

Scuola Politecnica

Corso di Laurea in Ingegneria Meccanica

Valutazione delle performance di uno strumento CFD open

source per lo sviluppo di un energy harvester

Candidato: Alberto Rossi

Relatore: Prof. A. Bottaro

Correlatore: Dott. Ing. S. Olivieri

Genova 31/03/2015

INTRODUZIONE

> ENERGY HARVESTING:

Sfruttare il contenuto energetico dell'ambiente che ci circonda.

- Flussi di materia
- Moti vibrazionali
- Energia magnetica
- Energia termica

OGGETTO DELLA TESI

Energy harvester che sfrutta i principi dell'aeroelasticità.

Possibilità di estrazione di energia:

- Induzione elettromagnetica
- Elastomeri capacitivi

Possibile applicazione alle reti **WINS.**

SCOPO DELLA TESI (1/2)

Modello studiato:

Bidimensionale

➢ Flusso incomprimibile ed uniforme.

Equazioni di Navier-Stokes:

$$\rho \frac{D\mathbf{U}}{Dt} = \rho \mathbf{f} - \nabla p + \mu \nabla^2 \mathbf{U}$$
$$\nabla \cdot \mathbf{U} = 0$$

 \sim Legge elastica lineare (Hooke):

$$\mathbf{F} = -kx$$

➢ Assenza di gravità

SCOPO DELLA TESI (2/2)

 \sim Valutazione delle prestazioni del codice

OpenFOAM per analisi **CFD**

(Computational Fluid Dynamics).

The Open Source CFD Toolbox

www.OpenFOAM.org

OBBIETTIVI:

 Analisi di grid dependency per configurazione statica (ala fissata) monitorando i coefficienti aerodinamici:

$$C_l = \frac{L}{\frac{1}{2}\rho_f A U^2} \qquad C_d = \frac{D}{\frac{1}{2}\rho_f A U^2}$$

II. Simulazioni dinamiche. Confronto con risultati ottenuti da precedenti studi.

OpenFOAM

Codice general purpose: vasta gamma di applicazioni (aerodinamica, scambio termico, finanziario...)

Open source

Possibilità di personalizzazione del codice

GRID DEPENDENCY

Valutazione delle differenze di risultato tra un gruppo di mesh con raffinamento crescente

Definisce la risoluzione minima della mesh che deve essere adottata per garantire un'indipendenza del risultato da essa.

MESH UTILIZZATE

mesh

 a_1

 a_2

 a_3

 a_4

 b_1

 $riangle_{max}$

40% c

40% c

40% c

40% c

20% c

IDENTIFICAZIONE MESH:

- Carattere alfabetico indica la risoluzione della mesh di base.
- Pedice numerico che indica l'inserimento di box di raffinamento per aumentare la risoluzione intorno all'ala.

(Raffinamento sul corpo)

 n° celle

9274

12178

9646

12178

25444

37516

27946

37756

 Δ_1

20% c

20% c

10% c

 \triangle_{min}

0.625% c

0.625% c

0.625% c

0.625% c

0.313% c

 Δ_2

5% c

5% c

RISULTATI CASO STATICO 0°

- Tutte le griglie utilizzate convergono a un valore costante.
- Coefficiente di resistenza dello stesso ordine di grandezza per tutte le mesh e coefficiente di portanza praticamente nullo.

mesh	C_d	C_l
a_1	$1.01874 \ge 10^{-1}$	$-13.4940 \ge 10^{-5}$
a_2	$1.01422 \ge 10^{-1}$	$-7.82189 \ge 10^{-5}$
a_3	$1.08230 \ge 10^{-1}$	$-14.1424 \ge 10^{-5}$
a_4	$1.01411 \ge 10^{-1}$	$-7.87764 \ge 10^{-5}$
b_1	$1.01750 \ge 10^{-1}$	$14.8666 \ge 10^{-5}$
b_2	$1.00918 \ge 10^{-1}$	$5.69054 \ge 10^{-5}$
b_3	$1.00984 \ge 10^{-1}$	$5.87680 \ge 10^{-5}$
b_4	$1.00636 \ge 10^{-1}$	$6.04700 \ge 10^{-5}$

RISULTATI PER ALTRI ANGOLI DI ATTACCO

Per il caso a 5° si è rilevato che c'è indipendenza dei risultati al variare delle mesh.

Per lo studio dell'ala disposta ad angoli di attacco maggiori di 20° sono necessarie mesh più precise di quelle utilizzate.

SIMULAZIONI DINAMICHE

- Simulazioni riguardanti il reale funzionamento del dispositivo.
- Si ottengono moti instabili autosostenuti a causa del fluttering.
- L'insorgere del fenomeno dipende dai seguenti parametri adimensionali:
- > Densità dell'ala adimensionale:

$$\rho_w^* = \frac{\rho_w \delta}{\rho c}$$

- $\succ
 ho$ densità del fluido.
- $\succ
 ho_w$ densità dell'ala.
- $\succ \delta$ spessore dell'ala.
- ➢ c corda dell'ala.

Flessibilità adimensionale della molla:

$$\frac{1}{k^*} = \frac{\rho U^2}{k}$$

- \succ k rigidezza dimensionale della molla.
- > U velocità del fluido indisturbato.

GRID DEPENDENCY CASI DINAMICI

>
$$\rho_w^* = 3.5, \, 1/k^* = 0.35$$

- Andamenti dell'angolo di attacco e coordinata verticale del punto di attacco della molla periodici e ampiezze simili fra loro.
- I risultati delle mesh utilizzate sono affidabili.

Andamento coordinata verticale in funzione del tempo adimensionale

BENCHMARKING (1/2)

N

- > $\rho_w^* = 3.5, \, 1/k^* = 0.35$
- Caso caratterizzato da un moto instabile autosostenuto nel tempo partendo da posizione orizzontale.

- Benchmark:
- Le soluzioni dei due codici risultano molto simili.
- Regime di Reynolds non influente sul regime di moto.

Risultati OpenFOAM

A Orchini, A Mazzino, J Guerrero, R Festa, and C Boragno. Flapping states of an elastically anchored plate in a uniform flow with applications to energy harvesting by fluid-structure interaction. Physics of Fluids (1994-present), 25(9):097105, 2013.

BENCHMARKING (2/2)

▶
$$1/k^* = 0.1, \ \rho_w^* = 20$$

Caso che mostra un'instabilità sottocritica, ovvero solo con una adeguata perturbazione iniziale si innesca un moto instabile autosostenuto.

Benchmark:

- Risultati dei due codici non risultano simili ma entrambi rilevano un moto instabile autosostenuto.
- Sistema sottocritico presenta una forte influenza dalle condizioni iniziali.

CONCLUSIONI E SVILUPPI FUTURI

- L' analisi di grid dependency ha mostrato le risoluzioni adeguate per lo studio del problema.
- cfMesh meshatore affidabile e funzionale per casi bidimensionali.
- Casi dinamici stesse nature del sistema a quelle trovate con Overture.
- Proseguimento degli studi del modello teorico.
- Implementazione del modello fino a emulare l'esperimento in galleria del vento.