that the dependence of the velocity
U in the main flow on the x-coordinate was smaller than that on y. These
flows are called parallel flows. As far as the pressure in the main flow is
concerned, it is necessary to assume a dependence on x as well y and z,
because the pressure gradient ∂p

∂x maintains the flow. P = P (x, y, z). The
three-dimensional disturbance is a function of the time and space:

uI = uI(x, y, z, t)

vI = vI(x, y, z, t)

wI = wI(x, y, z, t)

pI = pI(x, y, z, t)(57)

With the previously consideration and neglecting quadratic terms in the
disturbance velocity component we obtain:
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∂uI

∂t
+ U

∂uI

∂x
+ vI ∂U

∂y
+ W

∂uI

∂z
= −∂pI

∂x
+

1
Re

(∇2uI)

∂vI

∂t
+ U

∂vI

∂x
+ W

∂vI

∂z
= −∂pI

∂y
+

1
Re

(∇2vI)

∂wI

∂t
+ U

∂wI

∂x
+ vI ∂W

∂y
+ W

∂wI

∂z
= −∂pI

∂z
+

1
Re

(∇2wI)

∂uI

∂x
+

∂vI

∂y
+

∂wI

∂z
= 0(58)

Now we can consider the disturbance composed of a number of discrete
partial fluctuations, each of which is said to consist of a wave which is
propagated in the x-, z-direction. Hence, it is possible to introduce a
stream function Ψ representing a single oscillation of the disturbance:

(59) Ψ(x, y, z, t) = Φ(y)ei(αx+βz−ωt)

α and β are the wavelength number of the disturbance respectively
on x- and z-directions. ω is the frequency of the oscillation. Now we can
write the quantities of the disturbance as Ψ:1

uI(x, y, z, t) = û(y)ei(αx+βz−ωt)

∂uI

∂x
= (iα)û(y)ei(αx+βz−ωt)

∂

∂y
U = DU

∂uI

∂z
= (iβ)û(y)ei(αx+βz−ωt)

∂uI

∂t
= (−iω)û(y)ei(αx+βz−ωt)

∇2uI = D2 − K2(60)

1K = α2 + β2
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Introducing these terms in the system we obtain:

i(αU + βW − ω)û + v̂DU + iαp̂ − û

Re
(D2 − K2) = 0

i(αU + βW − ω)v̂ + Dp̂ − v̂

Re
(D2 − K2) = 0

i(αU + βW − ω)ŵ + v̂DW + iβp̂ − ŵ

Re
(D2 − K2) = 0

iαû + iβŵDv̂ = 0(61)

After the elimination of the pressure we obtain an equation better known
as the Orr-Sommerfeld Equation which governs the stability of nearly
parallel viscous flow such as the boundary layer:

(62)
v̂(D2 − K2)2 − iRe[(αU + βW − ω)(D2 −K2)v̂ − (αD2U + βD2W )v̂] = 0

The boundary conditions for this equation are: v̂(0) = Dv̂(0) = 0 and
v̂ = 0 for y → ∞ where v̂ is the normal velocity. To determinate
the total velocity vector it is necessary to derive the equation of normal
vorticity. The vorticity is defined like ϑ = ∂zu − ∂xv which satisfies the
equation:

(63)
∂ϑ

∂t
+ U

∂ϑ

∂x
− 1

Re
∇2ϑ = −DU

∂vI

∂z

As we made for the normal velocity, we can introduce an wavelike distur-
bance and we obtain:

(64) [(−iω + iαU) − 1
Re

(D2 − K2)]ϑ̂ = −iβDUv̂

This equation is well-known Squire Equation and we can see that it
depends on the normal velocity. A system of these equations allows us
to know all the velocity components of the flow and determinate its sta-
bility. The system poses an eingvalue problem and it is important to say
than there is no a general restriction to real or complex wave numbers or



120D. LINEAR STABILITY THEORY OF LAMINAR BOUNDARY LAYERS

frequencies. If we want study a temporal stability we must consider the
frequency like a complex numbers (ω = ωr + iωi) while the wave num-
bers α and β are real. In this case to have stability it’s necessary that
ωi < 0 because u = eωitû(y)ei(αx+βz−ωrt) and the growth rate is determi-
nate by ωi. On the other hand, if we want study a spatial stability we
must consider the wave-numbers like a complex numbers (α = αr + iαi

and β = βr + iβi) while the frequency ω is real. The stability will hold for
the imaginary part of the wave-numbers, being positive. In our study we
have analyzed a spatial stability considering (α = αr + iαi) and β and ω

real.

2. Parabolized Stability Equations (PSE)

Now we introduce a set of equations known as the Parabolized Stability
Equations (PSE). Differently from the Orr-Sommerfel and Squire equa-
tions, these equations are used to study the spatial evolution of distur-
bances affected by baseflow nonparallelism, that are significant in crossflow-
dominated boundary layer. The fundamental assumption of this theory is
that the disturbances consist of a fast oscillatory part and an amplitude
that varies slowly in the stream wise direction. This decomposition allows
us to have equations amenable to a numerical marching procedure. At
first we are going to consider the two-dimensional linear Navier-Stokes’s
equations. The disturbance decomposed like above is:

(65) u(x, y, t) = û(x, y)ei
R x

x0
α(ξ)dξ−iωt

where α is the complex stream wise wave number. Introducing this equa-
tion in the Navier Stokes equations, and neglecting all terms of order R−2

e

and higher, we arrive at the following system of equations written in ma-
trix form:



2. PARABOLIZED STABILITY EQUATIONS (PSE) 121

d
dx =

⎛

⎜⎝
u

v

p

⎞

⎟⎠

⎛

⎜⎝
−iα −D 0
0 −C1

U − Vy

U −D
U

−C1 + iαU − Ux UD − Uy −iα

⎞

⎟⎠

⎛

⎜⎝
u

v

p

⎞

⎟⎠

with

(66) C1 = iαU − iω + V D − 1
Re

(D2 − α2)

where D denotes the derivate with respect to the normal direction y. The
form of the solution (60) assumes an x-dependent amplitude function and
an x-dependent stream wise wave number α, thus causing an ambiguity.
To remove this ambiguity we impose an auxiliary condition on the ampli-
tude function:

(67)
∫ ymax

ymin

(û∗ûx + v̂∗v̂x + p̂∗p̂x)dy = 0

This relation imposes to the stream wise variation of the amplitude func-
tion to remain small and ensures that most of the x-variation of the distur-
bance will be accounted for by the exponential function. These approxima-
tion can be applied to more complicated flows like quasi three-dimensional
flows. Now we consider the disturbance q = (û, v̂, ŵ, p̂) decomposed in the
following way:

(68) q = q̂(x, y)eiΘ

with

(69) Θ =
∫ x

x0

α(x′)dx′ + βz − ωt

As before, neglecting all terms which are of the order R−2
e and higher,

leads to a quasi-parabolic equation system of the form:
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(70) Aq̂ + B
∂q̂

∂y
+ C

∂2q̂

∂y2
+

∂q̂

∂x
= 0

where A,B,C and D are functions of α, β, ω, mean flow, and, in general,
metric quantities. In this case, the ambiguity in the x-dependence of the
amplitude function and the stream wise wave number is removed with the
help of an auxiliary condition which takes on the form:

(71)
∫ ∞

0
q̂H ∂

∂x
ûdy = 0



APPENDIX E

Stability analysis of laminar boundary layer

In this chapter we investigate the stability of three different models: a flat
plate boundary layer, a swept flat plate boundary layer and the boundary
layer on a infinite swept wing. To make this, we will use a stability code
called NOLOT. NOLOT is a non-local stability code based on PSE (65)
and it was developed by Hanifi, Henningson, Hein, Bertolotti and Simen
in 1993. For our analysis is important to say that although NOLOT is a
non-local stability code, it has four different subsets of equation:

local parallel: all streamwise derivates of amplitude functions are
neglected (D=0)and all terms which are related to the nonparallel
basic flow are removed from A and B.

nonlocal parallel: only terms related to the nonparallel basic flow
are removed from A and B.

local nonparallel: all streamwise derivates of amplitude functions
are neglected (D=0) but terms related to the nonparallel basic
flow are kept in A and B.

nonlocal nonparallel: the complete set of equations is considered.

In the following section we are going to make a local analysis.

1. Local stability analysis

The term local means that the analysis wherein the mean-flow variation
and the geometry variation in the direction of amplification is neglected,
and only the variation normal to the wave-rays is considered. In order
to consider this case, as we have said before, we must consider D=0 in
the PSE and all terms which are related to the nonparallel basic flow
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are removed from A and B. The results is an equation equal to a Orr-
Sommerfeld equation. Hence, the local case is described by a system of
ordinary differential equations which in NOLOT are solved as a boundary-
value problem. The first case we have studied is the flat plate with Ue =
cost. We have changed the value of the β maintaining constant the value of
frequency of perturbation. Obviously, for β = 0 we have a two dimensional
case. In the graph we have considered the growth-rate and the N-factor
in function of s/c. The growth-rate is defined below:

(72) σ =
1
h1

(−αi + Real[
1
ξ

∂ξ

∂y
])

where the first term on the right-hand represents the contribution from the
exponential part of the disturbance and the second term is the correction
due to the changes of the amplitude function. ξ can be taken the maximum
of the stream wise or normal velocity component for each fixed x-position.
Alternatively, we can consider the kinetic energy E

(73) E =
1
2

∫ ∞

0
(|û|2 + |v̂|2 + |ŵ|2)dy

and the (68) becomes

(74) σ =
1
h1

(−αi +
∂

∂y
(ln

√
E))

Like the Figure E.2 shows, in a 2D case we have most high number of
Nfactor and this is in agree with the Squire’s theorem saying that parallel
shear flows first become unstable to two-dimensional wavelike perturba-
tions at a value of the Reynolds number that is smaller than any value
for which unstable three-dimensional perturbations exist. For this reason
we can study the local stability for 2D flow. At first we have changed the
value of frequency for β = 0 (see Figures E.3, E.4).
We can notice (see Figure E.4) that for lower frequency we have the max-
imum of Nfactor at larger s/c. Now we have made a study on a flat plate
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Figure E.1. Growth-rate σ = −αi for different value of
β at frequency of 5000 Hz
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Figure E.3. Growth-rate for two-dimensional flow. We
can see the different value of σ for different frequency.
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for different value of external velocity. In particular we have used the flow
Ue = xm with three different value of m like we saw in Appendix A. After
a first calculation we have seen that Re = 1000000 was too low for the flat
plate, so we have increased it to 4000000. (see Figures E.5, E.6, E.7)

-50

-40

-30

-20

-10

 0

 10

 20

 30

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

gr
ow

th
 ra

te

s/c

M=0.05, Re=4*106, sweep=0 degrees

beta= 0, m=0

Figure E.5. Growth-rate on a flat-plate for Re =
4x106; M = 0.05; m = 0; β = 0. They can see the depen-
dence of TS waves from the viscosity. Two dimensional,
incompressible and steady flow.

The next results are for m=0.08 (see Figures E.8, E.9, E.10).
For this case we see that N factor remains very low and this is agree with
the fact that m > 0 determines a favorable pressure gradient . At least
we make the study for m = - 0.03 (see Figures E.11, E.12, E.13).
To better see the influence of the pressure gradient on the stability of
laminar boundary layer, we have plotted the N factor for the three cases
in a same Figure E.14.
The Figures we have seen show the development of a particular type of
instability that were studied for the first time by Tollmien (1992) and
Schlichting (1933) for the Blasius boundary layer. These instability are
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Figure E.6. N factor on a flat-plate for Re = 4x106; M =
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factor for different frequency. As we will see later we have
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Figure E.10. N factor as a function of the dimensionless
chord. Re = 4x106; M = 0.05; m = 0.08;β = 0. Negative
pressure gradient and incompressible flow.
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Figure E.11. N factor as a function of the dimensionless
chord. Re = 4x106; M = 0.05;m = −0.03; β = 0. Positive
pressure gradient.
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−0.03; β = 0.

-80

-60

-40

-20

 0

 20

 40

 60

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

gr
ow

th
 ra

te

s/c

M=0.05, Re=4*106, sweep=0 degrees

beta= 0, m= -0.03

Figure E.13. Growth rate of the small disturbance in a
decelerate flow. Re = 4x106;M = 0.05;m = −0.03; β = 0.

Tobia 

Tobia 
frequency

Tobia 
S/C

Tobia 

Tobia 
S/C

Tobia 

Tobia 
growth rate

Tobia 



132 E. STABILITY ANALYSIS OF LAMINAR BOUNDARY LAYER

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
-fa

ct
or

s/c

M=0.05, Re=4*106, sweep=0 degrees

m=0, beta= 0
m=0.08, beta= 0

m= -0.03, beta= 0

Figure E.14. Comparison between N factors for three dif-
ferent external flow. Decelerate flow (blue); Constant flow
(red); Accelerate flow (green). Re = 4x106; M = 0.05; β =
0. Two dimensional, steady and incompressible flow.

called Tollmien-Schlichting (TS) waves and they represent a viscous insta-
bility. We have seen it in the diagram of σ where, after the top, we have
a decreasing development for the effect of viscosity. This means they are
stable in the inviscid limit. The wave vector and the direction of prop-
agation are closely aligned with the streamline direction. As we will see
later, these waves also exist in a swept wing boundary layer but they are
not the principal responsible for the instability.

2. Local stability analysis for 2,5 D

Now we consider a boundary layer for a quasi three-dimensional flow in
a swept flat plate with infinity length in z-direction. Considering a quasi
three-dimensional flow we will have a perturbation with also the wave
number β and it will be a more complicated case. At first we see the
case with a positive pressure gradient. We have choose a swept flat plate
with a sweep = 45, M = 0.05 like the two-dimensional case, Re = 4x106
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and m, the coefficient relatives to acceleration of the flow, is 0.2. For this
parameters we have made the study of stability with Nolot. This time we
have had the difficult to decide the right combination of α,β and wave
angle and it has let the calculation more long than before.
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Figure E.15. Growth-rate for a swept flat plate.
Sweep = 45; M = 0.05;Re = 4x106. As the figure shows,
only for few frequency we have negative value of σ after
the top.

As we can see from the graphic of σ (see Figure E.15), the growth-rate
is larger near the leading edge and, almost for all frequency, σ remain
always positive. This effect due to the presence of crossflow profile which
are inviscid instability. In fact, when the crossflow profile tends to zero in
the free-stream, we have an inflection point and agreement with Reyligh
(1880), an inflection point is a necessary condition for inviscid instability
to arise. This crossflow profile results from the combined effect of pressure
gradient and sweep angle which leads to a curved streamline in the outer
inviscid flow. From experimental works, their lines of constant phase are
approximately parallel with the external streamline and we can see it from
the graphic of wave angle (Figure E.17). As it shows, the angle is between
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Figure E.16. N factor for a swept flat plate.Sweep =
45; M = 0.05; Re = 4x106. The development of N factor
shows the importance of crossflow for the stability.
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Figure E.17. Wave angle for a swept flat plate. Sweep =
45; M = 0.05; Re = 4x106. As the figure shows, the lines
of constant phase are almost parallel with the external
streamline.
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80 − 90 degrees.
In the Figure E.18, we also represent the envelope of the maximum of N
factor. This is an important curve for the study of shape optimization of
profiles.
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Figure E.18. N factor envelope for a swept flat plate.
Sweep = 45; M = 0.05; Re = 4x106. The red line repre-
sents the envelope of N factor of the dominant mode at
each position.
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