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Abstract
Superhydrophobic (SH) and liquid-impregnated surfaces (LIS) represent an in-
teresting technique for the possible reduction of drag in applications involving the
flow of liquids over solid surfaces, for a wide range of Reynolds number, from lam-
inar to turbulent conditions. Such coatings work by the interposition of a gas/oil
layer between the liquid and the solid wall, trapped by distributed microscopic
roughness elements present at the wall; over the gas layer the liquid can flow with
negligible friction. The present activity is focused on the numerical modeling of
the slippage over such coatings and on their drag reduction performance in the tur-
bulent regime. The problem is subdivided into two parts: a microscopic problem,
accounting for the flow in the proximity of the roughness elements and a macro-
scopic problem, accounting for the turbulent flow over SHS/LIS, where the effect
of the slippage at the wall is modeled through a proper boundary condition. The
near-wall, microscopic problem, governed by the Stokes equation, is recast into
an integral form and then solved using a boundary element method. The aim of
the microscopic calculations, performed by varying the viscosity ratio between the
fluids, is to obtain the values of the slip lengths, used to quantify slippage. The slip
length are then used in the definition of Navier boundary condition, applied at the
walls of a turbulent channel flow at moderate Reynolds number, solved by direct
numerical simulations. The results are in excellent agreement with a theoretical
model available in the literature





Chapter 1

Introduction

Fluid flows over and around bodies are commonplace in Nature and in technical
applications. Probably, the most easy-to-understand phenomenon experienced by
an arbitrary object moving through a fluid is the generation of a force which plays
against its motion. The drag force is a mechanical force that usually is considered
to carry with it negative effects: it reduces the velocity of cars, airplanes, ships
and increases the fuel consumption together with the costs for the transportation
of people and goods. It is usual to decompose the drag force into two fundamental
contributions, at least in the incompressible limit: the pressure drag and the skin
friction drag (see figure 1.1).

Figure 1.1: Sketch of the two kinds of drag force.

The former is associated to the pressure difference which takes place between
the windward and the lee side of an object moving through a fluid. It is typical
of bluff bodies that create a large wake behind them. The latter is associate to the
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friction between the fluid particles and the body in relative motion. It is always
present, but plays an important role in streamlined bodies, where the pressure drag
is negligible.

Even if the phenomenon of drag is intuitive, its physical formulation has been
provided only at the beginning of the 20th century. Until then, the potential theory
of the fluidmotion, still in use today to estimate the lift forces, was unable to explain
the mechanism of drag generation, leading Jean-Baptiste D’Alembert to formulate
his famous paradox. The turning point towards the understanding of the drag force,
was the idea of boundary layer, shown in figure 1.2, suggested by Ludwig Prandtl
in 1904. He pointed out the existence of a very thin region near the body, where
the velocity varies quickly from the surface value to the free stream value. In the
boundary layer, the viscous forces are dominant and the friction exerted by the
fluid in any point of the body turns out be

τw = µ
∂u

∂n
, (1.0.1)

where µ is the dynamic viscosity of the fluid, u is flow velocity vector and n is the
normal defined over the surface of the object.

(a) (b)

Figure 1.2: Velocity boundary layer developing over a flat plate. (a) Schematic
representation identifying different regimes of motion in the boundary layer; (b)
flow visualization of a laminar flat plate boundary layer profile (Wortmann, F. X.
1977 AGARD Conf. Proc. no. 224, paper 12).

Despite the very small size of the boundary layer, the skin friction or viscous
drag is currently considered a major barrier to the further optimization of most
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aerodynamic and hydrodynamic bodies. A large class of applications is substan-
tially impacted by pressure drag, but there is an equally large class of devices whose
performances are strongly affected by viscous drag. Among these, the sector of
transport offers the best examples. The development of a low friction surface tech-
nology is of much interest for:

• high and low-speed aircraft (over 30% of skin-friction drag);

• tankers and other surface ships operating at low Froude number (50% skin-
friction drag);

• underwater bodies (70% or greater skin-friction drag);

• pipelines for oil and gas transport (100% skin friction drag).

Looking beyond the pure aerodynamic/hydrodynamic performance, a viscous
drag reduction of 10% immediately translates into a lower fuel consumptions,
which potentially would produce savings for half a billion dollars per year to com-
mercial transport companies. A recent study by Buhaug et al. [2009] presents the
possibility of decreasing in a considerable manner the gas emissions generated by
ships, if their hulls were be coated with a low friction material.

1.1 Toward skin friction drag reduction
Many efforts have been devoted to the research and development of low friction

surfaces. The methods are basically subdivided into two families:

• active;

• passive.

The methods classified as active usually involves moving control surfaces, in
which the motion is feed-back controlled by sensors and actuators. For examples
electromagnetic tiles have been employed by Nosenchuck and Brown [1993] in
order to control the boundary layer of a turbulent flow. The working principle is
based on the effect exerted on a electrically conductive fluid by oscillating electric
currents and magnetic fields introduced through a mosaic of surface electrodes,
which applies spatially and temporally periodic body forces to the fluid reducing
turbulence production. This method is only applicable in fluids with much higher



1.1 Toward skin friction drag reduction 10

electrical conductivity than ordinary air. Another popular active method is the
so called micro-blowing, consisting in the upstream slot injection, or distributed
injection through a porous surface, of air bubbles. Even if this technique can ef-
fectively reduce skin friction, the major drawback is the added complexity in the
system design and the energy loss due to the continuous air injection.

The passive techniques do not require any external action and for this reason
they are more attractive, since there is no need of a control loop, resulting in a
simpler and safer usage. A passive skin friction drag reduction approach requires
either a modification of the rheological properties of the fluid or a careful design of
the surface. One way to alter the rheological properties of a given fluid is to inject
a secondary fluid in the main stream, thus obtaining a mixture with exerts a lower
friction. The drag-reducing properties of certain surfactants are known since the
work of Savins [1967]. Since then, a large number of studies, mostly experiments,
have been conducted and a review of the results obtained can be found in Shenoy
[1976]. The surfactants that reduce drag seem to be only those that form long
chains of the relatively small molecules called micelles. If a large shear is applied
the chain breaks and the drag reduction effect is lost. However, this polymer has the
ability to recombine together as soon as the shear stress decreases, thus restoring
its properties. A drag reduction of up to 80% is found, but the working mechanism
is not yet fully understood. Experiments show profound changes in the turbulent
eddies, both in the near wall region and in the bulk flow, but clear indications on
how to drive such changes, possibly by other actuation means, are missing. The
most evident drawback of this technique is that it can be employed only with liquids
in closed domains, such as pipelines; it is not applicable in external flows common
in aerodynamics and hydrodynamics.

Another popular passive method, which has received much attention in the
last decades, but with more modest achievements in term of drag reduction, is the
technique of surface modification by riblets. The riblets are a pattern of small
surface protrusions aligned approximately in the flow direction, as shown in figure
1.3.

The study on riblets has begun in the early 70s at NASA Langley Research
Center [Walsh and Anders, 1989] and the first prototypes where produced by the
3M Company [Rawlings and Malone, 2014]. Their effective application outside
the academic world however had a mixed success. Szodruch [1991] reported a
drag reduction up to 2% for a complete Airbus 320 when the 70% of its surface
was covered with riblets, but the off design working condition in real applications
together with the alteration of the machined surface due to dust, ice and other exter-
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nal agents made difficult a large scale employment of this technology. Conversely,
riblets proved their drag reduction capabilities in sporting events, such as rowing
or sailing competitions, where the cost of maintenance is much less important than
in commercial applications.

Figure 1.3: Different shapes of riblets.

b+

Figure 1.4: Typical drag reduction curve as function of the ridge-to-ridge spacing
in wall units for triangular riblets.

The physical mechanism behind the drag reduction induced by riblets is today
reasonably well understood and discussed in details inWalsh [1990] and in García-
Mayoral and Jiménez [2011]. In particular, the wall protrusions inhibits the lateral
turbulent motion, generated by the near-wall streamwise vortices and associated to
the velocity streaks in the viscous sublayer. The effectiveness of the riblets depends
on their dimension with respect to the viscous length scale; referring to figure 1.4,
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the drag reduction, in terms of friction factor, presents an optimumminimum value
for the ridge-to-ridge spacing, b, in wall units usually around b+ ≈ 15, with a
positive effect surviving until b+ ≈ 25. If the spacing is larger than this threshold
value, riblets behave like surface roughness and the effect is lost, turning drag
reduction into a drag increase. The explanation of this fact was firstly given byChoi
et al. [1994] and schematically depicted in figure 1.5. If the streamwise vortices in
the near wall streaks are smaller than the riblets spacing, they are able to settle into
the grooves and to bring high velocity fluid close to the walls, thus increasing the
friction. Conversely, if the riblets are more closely spaced, the turbulent vortices
are pushed away from the wall and the high velocity fluid generated by the down-
wash is forced to cover a smaller area, thus diminishing the friction.

Figure 1.5: Schematic view of a wall vortex near riblets as reported by Choi et al.
[1994].

1.2 Superhydrophobic andLiquid-impregnated coat-
ings

A step forward in the design of low friction surfaces has been done by cou-
pling the roughness elements composing the surfaces with a gas, in order to create
gaseous pockets, over which a working liquid can flow with a sensible low fric-
tion. This is the case of the superhydrophobic surfaces (SHS), which today are
receiving a tremendous attention. The research on SHS has been inspired by the
remarkable slipping properties of the lotus leaf [Barthlott and Neinhuis, 1997]. A
surface is identified as superhydrophobic on the basis of the contact angle α that
a water droplet in stationary condition assumes with respect to the contact line, as
shown in figure 1.6.
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Figure 1.6: Static force balance at the triple point for a liquid (L) in contact with a
solid surface (S) and surrounded by a quiescent gas (G). The greek letter γ denotes
the inter-molecular forces between adjacent phases.

In particular, we have the following distinctions:

• hydrophilic: 0◦ < α < 90◦;

• hydrophobic: 90◦ < α < 150◦;

• superhydrophobic: α > 150◦.

The contact angleα depends uniquely on the physical characteristic of the three
materials involved: the gas, the liquid and the solid surfaces, which intersect at the
contact line. For our discussion, it is useful to introduce the interfacial energy,
γAB, representing the work per unit of area required to increase the surface area of
substanceA in contact withB. An high value of the surface energy at the interface
between a solid surface and a substance implies an affinity between the surface and
the other substance, with high chances to bond. The wettability of a solid by water
arises from a balance between adhesive (solid-water) and cohesive forces within
the liquid. For a perfectly smooth, planar and chemically homogeneous surfaces,
Young [1805] proposed a relation for the adhesion tension, At, which reads

At = γSG − γLS = γGL cosα, (1.2.1)

where the subscriptsG,L, S stand for the gas, the liquid and the solid, respectively.
Even if theoretically important, the expression (1.2.1) finds a difficult applicability
since the only quantity easy to know is γGL = γ (i.e. the surface tension).

Wenzel [1936] extended the work by Young with a comprehensive analysis of
the wetting properties of rough materials. Within his results, he demonstrated that
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a rough surface increases the wetting angle, according to

cos(αw) = r cosα, (1.2.2)

where αw is the angle assumed on a rough surface and r is a parameter, determined
experimentally, which expresses the ratio of the actual surface of the interface to
its planar projection. Since r ≥ 1, it turns out that a rough surface increases the
hydrophobicity of a surface and this explains whymost of the water repellent plants
present micro- or nano-structures on their leafs (see figure 1.7).

(a) (b)

Figure 1.7: A water droplet sitting on a lotus leaf (a) and the structures on the top
of the same leaf at the electron microscope (b).

If air is trapped within asperities, so that the solid-liquid contact area is de-
creased, ultra- or super-hydrophobicity can be attained, with the drop partially
sitting on an air cushion. This state, also known as Cassie-Baxter state [Cassie and
Baxter, 1944], is at the basis of the functioning of SHS. In static conditions, this
occurs above a critical pressure difference between the liquid and the gas, function
of the roughness scale, of surface tension, and of the contact angle. Furthermore,
even for a liquid pressure below critical, the transition to the Wenzel state can still
take place, over longer time scales, because of the solubility of gases in water,
chemical reactions or Marangoni effects. To maintain the gas layer trapped within
the asperities is however difficult and the transition to the fully wetted, Wenzel
state is the main problem related to SHS. The study of the aquatic plants suggests
that improved robustness of the gas layer could be obtained by using a hierarchical
structures of the asperities at the wall, which render the Cassie-Baxter state more
energetically stable [Su et al., 2010], [Giacomello et al., 2012].
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Despite its promising performances, the drawback encountered in using this
technology is that the gaseous pockets lack robustness and they can easily collapse
under working conditions, thus imposing a severe limitation in practical appli-
cations, especially when large scale problems and long operating times are con-
cerned. One way to overcome this issue, is to substitute the gas trapped within the
wall texture with oils, creating the so called liquid-impregnated-surfaces (LIS).
The mechanism underlying the LIS technology is essentially the same identified
in the SHS: the relative slip between the two fluid triggers a skin friction drag
reduction. The usage of oil, instead of the gas, increases the stability of the fluid-
fluid interface, and, at the same time, exhibits interesting properties in terms of
biofouling [Epstein et al., 2012] and ice-phobicity [Ozbay et al., 2015]. However,
the skin-friction drag reduction capabilities of LIS deteriorate if the oil viscosity
is large compared with the viscosity of the other working fluid. This point will be
stressed and supported by numerical simulations later on in this work.

There are several ways to artificially produce a wall pattern suitable for SHS
and LIS, but all of them starts from two fundamentals features:

• a low surface energy material;

• a surface roughness with appropriate dimensions.

(a) (b)

Figure 1.8: Man-made superhydrophobic surfaces [Maynes et al., 2011]. (a) Lon-
gitudinal ridges; (b) pillars.

The materials often used to produce superhydrophobic coatings are polymers
because of the excellent surface properties and their easy production [Shirtcliffe
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et al., 2004]. The drawbacks is related to their softness which renders them vul-
nerable to damage under working conditions; however, a simple way to produce a
more resistant layer is to combine the polymer with inorganic fillers. SHS and LIS
can be realized using microfabrication processes developed for the electronic in-
dustry, leading to regular arrays of microposts or microridges, as shown in figure
1.8. The high level of technology of the fabrication process and thus the rele-
vant costs however are still considered a major problem in the realization of such
coatings for large scale applications, leaving for now their usage mainly in the con-
text of laboratory experiments [Lee and Kim, 2009, Park et al., 2014]. A cheaper
alternative was introduced by Hsu and Sigmund [2010] who use a 20µm thick
polycarbonate membrane filter as mold. In their techniques the polymer substrate
is pressed against the mold, successively peeled off, leaving a ready-to-use hy-
drophobic surface. Another alternative is constituted by spray deposition, which
allows to rapidly coat large areas on a variety of substrates while enhancing the
stability of the Cassie-Baxter state [Srinivasan et al., 2011]. The most promising
technique in term of industrial application is however obtained with the direct abra-
sion of the surface as proposed by Nilsson et al. [2010] who have used various grits
of sandpaper to treat smooth surfaces made of Teflon. The abrasion was performed
along the flow direction, obtaining good results in term of drag reduction.

1.3 Previous works
Many studies on SHS/LIS have been undertaken in the last decade because

their potentialities are of much interest in the field of modern micro-fluidics, to-
wards the development of lab-on-a-chip devices for biochemical and medical pur-
poses [Stone et al., 2004]. Also large scale engineering devices would take ad-
vantage of low friction surfaces, especially the maritime industry could enhance
the efficiency and lower the emissions by coating the ships’ hulls with this par-
ticular technology. In this section a brief review on the principal works on the
topic are reported. From the experimental side, Ou et al. [2004], Ou and Roth-
stein [2005] were the first to demonstrate the drag reduction capabilities of SHS.
They focused attention on microchannels with different heights, patterned by sili-
con micro-posts or micro-ridges at a wall, reporting a drag reduction of up to 40%
in laminar conditions. Similar drag reduction was found by Choi and Kim [2006]
using a nanograted texture. Appreciable drag reduction in turbulent flows was ob-
served by Ou and Rothstein [2009], who studied a rectangular channel with the
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walls coated by PDMS micro-ridges of different span and spacing. The experi-
ment performed in the range 2000 < Re < 10000 highlighted a skin friction drag
reduction up to 50% for a large value of the slip length of approximately 80µm.

The main works on LIS have been published in more recent years. As already
pointed out, on the one hand the lubricant layer is more stable but, on the other hand
the skin-friction drag reduction capabilities deteriorates if the oil viscosity is large
compared with the viscosity of the working fluid. This behaviour was recently
observed by Solomon et al. [2014], who conducted experiments with a cone and
plate rheometer. They achieved a drag reduction of 16% when the impregnating
fluid was two orders of magnitude less viscous than the working fluid, but little
to no drag reduction with more viscous oils (with oil/fluid viscosity ratio greater
than 30) . Analogue conclusions and similar drag reductions, but for a turbulent
flow in a Taylor-Couette configuration at 6000 < Re < 9000, have been drawn by
Rosenberg et al. [2016], who experimented a drag reduction of few percent for a
viscosity ratio of 30, with even a drag increase for Reynolds numbers grater that
6000.

Besides the experiments, theoretical works to model slip at the walls are avail-
able. Philip [1972] was the first to study the flow past an idealized superhydropho-
bic flat surface, composed by alternating stripes with no-slip/no-shear boundary
conditions, both aligned and perpendicular to the flow direction, by using con-
formal mapping. More recently, Lauga and Stone [2003] solved analytically the
Stokes flow through circular channels with the same assumptions on thewall bound-
ary conditions made by Philip. The key parameter to quantify the slippage gener-
ated by SHS or LIS is related the idea of protrusion height, or slip length, defined
as the fictional distance below the surface at which the velocity field would extrap-
olate to zero. Mathematically speaking, the slip length concept allows to model
the slip at rigid wall with the help of the Navier boundary condition [Navier, 1823]

u = h
Ä∂u
∂n

ä
, h = diag(h||, h⊥) (1.3.1)

where n is the wall-normal coordinate, u is the vector of velocity field compo-
nents in the in-plane directions and h is the slip tensor, which depends on the wall
texture, while the condition for the wall normal velocity is simply v = 0. The con-
dition (1.3.1) gives a relation between the slip velocity and the wall shear stress
and is common way to model the experimental evidence of slippage over SHS and
LIS. Later on, the effect of interface curvature on the slip length was studied for a
flow aligned or perpendicular to periodic arrays of circular protrusions. The solu-
tion is analytic, given in terms of power expansions of the protrusion angle which
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quantifies how much the interface is depressing into or protruding out of the wall
cavities, but only for small extension of the slip region. In particular, Davis and
Lauga [2009] demonstrated that the perpendicular slip length presents a maximum
for a slightly protruding bubble. Despite the theoretical limit of dilute system, their
result is in good agreement with numerical simulations by Hyväluoma and Hart-
ing [2008] and Sbragaglia and Prosperetti [2007]. The longitudinal flow problem
was solved in a similar fashion by Crowdy [2010], who found an increase of the
slip length as the protrusion of the interface out of the wall becomes larger. His
results is however slightly more sensitive to the span of the slip region, as shown
by Teo and Khoo [2010], who analyzed the same problem using the finite elements
method. The main assumption common in these works is that perfect slip is ap-
plied on the interface, which is a good approximation only in case the fluid trapped
into the wall cavities is much less viscous than the working fluid (e.g. air-water)
and the cavities deeply cave in the wall. The first attempt to remove this restric-
tion, is due to Ng and Wang [2011], who derived a semi-analytical model for the
longitudinal and transverse flow over a periodic array of circular and spherical pro-
trusions, allowing only partial slip on the interface. The partial slip condition is
rendered by using the relation (1.3.1), introducing an intrinsic slip length related to
the interface. The solution is given in term of a series, where unknown coefficients
have to be found in dependence on the slip allowed. Few years ago, with the same
assumption on interface boundary condition, Crowdy [2015] extended the work of
Ng and Wang [2011] by finding an explicit approximation for the longitudinal slip
length using a method based on spectral functions. Schönecker and Hardt [2013]
and Schönecker et al. [2014], considering a flat interface, found a closed-form an-
alytical expressions for the flow field and effective slip length of the primary fluid
explicitly containing the influence of the viscosities of the two fluids. The results
were compared with numerical simulations on the same problem, giving a very
good agreement.

The computational works related to quantify the drag reduction induced by
SHS or LIS is mainly based on direct numerical simulations of a classical turbu-
lent channel with various approximation on the boundary conditions at walls. The
first work was conducted by Min and Kim [2004] who modeled the slip at the
wall using the Navier boundary conditions. Their work highlighted the effect of
the streamwise and spanwise slip, pointing out that a slip in the transverse direc-
tion enhances the turbulence, contributing to a drag increase. However, the slip
lengths were arbitrarily fixed, even if to reasonable values. Taking advantage of
these results, Fukagata and Kasagi [2006] proposed a theoretical model of fric-
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tion drag reduction for arbitrary values of the slip lengths. Martell et al. [2009]
performed numerical simulations of a turbulent flow over SHS using a variety of
shear-free surface patters (longitudinal stripes or square posts) applied only at the
bottom wall. The same authors extended their previous work up to Reτ = 590

[Martell et al., 2010]. In these cases the slip length was deduced as a results of
the simulations and drag reduction was measured. Busse and Sandham [2012] ex-
tended the work of Min and Kim [2004] performing several numerical simulation
of a turbulent channel flow exploring the influence of an anisotropic slip-length
boundary condition. They also improved the analytical model proposed Fukagata
and Kasagi [2006], obtaing an excellent agreement with their numerical simula-
tions. Turk et al. [2014] gave an extensive analysis of the turbulent statistics and
the secondary flows for a similar case, but with both the channel walls coated with
longitudinal ridges. Seo et al. [2015] performed several DNS at Reτ ≈ 197 and
Reτ ≈ 395 using again posts or ridges at the wall where the no-shear condition
was applied to mimic the superhydrophobic effect. However, they accounted also
for the deformation of the interface together with the turbulent flow, by solving
the Young-Laplace equation after the pressure distribution at the wall had been
determined. Later on, the same authors [Seo et al., 2018] extended their work
proposing a threshold criterion for the failure of superhydrophobic surfaces and
boundary maps that identify stable and unstable zones in a parameter space con-
sisting of working parameter and design parameters including texture size and ma-
terial contact angle. The numerical simulations by Luchini [2015] and, later on by
Seo and Mani [2016], demonstrated that the complete no-slip/no-shear boundary
conditions give equivalent results in term of drag reduction to the Navier boundary
conditions, provided that extension of the shear free region does not exceed 20wall
units. This is a favorable results that allows to employ a homogeneous treatment
of the wall (i.e the Navier boundary conditions) without affecting the accuracy of
the results.

1.4 Aim of the present work
The present activity is focused on the numerical modeling of the slippage over

SHS/LIS coatings and on their drag reduction performance in the turbulent regime.
The problem is subdivided into three fundamentals parts:

• stability analysis of the flow over SHS/LIS;



1.4 Aim of the present work 20

• study of the microscopic flow in the proximity of the wall cavities filled with
a lubricant fluid;

• Analysis of the drag reduction properties of the SHS/LIS through direct nu-
merical simulations of the macroscopic problem.

In the first part the modal and non-modal stability analysis of a channel coated
with superhydrophobic walls is performed. The superhydrophobicity is rendered
through the Navier boundary condition and the calculations take into account sev-
eral salient geometric and physical parameters influencing the flow stability and
the energy growth of the disturbances.

In the second part, the near-wall microscopic problem, accounting for the flow
in the proximity of the roughness elements is considered. The flow is governed
by the Stokes equation, which is recast into an integral form and then solved using
a boundary element method. The aim of the microscopic calculations, performed
by varying the viscosity ratio between the fluids, is to obtain the values of the slip
lengths, used to quantify slippage.

In the last part, the macroscopic problem, the slip lengths are used in the defini-
tion of Navier boundary conditions and applied at the walls of a turbulent channel
flow at moderate Reynolds number, solved by direct numerical simulations.



Chapter 2

Stability of the flow in a plane
microchannel with one or two
superhydrophobic walls

In this chapter the modal and non-modal linear stability of the flow in a mi-
crochannel coated with either one or two SH walls is considered. The topography
of the bounding walls has the shape of elongated ridges with arbitrary alignment
with respect to the direction of the mean pressure gradient which drives the flow
inside the microchannel. The SHwalls are modeled using the Navier slip condition
[Philip, 1972, Lauga and Stone, 2003] through a slip tensor, which allow us to tune
the level of slippage by increasing or decreasing the values of the slip lengths. The
employment of such boundary condition represents, in an homogenized sense, the
alternation of no-slip and no-shear elongated regions which are found when micro-
ridges cover the walls, under the assumption that the gas in the cavities exerts no
shear stress on the liquid above it. Since the boundary condition is based on a lin-
earization in the parameters h|| and h⊥, the results obtained are considered to be
valid for values of slip lengths small enough. Luchini [2015] and Seo and Mani
[2016] conducted direct numerical simulations of turbulence in a channel with two
superhydrophobic walls, by comparing slip-length boundary condition cases with
simulations carried out on walls with alternating no-slip and no-shear conditions
(with the shear-free interface of the same length as the no-slip portion above the
ribs). He found that the concept of a slip length can be employed as long as the
periodicity of the longitudinal micro-ridges remains below about 20 wall units.

This same hydrodynamic stability problem has been performed by Min and
Kim [2005], considering isotropic, superhydrophobic channel walls (character-
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ized, in an averaged sense, by the same scalar slip length, h), and studied the
case of both exponentially growing two-dimensional modes and three-dimensional
pseudo-modes excited algebraically over short time intervals. Whereas two dimen-
sional Tollmien-Schlichting (TS) waves were stabilized by the use of a non-zero
slip length, the effect of slip on the transient amplification of streak-like perturba-
tions was found to be minor; Min and Kim performed also a few direct numerical
simulations of transition to turbulence initiated by two-dimensional TS waves in
different configurations (in the presence of only streamwise slip, only spanwise
slip, or slip along both horizontal directions) finding that in some cases transition
was advanced (with respect to the no-slip situation) and in others it was retarded.
From the results it appears that it is the presence of spanwise slip (which is, in all
practical cases, unavoidable when superhydrophobic surfaces are used) to favour
the early triggering of transition.

Also Lauga and Cossu [2005] considered isotropic, superhydrophobic surfaces
using a scalar slip length to model the wall. Their modal stability results demon-
strated a strong stabilizing effect for two-dimensional TS waves (particularly when
both channel walls display slip), whereas only a minor influence was found on the
maximum transient energy growth of streamwise streaks.

Recently, Yu et al. [2016] have re-considered the temporal, modal stability
problem for the flow in a channel with longitudinal superhydrophobic grooves on
one or both walls, without employing the concept of a slip length. They resolved
the two-dimensional problem for the base flow in the plane orthogonal to the mean
flow direction, and the two-dimensional problem for the disturbance field, assum-
ing the interface flat and pinned at the corners of the ribs. When both the spanwise
periodicity of the grooves and the shear-free fraction are sufficiently small, com-
pared to the channel thickness, the results of Yu et al.’s analysis reproduce those
obtained by employing a slip length. As the periodicity and the shear-free frac-
tion are increased, a new wall mode is found, apparently related to the presence of
inflection points in the mean, streamwise velocity profile; it is such a new mode
which can lead the flow to an early instability.

The main motivation of this chapter is to understand under which conditions
and parameters the most stabilizing or destabilizing effects are obtained. The re-
sults obtained give indications on transition delay or enhancement from laminar to
turbulent flow and consequently on the possibility of drag reduction.
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2.1 Problem formulation
The effect of superhydrophobic (SH) surfaces on the instability onset, and

consequently the initial stages of laminar-turbulent transition, is addressed in the
framework of plane micro-channel where the Reynolds number is typically small.
We assume that the channel has thickness 2h? and use h? to normalize distances,
and the bulk speed Ū? is employed to scale the velocity. Superscript ? denotes di-
mensional quantities. The SH riblet-like wall considered here forms an anisotropic
texture (Fig. 2.1) for which a slip tensor h in the plane of the walls (x, z) can be de-
fined [Bazant and Vinogradova, 2008, Belyaev and Vinogradova, 2010, Asmolov
and Vinogradova, 2012] as

Λ = Q

[
h‖ 0

0 h⊥

]
QT , with Q =

[
cos θ − sin θ

sin θ cos θ

]
, (2.1.1)

b

Figure 2.1: Sketch of the wall pattern with definition of axes, angle θ and ridges
periodicity b. The gas-liquid interface is represented as a curved surface in light
blue color for illustrative purposes; the way in which the Navier slip lengths are
modified by the curvature of the interface has been addressed by Teo and Khoo
[2010]

where h‖ and h⊥ are the eigenvalues of the slip tensor Λ for θ = 0◦ and 90◦, and
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the transformation (2.1.1) represents a rotation of the tensor by an angle θ. For
θ = 0◦ the ridges are aligned with x, and for θ = 90◦ they are aligned with z. In
the special case of isotropic SH it is h‖ = h⊥; for the case of microridges aligned
along the mean pressure gradient [Philip, 1972, Lauga and Stone, 2003, Asmolov
and Vinogradova, 2012] we have h‖ = 2h⊥. This latter result will be used from
now on, and the results will be expressed as a function only of h‖.

By denoting with u, v and w the streamwise, wall-normal and spanwise ve-
locity components, respectively, the dimensionless boundary conditions for the
horizontal velocity components at the two walls in y = ±1 read[

u(x,−1, z)

w(x,−1, z)

]
= Λ

∂

∂y

[
u(x,−1, z)

w(x,−1, z)

]
, (2.1.2)

[
u(x, 1, z)

w(x, 1, z)

]
= −Λ

∂

∂y

[
u(x, 1, z)

w(x, 1, z)

]
, (2.1.3)

in the case of both walls being textured, plus vanishing conditions for the vertical
velocity component v at the two walls. If one of the two walls is not superhy-
drophobic, the condition there is simply u = 0.

2.1.1 Base flow and linear stability equations
The velocity and pressure are decomposed into a steady base flow and an un-

steady disturbance according to

u(x, y, z, t) = U(x, y, z) + εu′(x, y, z, t), (2.1.4)
p(x, y, z, t) = P (x, y, z) + εp′(x, y, z, t), (2.1.5)

with ε� 1. The governing equations for plane, incompressible and steady channel
flow read

dP

dx
=

1

Re

d2U

dy2
, V = 0,

d2W

dy2
= 0, (2.1.6)

where the Reynolds number is defined as Re = Ū? h?/ν?. When the boundary
conditions (2.1.2–2.1.3) are used, the analytical solution of the base flow, in the
case of two superhydrophobic walls, reads

U(y) = −3
y2 − 1− h‖(1 + cos2 θ)

2 + 3h‖(1 + cos2 θ)
, W (y) = 3

h‖ sin θ cos θ

2 + 3h‖(1 + cos2 θ)
. (2.1.7)
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When θ differs from 0◦ and 90◦, a small component of the base flow orthogonal
to the mean pressure gradient is created in the channel [Stone et al., 2004]. In the
case in which only the bottom wall is superhydrophobic the basic flow is:

U(y) = −3

4

(y2 − 1)(8 + 6h‖ + h‖
2) + 2h‖(y − 1)(2 + 2 cos2 θ + h‖)

6h‖ + 3h‖ cos2 θ + 4 + 2h‖
2 , (2.1.8)

W (y) = −3h‖
sin θ cos θ(y − 1)(4− h‖ cos2 θ + 2h‖)

[4 + h‖(1 + sin2 θ)](6h‖ + 3h‖ cos2 θ + 4 + 2h‖
2)
, (2.1.9)

and this flow presents a streamwise component of the vorticity which is a maxi-
mized by θ = ±45◦ when h‖ is smaller than about 0.1 (above this value of h‖ the
absolute value of the inclination angle of the grooves which displays the largest
vorticity increases mildly). Examples of the base flow for h‖ = 0.155, in the case
of one and two superhydrophobic walls, are displayed in Fig. 2.2 for two values of
θ.
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Figure 2.2: Streamwise U and spanwiseW velocity components of the base flow
when h‖ = 0.155 for the cases θ = 0◦ (dashed) and θ = 45◦ (solid). Left: one
superhydrophobic wall. Right: two superhydrophobic walls. The symbols show
the experimental micro-PIV data of Ou and Rothstein [2005] for the case θ = 0◦;
the filled circles show measurements above the ribs, whereas the empty symbols
are taken above the gas-water interface.

The linear stability equations are obtained by introducing (2.1.4) into theNavier-
Stokes equations and collecting terms of order ε. In primitive variable form they
read:

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0, (2.1.10)
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∂u′

∂t
+ U

∂u′

∂x
+ v′

dU

dy
+W

∂u′

∂z
= −∂p

′

∂x
+

1

Re
∇2u′, (2.1.11)

∂v′

∂t
+ U

∂v′

∂x
+W

∂v′

∂z
= −∂p

′

∂y
+

1

Re
∇2v′, (2.1.12)

∂w′

∂t
+ U

∂w′

∂x
+ v′

dW

dy
+W

∂w′

∂z
= −∂p

′

∂z
+

1

Re
∇2w′, (2.1.13)

with∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. The disturbance field (denoted by primes) is expressed

in terms of Fourier modes along the wall-parallel directions, i.e.

q′(x, y, z, t) = q̃(y, t) exp[i(αx+ β z)] + c.c., (2.1.14)

for the generic variable q′, whereα and β are the streamwise and spanwisewavenum-
bers, respectively, and c.c. denotes complex conjugate.

The theory developed is applicable as long as the disturbancewavelength 2π/k,
with k =

√
α2 + β2, is sufficiently longer than the spatial periodicity b of the

micro-ridges.

2.2 Numerical method
Using relation (2.1.14), the linearized momentum and continuity equations

read



iαũ+
∂v

∂y
+ iβw̃ = 0

∂ũ

∂t
+ iαũU + ṽ

∂U

∂y
+ iβũW + iαp̃ =

1

Re

ñ
∂2ũ

∂y2
− (α2 + β2)ũ

ô
∂ṽ

∂t
+ iαṽU + iβṽW +

∂p̃

∂y
=

1

Re

ñ
∂2ṽ

∂y2
− (α2 + β2)ṽ

ô
∂w̃

∂t
+ iαw̃U + ṽ

∂W

∂y
+ iβw̃W + iβp̃ =

1

Re

ñ
∂2w̃

∂y2
− (α2 + β2)w̃

ô
.

(2.2.1)
In compact form, introducing the vector q̃ = (ũ, ṽ, w̃, p̃)T , we can recast system
(2.2.1) as

C
∂q̂

∂t
= Dq̃, (2.2.2)

with C andD diagonal matrices of size 4× 4. For the classical no-slip wall, the
boundary conditions simply read

ũ = ṽ = w̃ = 0, (2.2.3)
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while considering for example the bottom wall as superhydrophobic, we have

ũ− λ

2
[(1 + cos2 θ)

∂ũ

∂y
+ sin θ cos θ

∂w̃

∂y
] = 0, (2.2.4)

w̃ − λ

2
[(1 + sin2 θ)

∂w̃

∂y
+ sin θ cos θ

∂ũ

∂y
] = 0. (2.2.5)

The modal analysis is performed by assuming a temporal behaviour of the form

q̃(y, t) = q̂(y) exp(−i ω t), (2.2.6)

where ω is the complex angular frequency and ωi > 0 denotes unstable solu-
tions. Substituting the asymptotic temporal behaviour (2.2.6) into the linearized
equations (2.2.1) yields a generalized eigenvalue problem. In discrete form the
resulting system of equations can be written as

iωBq̂ = Aq̂, (2.2.7)

where q̂ = (û, v̂, ŵ, p̂);A andB are complex-valued 4n×4nmatrices and n is the
number of discrete points taken in the y-direction. The equations are discretized
on a staggered grid and the spatial derivatives are treated with second order finite
differences; a uniform grid is adopted along the y-direction and 300 discrete points
are sufficient to obtain converged eigenvalues, with errors with respect to reference
solutions lower than 0.1%. The solution for q̂ and ω is found using the inverse-
iteration iterative algorithm [Golub and Van Loan, 1989].

The non-modal behaviour is studied by computing the maximum finite-time
amplification; the initial disturbance velocity field, ũ0, is optimal when the gain

G(Re, α, β, T, h‖, θ) =
e(T )

e(0)
, (2.2.8)

is maximized, where

e(t) =
1

2

∫ 1

−1
(ũũ∗ + ṽṽ∗ + w̃w̃∗)dy,

and T is the target time of the optimization. This is conducted by introducing
Lagrange multipliers enforcing the constraints given by the governing linear equa-
tions and the boundary conditions. The corresponding adjoint equations are de-
rived using a discrete approach [Luchini and Bottaro, 2014]. We further define

GM(Re, h‖, θ) = max
∀α,β,T

G,
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when G is maximized with respect to the wavenumbers (α, β) and the final time
T . The final time and spanwise wavenumber corresponding to GM are denoted
TM and βM , respectively. The discrete counterpart of system (2.2.2) is advanced
in time using a second order accurate in time scheme reading

Lqn+1 = f ,L =
3

2

B

∆t
+A,f =

B

∆t

ñ
2qn − 1

2
qn−1

ô
. (2.2.9)

The code used to compute the non-modal growth has been tested on several
cases found in the literature (using no-slip boundary conditions); in particular, the
value of the optimal gainGM = 2×10−4Re2 and the corresponding time at which
it is achieved, TM = 0.076Re, with α = 0 and β = 2.04, are recovered within
less than 0.1% [Schmid and Henningson, 2001]. Results are obtained imposing
that convergence is reached when the relative difference in gain between two con-
secutive iterations is below 10−8.

2.3 Adigression on Squire’s theoremandSquiremodes
In a channel with no-slip walls, Squire’s theorem states that the instability

of the coupled system stems from the amplification of a two-dimensional Orr-
Sommerfeld mode [Schmid and Henningson, 2001]. This is proven by applying
Squire’s transformation (k u2D = αû+βŵ; k Re2D = αRe; p2D/k = p̂/α; v2D =

v̂; ω2D/k = ω/α) to the linearized system. The result is that, if a three-dimensional
mode is unstable, a two-dimensional mode will be unstable at a lower value of the
Reynolds number, Re2D = αRe/k ≤ Re. Furthermore, it can be shown, always
in the no-slip case, that Squire modes (eigensolutions of the unforced Squire’s
equation for the vertical vorticity component) are always damped. In the present
wall-slip case, however, the statements above do not necessarily apply.

By decomposing the velocity vector û = (û, v̂, ŵ) into components parallel
and perpendicular to the wavenumber vector, i.e.

u‖ =
(αû+ βŵ)

k
, u⊥ =

(βû− αŵ)

k
,

the governing equations satisfied by (u‖, v2D, p2D) are independent of u⊥:

iku‖ +
dv2D

dy
= 0, (2.3.1)

− iω2Du‖ + ikUu‖ +
dU

dy
v2D = −ikp2D +

1

Re2D

(
d2

dy2
− k2)u‖, (2.3.2)
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− iω2Dv2D + ikUv2D = −dp2D

dy
+

1

Re2D

(
d2

dy2
− k2)v2D. (2.3.3)

Whereas at first sight this appears to imply that Squire’s theorem is satisfied, it is
not the case, since (i) the base flow of this new two-dimensional problem is differ-
ent from U (it is U = U + β

α
W ) and (ii) the boundary conditions for the parallel

component of the velocity do not decouple, i.e. at y = ±1 the boundary conditions
are expressed in terms of both u‖ and u⊥. The decoupling of the problem into two
separate problems (a homogeneous problem for (u‖, v2D, p2D) and a second prob-
lem for u⊥, forced by v2D) is possible only in the case of isotropic SH walls (i.e.
λ‖ = λ⊥ andW = 0), and it is only in this case that Squire’s theorem holds.

Furthermore, the fact that Squire modes are not necessarily damped can be
seen by considering the equation for the velocity component perpendicular to the
wavevector, i.e.ñ

−iω + iαU + iβW − 1

Re

Ç
d2

dy2
− k2

åô
u⊥ =

Ç
β
dU

dy
− αdW

dy

å
v2D

k
,

(2.3.4)
known as Squire’s equation. By multiplying the unforced equation (2.3.4) by u∗⊥,
with the ∗ superscript denoting complex conjugate, and integrating in y across the
fluid domain, we find

ω
∫ 1

−1
u∗⊥u⊥ dy =

∫ 1

−1

ñ
(αU + βW )u∗⊥u⊥ +

i

Re
u∗⊥(

d2

dy2
− k2)u⊥

ô
dy. (2.3.5)

Integrating by parts once and taking the imaginary part (subscript i denotes imag-
inary part, subscript r denotes real part) we are left with

ωi

∫ 1

−1
|u⊥|2 dy = − 1

Re

∫ 1

−1

(∣∣∣∣∣du⊥dy
∣∣∣∣∣
2

+ k2|u⊥|2
)

dy +
A

Re
, (2.3.6)

where

A =
1

k2

ñ
α2

Ç
ŵr
dŵi
dy
− ŵi

dŵr
dy

å
+ β2

Ç
ûr
dûi
dy
− ûi

dûr
dy

å
+

+ αβ

Ç
ûi
dŵr
dy

+ ŵi
dûr
dy
− ûr

dŵi
dy
− ŵr

dûi
dy

åô1

−1

. (2.3.7)

There is no evident reason why A, which contains boundary terms arising from
integration by parts, should be negative (or positive and small, so as not to render
positive the right-hand-side of equation (2.3.6)); thus, Squire modes (characterized
by v̂ ≡ 0 throughout y) can, in principle, be amplified (since ωi in equation (2.3.6)
is not necessarily negative).
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In our experience, however, Squire modes remain damped (cf. Section III),
both those in the so-called A branch (also known as wall modes) and those in
the P branch (center modes). Conversely, recent results by Szumbarski [2007]
and Mohammadi et al. [2015] for the flow in channels with streamwise-invariant
and spanwise-periodic corrugations demonstrate that it is precisely the least stable
Squire mode (in the P branch) which can become unstable for a sufficiently large
corrugation amplitude. When the amplitude of the corrugation exceeds a value
of O(10−2) an inviscid mechanism – driven by the spanwise gradient of the main
velocity component – forces the destabilisation of the Squire center mode. These
findings are related to those by Yu et al. [2016], who focussed however on wall
modes. We re-emphasize here that the rough walls considered have spatial scales
sufficiently small for an homogenisation procedure – leading to the Navier-slip
concept – to be tenable.

2.4 Modal analysis
We initiate the discussion of the modal results by showing some representa-

tive behaviors for the case of a single superhydrophobic wall. Fig. 2.3 (top, left)
illustrates the variation of the growth rate ωi of the most unstable (or least stable)
Orr-Sommerfeld (OS) mode as a function of the slip length, for the parameters
indicated in the figure’s caption. The wave angle considered is Φ = tan−1β/α

= 20◦; this three-dimensional mode is initially damped at low h‖. However, past
a threshold value of the slip length, the mode becomes unstable with a maximum
growth rate which is achieved at h‖ = 0.25. The disturbance mode shapes in cor-
respondence to this point are plotted in the left frame, center row, of Fig. 2.3; they
correspond to classical OS eigenfunctions, asymmetric about y = 0 because of
the slip condition at y = −1. On the right side of Fig. 2.3 the behavior of a dif-
ferent mode is represented, at a much smaller value of the Reynolds number than
the one considered so far. This instability mode displays a comparable behavior
of the growth rate as a function of h‖ (an initial decrease of ωi, followed by an
increase, with a maximum amplification for h‖ = 0.15), but radically different
eigenfunctions, displayed in the center row, right frame.
This mode, which is found to be dominating when the ridges are at an angle around
45o to the mean pressure gradient, takes the form of near-wall vortices, as exem-
plified on the bottom frame of Fig. 2.3. Alternating high and low speed streaks,
elongated in the streamwise direction x (α = 10−3 in all the calculations for which
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|û|

|v̂|

|ŵ|
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Figure 2.3: Growth rate ωi as a function of h‖ and absolute value of the disturbance
velocity components and disturbance pressure, using one SH wall. (a)-(c) Re =

10000, θ = 80◦, Φ = 20◦ and α = 0.65; (b)-(d) Re = 2000, θ = 45◦, Φ ≈
90◦ and α ≈ 0. The values of h‖ in the middle row, where eigenfunctions are
plotted, correspond to the maximum growth rate for the respective case, i.e. 0.25

and 0.145. (e) Contours, in the (y, z) plane, of the positive and negative streamwise
disturbance velocity component relative to the case in the right column over three
spanwise periods (β = 2.5). The vectors represent wall-normal and spanwise
components.



2.4 Modal analysis 32

we state α ≈ 0, the case α exactly equal to zero being ill-posed numerically),
are present near the SH wall, with corresponding low amplitude secondary vor-
tices. While it is not a surprise that inclined ridges at the wall yield low frequency
streamwise or quasi-streamwise vortices, it is remarkable that this behavior is ren-
dered so clearly by the homogenized Navier-slip boundary condition. This new
instability mode depends crucially on the wall ridges’ amplitude (a threshold value
h‖ = 0.038 is found with the present settings) and orientation with respect to the
mean pressure gradient (i.e. θ), and displays a temporal amplification factor typ-
ically larger than the most unstable three-dimensional OS wave (cf. the top two
frames of the figure).

It is now instructive to examine the spectra, in terms of either the complex
phase speed c or the complex frequency ω, depending on the value of the stream-
wise wavenumber, for the two cases discussed so far; such spectra are plotted in
Fig. 2.4. The figure on the top is the classical spectrum which can be observed
when α is not close to zero, with the three branches, classically denoted as A,
P and S branch; this figure displays, in fact, all of the eigenvalues which exist
when h‖ varies in the range [0, 0.4]. It is interesting to observe that the degenerate
Squire modes of branch A (shown with red/grey bullets) split: such degenerate
modes correspond, in the no-slip case, to a symmetric/antisymmetric couple of û
eigenfunctions. When slip occurs on one wall, one of the two wall modes of the
initially degenerate pair in branch A moves rapidly away from the h‖ = 0 value,
thus displaying a very strong sensitivity (in fact, also OS wall modes are highly
sensitive). Despite this, the Squire eigenvalues, both the wall modes and the cen-
ter modes, never cross the real axis in all cases considered here, and the mode
which becomes unstable is the three-dimensional OS mode with cr close to 0.2.
The picture is radically different for the case of ridges at 45o to the mean pressure
gradient (bottom frame); as h‖ increases, the modes which are initially degenerate,
all damped and concentrated along a single vertical line with ωr ≈ 0 (for h‖ = 0),
separate and diverge from one another. The continuous line in the bottom frame
joins all the least stable modes found for h‖ < 0.038 and the unstable modes which
emerge when h‖ exceeds 0.038.
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Figure 2.4: (a) Spectra of the complex phase velocity c in the case of one SHwall at
Re = 10000, θ = 80◦, Φ = 20◦ and α = 0.65 and different values of h‖. The filled
circles correspond to h‖ = 0; in particular, the red/grey bullets show the Squire
modes on branch A. The open squares represent the spectrum for h‖ = 0.4 and
the dots show the trajectory of each eigenmode when h‖ varies from 0 to 0.4. (b)
Spectra of the complex frequency ω in the case of one SH wall when Re = 2000,
θ = 45◦, Φ ≈ 90◦ and α ≈ 0. The open squares, diamonds and filled circles show
the spectra for h‖ = 0, 0.1, 0.2, respectively. The continuous line traces the least
stable mode for h‖ varying in the range [0, 0.2].
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Figure 2.5: Critical Reynolds number Rec (left), the corresponding wave angle
(middle) and streamwise wavenumber (right) as a function of θ for the case of
h‖ = 0.07 (dashed line) and h‖ = 0.155 (solid line) for one SH wall.
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Figure 2.6: Critical Reynolds number Rec (left), the corresponding wave angle
(middle) and corresponding streamwise wavenumber (right) as a function of h‖
for the case of θ = 0◦ (solid line) and θ = 45◦ (dashed line) in the presence of one
SH wall.

The results obtained so far indicate that a new wall-vortex mode, driven by the
presence of inclined wall ridges of sufficiently large amplitude, exists when Re is
rather small, to presumably dominate the early stages of the transition process.

A parametric study, with θ and h‖ varied systematically to infer trends is re-
ported in Figs. 2.5 and 2.6. The first of these figures show that the OS mode
identifies the critical conditions only when θ is close to 0o and 90o; for θ in a range
around 45o (range which is wider with the increase of h‖) the wall-vortex mode is
the dominating instability. The smallest critical Reynolds numbers,Rec, are found
at 45o for both cases examined in Fig. 2.5 and are around a value of 1000, much
smaller than the values of the corresponding neutral OS modes. The critical wave
angle is 90o in the range of θ’s where this new instability dominates. Fig. 2.6
shows the behavior of the most unstable, two-dimensional OS mode (solid lines)
which leads the instability when θ = 0◦, and the switch between the OS wave and
the wall-vortex mode, when θ = 45◦, taking place at h‖ = 0.033. As expected
from previous studies, a stabilization effect (i.e. an increase of Rec) is found for
the OS mode as h‖ grows from zero (Rec = 3848 for h‖ = 0). However, when the
ridges are at an angle of 45o the OSmode is eventually overruled by the streamwise
wall-vortex mode, which becomes unstable at progressively smaller values of the
Reynolds number; for h‖ above around 0.15 an asymptotic value of the critical Re
close to 600 is reached for the onset of the wall-vortex mode.
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Figure 2.7: Critical Reynolds number Rec (left) and corresponding wave angle
(middle) and streamwise wavenumber (right) as a function of θ for the case of
h‖ = 0.02 (solid line) and h‖ = 0.05 (dashed line) in the presence of two SH
walls.
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Figure 2.8: Critical Reynolds number Rec (left) and corresponding wave angle
(middle) and streamwise wavenumber (right) as a function of h‖ for the case of
θ = 0◦ (solid line) and θ = 45◦ (dashed line) in the presence of two SH walls.

The case of two superhydrophobic walls is considered next, focussing on lower
values of h‖ since it is known [Bottaro, 2014] that, when the walls are isotropic, a
comparable stabilizing effect is achieved in the case of two SH walls for a value of
the slip length ten times smaller than for a single SH wall. The results are summa-
rized by Figs. 2.7 and 2.8. The notable effect in this case is that the streamwise
wall-vortex mode does not emerge, with a competition which is now instaured be-
tween two-dimensional and three-dimensional OS modes; Fig. 2.7 shows that the
onset of an exponential instability is delayed when h‖ is increased and that the
two-dimensional OS wave (with Φc = 0) dominates the transition process only
for θ sufficiently large (the switch-over value increasing with h‖). The stabilizing
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effect of h‖ is confirmed by Fig. 2.8; for h‖ below 0.01 the stability characteristics
are similar to those of the no-slip case, and two-dimensional OS modes prevail
(for any value of θ). In the case of ridges inclined at an angle of 45o to the mean
streamwise velocity component, the mode which takes the lead past h‖ = 0.033 is
quasi-streamwise (α is small and decreasing). The spectrum of eigenvalues for a
representative case is presented in the left part of Fig. 2.9 for h‖ = 0.05, θ = 45◦

and Re = 10000. The classical branches, A, P and S, are present, with the unsta-
ble mode on the A branch. The shape of the unstable mode is found in the right
frame of Fig. 2.9, where the shape of a (distorted) three-dimensional OS wave can
be seen.

0 0.05 0.1 0.15

ω
r

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

ω
i

A P

S

(a)

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1
y

|û|
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Figure 2.9: Spectrum of temporal eigenvalues ω, with the unstable mode marked
with a red/grey bullet (left), and absolute value of the disturbance velocity com-
ponents (u, v, w) and disturbance pressure of the unstable mode (right), for Re =

10000, h‖ = 0.05, θ = 45◦, α = 0.1, Φ = 86◦ (β = 1.4). Both walls are superhy-
drophobic.

2.5 Non-modal analysis
Fig. 2.10 displays representative optimal perturbations (left column) for a

given target time, for both no-slip and SH cases, together with their output fields
(right column). The intermediate row (one slip wall at y = −1) is interesting since
the initial disturbance field is more intense near the bottom wall than near the top
one, and is oblique in the (y, z) plane.
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Figure 2.10: Vectors and contours, in the (y, z) plane, of the optimal disturbance
at t = 0 (left column) and the ensuing solution at the target time T = 105 (right
column), shown over two spanwise periods, for h‖ = 0 (top row), h‖ = 0.05 and
one SH wall (middle row), h‖ = 0.05 and two SH walls (bottom row). The shaded
contours represent the positive and negative streamwise disturbance velocity com-
ponent, whereas the vectors represent wall-normal and spanwise components. The
parameters are Re = 1333, β = 2, α ≈ 0, θ = 30◦.
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Figure 2.11: Gain GM (left), corresponding time TM (middle) and spanwise
wavenumber βM (right) as a function of h‖ in the case of θ = 0◦ (−), θ = 15◦

(∗), θ = 30◦ (−−), θ = 60◦ (◦), for Re = 1333 and two SH walls. In all cases the
corresponding optimal streamwise wavenumber is αM ≈ 0.
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Figure 2.12: Gain GM (left), corresponding time TM (middle) and spanwise
wavenumber βM (right) as a function of h‖ in the case of θ = 0◦ (−), θ = 15◦

(�), θ = 30◦ (∗), θ = 60◦ (∆). In all cases Re = 1333, αM ≈ 0 and only one wall
is superhydrophobic.

The maximum gain GM of a disturbance over a given time, maximized with
respect to the wavevector, depends parametrically on Re, h‖ and θ. The results
shown in Figs. 2.11 through 2.13 are computed for a fixed value of Re = 1333,
which is the same used by Min & Kim [Min and Kim, 2005] (they scaled Re with
the centerline velocity which is why they quote a value of 2000). This Reynolds
number is subcritical from a modal analysis point of view in the no-slip case.

In Fig. 2.11 GM is given as a function of h‖ for different values of θ, in the
case of two SH walls. For h‖ = 0 we recover the no-slip case and for h‖ > 0

there is a monotonic decrease of the gain for all θ’s. In all cases the corresponding
αM ≈ 0 and the variation of both βM and TM with the slip length is weak. In
the case of a single SH wall the results show a different trend, as demonstrated in
Fig. 2.12. Again, the gain GM is presented as a function of h‖ for different values
of θ. For values of the ridge angle larger than zero the gain always increases as the
Navier slip length is increased. Moreover, for some values of the ridge angle θ, and
above a threshold h‖, the flow becomes unstable from a modal point of view: in
these cases no finite value of TM is found, since the gain increases monotonically
with the increase of the final target time. An example is presented in Fig. 2.13
where the gain G is plotted as a function of the final time T of the optimization
and three different values of h‖ for the case in which θ = 30◦. For h‖ = 0 and 0.03

the gain decreases for large enough values of T ; conversely, when h‖ = 0.06 the
gain increases, albeit slowly, with T , with the spanwise wavenumber β reaching
an asymptotic value equal to 1.78. The unbounded increase of G with T is the
indication of the occurrence of the streamwise wall-vortex exponential instability.
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Figure 2.13: Gain G (left) and corresponding optimal spanwise wavenumber β
(right) as a function of the final time T , for the case of h‖ = 0 (◦), h‖ = 0.03 (∆),
h‖ = 0.06 (�), θ = 30◦, α ≈ 0 and Re = 1333.

2.6 Summarizing remarks
The modal behavior has yielded surprising results in two senses: on the one

hand, a new streamwise wall-vortex mode has been found in the case of a single SH
wall, driven by the wall boundary condition, and capable to reduce significantly
the value of the Reynolds number for the onset of the instability. This new mode
is enhanced by the increase of h‖ and is found to be most effective when the ridges
are inclined by an angle of about 45◦ to the mean pressure gradient. On the other
hand, when two walls are superhydrophobic, the instability is ruled by either a
two-dimensional or a three-dimensional Orr-Sommerfeld mode, as function of θ
and h||, demonstrating a posteriori the inapplicability of Squires theorem for this
flow.

The non-modal analysis shows that while the presence of two SHwalls yields a
slight reduction in energy growth over time, the case of only one SH wall produces
an increase of the disturbance kinetic energy for a large range of values of h|| when
θ is sufficiently greater than zero. It is further shown that, for a single SH wall,
beyond a threshold slip length, for values of the inclination angle of the micro-
ridges around 45◦ the gain becomes unbounded with the final target time, a sign of
the onset of the wall-vortex instability.
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Figure 2.14: (Left) Base flow when h = 0, 0.1, 0.2; the inset shows a close-up
of the lower boundary for three values of h||. (Right) Modulus of the difference
between the complex frequency ω, for different values of h||, and the value of ω
when h|| = 0 . Here h|| = h⊥ (solid line), h|| = 2h⊥ (dashed line), Re = 10000

and α = β = 1√
2
. A linear (blue) and a quadratic (red) functions have been

superposed to the results of the two cases to emphasize the behaviors when h|| is
small (thin lines in the inset).

2.6.1 When is the Navier slip condition applicable?
The boundary conditions 2.1.2 and 2.1.3 used throughout the present analy-

sis for both the base flow, and the perturbations are based on a linearization in
the parameters h|| and h⊥. Inevitably, when the values of h|| and h⊥ increase
the excluded higher order terms are no longer negligible. For applications of the
presented method it would be useful to have an estimate of the values of the slip
lengths below which we can have some confidence that the Navier slip condition
applies.

The error committed by the imposed boundary condition can be evaluated in
a manner which has been suggested to us by Paolo Luchini: Let’s imagine that we
displace the lower wall a distance h in the vertical direction, from y = 1 to y = 1+

h and thus to have slip at the position y = 1+h. The linearized boundary condition
(here for the mean flow, but later in the same form also for the perturbation velocity
components) at order one is

U(−1 + h) = h
dU

dy
(−1 + h), (2.6.1)

found by assuming no-slip at y = 1. The analytical solution of the base flow is
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simply

U(y) =
6

4− 3h2

ñ
1− y2 − 1

2
h2(1− y)

ô
(2.6.2)

where we have set θ = 0, for simplicity, which means that W = 0. The
linearization yields a small nonzero velocity at the lower boundary, U(1) = 6h2

(43h2)
,

indicating that the error committed on the mean flow by using equation 2.6.1 is of
order h2. Examples of the base flow profiles are plotted in figure 2.14 (left frame)
for three values of h, demonstrating that small differences appear and increase with
the slip length.

The errors in the stability analysis can be evaluated by comparing the complex
eigenvalue ω evaluated for different slip lengths against the case for which h|| =

h⊥ = 0; a measure of such errors is
ω(h)− ω(h = 0)|

|ω0|
|, with ω0 the complex

angular frequency in equation 2.6.1 computed for h = 0.
Two cases are considered next: one is the case of isotropic roughness, i.e.,

h|| = h⊥ = h, and the second is the case of longitudinal ridges, for which h|| =

2h⊥ = h. These two cases are expected to yield different behaviors, particularly
at low h, in view of the fact that the only relevant protrusion length scale is the
difference between h|| and h⊥. This occurs, as explained by Luchini et al. [1991],
since any physically significant parameter must be independent of the choice of the
origin of the wall (which wemight for convenience place at the tip of the roughness
elements). Thus, it is ∆h = h||−h⊥ which provides a quantitative measure of the
effect of roughness on the boundary layer stability behavior; in the case of isotropic
roughness ∆h = 0, and the effect must thus be of second order in h, i.e., the curve
of the error must be initially parabolic. Conversely, for longitudinal ridges it is

∆h =
h||
2
, and the error in the eigenvalue should scale linearly with h. This is

confirmed by our stability calculations (figure 2.14, right frame), carried out at
Re = 10000 for a disturbance of wavenumber k = 1 inclined by 45◦ to the x axis,
for values of h up to 0.2. Other inclinations of the perturbation wave yield similar
results, confirming the conclusions: in the case of ridges, the linear deviations
from the exact solution can be expected to hold until h ≈ 0.05, whereas the error
remains approximately quadratic with h in the case of cylindrical, regularly spaced
posts, only until h ≈ 0.02. The percentage error in ω remains below 10% for h
up to about 0.1; such a value of the protrusion height could thus be taken as an
upper bound, beyond which the Navier slip condition becomes untenable. Some
results in the paper obtained for values of h larger than the threshold above should
be considered only as illustrative.
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A final note concerns the boundary condition for the normal-to-the wall velo-
city. Because of continuity, the homogenized boundary condition for v̂ is simply
v̂ = 0. However, for superhydrophobic walls, with an underformable gas plastron
which completely fills the microcavities, it is clearly correct to impose no pene-
tration of the fluid at the tip of the roughness elements, a question might remain
when the wetted state is reached: should a protrusion height be defined also for the
vertical velocity component? The answer in the case of microridges is no [Luchini,
2013], since the solution of the near-wall Stokes problem has only two degrees of
freedom, i.e., only two protrusion heights can be defined. Thus, the vanishing of
the normal velocity at a given y position rather than another one has only a second
order effect on the result, comparable to the error which is made anyway.



Chapter 3

The microscopic problem

3.1 Problem formulation
The velocity profile in the boundary layer generated by a turbulent flow along a

locally plane surface has been extensively studied from both numerical and exper-
imental point of view, leading to an in-depth knowledge of the phenomena taking
place in this thin, but important region. It is common practice to subdivide the
turbulent boundary layer into different zones, depending on the value of the wall
normal coordinate in wall units:

• viscous sublayer: very thin region extending until y+ ≈ 5, where the vis-
cous forces are dominant with respect to the inertial ones. If y is the wall
normal coordinate, y+ =

uτy

ν
, with uτ =

 
τw
ρ

the friction velocity, and

τw the wall shear stress. Here the conversion of convected momentum into
viscous stress is negligible, thus the flow is governed mainly by the balance
of viscous stresses. The velocity profile is linear with respect to the wall
normal coordinate y+;

• buffer layer: it is found between the viscous sublayer and the log-law region
and no analytical laws are defined there. The viscous and inertial forces are
of the same order and, in the middle of this region, the peak production and
dissipation of the turbulent energy is know to occur.

• log-law region: it is located far from the wall (y+ > 30), where the velocity
profile exhibits a logarithmic behaviour of the type

u+ =
1

k
log(y+) + A, (3.1.1)

43
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where k ≈ 0.4 is the Von Karman’s constant, considered universal (at least
for moderate to high Reynolds number flows) and A ≈ 5 for the classical
case of flat plate boundary layer with zero pressure gradient.

Our aim is to understand how a micro-corrugated wall, with gas/oil cavities
within, affects the viscous sublayer, in both the directions parallel and normal to
the corrugations. Since in this region the convective terms are negligible, the mo-
mentum equation reduces to the Stokes form

∇p = µ∇2u, ∇ · u = 0. (3.1.2)

The starting point consists in recognizing that two problems exist, an inner
problem ruled by microscopic variables and an outer, macroscopic problem for
which the bounding surface is smooth (and can be taken to coincide with the tips
of the ribleted surface). The boundary behaviour of the outer solution requires
there to be a wall slip velocity, Us, and a wall shear rate, κw = ∂U

∂y |y=0. In di-
mensionless terms, an outer wall-normal variable, Y , can be defined, related to
the corresponding inner variable ỹ by

Y = εỹ;

ε = b/L is a small parameter (with b the microscopic length scale and L the
macroscale characterizing outer flow phenomena). The inner scales used to nor-
malize the dimensional Stokes equations and the boundary conditions are b as
length scale (see figure 3.1), b κw as velocity scale and µκw as pressure scale.
The shear rate is imposed by the outer solution onto the inner one so that, when
the outer variable Y → 0, the dimensional streamwise component of the velocity
tends to Us + κwLY (the spanwise component also behaves linearly in Y , by an
analogous reasoning). Observe that when Y → 0 we have ỹ → ∞ and, in inner
variables scalings, the streamwise velocity component ũ, in dimensionless form,
tends to Us

b κw
+ ỹ, i.e.

∂ũ

∂ỹ
|y→∞ → 1.

Adopting the above normalization, the governing equations (Stokes plus continu-
ity) read:

∇p = ∇2u, ∇ · u = 0, (3.1.3)

note that there should be no ambiguity on the fact that, from now on, everything is
non-dimensional, although tildes have been removed from the variables’ names.
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In principle, the above is a three-dimensional system; however, it might be
decoupled into two separate two-dimensional problems when corrugations homo-
geneous along the streamwise directions are considered. In order to apply this
geometric constraint, we have to assume that the interface between the two fluids
is allowed to deform only under the effect of the transverse flow, remaining homo-
geneous along the longitudinal direction. If this hypothesis is satisfied, the initial
Stokes problem is split into two different parts, known as transverse and longitudi-
nal problems, whose governing equations together with the appropriate boundary
conditions are reported in figure 3.1. In particular, the Laplace equation is found
to govern the longitudinal flow, while the two dimensional Stokes equation holds
for the transverse and wall normal components of the velocity.

z, w(x,y)

y, v(x,y)

x, u(x,y)
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Oil\Gas, Ω1 Oil\Gas, Ω1

z z

Figure 3.1: Geometry, governing equations and boundary conditions for the trans-
verse (bottom left) and the longitudinal (bottom right) problems.
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3.1.1 The definition of protrusion heights
The linearity of the Laplace and the Stokes equations allows to perform some

important analytical considerations on the behaviour of the longitudinal and trans-
verse velocity components. The problem of the longitudinal flow over a grooved
surface has been studied by Bechert and Bartenwerfer [1989] who found a solution
in terms of Fourier series of the form:

u =
∑+∞
n=−∞ ũne

inz,

ũ0 = a0 + b0y,

ũn = ane
−|n|y + bne

|n|y, n 6= 0.

(3.1.4)

Applying the condition
∂u

∂y
→ 1, it is easy to show that b0 = 1, bn = 0, and the

unknown coefficients an are determined from the condition at the wall surface. If
the wall surface is smooth and with a standard no-slip condition, the longitudinal
velocity profile is readily calculated as

u(y) =

Ç
∂u

∂y

å
y, (3.1.5)

which is a simple linear profile. If the surface has a general shape, the expression of
the coefficients an cannot be expressed explicitly and have to be calculated case by
case. However, it can be noted that, since all the coefficients ũn vanishes as soon as
y → +∞, the asymptotic behaviour of the longitudinal velocity component takes
the simple form

u = y + a0, (3.1.6)

which represents a linear profile shifted in the wall normal direction by the quantity
a0. Usually, a0 depends on the shape of the wall and it is called parallel protrusion
height or Navier slip length and indicated with h||.

A similar discussion can be conducted for the transverse flow [Luchini et al.,
1991]. In order to obtain a more suitable form, we introduce the stream function
ψ and recast the Stokes equation as

∇4ψ = 0. (3.1.7)

The solution of the biharmonic equation satisfying periodic boundary condition
along the spanwise direction reads
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ψ =

∑+∞
n=−∞ ψ̃ne

inz,

ψ̃0 = a0 + b0y + c0y
2 + d0y

3,

ψ̃n = (an + bn)e−|n|y + (cn + dn)e|n|y, n 6= 0,

(3.1.8)

which assumes a form quite similar to equation (3.1.4). Due to the fixed gradient
of the spanwise velocity far from the protrusion (i.e ∂2ψ

∂y2
= 1), we obtain that

c0 = 1
2
and d0 = cn = dn = 0, while the remaining coefficient are again to be

determined by applying the prescribed boundary condition at the wall. Proceeding
in a similar way to the longitudinal problem, we consider the asymptotic behavior
of the solution, obtaining

ψ = a0 + b0y +
1

2
y2, (3.1.9)

thus
w = y + b0. (3.1.10)

In this case the constant b0 is called transverse protrusion height (here it is h⊥),
since it is related to the transverse problem. As sketched in figure 3.2, the protru-
sion heights represent the two virtual distances below a reference surface at which
the velocity profiles would extrapolate to zero. We may remark, however, that any
origin of the y-axis can be set to measure these quantities. It is evident that any
physically significant parameter must be independent of the choice of the origin:
the only combination of the two protrusion heights that has this property is their
difference ∆h = h|| − h⊥. The concept of protrusion height becomes relevant in
order to quantitatively measure the effect of a particular wall on the viscous sub-
layer and the value of ∆h expresses how much the actual wall pattern impedes the
cross-flow more than it does the longitudinal flow [Luchini et al., 1991].

Reference plane

h

h||

Figure 3.2: Definiton of the protrusion heights with respect to a reference plane.
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3.2 The boundary integral method
The boundary integral method (BIM) is a powerful mathematical technique

that allows to recast an original differential problem into an integral one. In the-
ory, there are no restrictions on the type of the differential problem suitable for this
transformation; however, the BIM is mostly applied to linear, elliptic, and homo-
geneous partial differential equations governing boundary-value problems in the
absence of a homogeneous source. The method covers a wide range of applica-
tions, spanning from solid mechanics to electrostatics and from noise propagation
to fluid mechanics. The key idea of this method is to express the solution in terms
of boundary distributions of fundamental solutions of the differential equation con-
sidered. The fundamental solutions are Green’s functions expressing the field due
to a localized source and the densities of the distributions are then computed to
satisfy the specified boundary conditions. Since in the present dissertation, the
equations involved are the Laplace equation, governing the longitudinal problem,
and the Stokes equation, governing the transverse problem, the BIM finds an ef-
fective applicability.

In the following the basic derivation of the boundary integral equations (BIE)
for both the Laplace and Stokes equation for a single phase flow is offered. The
result is of fundamental importance since highlights the main procedure to recast
a differential problem into an integral form. Moreover, the single phase BIE will
be used as starting point to extended the theory to the case of two phase flows.

Figure 3.3: Sketch of the domain used for the derivation of the boundary integral
equations.
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3.2.1 BIM for the Laplace equation in two dimensions
Let us consider a closed domainD, with contour C and normal n, as sketched

in figure 3.3. The Laplace equation holds in D for an unknown scalar function u
and reads

∇2u = 0. (3.2.1)

In order to transform the Laplace equation into an integral form, we exploit
Green’s second identity

G∇2u− u∇2G = ∇ · (G∇u− u∇G), (3.2.2)

where G is known as Green’s function, satisfying by definition the singularity
forced Laplace equation

∇2G(x,x0) + δ(x− x0) = 0, (3.2.3)

with x0 a specific point into the domain, called field point. The simplest choice
for G is the free space Green’s function, corresponding to the solution of equation
(3.2.3) in unbounded space:

G =
1

2π
log(r), r =

»
(x− x0)2 + (y − y0)2 (3.2.4)

The Green’s function usually presents a singularity at x = x0, thus it is convenient
to integrate the Green’s second identity (3.2.2) over the reduced domain D′ =

D −Dε (see figure 3.3), obtaining:∫∫
D′

(G∇2u− u∇2G)dS =
∫∫

D′
∇ · (G∇u− u∇G)dS, (3.2.5)

where the left-hand side of equation (3.2.5) is equal to zero, since ∇2u = 0 and
∇2G = 0, when x 6= x0. Next, applying the divergence theorem to the left-hand
side of equation (3.2.5) we obtain∫

C+Cε
(G∇u− u∇G) · n dl = 0, (3.2.6)

whereC is the boundary ofD,Cε is the boundary ofDε, and lmeasures arc length
along either C or Cε.

We now consider the limit for ε → 0 of the integral around Cε and we recall
that, since Cε is a circumference, r can be substituted with ε. Since ε → 0 the
small surface portion Dε → 0 and thus u(x)→ u(x0) leading to
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lim
ε→0

Iε = lim
ε→0

ñ
1

2π
log(ε)

∂u(x0)

∂r

∫
Cε
dl − u(x0)

2πε

∫
Cε
dl

ô
=

1

2π
log(ε)

∂u(x0)

∂r
2πε− u(x0)

1

2πε
2πε = −u(x0). (3.2.7)

Substituting back the result of the limit (3.2.7) into the relation (3.2.6), we
obtain the following important identity

u(x0) =
∫
C
u(x)n · ∇G(x,x0) dl −

∫
C
G(x,x0)n · ∇u(x) dl. (3.2.8)

Equation (3.2.8) establishes a relationship between the unknown function u in
an arbitrary point within the domain D and two integral operators involving the
boundary values of u or ∇u. The first integral on the right-hand side is called
double-layer potential (DLP), while the second one is called single-layer potential
(SLP). These operators represent a continuous distribution of sources or dipoles
along the domain’s boundary and they are the building blocks of the boundary
integral method.

To complete the derivation of the boundary integral equation, we let the point
x0 lay on the domain’s contour C such that all the quantities in equation (3.2.8)
involve the unknown function or its gradient only at the boundary. In proceeding
with this operation, some care is needed when the limit for x0 → C is considered.
It can be demonstrated [Pozrikidis, 1992] that the single-layer potential is contin-
uous through the boundary C, while the double-layer potential undergoes a jump
discontinuity of the type:

lim
x0→C

∫
C
u(x)n · ∇G(x,x0) dl =

∫ PV

C
u(x)n · ∇G(x,x0) dl ± 1

2
, (3.2.9)

where the plus sign is to taken when the limit is done starting from a point within
the domainD, whereas theminus sign holds if the limit is done from a point defined
in the exterior of the domain. The upper-scriptPV denotes that the integral is to be
intended in the sense of its principal value. Keeping this in mind and performing
the limit of equation (3.2.5) for a point x0 defined either inside or outside D (in
this case the velocity u(x0) = 0 in equation 3.2.8), the following result is obtained

1

2
u(x0) =

∫ PV

C
u(x)n · ∇G(x,x0) dl −

∫
C
G(x,x0)n · ∇u(x) dl (3.2.10)
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Equation (3.2.10) is known as the boundary integral equation for the Laplace
equation and allows to solve for the unknown function u or∇u at the boundary, as
function of the boundary conditions. Once the boundary quantities are know, the
field inside D can be reconstructed using the relation (3.2.8).

3.2.2 BIM for the Stokes equation in two dimensions
Just like the Laplace equation, the Stokes equation can be recast into integral

form. The starting point is the Lorenz reciprocal identity [Pozrikidis, 1992], which
relate two arbitrary flows u and u′ together with their associated stress tensors σ
and σ′ as

∂

∂xj

Ä
u′iσij − uiσ′ij

ä
= 0. (3.2.11)

Identifying u′ with the flow generated by a point source of constant and arbi-
trary strength b, located in x0 (see again figure 3.3), we obtain

u′i(x) =
1

4πµ
Gij(x,x0)bj, (3.2.12)

σ′ij(x) =
1

4πµ
Tijk(x,x0)bj, (3.2.13)

where, similarly to the Laplace equation, Gij is the Green’s function and Tijk
is its associated stress tensor. The Green’s function is a tensor of rank 2, since the
Stokes equation has two components. Similarly to the previous case, the simplest
choice for Gij is to select the solution of the singularly forced Stokes equation in
the free space, which is also known with the name of Stokeslet:

Gij = δijlogr +
x̂ix̂j
r2

(3.2.14)

Tijk = −4
x̂ix̂jx̂k
r4

, (3.2.15)

with r the euclidean distance in the Cartesian plane and x̂ = x − x0. In order to
obtain an integral representation of Stokes equation, we first substitute the relations
(3.2.12) for u′ and σ′ into the Lorenz identity (3.2.11), then we integrate over the
result over the reducted domain D − Dε and apply Green’s divergence theorem,
obtaining ∫∫

C+Cε
Gijσik − µuiTijknkdl = 0 (3.2.16)
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Again, since the Stokeslet is singular at x = x0, the strategy consists in removing
the singularity from D and adding it back later through a limit operation on Dε.
After the above manipulations, the right hand side of expression (3.2.16) is split
into two contributions involving the line integral along the external domain’s con-
tour and the line integral along the contour of a small circular region Dε of radius
ε, defined around x0. The results of this manipulations leads to

∫∫
C
Gijσiknk − µuiTijknk dl = −

∫∫
Cε
Gijσiknk − µuiTijknk dl. (3.2.17)

Letting ε → 0, we find that over Cε, to leading order in ε, the tensors G and
T on the right hand side reduce to the Stokeslet and it associated stress tensor
(3.2.14) . Substituting their expressions in the integral relation (3.2.17) and noting
that along Cε the euclidean distance r is equal to the circle’s radius ε, we have

lim
ε→0

ñ ∫
Cε

Ç
δijεlogε+

x̂ix̂j
ε

å
σiknk dθ +

∫
Cε

4µui
x̂ix̂j
ε3

x̂knk dθ

ô
, (3.2.18)

where the differential dl has been conveniently expressed in polar coordinates as
dl = rdθ = εdθ and the normal n = x̂

ε
.

Consider now the first term of the limit (3.2.18)
∫
Cε

Ç
δijεlogε+

x̂ix̂j
ε

å
σiknk dθ, (3.2.19)

as ε → 0, x → x0 and σik(x) → σik(x0). Also
x̂ix̂j
ε
∼ ε → 0, so the whole of

the first term vanishes in the limit of ε→ 0.
For the second term, since x̂knk =

|x|2

ε
= ε and lim

ε→0
ui(x) = ui(x0) , we have

4µui(x0)
∫
Cε

x̂ix̂j
ε2

dθ = 4πµuj(x0), with
∫ 2π

0

x̂ix̂j
ε2

dθ = πδij (3.2.20)

Finally, substituting the result (3.2.20) into equation (3.2.17), we obtain the
desired boundary integral equation of the Stokes flow

4πµuj(x0) = µ
∫
C
ui(x)Tijk(x,x0)nkdl −

∫
C
Gij(x,x0)σik(x)nkdl. (3.2.21)
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3.3 Boundary integral method for two phase flows
The boundary integral method is often used to describe physical problems in

multiple domains, connected to each other. This is the case of multiphase flows,
where immiscible fluids with different physical properties are in contact and sep-
arated by a deformable interface. The strategy to derive the BIE for this kind of
problems is to write down the integral representation for the unknowns involved in
each domain and then couple them together using proper boundary conditions at
the interface. Our problem is a typical situation where the BIM finds an efficient
application. We refer to figure 3.4, which represents the simplest type of SHS/LIS
consisting of rectangular grooves elongated along the streamwise direction and
regularly spaced along the spanwise direction. The exactly same procedure applies
to different wall pattern, provided that the fundamentals hypothesis guaranteeing
the decoupling of the problem are respected. We will consider the flow in a two-
dimensional domain filled with two viscous fluids of viscosity ratio λ =

µ1

µ2

; fluid
1 is found in domain Ω1, while fluid 2 is contained within Ω2. The two domains
are separated by the interface, I, of unit normal n when seen from Ω1.
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Figure 3.4: Sketch of two different fluid domains separated by the interface I. The
letters T, L, R, I and W denote, respectively, the top, left, right boundaries, the
interface and the wall. In the figure,W comprises all the walls of the cavity

The boundary conditions to be applied on each patch are described in figure
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3.1 for both the transverse and the longitudinal problems. The standard no-slip
conditions is applied at the walls composing the indentation, while patches L and
R are periodic. They are explicitly reported in figure 3.4, since they have been
taken into account while deriving the boundary integral equations. One of the in-
teresting features of the BIM is that the integrals over the domain’s boundaries can
sometimes be eliminated, if a tailored Green’s function is used during the deriva-
tion. In this case, the usage of a Greens’ function satisfying the periodicity of the
flow leads to a consistent simplification of the final mathematical formulation of
the problem, avoiding the inclusion of the periodic boundaries. With the same rea-
soning, also the patch T can be eliminated, when using a Green’s function which
takes into account the asymptotic linear behavior of the velocity profile. However,
in our formulation we maintain T in order to have a precise location to directly
measure the velocity far from the wall and, thus, having immediate access to the
value of the protrusion heights.

The main objective is to derive two boundary integral formulations for the lon-
gitudinal and the transverse flow. From their solution the values of the protrusions
heights are calculated by varying the main physical and geometric parameters in-
volved in the problems.

3.4 The microscopic longitudinal problem
We consider first the longitudinal flow over a periodic array of grooves aligned

with the main flow direction. The Laplace equation holds in both the domains Ω1

and Ω2 and reads ∇2u = 0. Considering a simple shear flow over such a surface,
far from the wall the velocity profile is known to be [Crowdy, 2010]:

u = (y + h||)x̂, (3.4.1)

where x̂ is the flow direction and the constant h|| is the already introduced longi-
tudinal protrusion height. We transform the differential problem into an integral
problem involving only quantities at the boundary of the domain, taking advantage
of the boundary integral method.

Let us reintroduce the single-layer and the double-layer potentials for the Laplace
equation, defined for a closed, two-dimensional, contours C as
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FSLP (x0,∇u · n; C) =
∫
C
G(x,x0)[∇u(x) · n] dl(x), (3.4.2)

FDLP (x0, u; C) =
∫
C
u(x)[∇G(x,x0) · n] dl(x), (3.4.3)

where x0 is the generic field point, n is the normal vector to the contour C, point-
ing inward the domain, andG(x,x0) is the Green function for the two-dimensional
Laplace equation. The basic idea is to derive one boundary integral equation, link-
ing the fluid quantities at the boundary of the domain using the operators (3.4.2)-
(3.4.3), for each patch composing the geometry under investigation. Maintaining
the usual convention of the boundary integral method, all the normal vectors n
defined over the patches point inward the respective domain; since the interface
is shared between both the domains, we choose its normal pointing inward the
domain Ω1 (see figure 3.4) and, thus, the relation n(2) = −n(1) holds on I.

The starting point to derive the longitudinal flow integral representation is to
apply the boundary integral formulation [Pozrikidis, 2002] in the lower fluid (su-
perscript (1)) for a point x0 located at the interface I, which reads

u(1)

2
= −FSLP (x0,∇u(1)·n;W3)−FSLP (x0,∇u(1)·n(1); I)+F̂DLP (x0, u

(1); I),

(3.4.4)

where F̂DLP denotes the principal value of the double layer potential and the su-
perscript is retained only in the normal vector defined over the interface to recall
that in this case they are of opposite sign, while for the other cases it is implicitly
assumed that the normal vector follows the convection described above. Repeat-
ing the derivation in the upper fluid (superscript (2)) for a point x0 located at the
interface, we obtain

u(2)

2
= −FSLP (x0,∇u(2) · n;W1 + W2 + T) + FDLP (x0, u

(2);T)

−FSLP (x0,∇u(2) · n(2); I) + F̂DLP (x0, u
(2); I). (3.4.5)

It is worth noting that the contributions of the periodic boundaries L andR cancel
out from the integral equations if a suitable Green’s function for the Laplace equa-
tion [Pozrikidis, 2002] is employed during the derivations. Since the velocity is
assumed continuous across the interface, we add equation (3.4.4), multiplied by the
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viscosity ratio λ =
µ(1)

µ(2)
, to equation (3.4.5) and we collect the terms involving the

velocity at the interface. The multiplication by λ is necessary to introduce in the
final boundary integral equation the dependence from this parameter. Proceeding
as illustrated, the first boundary integral equation reads

1 + λ

2
u(x0) = FDLP (x0, u;T)− λFSLP (x0,∇u · n;W3)

−FSLP (x0,∇u · n;W1 + W2 + T )

+ FSLP (x0, [∇u(2) − λ∇u(1)] · n; I) + (λ− 1)F̂DLP (x0, u; I), (3.4.6)

with the interface unit normal vector n taken to coincide with n(1).
Next, we consider the equation for the velocity in the lower fluid for a point

x0 at the lower wall, multiplied by λ, together with the reciprocal relation for the
Laplace equation [Pozrikidis, 2002]:

λ

2
u(1) = −λFSLP (x0,∇u(1) · n;W3)

− λFSLP (x0,∇u(1) · n(1); I) + λFDLP (x0, u
(1); I), (3.4.7)

−FSLP (x0,∇u(2) · n;W1 + W2 + T) + FDLP (x0, u
(2);T)

−FSLP (x0,∇u(2) · n(2); I) + FDLP (x0, u
(2); I) = 0. (3.4.8)

We move the term composing equation (3.4.8) from the left hand side to the right
hand side and then we change its sign; adding the result of this manipulation to
equation (3.4.7), we end up with

0 = FDLP (x0, u;T)− λFSLP (x0,∇u · n;W3)

−FSLP (x0,∇u · n;W1 + W2 + T) + (λ− 1)FDLP (x0, u; I)

+ FSLP (x0, [∇u(2) − λ∇u(1)] · n; I), (3.4.9)

where the zero on the left hand side is due to the fact that the no-slip boundary
condition is applied at the solid walls. The same equation can be derived for a
point x0 belonging to the walls W1 and W2 by writing the equation for the upper
fluid and the reciprocal relation, using as integration path the lower fluid domain,
again multiplied by λ.



3.4 The microscopic longitudinal problem 57

Finally, we apply the boundary integral formulation for a point x0 on the upper
wall, and the reciprocal relation, multiplied by λ, obtaining:

u(2)

2
= −FSLP (x0,∇u(2) · n;W1 + W2 + T) + FDLP (x0, u

(2);T)+

−FSLP (x0,∇u(2) · n(2); I) + FDLP (x0, u
(2); I), (3.4.10)

−λFSLP (x0,∇u(1)·n;W3)−λFSLP (x0,∇u(1)·n; I)+λFDLP (x0, u
(1); I) = 0.

(3.4.11)

Summing the above equations (3.4.10) and (3.4.11) and performing similar ma-
nipulations as in equation (3.4.8), we obtain the last boundary integral equation

1

2
u(x0) = F̂DLP (x0, u;T)− λFSLP (x0,∇u · n;W3)

−FSLP (x0,∇u · n;W1 + W2 + T) + (λ− 1)FDLP (x0, u; I),

+ FSLP (x0, [∇u(2) − λ∇u(1)] · n; I), (3.4.12)

which forms, together with (3.4.6) and (3.4.9), a system of integral equations for
the unknown velocity or stress distribution along the domain’s boundaries. The
formulation undergoes a further simplification if the jump in shear stress across
the interface, [∇u(2) − λ∇u(1)] · n, along the longitudinal direction is specified.
In this particular problem we require ∇u(2) · n = λ∇u(1) · n, i.e. we assume the
shear stress to be continuous across the interface.

Once the velocity and its gradient are know at the boundaries, the internal field
can be readily reconstructed by using the following integral relation:

αu(x0) = −λFSLP (x0,∇u · n;W3)−FSLP (x0,∇u · n;W1 + W2 + T)

+ FDLP (x0, u;T) + (λ− 1)FDLP (x0, u; I), (3.4.13)

withα = λ, if x0 ∈ Ω1,

α = 1, if x0 ∈ Ω2.
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3.5 The microscopic transverse problem
Following a similar procedure to that described in the previous section, we

derive the governing integral equations for the transverse problem, involving the
wall normal and the spanwise components of the velocity vector, denoted by v =

(w, v). We firstly introduce the single-layer and the double-layer potential for the
Stokes flow, which read

FSLPj (x0,f ; C) =
1

4πµ

∫
C
fi(x)Gij(x,x0) dl(x), (3.5.1)

FDLPj (x0,v; C) =
1

4π

∫
C
vi(x)Tijk(x,x0)nk(x) dl(x), (3.5.2)

We start with the boundary integral representation for the velocity u(1)
j (x0) in

the lower fluid, in the generic point x0 ∈ I [Pozrikidis, 1992]

1

2
v

(1)
j (x0) = −1

λ
FSLPj (x0,f

(1);W3+I)+FDLPj (x0,v
(1);W3)+F̂DLPj (x0,v

(1); I),

(3.5.3)
where F̂DLP denotes the principal value of the double layer potential.

Repeating the same derivation for the velocity v(2)
j (x0) in the upper fluid, we

obtain an analogous representation

1

2
v

(2)
j (x0) = −FSLPj (x0,f

(2);T + W1 + W2 + I + L + R) +

FDLPj (x0,v
(2);T + L + R) + F̂DLPj (x0,v

(2); I). (3.5.4)

We assume no-slip along W1,W2 and W3, while the left and right boundaries, L
and R, are considered periodic. With these choices, equation (3.5.3) and (3.5.4)
simplify in

1

2
λv

(1)
j (x0) = −FSLPj (x0,f

(1);W3 + I) + λF̂DLPj (x0,v
(1); I), (3.5.5)

1

2
v

(2)
j (x0) = −FSLPj (x0,f

(2);W1 + W2 + I + T) + (3.5.6)

FDLPj (x0,v
(2);T) + F̂DLPj (x0,v

(2); I).

It is worth noting that the contribution of the periodic boundaries cancels out from
equation (3.5.4) only if the Green’s function is chosen to be periodic. Next, we add
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equations (3.5.5) and (3.5.6) and, recalling that the velocity is continuous across
the interface, we achieve the following final form:

1 + λ

2
vj(x0) = −FSLPj (x0,f ;W + T) + FDLPj (x0,v;T)

−FSLPj (x0,∆f ; I) + (λ− 1)F̂DLPj (x0,v; I), (3.5.7)

with W = W1 + W2 + W3. The non-dimensional jump in traction through the
interface is ∆f = f (1) − f (2) =

Kn

Ca
, with Ca the capillary number, Ca =

µ2uref
σs

; σs is the surface tension present at the interface between fluids 1 and 2,
uref is the characteristic velocity of the problem and K is the local curvature of
the interface. In the following, Ca will be understood to be a control parameter
which tunes the rigidity of the fluid interface.

Proceeding further, we reconsider an arbitrary pointx0 ∈ W3 but, this time, we
derive an alternative integral relation for the velocity v(1)

j (x0) integrating over the
contour of domain Ω2 and taking advantage of the reciprocal theorem for Stokes
flow, leading to:

−FSLPj (x0,f
(1);T + W1 + W2 + I) + FDLPj (x0,v;T + I) = 0. (3.5.8)

Recalling the orientation of the normal vector and the continuity of the velocity on
the interface, summing with equation (3.5.5) we obtain:

1

2
λvj(x0) = −FSLPj (x0,f ;T + W) + FDLPj (x0,v;T)

−FSLPj (x0,∆f ; I) + (λ− 1)FDLPj (x0,v
(1); I) = 0. (3.5.9)

A third integral equation can be obtained proceeding in the same way as before:
we take an arbitrary point x0 ∈ W1,2, we integrate along the contour of domain Ω1

and we apply the reciprocal theorem, i.e

−FSLPj (x0,f
(2);W3 + I) + λFDLPj (x0,v

(2); I) = 0. (3.5.10)

Again, we add equation (3.5.10) to equation (3.5.6) and end up with:

vj(x0)

2
= −FSLPj (x0,f ;W + T)−FSLPj (x0,f ;T) + FDLPj (x0,v;T)

−FSLPj (x0,∆f ; I) + (λ− 1)FDLPj (x0,v; I) = 0. (3.5.11)
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If x0 ∈ T we obtain an equation formally similar to (3.5.11)

vj(x0)

2
= −FSLPj (x0,f ;W + T)−FSLPj (x0,f ;T) + F̂DLPj (x0,v;T)

−FSLPj (x0,∆f ; I) + (λ− 1)FDLPj (x0,v; I). (3.5.12)

Equations (3.5.7), (3.5.9), (3.5.11) and (3.5.12) are a system of integral equations
for the unknown stresses along the solid walls, the interface velocity and the velo-
city or the stress on the top wall T, as function of the applied boundary conditions.
The internal velocity field can be reconstructed using the following relation

αvj(x0) = −FSLPj (x0,f ;W + T)−FSLPj (x0,f ;T) + FDLPj (x0,v;T)

−FSLPj (x0,∆f ; I) + (λ− 1)FDLPj (x0,v; I) (3.5.13)

withα = λ, if x0 ∈ Ω1,

α = 1, if x0 ∈ Ω2.

3.6 Flow over riblets of arbitrary shape
It is worth to note that the general integral representations can be conveniently

simplified if the single phase flow over ribleted surfaces is under consideration. In
this case there are no interfaces and the fluid properties are the same in the whole
domain. The integral representations can be thus easily derived setting λ = 1 and
deleting from the equations derived in section 3.4 and section 3.5 every integral
involving the interface I. The integral representation for the longitudinal and the
transverse flow reduce to

αu(x0) = −FSLP (x0,∇u · n;W + T) + FDLP (x0, u;T), (3.6.1)
αvj(x0) = −FSLPj (x0,f ;W + T) + F̂DLPj (x0,v;T), (3.6.2)

withα =
1

2
, if x0 ∈ W, T,

α = 1, if x0 ∈ Ω,
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for the longitudinal and transverse problem respectively. The integral representa-
tion (3.6.1) and (3.6.2) are equivalent to those given by Luchini et al. [1991], but
expressed here in terms of primary variables and not in terms of stream function
and vorticity.

3.7 Numerical Method
The integral equations described in the previous sections hardly present an an-

alytical solution due to the complexity of the integral operators. The common
practice to obtain a solution is to employ the boundary element method (BEM).
The BEM is the numerical counterpart of BIM and consists in subdividing the
boundary of the domain into a collection of discrete elements. The shape of the
element is important in order to obtain an accurate representation of the boundary
with a low number of element and minimize the computational efforts. The sim-
plest option is to approximate the boundary with a set of straight segments, while
more involved solutions require the usage of high order spline approximations.
The elements’ shape is not the only choice to be taken, since also the boundary
quantities in the integral have to be somehow estimated. The simplest option is
to consider constant the integrand function over each element, but in this case a
large number of elements is to be expected if an accurate solution is needed. A
higher order approximation based on polynomial interpolants is often used to ob-
tain a more accurate solution with a lower resolution. One aspect that is always
to keep in mind is that both the shape of the elements and the order of the bound-
ary quantity interpolants directly reflect on the complexity of the method, leading
to a higher efforts in assembling the numerical code. On the basis of the choices
taken for the shape of elements and the approximation of the boundary quantities,
different types of BEMs are defined [Katsikadelis, 2002]

• sub-parametric: the elements have a lower order with respect to the boundary
quantities;

• iso-parametric: the elements and the boundary quantities are of same order;

• super-parametric: the elements have an higher order with respect to the
boundary quantities.

Our choice is to use a super-parametric BEM, which has a good balance be-
tween accuracy and difficulty of implementation. We employ a linear approxi-
mation for the boundary quantities, while cubic splines for the elements in order
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to have a good approximation of possibly non-straight boundaries. A detail de-
scription of the numerical method is postponed to sections 3.7.1 and 3.7.2; here
we proceed to the discretization of the governing integral equation, without spec-
ifying any type of approximation for either the discrete elements or the boundary
quantities, leading to a general numerical discretization. Independently from the
type of BEM, its main advantage is that it is not necessary to compute the required
functions throughout the domain of solution. Once the unknown boundary distri-
bution is available, the solution at any point may be produced by direct evaluation.
Thus, the key of the boundary-element method is the reduction of the dimension
of the solution space with respect to physical space by one unit.

Let us proceed to the discretization and thus define NT , NW = NW1 +NW2 +

NW3 and NI as the number of the collocation points distributed along the top
boundary, the lower wall and the interface, respectively. The integral equations
in their discrete form for the longitudinal problem read



−DTT · uT +
1

2
uT + STW1,2 · uW1,2

n + λSTW3 · uW3
n − (λ− 1)DTI · uI =

−STT · uTn − STI ·∆uIn,
−DWT · uT − (λ− 1)DWI · uI + λSWW3 · uW3

n + SWW1,2 · uW1,2
n =

−SWT · uTn − SWI ·∆uIn,

−DIT · uT + λSIW3 · uW3
n + SIW1,2 · uW1,2

n − (λ− 1)DII · uI +
1 + λ

2
uI =

−SIT · uTn − SII ·∆uIn,
(3.7.1)

while for the transverse problem
−DTT · vT +

1

2
vT + STW · fW − (λ− 1)DTI · vI = −STT · fT − STI ·∆f I ,

−DWT · vT − (λ− 1)DWI · vI + SWW · fW = −SWT · fT − SWI ·∆f I ,

−DIT · vT + SIW · fW − (λ− 1)DII · vI +
1 + λ

2
vI = −SIT · fT − SII ·∆f I .

(3.7.2)

The quantity un is shorthand notation for scalar product∇u ·n, while ∆un =

[λ∇u(1) − ∇u(2)] · n is the jump in shear stress across the interface and along
the longitudinal direction; the matrices S andD are called influence matrices and
are the discretized counterpart of the single-layer and the double-layer potential
operators defined in (3.5.1) and (3.5.2). The first letter in the superscript denotes
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the position of the collocation point, while the second letter identifies the piece of
boundary over which the integral operator is being evaluated. Since the matrices
D∗∗ have the same size of the corresponding matrices S∗∗, only the size of the
matrices S∗∗ is reported in table 3.1. Regarding the expression of the coefficients
of S andD, they strictly depends on the shape and the order of the interpolation
of the boundary quantities along the elements.

STT 2NT × 2NT SWI 2NW × 2NI

SWT 2NW × 2NT SWW 2NW × 2NW

STW 2NT × 2NW SIT 2NI × 2NT

STI 2NT × 2NI SIW 2NI × 2NW

SWT 2NW × 2NT SII 2NI × 2NI

Table 3.1: Size of the discretized single-layer operator.

If the longitudinal problem is being considered, the size of the operators re-
ported in table 3.1 is to be divided by a factor 4, since the field has only one com-
ponent.

3.7.1 Domain Discretization
Different types of elements can be employed in order to approximate the do-

main’s boundary, however the most accurate results are given by elements defined
by cubic spline interpolation, which lead to a globally smooth representation. To
implement this discretization, let us describe the boundary with nc arbitrary spaced
nodes and define at the ith node the current length si of the polygonal line connect-
ing sequential nodes, measured from an arbitrary starting point.

The ith boundary element included between the i and i + 1 node is described
in parametric form by the cubic polynomials:

x(s) = B(s) = ai(s− si)3 + bi(s− si)2 + ci(s− si) + xGi , (3.7.3)

y(s) = B
′
(s) = âi(s− si)3 + b̂i(s− si)2 + ĉi(s− si) + yGi , (3.7.4)

with xGi = (xGi , y
G
i ) the Cartesian coordinates of the ith node. Three conditions

for each coordinate parametrization are needed to fix the coefficients in equations
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(3.7.3) and (3.7.4). Keeping, for example, the x−coordinate and defining hi =

s− si, we must require:

1. the interpolation condition:

Pi(si + 1) = xGi+1 = xGi +axih
3
i + bih

2
i + cihi, i = 1, . . . , nc− 1 (3.7.5)

2. the slope continuity at the interior nodes, dPi(si+1)
ds

= dPi+1(si+1)
ds

:

3aih
2
i + 2bihi + ci = ci+1, i = 1, . . . , nc − 2 (3.7.6)

3. the continuity of curvature interior nodes, d
2Pi(si+1)
ds2

= d2Pi+1(si+1)
ds2

:

6aihi + 2bi = 2bi+1, i = 1, . . . , nc − 2. (3.7.7)

Rearranging properly relations (3.7.5-3.7.7) we can find the following relations for
the unknown coefficients:

hi
3
bi+2 + 2

hi + hi+1

3
bi+1 +

hi+1

3
bi+2 =

xGi+2 − xGi+1

hi+1

−
xG − xGi+1 − xGi

hi
,

(3.7.8)

ai =
bi+1 + bi

3hi
(3.7.9)

ci =
xG − xGi+1 − xGi

hi
+ hi

bi+1 + 2bi
3

, (3.7.10)

for i = 1, . . . , nc − 2. Thus, relation (3.7.8), (3.7.9) and (3.7.10) lead to a linear
system of nc − 2 equations in nc unknowns, which require two more equations
to be solved. One simple way to overcome this problem is to fix b1 = 0 and
bnc = 0, which practically means to impose a zero local curvature at starting and
ending points of the discretized contour. A more gentle way to treat the boundary
conditions is to use the clamped end spline, which fixes the slope at the boundary
points with the same value of the third order Lagrangian polynomial fitting the
three nearest neighbouring points; the latter is our favourite choice.

Finally, having obtain the spline coefficients for all the elements, the local cur-
vature along the discrete contour is:

K =
xsyss − ysxss
(xs2 + ys2)

3
2

, (3.7.11)

where the subscript s denotes the derivativewith respect to the curvilinear abscissa.
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3.7.2 Computation of the boundary integrals
In this section, we describe more extensively some numerical details. In partic-

ular, we consider the computation of the single-layer and the double-layer integral
operators, which are the entries of the matrices S∗∗ and D∗∗ composing the dis-
crete system of boundary integral equations.

Ek-1

Ek

Figure 3.5: Sketch of two adjacent elements approximated by cubic splines. The
symbol • represents the collocations points defined at the end of each element.

The starting point is to define the shape of the boundary element, which, in
our case, is a spline connecting two collocation points, as shown in figure 3.5. We
define a curvilinear abscissa, s, over the element Ek and we recast the operators
(3.5.1) and (3.5.2) as

FSLPj (x0,u;Ek) =
∫ s2

s1
fki [x(s)]Gij[x(s),x0]hks(s) ds (3.7.12)

FDLPj (x0,u;Ek) =
∫ s2

s1
uki [x(s)]Tijl[x(s),x0]nl[x(s)]hks(s) ds, (3.7.13)

where hks(s) is the metric associated with the element:

hs(s) =

Çdx
ds

å2

+

Ç
dy

ds

å2
 1

2

. (3.7.14)

We apply another coordinate transformation which maps an element from the
global coordinate system based on the curvilinear abscissa to a local coordinate
system such that the kth element’s boundary points are mapped onto the interval
[−1, 1]. This mapping will result useful for the numerical quadrature of boundary
integrals and can be simply carried out using the following relation:

s(ζ) =
(s1 + s2)

2
+

(s2 − s1)

2
ζ = sm + sdζ, (3.7.15)

from which we can easily define the associated metric hζ = sd. Introducing this



3.7 Numerical Method 66

-1 1

Figure 3.6: Schematic view of an element parametrized using the local coordinates
ζ: the red cross marks the position of the collocation points, while the black dot
marks the starting and ending points of the element.

new parametrization into the integrals (3.7.12) and (3.7.13) we obtain:

FSLPj (x0,f ;Ek) = hkζ

∫ 1

−1
fki (x(s(ζ)))Gij(x(s(ζ)),x0)hks(s(ζ)) dζ, (3.7.16)

FDLPj (x0,u;Ek) = hkζ

∫ 1

−1
uki (x(s(ζ)))Tijk(x(s(ζ)),x0)nk(x(s(ζ)))hks(s(ζ)) dζ.

(3.7.17)

Until now, no assumption has beenmade on the interpolationmethod of the bound-
ary quantities over the element. We use a piecewise linear variation, which is a
good compromise between accuracy and programming difficulty; thus, let us con-
sider an element parametrised using the local coordinate ζ , as show in figure 3.6,
and require that:

u(ζ) = ψ1(ζ)u1 + ψ2(ζ)u2, (3.7.18)

f(ζ) = ψ1(ζ)f1 + ψ2(ζ)f2, (3.7.19)

where ψ1 =
l2 − ζ
L

and ψ2 =
l1 + ζ

L
are shape functions. Introducing relations

(3.7.18) and (3.7.19) into the expression of the single- and double-layer integrals,
we can recast (3.7.16) and (3.7.17) as:

FSLPj (x0,f ;Ek) = fki A
1
ij + fk+1

i A2
ij, (3.7.20)

FDLPj (x0,u;Ek) = ukiB
1
ij + uk+1

i B2
ij, (3.7.21)

where Anij and Bn
ij are know tensors of the form:

Anij = hkζ

∫ 1

−1
ψn(ζ)Gij(ζ)hs(ζ) dζ, (3.7.22)

Bn
ij = hkζ

∫ 1

−1
ψn(ζ)Tijl(ζ)nl(ζ)hs(ζ) dζ. (3.7.23)
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P2

P2

P1

Figure 3.7: Sketch of two boundary patches, with several collocation point defined
over them.

The integrals (3.7.22) and (3.7.23) can be computed numerically by using the
Guass-Legendre quadrature rule, if the integrand is non-singular. The singular
integral case is more tricky and special techniques must be employed, as exten-
sively illustrated in the following section. We consider now two adjacent elements
sharing the kth collocation point, as shown in figure 3.5, and we write down the
following quantities

SLlk = A2
ij|k−1
k + A1

ij|kk, (3.7.24)

DLlk = B2
ij|k−1
k +B1

ij|kk, (3.7.25)

where in the notation |∗∗ the superscript stands for the element over which the in-
tegral is being evaluated, while the subscript represents the collocation point con-
sidered.

As an example, referring to figure 3.7, we consider the assembling of the influ-
ence matrixDP1P2 relative to the double-layer potential operator for two arbitrary
patches, called P1 and P2, with NP1 and NP2 collocation points, respectively.

The discretized double-layer operatorDP1P2 reads

DP1P2 =


DL1

1 DL1
2 . . . DL

NP2
1

DL1
2 DL2

2 . . . DL
NP2
1

... ... ... ...
DL1

NP1
DL2

NP1
. . . DL

NP2
NP1

 ; (3.7.26)

here DLlk stands for the quantities (3.7.25) calculated at the kth point belonging
to P2 considering the lth collocation point belonging to P1. Particular attention
should be paid when a collocation point is not shared by two adjacent segments.
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In this caseDLk turns out to be

DLlk = B1
ij|kk, (3.7.27)

if the collocation point is located on the left of the element, while

DLlk = B2
ij|kk, (3.7.28)

if the collocation point is located on the right of the element. The assembling
methodology is the same for other cases, with no difference in the procedure if we
consider the single-layer potential.

3.7.3 Non-singular integrals
The integrals (3.7.22)-(3.7.23) are the building blocks for the numerical solu-

tion of the boundary integral equations. Let us recall the periodic velocity Green’s
function and its associated stress tensor in order to highlight the problems that may
arise in their numerical evaluation. Starting fromGij:

A(x̂) =
1

2
log{2[cosh(ωŷ)− cos(ωx̂)]}, (3.7.29)

G11 = −A(x̂)− ŷ ∂A(x̂)

∂ŷ
+ 1, (3.7.30)

G12 = ŷ
∂A(x̂)

∂x̂
, (3.7.31)

G22 = A(x̂) + ŷ
∂A(x̂)

∂x̂
. (3.7.32)

where x̂ = x−x0 and ω = 2π
L
, with L the period of the flow. The components of

the stress tensor Tijk are:

T111 = −4
∂A(x̂)

∂x̂
− 2ŷ

∂2A(x̂)

∂x̂∂ŷ
, T112 = −2

∂A(x̂)

∂ŷ
− 2ŷ

∂2A(x̂)

∂ŷ∂ŷ
, (3.7.33)

T212 = 2ŷ
∂2A(x̂)

∂x̂∂ŷ
, T222 = −2

∂A(x̂)

∂ŷ
+ 2ŷ

∂2A(x̂)

∂ŷ∂ŷ
. (3.7.34)

If the point x0 does not lay over the same element for which we are performing
the integration, integrals (3.7.22) and (3.7.23) are not singular and can be approx-
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imated using the Gauss-Legendre formula, using Nq quadrature points, as:

hkζ

∫ 1

−1
ψn(ζ)Gij(ζ)hs(ζ) dζ = hkζ

Nq∑
q=1

ψn(ζq)Gij(ζq)hs(ζq)wq, (3.7.35)

hkζ

∫ 1

−1
ψn(ζ)Gij(ζ)hs(ζ) dζ = hkζ

Nq∑
q=1

ψn(ζq)Tijl(ζq)nl(ζ)hs(ζq), (3.7.36)

where ζq is the position of the qth quadrature point along the interval [−1, 1] and
wq is the associated weight.

3.7.4 Singular integrals
In the case of two-dimensional flows, as considered here, since the integrand of

the double-layer potential exhibits a discontinuity across the collocation point x0

special accommodations are not necessary. In contrast, the single-layer potential
exhibits a logarithmic singularity for the diagonal component ofG. The basic idea
to solve this problem is to subtract off the singularity. Thus, turning attention only
to the term which contains the logarithm we add and subtract hsψ(s) log(r), r =

|x− x0|, to the integrand in (3.7.12), obtaining:

− 1

2

∫ s2

s1
hs(s)ψn(s) log{2[cosh(ωx̂2)− cos(ωx̂1)]} ds =

− 1

2

ñ ∫ s2

s1
hs(s)ψn(s) log

®
2

r
[cosh(ωx̂2)− cos(ωx̂1)]

´
+

hsψn(s) log(r) ds

ô
. (3.7.37)

The first term of the integrand is non-singular and can be accurately computed by
Gauss-Legendre quadrature, but the second term involving log(r) is still singular
and further manipulations are necessary. Calling s0 the curvilinear abscissa of the
singular point, we add and subtract hs(s)ψn(s)log(|s− s0|) and recast the integral
as:
∫ s2

s1
hsψn(s) log(r) ds =

∫ s2

s1
hs(s)ψn(s) log

Ç
r

|s− s0|

å
ds+∫ s2

s1
hsψn(s)log(|s− s0|) ds. (3.7.38)
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Again, the first term in the integrand is non-singular, but we must proceed to de-
singularize the second term:∫ s2

s1
hs(s)ψn(s)log(|s−s0|) ds =

∫ s2

s1

î
hsψn(s)−hs(s0)ψn(s0)

ó
log(|s−s0|) ds+∫ s2

s1
hs(s0)ψn(s0) log(|s− s0|) ds. (3.7.39)

Finally we can conclude the de-singularization noting that hs(s0)ψn(s0) is constant
thus:∫ s2

s1
hs(s0)ψn(s0) log(|s− s0|) ds = hs(s0)ψn(s0)

î
|s2− s0|

Ä
log(|s2− s0|)−1

ä
+ |s1 − s0|

Ä
log(|s1 − s0|)− 1

äó
. (3.7.40)

Summing up, we can compute numerically the singular integral on the left-hand-
side of (3.7.37) as:

− 1

2

∫ s2

s1
hs(s)ψn(s) log{2[cosh(ωx̂2)− cos(ωx̂1)]} ds =

−
Nq∑
q=1

hζwq
2

hs(ζq)ψn(ζq) log

®
2

r
[cosh(ωx̂2(ζq))− cos(ωx̂1(ζq))]

´
+

hs(ζq)ψn(ζq) log

Ç
r

|s(ζq)− s0|

å
+
î
hs(ζq)ψn(ζq)− hs(s0)ψn(s0)

ó
log(|s(ζq)− s0|)

−
hs(s0)ψn(s0)

2

Ç
|s2 − s0|

Ä
log(|s2 − s0|)− 1

ä
+ |s1 − s0|

Ä
log(|s1 − s0|)− 1

äå
.

3.7.5 Time advancement of the interface
The problem to be solved holds under the quasi-steady approximation and thus

there is no explicit time dependency. However, because of the presence of surface
tension, the interface has to be advanced through a series of intermediate states
in order to find its steady state position, prescribed by the physical parameters in-
volved in the simulation. Since we have assumed that there this no deformation
along the longitudinal direction, then the interfaces is to be updated in time only
along transverse direction. In doing so, the boundary element method presents no-
table advantages with respect to other interface tracking techniques, since we can
easily perform an accurate Lagrangian tracking of the interface, using the colloca-
tion points employed for the discretization. In our code they are advanced in time
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using the following rule

dx(i)

dt
= (ui · ni)ni, i = 1, . . . , NI , (3.7.41)

where x(i) are the ith collocation point and ni is the normal to the interface at
x(i). Using the normal velocity to advance the interface, instead of the velocity
u, is found to be very effective in limiting the spreading of the collocation points,
with the consequent advantage that the interface does not need to be frequently
remeshed. Equation (3.7.41) can be discretized with any explicit scheme for or-
dinary differential equations. We have implemented both the first order Euler and
the second order Runge-Kutta (RK2) integration, finding very few differences be-
tween the two schemes. However, since the RK2 scheme requires the evaluation of
the interfacial velocity at two different time steps, with the consequent solution of
the boundary element system, we prefer a simpler and faster one-step integration.

Once the interface reaches a steady state, its shape is used for the computation
of the longitudinal protrusion heights.

3.7.6 Enforcement of mass conservation
One hidden issue in solving flows in the presence of interfaces, is that a unique

solution of the integral equations cannot be found for arbitrary values of the vis-
cosity ratio λ. This was described in particular by Pozrikidis [1992, 2002] and
the drawback encountered in solving such equations is that a leak or an increase
of the mass of fluid inside a closed domain may occur in time; this phenomenon
becomes more important as the viscosity ratio λ decreases [Tanzosh et al., 1992].
One way to deal with this problem and remove the non-uniqueness of the solution
is proposed in Pozrikidis [2001] and requires adding the following term

zj(x0)
∫
C
ui(x)ni(x)dl (3.7.42)

to the double-layer potential along the interface into the integral equations. Here
zj(x0) is an arbitrary function such that

∫
C
zini 6= 0, with nj the normal vector to

the interface. The simplest choice is zj = nj and, since this terms shift the eigen-
values of the double-layer potential operator, the procedure is known as deflation.

An alternative method to ensure mass conservation is proposed here. We start
by noting that each boundary integral problem can be reduced to the solution of a
linear system of the type:

Ax = b, (3.7.43)
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whereA and b are the boundary elementmatrix and the right-hand-side, dependent
on the original boundary integral formulation of the problem, while x is the vector
containing the unknowns. For incompressible flows, the mass conservation inside
a domain Ωi can be readily written as

∇ · u = 0, (3.7.44)

with u the velocity vector inside the domain Ωi. Integrating (3.7.44) over the
volume Ωi and taking advantage of Green’s theorem we obtain∫

∂Ω
u · n dS = 0. (3.7.45)

The integral relation (3.7.45) can be discretized in the same fashion as the single-
layer and the double-layer potentials, leading to a simple linear equation of the
form

c · u = 0, (3.7.46)

where c is a vector containing the coefficients of the unknown velocity at the collo-
cation points. The form of the coefficient depends, again, on the type of collocation
method chosen to discretize the boundary integral equation. If we are in the pre-
sence of multiple fluid volumes, we can easily extend expression (3.7.46) as

Cx = 0. (3.7.47)

The ith row of the matrix C contains the coefficients arising from the discretiza-
tion of equation (3.7.45) for the ith fluid domain. Clearly, the matrixC will present
zero entries for those unknowns which are not the interfacial velocities to be con-
strained. We now wish to add the set of mass-conservation constraints to the
boundary element system (3.7.43); this is not an easy task since, usually, the sys-
tem is already closed and simply adding an additional constraint equation will lead
to an over-determined system. Discharging as many equations as the number of
constraints would be an available option, but it is not clear which equations are to
be substituted and a loss of accuracy might result. To solve this issue, the idea is to
introduce in the system each additional equation with associated an unknown La-
grange multiplier Λ, which will render the boundary element system well balanced
and force the solution to respect mass conservation for any value of the viscosity
ratio, λ. We consider the following Lagrangian functional

L =
1

2
xTAx− xTb+ ΛT (Cx), (3.7.48)
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where the first two terms in L function represent the potential energy of the un-
constrained system, while the last term represents the energy needed to maintain
the constraints. Λ is a vector containing the Lagrange multipliers, one for each
interface within the domain Ω. Now, we proceed to minimize L, requiring that its
total variation, δL, is zero for every possible value of δx and δΛ, thus

δL =
∂L
∂x
· δx+

∂L
∂Λ
· δΛ = 0, (3.7.49)

which leads to the following conditions over the gradient of the Lagrangian func-
tional:

∂L
∂x

= 0,
∂L
∂Λ

= 0. (3.7.50)

By imposing the conditions above, we produce a new linear system, which incor-
porates the desired constraints:[

A CT

C 0

] [
x

Λ

]
=

[
b

0

]
. (3.7.51)

This method is of easy implementation and, since usually the boundary element
matrix is dense, it does not destroy an eventually banded form of the final matrix.
However, the size of the matrix increases and this can become undesirable when a
large number of interfaces is present.

3.7.7 Physical interpretation of the Lagrange multiplier
In order to describe the physical meaning of the Lagrange multiplier Λ, we

reconsider a slightly modified, but more general, version of equation (3.7.45):∫
∂Ω
u · n dS = q̇∗, (3.7.52)

which assigns a generic value to the flow rate across the target boundary. The
relation (3.7.52) can be readily discretized in

Cx = q, (3.7.53)

where the right hand side q takes into account possible flow of fluid through the
boundary ∂Ω.

The Lagrangian functional now takes the form:

L =
1

2
xTAx− xTb+ ΛT (Cx− q) = E(x, q) + ΛT (Cx− q), (3.7.54)
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with E(x, q) the energy associated with the boundary element linear system. De-
riving the Lagrangian with respect to q we obtain:

∂L
∂q

=
∂E
∂q
−ΛT , (3.7.55)

and stationarity implies that
∂E
∂q

= ΛT , (3.7.56)

i.e. the Lagrange multiplier Λ represents the sensitivity of the energy E of the
system with respect to variations in the mass flow rate through the contour ∂Ω.

3.8 Single phase flow validation
Since the boundary element computer code used in the present study has been

developed "ad hoc", an extensive validation campaign is mandatory in order to
test the predictive capabilities of the software. The single phase validation has an
important role since it is the first benchmark for the numerical integration of the
discrete single-layer and double-layer operators, which are to be used also in the
two-phase computations, and the linear system assembling.

We have selected to test the code with the pioneering work by Luchini et al.
[1991], who first computed the protrusion heights for a series of wall textures com-
posed by a periodic array of riblets of known shape. In this case, there is no gas
filling the cavities, so we can refer to these simulations as pertaining to a fully wet-
ted, Wenzel state. In their work, Luchini and co-workers computed the values of
the protrusion heights employing a boundary element method, aimed to numeri-
cally solve a set of Laplace equations, coming form the longitudinal and transverse
problem, where the latter were reformulated in term of vorticity and stream func-
tion.

The riblets shape considered is not particularly complicated and it is given in
terms of the following analitycal functions:

• co-sinusoidal profile, y(x) = 2s
π x

2 − 4sx,

• parabolic profile, y(x) = πs(cos(x)− 1),

where s is a parameter which tunes the depth of the protrusion, while the periodic-
ity b of the grooves has been taken equal to 2π. Since the periodicity is not unitary,
the results are presented in term of ratio between the value of the protrusion height.
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The simulations’ strategy is based on the discretization of the boundary with an
adequately large number of spline elements and the calculation of the velocity at
some height y = H far enough from the wall boundary. In all of our simulations,
H = 10b is used if not stated otherwise, which permits to avoid any boundary
effect on the velocity distribution. There are no additional computational cost in
defining the upper boundary, where the velocity is measured, far from the riblet
since the inside of the domain is not meshed with the BEM. The results are re-
ported together with the reference case in figure 3.8. We find excellent agreement
between our simulations and the results reported by the selected reference, with a
percentage error always within 1%. The values of the protrusion heights are, as ex-
pected, dependent on the riblet’s geometry and tend to an asymptotic value along
with the wall penetration s → ∞. This is a very important physical result, since
the level of slippage generated at wall has an upper bound that cannot be overcome,
for any given geometry. It is worth to note that, in theory, the best possible riblets’
configuration are a series of equispaced, infinity deep grooves, known as blades.
In this case, an analytical solution for the protrusion heights (normalized with re-
spect to the periodicity) can be found and it is determined to be h|| = π−1 log 2,

while h⊥ =
1

2π
log 2, which is exactly equal to

h||
2

[Luchini et al., 1991].

Figure 3.8: Computed protrusion heights normalized by the riblet’s periodicity .
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3.9 Fractal riblets
Whether one considers random roughness or regular nano-structuring of the

surface texture, it appears appropriate to start by examining the properties of frac-
tal surfaces. The application of fractals to characterize rough surfaces dates back
to the eighties Mandelbrot et al. [1984], Gagnepain and Roques-Carmes [1986],
Frederick [1987], upon the recognition that many rough surfaces demonstrate self-
similar properties to some extent and over a certain range of scales. Today, etching
techniques (plasma, laser, electrochemical), litography (photo, X-ray, etc.), depo-
sition and other approaches are routinely used to micro- and nano-texture surfaces
for applications ranging from MEMS to magnetic storage devices.

In this section, we take advantage of the boundary element method to compute
the protrusion heights for Koch-like riblets which iteratively protrude either toward
the fluid region or cave in at the wall. The microscopic, near-wall configuration
which we have considered consists of regular triangular groove (see figure 3.9,
left frames). The sides of the triangle are taken of equal length and the angle
at the base, α, is taken equal to either 45o, 60o, 90o or 120o. The first fractal
iteration, second column in the figure, is achieved by dividing each side of the
triangle into three segments and inserting an isoscope triangle (of same vertex
angle α) in place of the central segment, so that each segment of the newly created
fluid-solid has equal length. The newly rough boundary created can either protrude
towards the fluid (top row) or contract at the wall (bottom row). Figure 3.9 shows
the first three iterations of the process, which yields what is known as the Koch
curve for the case α = 60o. The angle α defines also the fractal dimension of
each curve, characterizing its magnification. In fact, at each step of the iterative
procedure, each line segment is replaced byN = 4 segments of equal length, with
each self-similar copy

1

Sα
=

1

2
Ä
1 + sinα

2

ä as log as the original. The Housdorff

dimension is Dα =
log(N)

log(Sα)
, irrespective of whether the wall sticks further out in

the course of the iterations or caves in. For the cases considered here it is D45 =

1.3629, D60 = 1.2619, D90 = 1.1290, D120 = 1.0526 . The fractal dimension
Dα cannot, alone, characterize the surface completely; however, we will see later
that for inward moving surfaces (bottom row of figure 3.9) the amount of drag
reduction increases with Dα.

For each one of the wall textures shown in figure 3.9, the Stokes equation is
solved in the fluid region, up to somewall units above the surface, on account of the
physics of the near-wall turbulent problem which is dominated by viscous forces.
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⊺

α

α

Figure 3.9: Iterative process in the construction of fractal riblets, for both outward
(top row) and inward moving curves.

The inner problem decouples into two set of equations, one for the longitudinal
flow and one for the cross flow, as described by Luchini et al. [1991]. For the
sake of brevity the equations and the boundary conditions are not reported here;
it suffices to say that the results of the two decoupled problems yield h‖ and h⊥,
given that, on a grooved surface, the asymptotic behavior of the velocity vector far
from the surface has the form Crowdy [2010]:

(u, v, w) = (y + h‖, 0, y + h⊥), (3.9.1)

with u, v and w respectively the streamwise, wall-normal and spanwise velocity
components. The two protrusion heights are drawn (qualitatively) in the top left
frame of figure 3.9, and are measured with reference to the (arbitrary) origin of the
y-axis.

The numerical solution of the microscopic equations is carried out in a domain
of spanwise dimension equal to one, and vertical dimension sufficiently large for
the asymptotic solution to be established (the upper boundary can safely be taken
at y = 4). It is accomplished by a boundary element method Alinovi and Bottaro
[2018], extensively validated against results in the literature.

The calculation of the slip lengths takes advantage of the asymptotic relations
(3.9.1) for the velocity fields, which are directly measured by our numerical code
on a auxiliary patch located far enough from the riblet at some distance y = y∗. The
estimation of the protrusion heights is thus obtain simply by the formula h|| = u/y∗

and similarly for the transverse case.
Examples of numerical results are given in figure 3.10. The iso-colors in the
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figure define the streamwise velocity (which arises from the solution of a Laplace
equation for u [Bechert and Bartenwerfer, 1989]), whereas the streamlines (with
arrows) represent the secondary velocity vector, (v, w), stemming from the solu-
tion of a two-dimensional Stokes problem in the (y, z) plane [Luchini et al., 1991].
A larger secondary vortex appears in the image in the right frame, a feature asso-
ciated to larger values of both protrusion heights.

Figure 3.10: Numerical solutions for the base configuration with α = 90o (left
frame) and for the third, inward moving iterate. The colors refers to the stream-
wise velocity component, u, while the lines with arrows are streamlines of the
secondary, (v, w), flow.

The distances h‖ and h⊥ define virtual walls for, respectively, the longitudinal
and transverse velocity profiles. The significant length scale, independent of the
choice of the origin, is however ∆h, displayed in figure 3.11; the figure shows that
∆h increases as the wall moves inwards (triangular symbols) for all α’s. By the
third iteration the results are essentially converged and further iterations on the
fractal curve produce negligible modifications of ∆h for both the "i" and the "o"
cases. The variation in ∆h between the initial configuration (it = 0) and the last
iteration (it = 3) quantifies, for each opening angle, α, the additional drag reduction
which we might expect when using fractal riblets (as by eq. (1)). Such a variation
is equal to 4% when α = 45o, 7% when α = 60o, 17% when α = 90o, and to
almost 31% when α = 120o. Thus, the least efficient riblets (the triangular ones,
with vertex angle α = 120o) are those which have the most to gain by hierarchical
micro- and nano-structuring. When α is equal to 45o we have the best results
among all cases considered, in terms of drag reduction, but it is likely that even
better results can be obtained by reducing α or increasing Dα as figure 3.11(b)
suggests. It is important to stress, however, that the best results found here are
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not the absolute best results which could be found; it is possible, for example, that
hierarchically nano-structured blade-riblets yield even larger values of ∆h. The
search for the optimal riblet shape is left for future work.

0 0.5 1 1.5 2 2.5 3
it

0
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D
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Figure 3.11: Protrusion height difference for all the cases considered, as function
of the fractal iteration (a) and as function of the fractal dimension for it = 3 (b).

The results in terms of protrusion heights for both inward ("i") and outward
("o") moving surfaces are reported in Table 1, for the base configuration (indicated
by "it = 0") and up to the third iteration. The outward protruding results for the
case α = 45o and α = 60o are not present in the table (nor in the following figure
3.11(a)) because the vertices of the triangles added in the first iteration touch one
another, creating two disconnected fluid regions.
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3.10 Two phase flow validation
The two phase flow validation has been conducted in a more intensive way. We

have selected a series of benchmark test cases taken from the literature, involving
different types of problems. The test are aimed to validate the both Stokes and
Laplace solver, with a special attention to the problem of the mass conservation
occurring in a standard BEM, as discussed in [Alinovi and Bottaro, 2018].

3.10.1 Relaxation of a two dimensional droplet
We start by studying the relaxation of a two dimensional droplet from an ellipse

of given aspect ratio, as show in figure 3.12. We assume that the droplet, initially at
rest, lies in an infinite free space filled with a different fluid. The droplet will start
to contract, under the effect of surface tension, until a circular shape is reached.
During the droplet’s contraction, the evolution of the semi-major axis a is moni-
tored, up to the steady state.

b
a

t

t

Figure 3.12: An elliptic droplet deforming into a circle. The right figure shows the
evolution of the interface in time.

In order to perform this study we take advantage of the free space Green’s
function and its associated stress tensor, which read

Gij(x,x0) = −δijlog(r) +
x̂ix̂j
r2

, Tijk(x,x0) = −4
x̂ix̂jx̂k
r4

, (3.10.1)

where r is the distance between the points x and x0, while x̂i = xi − x0i .
Regarding the boundary integral formulation, we note that this case corre-

sponds to solving the systemï
(λ− 1)DII +

1 + λ

2
I
òï
u
ò

= −SII∆f I , (3.10.2)
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for the interfacial velocity u, with the unit normal vector pointing outside of the
droplet. We can force the system to respect the mass conservation constraint fol-
lowing the formulation in equation (3.7.51). Since in this case we have only one
interface, the matrixC degenerates to a single equation, and, in practice, only one
line and one column must be added to the original linear system.

For this problem we consider three different values of the viscosity ratio, λ =
1

10
,

1

20
,

1

100
, and three different values of the capillary number, Ca = 0.1, 1, 10,

which tunes the rigidity of the interface and the velocity of the relaxation. Since
the aspect ratio of the ellipse is

a

b
= 2, we aspect that, after a transient, the fluid

interface assumes a circular shape with radius equal to
√

2 (provided b is initially
set to one). For this simulation we use 60 spline elements and employ a fixed time
step∆t = 0.01 for the lower capillary number, while∆t = 0.05 for the others. The
number of elements is selected in order to obtain a good matching with respect to
the steady state radius of the droplet (here we obtain a value close to the theoretical
one, up to the fourth decimal place). However, a lower number of elements would
be equally satisfactory, since the spline elements are very suitable to discretize
curved boundaries. The time step is selected in order to have a stable time evolution
of the interface, which could in principle suffer of numerical instability due to the
explicit scheme used. Its influence on the simulations is negligible since the Stokes
equation is being solved under the quasi-steady approximation. We have validated
our implementation (without the Lagrange multiplier approach) against the code
written by Pozrikidis and publicly available with the library BEMLIB Pozrikidis,
finding indistinguishable differences between the results of the two codes. In the
following we will call this latter method the standard approach, to distinguish it
from techniques which enforce continuity explicitly, including the original one
developed in the course of this thesis work.

The results, reported in figure 3.13 and 3.14, compare the evolution of the
semi-major axis, a, in time for both the Lagrange multiplier approach and the stan-
dard formulation. Even if the initial transient path is similar, we note (symbols) a
continuous decrease of the semi-axis a after the droplet has reached the circular
shape. The effect of this mass loss is enhanced as the viscosity ratio and the cap-
illary number become smaller. Imposing the constraint (3.7.45), the radius of the
droplet remains constant in time, when t is sufficiently large, and equal to

√
2 for

all the values of λ and Ca tested.
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Figure 3.13: Evolution of the major semi-axis of the droplet for different values
of λ and Ca = 0.1. The solid lines display results obtained with the Lagrange
multiplier approach, while the markers refer to the standard BEM formulation,
i.e. without explicitly enforcing mass conservation. At steady state, the value of
a =

√
2 is correctly rendered by the Lagrange multiplier approach. The initial

relaxation of the droplet is independent of the viscosity ratio.
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Figure 3.14: Evolution of the major semi-axis of the droplet for λ = 0.01 at dif-
ferent Ca. The circles denotes the variation of a with time, without using the
Lagrange multiplier approach. The initial relaxation of the droplet is slower the
larger is Ca, i.e for small surface tension the droplet reaches its final shape in a
longer time.
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Figure 3.15: Comparison between Lagrangemultiplier approach (solid line), defla-
tion approach (empty circles), and standard formulation (dashed line) at λ = 0.01

and Ca = 1
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Figure 3.16: Maximum normal velocity history. The dashed line corresponds to
the standard (unconstrained) implementation, the line with empty circles corre-
sponds to the deflation approach, while the solid line correspond to the Lagrange
multiplier approach.

In section 3.7.6, we have mentioned the possibility to modify the expression of
the double-layer potential to satisfy mass conservation for all possible values of λ
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[Pozrikidis, 2001]. We have thus performed again the simulations implementing
in our code the proposed deflation correction and have compared the results with
the Lagrange multiplier approach, obtaining a very good agreement between the
two methods, as shown in figure 3.15. This agreement corroborates the validity of
our approch. However, as will be shown in the next cases treated, we have found
that the method of Lagrange multipliers yields better performance in term of mass
conservation. Focusing on the normal velocity along the interface, we take its max-
imum absolute value as a convergence indicator. If the problem admits a steady
state solution, the interface should assume a position such that the maximum nor-
mal velocity vanishes. The comparison between the methods is shown in figure
3.16. We observe that the maximum normal velocity decreases until reaching a
plateau, whose value is dependent on the number of element used to discretize
the droplet and goes down as the number of elements increases. The Lagrange
multipliers approach offers a better performance in minimizing the maximum nor-
mal velocity along the droplet’s interface at steady state, which is several orders
of magnitude lower with respect to the method proposed by Pozrikidis [2001] at
the same spatial resolution and time step. We have found out during the simula-
tions that mass leakage depends on the number of elements employed, decreasing
with the increase of the resolution. It is worth observing that the problem of mass
conservation at low viscosity ratios is intrinsic to the boundary element method
and using a large number of elements does not solve the problem at the source.
The method described here is more accurate (at any given resolution) and compu-
tationally efficient.

3.10.2 Deformation of a droplet under a shear flow
We aim to reproduce the numerical results of a single droplet confined in a

channel of height 2H and length L, as shown in figure 3.17. The shear flow is
generated by the two channel walls, moving at a given velocity U in opposite di-
rections. The reference numerical simulations has been performed by Sheth and
Pozrikidis [1994], who have employed for their computations a finite difference
code with embedded a volume of fluid method. They conducted a parametric study
of the deformation of the droplet by varying the viscosity ratio droplet/outer fluid
and the Reynolds number inside the channel. Since our formulation is valid only
for the Stokes flows, we refer to the simulation presented in the reference atRe = 1,
which falls reasonably close to our approximation. The droplet of viscosity µd is
neutrally buoyant and placed in the middle of a square channel of thickness 2H ,
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filled with a fluid with viscosity µf . The diameter of the droplet,D, is equal to half
the channel height. The base flow, u, generated by the applied boundary conditions
can be easily calculated analytically and reads

u(y) =
U

H
(y −H), (3.10.3)

where y is the wall-normal coordinate.

y

x

L

Figure 3.17: Sketch of the numerical experiment of a droplet in a shear flow.

The boundary integral equation is similar to the one employed in the previous
section, but this time two walls are in the domain of interest. The effect of the
walls can be taken into account by using different approaches. In both cases the
Green’s function can be selected in order to satisfy the periodicity of the flow, thus
avoiding the discretization of the inlet and outlet of the channel. The simplest
choice for the flow representation, is to derive the boundary integral equation for
the disturbance velocity generated by the droplet immersed in the flow given by the
relation (3.10.3): this procedure has been adopted by Zhou and Pozrikidis [1993].
In our case, the walls are explicitly taken into account by adding the related single-
layer and double-layer potentials. The two approaches are completely equivalent
in term of results, but the second approach give raise to similar integral relation
with respect to the one discussed in this thesis.
We have selected from the reference work two different cases, involving different
viscosity ratios, λ = µd

µf and droplet’s surface tension σs(i.e. capillary numbers),
as reported in table 3.3.
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Case λ Ca

1 1 0.2

2 10 0.4

Table 3.3: Non-dimensional parameters used in present numerical experiments.

Since the flow is steady and anti-symmetric with respect to the half-channel height,
the droplet is expected to deform under shear stresses acting on its surface and to
reach a well defined deformed configuration. Even in this case, the agreement
with the literature is very good, with the droplet fitting perfectly the shape found
by Sheth and Pozrikidis [1994].

(a) (b)

Figure 3.18: Deformation of a droplet in a shear flow. The solid lines are the
computed shapes for case 1 (a) and case 2 (b), while the colored dots are the shapes
computed by Sheth and Pozrikidis [1994].

3.10.3 Relaxation of a pinned interface
For this numerical example, we consider a simple cavity bounded by threewalls

of length L and a fluid interface, pinned at the corners of the cavity, as sketched
in figure 3.19. The initial shape of the interface is a cosine wave of equation
y0(x) = b cos(

2π

L
x)− b, where b is a constant. Similarly to the droplet’s case, the

surface tension between the two fluids induces the motion of the interface, which
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experiments a transition from the initial shape to a prescribed shape, analytically
available under the hypothesis of small amplitude deflection of the interface. The
Young-Laplace equation, expressed for convenience in non-dimensional form, is

d2y

dx2

ï
1 +

Ådy
dx

ã2ò− 3
2

= C1, (3.10.4)

with C1 = ∆P the non-dimensional pressure jump across the interface and y the
vertical displacement of the interface. If the curvature of the interface is small
enough, the term in brackets in equation (3.10.4) tends to one, leading to the fol-
lowing approximate solution

y(x) =
C1

2
x(x− L), (3.10.5)

after imposing the boundary conditions

y(0) = 0, y(L) = 0. (3.10.6)
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Figure 3.19: Sketch of the cavity with a wavy interface (left), and successive posi-
tions assumed by the interface during its relaxation into a parabolic shape (right).

Particular attention should be payed to the constant C1: since the pressure dif-
ference across the interface is not known a priori, its value can be calculated im-
posing the conservation of mass inside the cavity through the relation:∫ L

0
y0dx =

∫ L

0
yfdx, (3.10.7)

which yields C1 =
12b

L2
. In order to obtain more precise results, equation (3.10.4)

can be solved without approximation using standard iterative techniques.
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For this simulation, we have employed 60 elements to discretize each edge of
the cavity and the interface. We have set a constant time step ∆t = 10−3 for Ca =

0.1, while ∆t = 10−2 for the lower values of Ca. The fluid in both the domains is
initially at rest and the interface moves as an effect of the surface tension. Periodic
boundary condition are applied to left and right boundaries by using the following
Green’s function [Pozrikidis, 2002]:

A(x̂) =
1

2
log{2[cosh(ωx̂2)− cos(αx̂1)]}, (3.10.8)

G11 = −A(x̂)− ŷ ∂A(x̂)

∂ŷ
+ 1, (3.10.9)

G12 = ŷ
∂A(x̂)

∂x̂
, (3.10.10)

G22 = A(x̂) + ŷ
∂A(x̂)

∂x̂
, (3.10.11)

where x̂ = x− x0 and α = 2π
L
. The components of the stress tensor Tijk are:

T111 = −4
∂A(x̂)

∂x̂
− 2x̂2

∂2A(x̂)

∂x̂∂ŷ
, T112 = −2

∂A(x̂)

∂ŷ
− 2x̂2

∂2A(x̂)

∂ŷ∂ŷ
,

(3.10.12)

T212 = 2x̂2
∂2A(x̂)

∂x̂∂ŷ
, T222 = −2

∂A(x̂)

∂ŷ
+ 2x̂2

∂2A(x̂)

∂ŷ∂ŷ
, (3.10.13)

with no need to specify the missing components of Gij and Tijk since they are
symmetric tensors.

In this case, we monitor the volume of the fluid trapped between the cavity
walls and the interface, given, at each time, by the following integral relation

V =
∫

Ω1

dS =
1

2

∫
Ω1

∇ · x dS =
1

2

∫
∂Ω1

x · n dl, (3.10.14)

which is integrated in the same fashion as other integral quantities. The results,
reported in figures 3.20 and 3.21, shown a similar behavior to that observed in the
droplet relaxation benchmark. The total mass inside the cavity is not conserved
in time and mass leakage becomes larger as the capillary number and the viscos-
ity ratio become smaller. The usage of the deflation approach (3.7.42) turns out
to be not as effective as in the previous case and the mass leakage (or creation)
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persists, even if with a lower growth rate, as shown in figure 3.23. Instead, the
Lagrange multiplier approach leads to very satisfactory results, maintaining con-
stant the mass inside the pocket and fitting the theoretical steady-state position of
the interface prescribed by equation (3.10.4) for every test value of λ and Ca, as
shown in figure 3.22 for a representative case.

Additional features arise from the analysis of the maximum absolute value of
the normal velocity along the interface during the relaxation process, shown for a
representative set of parameters in figure 3.24. We note that the standard bound-
ary element formulation is unstable: the initial decrease in the maximum value of
the normal velocity is followed by an increase. This phenomenon brings, sooner or
later, to the divergence of the simulation, with the interface breaking down anoma-
lously. The double-layer deflation seems to counteract this undesirable effect, but
it presents some difficulties in bringing down the maximum normal velocity be-
low a reasonably low value. Again, the Lagrange multiplier approach gives us the
best result, yielding a much better convergence with respect to the other methods
tested.
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Figure 3.20: Time variation of the volume of fluid contained inside the cavity (V0

is the initial value) for different values of λ and Ca = 0.1. The loss of fluid within
the cavity is enhanced as the viscosity ratio λ decreases. The solid line represents
the mass variations in time for the same cases when using the Lagrange multiplier
approach.
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Figure 3.21: Time variation of the volume of fluid contained inside the cavity for
different values ofCa and λ = 0.01. The loss of fluid within the cavity is enhanced
by a decreasing value of Ca. The solid line represents the mass variations in time
for the same cases when using the Lagrange multiplier approach.
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Figure 3.22: Position assumed by the interface starting from a co-sinusoidal shape
(.− line) for λ = 0.05 and Ca = 0.1. The −N line represents the computed
position for the standard boundary element implementation at t = 10.5, while
the solid squares represent the final steady solution with the Lagrange multiplier
correction which, at the same instant of time, agrees with the theoretical solution
given by equation (3.10.5) (dashed line).
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Figure 3.23: Comparison between standard implementation (dashed line), double
layer deflation (empty circles) and Lagrange multiplier approach (solid line), for
λ = 0.05 and Ca = 1.
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Figure 3.24: Maximum normal velocity along the interface for λ = 0.01 andCa =

1 for the standard boundary element implementation (dashed line), double-layer
deflation (empty circles) and Lagrange multiplier approach (solid line).

It is also interesting to compare the results obtained using the boundary element
method with a standard Volume of Fluids method (VoF) implemented with the fi-
nite volume framework provided by the openFoam software [Ope, 2015]. The VoF
methodwas introduced firstly byHirt andNichols [1981] and it is based on defining
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an indicator function, called volume fraction, bounded between [0, 1]. The extrem-
ities of the interval are associated to the two fluids, while the interface is found in
the cell with values between 0 and 1. This approach is widely used to computemul-
tiphase flows, but it is well know to suffers of the undesired phenomenon known
as parasitic currents [Harvie et al., 2005]. This numerical issue consists in the
generation of non-physical velocities near the fluid interface and the phenomenon
becomes very significant in the presence of surface-tension-dominated flows. If
the magnitude of these velocities is not very large, the method is able to capture
the interface with satisfactory accuracy, eventually generating small oscillations
of the volume fraction, but the flow fields will result unclean. To underline this
fact, we can look at the velocity magnitude inside the fluid domain at steady state,
as shown in figure 3.25. For the finite volume computation, we have used a fine
Cartesian mesh, with a spacing between the grid points of

1

300
, over which the

Stokes equation are solved. The viscosity ratio is set to λ = 0.018 and the capil-
lary number is Ca = 0.1, based on the velocity scale uref =

ν2

L
. We can clearly

see how the VoF produces significant velocities in the proximity of the interface,
which persist in time, while the boundary element method does not suffers of this
unwanted phenomenon.

Figure 3.25: Absolute velocity iso-surfaces in the proximity of the interface for the
problem sketched in figure 3.19 using BEM with Lagrange multiplier correction
(left) and VoF (right).
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3.10.4 Flow over superhydrophobic surfaces: comparison with
existing results

The flow over superhydrophobic surfaces has been extensively studied from
both a theoretical and numerical point of view, assuming that on the interface a
perfect slip applies. This is a reasonable hypothesis only in the case of a very small
viscosity ratio between the working fluid and the lubricant fluid. The validations
pass through different works available in literature, involving both the longitudinal
and the transverse flows. The first important comparison to be done is with respect
to the analytical formula found by Philip [1972], who has given the exact value of
the protrusion heights for a wall composed by alternating stripes with slip/no-slip
boundary condition, aligned and perpendicular to the flow direction, by using con-
formal mapping. This type of wall pattern mimics an idealized super-hydrophobic
surface with a flat and infinitely rigid interface. The analytical formula for the
protrusion heights, given in function of the solid fraction φs = 1− w

b
reads

h||
b

=
1

π
log(sec

îπ
2

(1− φs)
ó
), h⊥ =

h||
2
. (3.10.15)

We selected three different values of φs, equal to 0.25, 0.50, 0.75 respectively and
the results, shown in figure 3.26, are extremely close with respect the theoretical
values.

h

h||

s

h

ϕs

Figure 3.26: Comparison between the protrusion heights calculated by Philip
[1972], in solid lines, and the present calculations shown with red symbols.
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An extension to Philip’s works has been done recently by Crowdy [2010] and
by Davis and Lauga [2009], who found a semi-analytical formula for the longitudi-
nal and traverse protrusion heights respectively, including the effect of the curva-
ture of the interface. They considered a circular shape of the interface for both the
protruding and the depressing interface case. This is a good approximation that
turns out to be exact only in the case of protruding interface in the presence of a
sufficiently small capillary number, that makes the interface rigid. In the case of
a depressing bubble, the circular shape is in principle not correct, even if the er-
ror is not large for small curvatures. The correct interface position is to be sought
from the solution of the Young-Laplace equation (3.10.4), which suggests that a
parabolic shape is the correct one. The protrusion heights are given in both cases
in terms of a power expansion of the protrusion angle, defined as the angle that
the tangent to the interface at the pinning point forms with the horizontal. These
formulas however are considered to be valid under the hypothesis of small values
of the interface span c. Both the models for the transverse and the longitudinal
protrusion height perform quite well for value of c up to 0.5.

We start by considering the transverse problem, governed by the Stokes equa-
tion. In this case we do not fix the interface, but we let the solution to reach the
steady state by updating the interface position in time. The mass conservation is
enforced using the Lagrange multiplier approach, which is mandatory in order to
obtain a mass-satisfying solution. In our numerical simulations we employed the
same set-up shown in figure 3.4 and we computed the slip length by varying the
viscosity ratio, the capillary number, the length of the cavity c, and the volume
ratio Φ defined as the ratio of the volume of the gas to the volume of the cavity.
We use Φ instead of the protrusion angle since this quantity is independent form
the shape of the interface, while θ can be defined strictly for the circular shape
interface, which is not the case of the depressing bubble. We note moreover that,
according to our definition, Φ > 1means that the meniscus is protruding outside of
the cavity. Davis and Lauga [2009] derived an analytical formula for the tranverse
protrusion height which, according to our nomenclature, reads:

h⊥
b

=

Ç
c

b

å2 ∫ ∞
0

A(s) ds, (3.10.16)
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where
c

b
is assumed to be small and the integrand function is

A(s) =
s

sinh 2s(π − θ) + s sin(2θ)

×
î
cos(2θ) +

s sin 2θ cosh sπ + sinh s(π − 2θ)

sinh sπ

ó
, (3.10.17)

where in our case, the angle θ is expressible in term of the volume fraction Φ with
no difficulties.

In figure 3.27 we propose a comparison between the analytical model and
our numerical simulations. The agreement is good, especially for the values of
c = 0.30 and c = 0.50, but this is not surprising, since the analytical model is
valid in the limit of small values of c. If one compares the value of the slip length
with c = 0.70 and flat interface (Φ = 1), the model by Davis and Lauga [2009]

yields
b

s
= 0.0963, while both Philip’s and our calculations give

b

s
= 0.126. In-

creasing the viscosity ratio λ has the effect of decreasing the slip length, since for
small λ the approximation of perfect slip along the interface is better. We will re-
turn to the effect of the viscosity ratio in the next chapter, with a more extensive
discussions. The present simulations also confirm the existence of a critical value
of Φ for which the slip length becomes negative. This condition, already pointed
out by Steinberger et al. [2007] and Sbragaglia and Prosperetti [2007], occurs when
the interface has an excessive protrusion outside of the cavity. The largest value
of the protrusion height is found, almost independently of Ca and λ, when Φ is
close to 1.05, i.e. when the interface is very mildly protruding out of the cavity.
The definite answer on the drag-reducing abilities of the surface can however come
only from the resolution of the companion problem for the longitudinal protrusion
height since, as shown by Luchini et al. [1991], shear stress reduction at the wall
depends to first order on the difference between longitudinal and transverse pro-
trusion heights.

The interface deforms under the action of the shear flow, as shown in figure
3.28, but for a sufficiently low capillary number, it presents a very small deviation
from the steady shape position that it would have in the absence of forcing flow.
The flow field generated inside the domain are reported in figure 3.29 for both Φ

larger and smaller than one.
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Figure 3.28: Shape of the interface for Ca = 1 (left) and Ca = 0.1 (right) and
λ = 0.1. The values of Φ are 0.85, 0.90, 0.95, 1.10, 1.15, 1.25 and the flow is from
left to right.
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Figure 3.27: Comparison in transverse protrusion heights between the analytical
model by Davis and Lauga [2009] and the present numerical simulations. The
solid lines correspond to the analytical model by Davis & Lauga for c = 0.30

(lower line), c = 0.50 (intermediate line), c = 0.70 (upper line). Symbols are the
simulations, for the same values of c, with λ = 0.018 (∆), λ = 0.05 (2), λ = 0.1

(◦). (a) Ca = 1; (b) Ca = 0.1
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(a) (b)

(c) (d)

Figure 3.29: Iso-contours of the streamwise and wall normal velocity for λ = 0.1

and Ca = 1. The value of the volume ratio is Φ = 0.85 (a)-(b) and Φ = 1.15

(c)-(d).

We move further to the validation of the longitudinal problem. In this case
we reproduce exactly the set-up found in literature, since here there is no time
advancing of the interface and any shape can be set. The analitycal formula by
Crowdy [2010] is available for the longitudinal flow and reads

h||
b

=
Äc
b

å2
π

24

î3π2 − 4πθ + 2θ2

(π − θ)2

ô
, (3.10.18)
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Figure 3.30: Comparison in longitudinal protrusion heights between the analytical
model by Crowdy [2010], the numerical results by Teo and Khoo [2010] (solid
lines) and the present numerical simulations for different values of c at λ = 0.018.

where again the angle θ is expressed in term of Φ.
Figure 3.30 reports the comparisons between our numerical simulations, the

analytical model and the finite element calculations by Teo and Khoo [2010]. We
employ λ = 0.018 (air-water), which is low enough to consider the perfect slip
approximation used by the reference works as reasonably applicable. The results
are in perfect agreement with the reference data by Teo and Khoo [2010] and the
curve at c = 0.75 is slightly above the values calculated by our simulations, simply
because the span of the interface is large and the effect of the non-zero viscosity ra-
tio is mildly felt. The analytical approximation by Crowdy [2010] gives very good
result for c < 0.50; beyond this value of c the difference between the numerical
and the analytical results become large and the model is no more applicable.

3.10.5 Final remarks on validations
In this section, we have applied our boundary element code to different se-

lected test cases for both one-phase and two phase flows. For all the validations,
the results are very close to the references, thus we are confident on the predictive
capabilities of the code. During the validation campaign we have shown how a
viscosity ratio λ < 1 and the presence of a large interfacial tension cause issues in
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mass conservation, offering clear examples and a novel remedy. The method pro-
posed is based on an easy-to-implement modification of the linear system obtained
by the discretization of the governing boundary integral equation, which consists
in adding one constraint equations for the interfacial velocity for each interface in-
side the domain of interest, by the use of Lagrange multipliers. The technique is
very effective in limiting the mass leakage/creation for all the benchmark problems
considered. In comparison with the deflation method, introduced by Pozrikidis
[2001], it achieves a better convergence, reducing the maximum absolute velocity
normal to the interface by several orders of magnitude and ensuring mass conser-
vation even in cases where the double-layer deflation approach fails. We have also
taken advantage of the validation step to compare the analytical results available
in the literature and the numerical simulations. This comparison highlights that
the formulas derived by Davis and Lauga [2009] and Crowdy [2010] provide a
very good estimate of the protrusion heights up to c ≈ 0.5, which is a surprising
large value, since they are both valid under the dilute limit approximation (i.e. very
small value of c).

3.11 Flow over superhydrophobic surfaces and LIS
In this section we compare the values of the slip lengths for both the longi-

tudinal and transverse problem, as function of salient geometrical and physical
parameters. For our simulation campaign, we set the thickness of the lubricant
film δ = 0.5 and let c assume three different values of increasing magnitude, re-
spectively 0.30, 0.50, 0.70. The interface is either depressing into or protruding
out of the wall cavity in dependence of the volume fraction Φ. The viscosity ratio
λ between the lubricant and the working fluid is varied from low to high values,
keeping in mind that λ < 1 is commonly encountered in gas-water situations (e.g
for air-water λ = 0.018), while λ > 1 belongs to oil lubricants. In particular it
can be found that λ = 20 ÷ 100 is commonly encountered for silicon oils [Than
et al., 1988], while λ = 25÷ 50 is characteristic of vaseline oils [Roelands, 1966],
considering water as the working fluid. The capillary number tunes the stiffness
of the interface and, in practical applications, it is usually low enough to guaran-
tee an almost rigid interface, undeformed with respect to the shape that would be
assumed without flow forcing. In this situation, the interface is described by a cir-
cular arch for the case of a protruding bubble [Davis and Lauga, 2009], while a
parabolic shape occurs when the lubricant fluid is depressing into the wall cavity.
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During our simulations, we have found out that aCa > 0.25 is sufficiently small to
guarantee a substantially rigid interface, with very small deviation with respect to
the steady-state position. This is a favorable result that avoid employing very small
values ofCa, which may create an instability of the interface with the explicit time
advancing scheme used. Moreover, we found that the protrusion heights exhibit a
very low dependency from the capillary number, especially if it is set low enough
to guarantee a stiff interface. The reason behind this result is that the value of the
protrusion height is mainly influenced by the shape of the interface, which does not
vary significantly for Ca > 0.25. Due to these considerations, a value Ca = 0.1

is employed in our calculations.
We start our analysis by comparing the computed longitudinal and transverse

protrusion heights for different viscosity ratios, starting from low to high values,
and for different interface spans, which are the most salient parameters involved in
the problem. In figure 3.31, the trend of the protrusion heights is shown against the
volume fraction Φ. The perpendicular protrusion height h⊥, reported in the left
column, shows as expected a dependency on the viscosity ratio and we observe
that its magnitude increases as λ and c increase. The physical interpretation is
straightforward: on the one hand, the slippage over the lubricant film is promoted
by a low value of the viscosity ratio and, on the other, the working fluid encounters
a lower resistance as the portion of no slip wall is decreased. Moreover, we note
that the reduction in magnitude, associated to the increase of the lubricant fluid
viscosity, is not linear and, for example, an increases of λ from 0.018 to 0.1 pro-
duces a small drop in the the protrusion height, with the two curves that remain
quite close, especially for the lower value of c. Another information that can be
inferred is that the viscosity ratio does not only affect the magnitude of h⊥ but also
its trend as function of Φ. In particular, as soon as λ > 1, the protrusion height
presents a maximum for a value of Φ slightly larger than the unity. The maximum
position is however not constant and moves slightly leftward as λ increases. The
slip length keeps reducing with the increase of the viscosity ratio until λ = 1 is
reached. A further increment of λ profoundly changes the trend of the protrusion
height, which, from this point on, will no longer present a maximum. We can note
that for values of λ approximately grater than 5, the curve become very close to the
dashed line reported in figure 3.31, which corresponds to the slip length computed
with the no-slip condition applied over the interface. This result is consistent with
the fact that a lubricant fluid with a large viscosity compared to that of the working
flow, in practice, behaves like a solid wall, minimizing the slippage and drastically
reducing the drag reduction performance of the surface. Finally, we note that the
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Figure 3.31: Computed transverse (left column) and longitudinal protrusion
heights for increasing values of c and a wide range of λ at Ca = 0.1. The value
of the interface span c is increased from top to bottom namely c = 0.30 in the top
row, c = 0.50 in the middle row and c = 0.70 in the bottom row. The dashed
lines report the values of the protrusion heights when lambda→∞, i.e. when the
interface is solid.
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Figure 3.32: Computed difference between transverse and longitudinal protrusion
heights for increasing values of c and a wide range of λ at Ca = 0.1. The value of
the interface span c is increased from top to bottom, from c = 0.30 to c = 0.70.
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Figure 3.33: Flow field developing into the computational domain for two repre-
sentative cases with a depressing (left) and protruding (right) interface at λ = 20

and Ca = 0.1. (a)-(b): longitudinal velocity component; (c)-(d) wall normal ve-
locity component; (d)-(e) transverse velocity component.
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protrusion height shows an asymmetric behaviour with respect to the unitary value
of Φ (i.e. flat interface). For a given value of c, increasing the volume fraction af-
ter the optimal value, the slip length starts to monotonically decrease following a
quasi-linear variation, whose slope is almost independent from the viscosity ratio.
Reducing the volume fraction, we obtain that the value of the slip length decreases
again but never crosses the limit delineated by dashed line since, in the limit of
Φ→ 0, the geometry behaves like riblets similar to those studied by Luchini et al.
[1991].

For the parallel protrusion heights h||, reported in the right column of figure
3.31, we can extract similar features to those discussed for h⊥. Again there is a
strong dependence on the viscosity ratio, and the magnitude of the parallel protru-
sion height increases as λ decreases. The decrement of the slip length associated
with an increase of the viscosity ratio is not linear. The fact that the reduction of the
protrusion height does not scale linearly with the reduction of the viscosity ratio
is potentially a favorable behaviour which hypothetically permits to use a couple
of fluids forming a more robust interface, while minimizing the penalty associated
to the increase of the viscosity ratio. The longitudinal slip lengths do not exhibit
a maximum as function of the volume fraction, but keep increasing along with Φ

for λ < 1, while showing an opposite and non-symmetric trend with respect to the
value of the viscosity ratio. This particular behaviour of the parallel slip length was
also reported by Ng andWang [2011], who allowed a partial slip over the interface
by means of the Navier boundary condition with an intrinsic slip-length, which
however did not have a clear physical meaning. Also in this case, for a large value
of λ the curves collapse on the dashed line, representing the longitudinal protrusion
height for the no-slip condition applied on the interface. Thus, it is found again
that a large viscosity of the lubricant fluid leads the interface to behave similarly
to a no-slip wall.

It is now important to underline, that the standalone values of the protrusion
heights may have a small relevance when a turbulent flow over SHS/LIS is being
considered. As pointed out by Luchini [1996], the parameter that controls the drag
reduction is the difference between the slip lengths: the larger is this difference the
larger will be the drag reduction to be expected. This topic is being discussed in
the next section. Following this criterion, it is useful to look at this difference
reported in figure 3.32. The best drag reduction, at any given viscosity ratio, will
be obtain for the most protruding bubble, while the worst scenario coincide with
the value of Φ which maximize the transverse protrusion height, corresponding to
an inflection of the curves representing ∆h. These considerations are expected to
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be not valid if the typical size of the bubble mattress becomes to large with respect
to the size of viscous sublayer. In this case, especially for the LIS cases involving
a high viscosity ratio, a surface roughness-behaviour is expected [Jiménez, 2004],
turning the drag reduction into a drag increase.

The flow field for both longitudinal and transverse flow can be reconstructed
into the domain and is shown in figure 3.33 for a representative case at λ = 20, c =

0.50, Ca = 0.10 and φ = 0.90 and Φ = 1.10. As expected, consists in a recircula-
tion zone taking place between the wall cavity and the interface for the transverse
flow, while a linear velocity profile is established for both u and w at a sufficient
distance above the interface.

3.12 Outlook and perspective
The flow over superhydrophobic and liquid-impregnated surfaces has been

simulated taking advantage of the Stokes problem decoupling, which leads to the
definition of the longitudinal and the transverse problems. This procedure is possi-
ble only taking into account a periodic wall texture along the streamwise direction
and this limitation does not allow to evaluate the flow past other important con-
figurations, such as pillars, which, conversely, require a fully three dimensional
simulation. The extension of the present work in 3D would surely possible but has
some bottlenecks outlined in this section. The boundary integral formulation is
in principle not difficult to extend in three dimensions, since the assembling pro-
cedure presented in section 3.5 still applies and the final result will be formally
very similar to equations (3.5.13). Naturally, the single and double layer operators
turn from line to surface integrals extended over the patches composing the com-
putational domain. The difficulties are more related to the numerical solution of
the boundary integral equation then on their theoretical definition. From a prac-
tical point of view, the first issue encountered is the discretization of surfaces in
triangles or, for a better accuracy, in 6−nodes curved triangle with the associated
difficulties related to the complication of the quadrature formulas for the integral
operators [Pozrikidis, 2002]. Moreover, the doubly periodic Green’s function for
the Stokes flow, which in two dimensions has the closed form (3.7.29), in three di-
mensions loses this feature and it is to be found by Fourier series expansion or by
Ewald summation method [Pozrikidis, 1996], thus increasing in a consistent man-
ner the difficulties of the calculations. The integral operators present a non-regular
behaviour when the field point lays on domain’s boundary; the de-singularization



3.12 Outlook and perspective 107

of the integrals becomes very difficult and it usually performed by the employing
specific mathematical identities which, however, creates some issue in a direct so-
lution of the discrete boundary element system. The solution is usually found by
iteration with a process, introduced by Pozrikidis [Pozrikidis, 2002], similar to the
Gauss-Seidel method.

Considering all these technical issues, it is maybe a good idea concentrate the
efforts on the direct numerical simulations of the turbulent flow over SHS/LIS in
a similar fashion to the one employed for the surface roughness. This approach
is surely computational expensive but presents the advantages that the evaluation
of the drag reduction performance of the coating is not restricted to the validity
limit of the protrusion heights approach. The solution of the problem in this sense
is however far to be trivial and passes thorough the use of a proper level-set (LS)
or volume of fluid (VoF) approach [Hirt and Nichols, 1981]. Two main issues
have been detected with this approach during the development of the present work.
The first is related to the lack of a proper boundary condition, within the LS/VoF
framework, able to guarantee the anchoring of the interfaces at the pinning edges
of the underlying wall texture. This is due to the fact that the both LS and VoF
solve an hyperbolic equation for the transport of the indicator function and thus
the boundary conditions that can be specified are of Dirichlet or Neumann type.
None of the two is able to fulfill the proposed target, since the pinning is physically
the result of the energy balance between the solid, the liquid and the gaseous phase
which is not taken into account in the model. A rough way to overcome this issue
is to assign a discontinuous Dirichlet boundary condition, prescribing a jump of
the indicator function in the region where the pinning is desired. Even if working,
the stability of the calculation can be significantly affected by this procedure. The
second problem is addressed to the creation of parasitic currents consisting in the
generation of non-physical velocities near the fluid interface and the phenomenon
becomes very significant in the presence of surface-tension-dominated flows. Very
promising in the mitigation of this problem seems to be the numerical method
proposed by Raeini et al. [2012], even if it is not of easy implementation, it may
constitute a valid approach to the problem. Another promising methodology has
been very recently proposed by Xie and Xiao [2017] and it presents an affordable
programming difficulty.



Chapter 4

The macroscopic problem

In this chapter, we discuss the results related to the macroscopic problem with
a focus on the estimation of a drag reduction induced by SHS/LIS coatings in a
turbulent flow in a channel. Since in this case the characteristic length scale might
be very different with respect to the microscopic flow near the wall protrusions,
the key-idea is to use the calculated values of the protrusion heights to model the
slippage at each wall by means of an equivalent boundary condition applied to
a fictitious and smooth surface. A suitable condition was introduced by Navier
[1823] and reads

u = h

Ç
∂u

∂n

å
, h = diag(h||, h⊥) (4.0.1)

where u is understood as the velocity field components in the in-plane directions
and h is the slip tensor, which depends on the wall texture, while the condition for
the wall normal velocity is simply v = 0. Equation (4.0.1) gives a relation between
the slip velocity and the wall shear stress. Any orientation of the SHS/LIS with
respect to the flow direction can be obtained by a simple rotation of the slip tensor
h, as already shown in chapter 2.

In general, we consider a three-dimensional unsteady flow governed by the
momentum and continuity equation for an incompressible, Newtonian fluids

∇ · u = 0, (4.0.2)
∂u

∂t
+ (u ·∇)u = −∇P +

1

Reb
∇2u+ f . (4.0.3)

The equations have beenmade non-dimensional by choosing a reference length
and velocity scales, U∗ and L∗, and introducing the corresponding Reynolds num-
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Figure 4.1: Computational domain with dimensions and boundary conditions. The
colors represent iso-surfaces of instantaneous streamwise velocity colored by the
bottom wall distance.

ber Re =
U∗L∗

µ
, where ρ and µ are the density and dynamic viscosity of the fluid

considered.
We consider for our calculations a classical turbulent channel flow studied so

far by Kim et al. [1987], shown in figure 4.1, together with the boundary con-
ditions. We perform our simulations at nominal Reτ = 180, corresponding to
Reb =

UbH

ν
≈ 2800, using the mean bulk velocity. Periodic boundary condi-

tions are applied in both streamwise and spanwise directions, while the upper and
the lower wall are assumed to be coated with a SHS/LIS, taken into account via
the Navier boundary condition. The values of the slip lengths are taken from mi-
croscopic calculations found in chapter 3 and conveniently re-normalized using the
half channel heightH . The flow inside the channel is driven by a pressure gradient
f that maintains a constant streamwise flow rate in time.

4.1 Numerical method
The finite volume method is a numerical approach for solving compressible

and incompressible fluid flows in any number of space dimensions and it is the
numerical method employed in our macroscopic calculations. The starting point
is the discretization of the conservation equations (4.0.2): the fluid domain is sub-
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divided in a finite number of small, non overlapping, control volumes by a grid
which defines the control volume boundaries. The computational nodes, where
the unknown variables (u, p) are to be computed, can be arranged mainly in two
different ways:

• staggered;

• collocated.

The staggered arrangement, allocates the velocities at the control volume bound-
aries and the pressure in the cell center, while, in the collocated arrangement, all
the unknowns are computed in the control volume center. Despite their simplicity,
collocated grids were out of favour for a long time in the past because of their apti-
tude to create pressure oscillations in the flow field. However, after solutions of this
problem have been proposed [Rhie and Chow, 1983], the collocated arrangement
was preferred thanks to its simplicity in non-Cartesian grid generation.

The basic idea of the finite volume method is to require the satisfaction of the
conservation equations at each control volume; thus, if the mass and momentum
balance are satisfied at each control volume (CV), they will be satisfied on the
whole domain. TheNavier-Stokes equations and continuity equation are integrated
over each control volume assuming the following integral form:∫

Ω

∂ui
∂t

dΩ +
∫

Ω
ui
∂uj
∂xj

dΩ = −
∫

Ω

∂p

∂xj
dΩ +

∫
Ω

1

Re

∂

∂xj

∂ui
∂xj

dΩ +
∫

Ω
fi dΩ,

(4.1.1)

∫
Ω

∂ui
∂xi

dΩ = 0. (4.1.2)

In figure 4.2 a three-dimensional Cartesian control volume is presented together
with the notations used. The CV consist of six plane faces, denoted with lower
case letters (e, w, n, s, t, b), corresponding to their orientation with respect to the
central node (P ).

The volume integrals involving the convective and the diffusion terms can
be conveniently transformed into surface integrals over the CV boundaries using
Gauss’ divergence theorem and the incompressibility condition:∫

Ω
ui
∂uj
∂xj

dΩ =
∫
S
uiu · n dS, (4.1.3)

and ∫
Ω

1

Re

∂

∂xj

∂ui
∂xj

dΩ =
∫
S

1

Re
∇ui · n dS. (4.1.4)
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Figure 4.2: Control volume for a three dimensional Cartesian grid.

An arbitrary flux φ through the CV boundaries can be calculated as the sum of all
fluxes through the surface composing the control volume as:∫

S
φ dS =

N∑
k=1

∫
Sk

φ dS, (4.1.5)

whereN is the number of control volume faces and φ can be either the convective
or the diffusive flux defined in equations (4.1.3)-(4.1.4).

In order to numerically solve the equations, an approximation for the surface
integrals must be made. The common practice consists in estimating the surface
fluxes, for an arbitrary face k, with the mid-point rule as:∫

Sk

φ dS ≈ φkSk. (4.1.6)

The integral is approximated by the value of φ at the surface center, times the
area of the surface at which the integral is calculated. It is possible to show that
this approximation is of second order accuracy. Usually, for collocated grids, the
value of φ at the face center is not known and an interpolation is needed in order
to express φk as a function of neighboring computational nodes. Referring to
figure 4.2, the value of φ at the CV face centers is obtained by linear interpolation
between the two nearest nodes, as follows (e.g. for the "e" face):

φe = λφP + (1− λ)φE, (4.1.7)

where λ is a weight defined as:

λ =
xe − xE
xE − xP

. (4.1.8)
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This scheme is called central difference scheme and it is of second order accuracy.
For clarity, the discretization of the convective fluxes will be shown only for the
e-face of the cartesian CV shown in figure 4.2 and only for the velocity component
u along the x direction. The fluxes at the other surfaces can be treated in the
same fashion applying the appropriate subscripts permutation. Applying the above
approximation, the discrete convective and diffusive fluxes read∫

Se
uiu · ne dSe ≈ meue = me[λuP + (1− λ)uE], (4.1.9)

and ∫
Se

1

Re
∇ui · ne dSe ≈

Se
Re

uE − uP
xE − xP

; (4.1.10)

me = ueSe in (4.1.9) is the mass flow rate through the surface e.
The spatial discretization is completed by the approximation of the pressure

gradient and the body forces, also called source terms. For an arbitrary source
term q the following approximation is applied:∫

ΩP

q dΩ ≈ qP∆ΩP . (4.1.11)

The integral is estimated by the product between the central value of q in the con-
trol volume center and the cell volume ∆Ω. Adopting this rule, the finite volume
approximation for the pressure term becomes (e.g along the x direction):∫

Ω

∂p

∂xj
dΩ ≈ (pe − pw)

∆xp
∆Ω; (4.1.12)

pe and pw are the interpolated values of p at the control volume faces e andw using
the already defined central difference scheme.

Analogously, the forcing term f is:∫
ΩP

f dΩ ≈ fP∆ΩP . (4.1.13)

It is worth to note that problemsmay appear using collocated grids and pressure
oscillation may appear in the flow field and lead to non-physical results. The prob-
lem is resolved using a method, originally developed by Rhie and Chow [1983],
which consists in correcting the mass flow rate through a control volume surface
by using additional terms involving the pressure gradient at the target face.
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4.1.1 Fractional Step Method
The lack of an explicit equation for the pressure complicates the numerical

solution of the Navier-Stokes equation. The continuity equation in incompressible
flows can be consider more as a kinematic constraint for the velocity field, rather
than a dynamic equation. Oneway to solve this problem relies on the fractional step
method. This technique is often used to advance in time the fluid flow governing
equations and was firstly developed by Chorin [1968] and then improved by other
authors [Kim and Moin, 1985, Perot, 1993]. The algorithm is based on Hodge’s
decomposition of any vector field into a solenoidal and an irrotational part and,
typically, consists of two stages:

• prediction;

• correction.

In the prediction step, the momentum equation is solved, but the resulting solution
does not satisfy the continuity equation. In the correction step the previous solution
is corrected and the velocity field is projected onto a divergence-free field.

Several numerical implementations are available in the literature; in the present
study we employ the fractional step method proposed by Kim and Moin [1985].
The method is semi-implicit and not all the terms of the momentum equation are
discretized in time in the same manner. In particular the second order Crank-
Nicolson scheme is used for the wall-normal diffusive term and the second order
Adams-Bashforth scheme for all the other terms in the momentum equation.
The two-step time advancement scheme can be written as:

û− uni
∆t

= −Nl(un,un−1)− G(φn, φn−1) +
1

Re
L(ûi,u

n), (4.1.14)

un+1 − un

∆t
= −G(φn+1), (4.1.15)

together with the continuity condition:

D(un+1) = 0, (4.1.16)

where Nl and D are shorthand notations for the discrete non-linear and the diffu-
sion terms, while G and L stand for the discrete gradient and laplacian operators.
The scalar quantity φ, known as projection variable, is to be found by solving the
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following Poisson problem (projection step), arising after the divergence operator
is applied to the equation (4.1.15):

Lφ =
1

∆t
Dû; (4.1.17)

equation (4.1.17) to be solved along with Neumann boundary conditions applied
at the solid walls [Kim and Moin, 1985].

In summary, the strategy to solve the Navier-Stokes equation with the fractional
step method consists in predicting the velocity field using equation (4.1.14), then
finding the projection variable from the equation (4.1.17) and finally correcting the
velocity field using the relation (4.1.15).

The numerical procedure described has been implemented in awell-established
curvilinear finite volume code [Omidyeganeh and Piomelli, 2013, Rosti et al.,
2016, Pinelli et al., 2017] written in Fortran 77 and parallelized with OpenMPI.

4.2 DNS results
Since the parameter space is quite large, we propose to perform the simula-

tions fixing the periodicity b of the SHS/LIS such that b+ =
buτ
ν
≈ 10 with small

variations due to the fact that the friction velocity slightly decreases along with the
increase of the slip at the walls. There are two reasons to maintain a small period-
icity: from a theoretical point of view, the protrusion height approach within the
Navier boundary condition is demonstrated to be valid for b+ < 20 [Luchini, 2015,
Seo and Mani, 2016]. From a practical point of view, SHS/LIS are characterized
by a small periodicity, since large cavities suffer of lubricant layer depletion.

We are interested in determining the drag reduction, expressed in terms of the
friction coefficient Cf =

2τw
ρU2

b

, as function of the protrusion heights, calculated

from the microscopic problem solved in the previous section. The reason behind
the drag reduction is to be found close to the wall and in the effect that a slip ve-
locity has on the near-wall turbulence. On the one hand, an increase of slip in the
streamwise direction (i.e. a large value of the slip length) tends to reduce the skin
friction and to attenuate the wall cycle. On the other hand, a spanwise slip has a
much less trivial effect. As shown by Choi et al. [1994] and Min and Kim [2004],
the creation of a slip velocity in the spanwise direction tends to increase the drag
because of the enhancement of the strength of the near-wall streamwise vortices.
The skin friction drag reduction for a combined longitudinal and transverse slip is
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Case h×103

|| h×103

⊥ ∆h×103 Cf

Cf0

error%

1 12.3 6.00 6.30 0.86 -

2 9.30 3.00 6.30 0.84 −2.3

3 6.30 0.0 6.30 0.88 +2.6

Table 4.1: Test cases for the protrusion heights offset.

a consequence of the competition between these two mechanisms. Following the
theory developed by Luchini et al. [1991], the most important parameter govern-
ing the skin-friction drag is the difference between the protrusion heights. Thus,
before proceeding further, it is important to test that considering the difference
of the protrusion height as the main parameter governing the drag reduction is a
reasonable approximation, at least for small values of the slip lengths and thus ∆h.

We start by testing the following cases, reported in table 4.1, which present
the same value of ∆h, but different h|| and h⊥. In particular, in cases 2 and 3,
the values of the protrusion heights have been modified by subtracting a constant
offset, leading to a situation where only the longitudinal slip is allowed, and to
a mixed case where slip is allowed in both streamwise and spanwise directions.
For each case, we have calculated the friction coefficient, scaled with the reference
Cf computed for the standard no slip walls case (denoted as Cf0), together with

the percentage error, error =
Cf − Cfref
Cfref

× 100 , where the reference is case

1. What we can note is that there is a small difference between the drag reduction
computed in the three cases. However, the percentage difference in the skin friction
is much smaller (one order of magnitude) with respect to the variation of the slip
lengths. This difference in friction coefficient suggests that the protrusion height
h|| in the direction of the flow has a slightly larger impact on the drag reduction.
To shed more light on this behaviour, we restrict ourselves to the case ∆h = 0,
with h|| = h⊥, where a negligible drag reduction should be expected; however,
this is not the case since some drag reduction is indeed observed as demonstrated
by Min and Kim [2004] and Luchini [2015] and also by our simulations and this is
consistent with the observation of drag reduction for isotropic lattices (e.g. circular
posts), where the slip lengths are equal. The error committed in considering the
drag reduction dependent only on the difference between the protrusion heights
increases with the increase of the value of the longitudinal slip. This is suggested
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by Luchini [2015] who conducted a series of DNS employing a fixed value of h|| =
h⊥ and varied the slip at thewalls for increasing values of b+ (i.e. increasingh+

|| and
h+
⊥). In his simulations he has shown that the drag reduction presents a quadratic

behaviour in b+ and for b+ ≈ 25 the resulting drag reduction is about 10%. The fact
that a linear relation between ∆h and the amount of drag reduction cannot hold in
the case of large values of the slip lengths is also suggested by the Navier boundary
condition itself: upon increasing h|| and h⊥ the wall tends to be a no-shear region,
thus yielding a drag reduction of 100%. Further discussions and clarifications on
the effect of the protrusion heights on the skin friction drag reduction can be made
on the basis of the results obtained by Busse and Sandham [2012]. In their paper,
the authors analyzed in detail the effect of the protrusion heights on the percentage
drag reduction for a turbulent channel flow. They conducted a large number of
direct numerical simulations both at Reτ = 180 and Reτ = 360 for several values
of h+0

|| and h+0
⊥ within the range [0, 100] × [0, 100]. The super-script •0+ means

that the protrusion heights are expressed in wall units based on the nominal Reτ .
Their results clearly show that the effect of the transverse protrusion heights on the
drag increase effect is non-linear and saturates at h+0

⊥ ≈ 4. This justifies the fact
that the skin friction drag is always observed to decrease for h+0

|| > 3.5 and for any
arbitrary large value of h0+

⊥ . In general, the combined effect of the slip lengths on
the drag reduction is shown in figure 4.3(a). The contour plot highlights the zone of
drag reduction and drag increase with respect to the reference value for a standard
channel at nominal Reτ = 180 and it is obtained by cubic interpolation of their
numerical results. The red dots represent our numerical results which are in good
agreement with the predictions by Busse and Sandham [2012] and corroborate
their calculations. The values of the slip lengths used in our DNS are taken from
the microscopic problems and are reported in table 4.2. Since for the microscopic
texture analyzed the parallel protrusion height is always bigger then the transverse
one, in our cases a drag reduction is always obtained.

Beyond the theoretical importance of the results reported in figure 4.3(a), it
is useful to stress the fact that not all the zones in this plot are of practical and
physical application, since the Navier boundary condition is demonstrated to be
valid up to a certain level of slip. To fix the idea, let us look in more detail to
the simulations conducted by Luchini [2015]. He considered the wall coated by
longitudinal no-shear stripes, mimicking a superhydrophobic surfaces with a flat
interface between the phases. The ratio between the interface span and the texture
periodicity b was fixed to 0.5 and a series of direct numerical simulation at Reτ ≈
180 were conducted for different values of b. He demonstrated that the protrusion
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heights yield very similar results to those obtained by taking into account the real
wall texture up to b+ ≈ 20. The protrusion heights normalized by the periodicity
for such walls are easily calculated from Philip’s theory and are h|| = 0.11 and
h⊥ = 0.055, respectively. Considering the upper bound of b+ = 20, it is easy to
find that, in wall units, the slip lengths are h+0

|| ≈ 2.5 and h+0
⊥ ≈ 1.2, which give a

first idea of the region of validity of the protrusion height approach.
In literature, there are several theoretical predictions that have been attempted

over the years which try to establish some relation between the drag reduction and
difference in the protrusion heights. Luchini [1992] and, later on, Bechert et al.
[1997] tried to link the difference in the protrusion heights following a similar
reasoning, which has Prandtl’s universal formula as starting point:Ç

Cf
2

å− 1
2

= k−1 log

ÇÇ
Cf
2

å 1
2

Re

å
+B + A, (4.2.1)

where Re is the Reynolds number and B is a constant. Linearizing (4.2.1) for
small changes in Cf and A we obtain:

∆Cf
Cf0

= − ∆A

(2Cf0)
− 1

2 + (2k)−1
, (4.2.2)

where Cf0 is the reference friction factor for the standard no-slip wall at the actual
Reτ and k is von Karman’s constant, which we can take equal to 0.41.

Thus, attention is turned on how the universal constant A changes when the
turbulent boundary layer is influenced by non-smooth wall textures (e.g. riblets,
SHS, LIS or roughness). For a smooth wall the velocity profile in the viscous
sublayer takes the form u+ = y+, while in the logarithmic region it becomes u+ =

k−1 log(y+) + A. The two laws meet at the point y+
0 , satisfying the following

equation
y+

0 = k−1 log(y+
0 ) + A, (4.2.3)

yielding y+
0 = 10.8 for k = 0.41 and A = 5. Luchini [1992] suggested that

the point y+
0 should shift by the quantity ∆h+ in the presence of surface texture.

Linearizing equation (4.2.3) about the smooth wall value and letting y+
0 = 10.8 +

∆h+, it is obtained:
∆A = 0.774∆h+. (4.2.4)

Following the same reasoning, but using a slightly different values for k and
A, Bechert et al. [1997] found a coefficient of 0.785, while Jiménez [1994] used
a formula similar to equation (4.2.4) on account of the linearity of the viscous
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regime, recommending a coefficient of 0.66. Later on, Luchini [1996] reconsid-
ered the formula (4.2.4) imposing the coefficients in front of ∆h+ to be equal to
one, since he argued that it is not the point y+

0 which undergoes a translation, but
the whole velocity profile should be shifted by the quantity ∆h+. The final form
of the correlation for the friction factor reduction is thus given by

Cf
Cf0

= 1− ∆h+

(2Cf0)
− 1

2 + (2k)−1
. (4.2.5)

The effect of a given micro-ribbed surface (whether superhydrophobic, LIS or
not) is thus that of changing A and this becomes equivalent to the roughness func-
tion used to characterize rough surfaces, at least in simple geometries [Jiménez,
2004].

Unfortunately, this simple and practical rule is not valid for all possible values
of h|| and h⊥ which have, as shown in figure 4.3, a non-trivial effect on the drag
reduction, especially when they assume a large value in magnitude. Gathering
together the information on the drag reduction collected by our numerical simu-
lations, by Min and Kim [2004] and by Busse and Sandham [2012], it is however
possible to estimate a region of validity of the relation (4.2.5). The simulations
taken as samples are indicated in figure 4.3(b), by circles in different colors: the
red dots represent our numerical simulations, the green dots are results from Min
and Kim [2004], while magenta indicates the calculations by Busse and Sandham
[2012]. We refer only to the drag reducing region since, for the particular wall
texture under investigation in this work, h|| > h⊥ and the only possible effect is
a drag reduction. Figure 4.4 shows a comparison between the analytical formula
4.2.5 and the numerical simulations. The values of ∆h are normalized using the
actual friction velocity (uτ = uτ0

…
Cf
Cf0

) as velocity scale, which is a more suitable
choice with respect to uτ0 , since Reτ might slightly change as function of the wall
slippage. The correlation between the numerical data and the linear relation 4.2.5
turns out to be satisfying in region bounded by the dashed lines in figure 4.3(b),
where the maximum value of the protrusion heights is h+0

|| ≈ 3.2 and h+0
⊥ ≈ 1.5

or h+
|| ≈ 2.7 and h+

⊥ ≈ 1.3. In a more conservative way, we can assume h+
|| ≈ 2.3

( h+0
|| ≈ 2.6) and h+

⊥ ≈ 1.1 ( h+0
⊥ ≈ 1.2). These values are very near to the ones

estimated by Luchini’s simulations.
As a final note, we remark that relation (4.2.5) becomes invalid if the wall

textures becomes so large in characteristic size to interact non linearly with the
near-wall turbulent structures with the near-wall turbulent structures. It is also
invalid if the protrusion heights assume large values as detailed above.
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(a)

(b)

Figure 4.3: Iso-contours of percentage drag reduction versus longitudinal and
transverse protrusion heights at Reτ = 180 (adapted from Busse and Sandham
[2012]). (a) Comparison of present DNS indicated by red dots together with the
reference data for drag reduction; (b) Estimated limits of validity of relation 4.2.5
(dashed lines) together with the present simulations (red circles), those byMin and
Kim [2004] (green squares) and those by Busse and Sandham [2012] (magenta tri-
angles).
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Figure 4.4: Friction factors as function of the difference in protrusion heights in
wall units. The cases simulated are reported in table 4.2.

If a case of study falls outside this limit, the simplified application of the Navier
boundary condition is no more applicable and calculations have to be performed
by considering the real wall morphology, together with the difficulties involved.

In figure 4.5(a), the mean velocity profiles for different values of ∆h+ are
shown. As expected, the profiles are shifted upward with an increasing magni-
tude with respect to ∆h+, indicating that a drag reduction occurs. Analyzing the
root mean square of the components of the velocity fluctuations, presented in figure
4.5(b)-(d), we can note a decrease of the magnitude of the fluctuations for all the
velocity components with respect the no-slip case, except in the near-wall region.

In figure 4.6(a)-(b), the contours of the instantaneous spanwise vorticity in a
y−z plane shows that the increase of ∆h+ causes a weakening of the vortex struc-
tures, due to increased wall slip in the longitudinal direction. This consideration
is supported by the visualization of the iso-surfaces of the Q-criterion (see figure
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4.6(c)-(d)), which is the second invariant of the velocity gradient tensor, highlight-
ing the turbulent structures attenuation with the increase of ∆h+.

Table 4.2: Cases selected for direct numerical simulations.

Case h×103

|| h×103

⊥ ∆h×103 ∆h+

λ = 0.018, c = 0.50,Φ = 0.85 4.46 1.13 3.33 0.457

λ = 0.018, c = 0.50,Φ = 1.00 5.34 2.64 2.70 0.458

λ = 0.018, c = 0.50,Φ = 1.15 7.09 1.65 5.44 0.902

λ = 0.018, c = 0.70,Φ = 0.85 10.38 3.09 7.29 1.187

λ = 0.018, c = 0.70,Φ = 1.00 12.24 5.96 6.28 1.022

λ = 0.018, c = 0.70,Φ = 1.15 15.09 5.16 9.93 1.566

λ = 20, c = 0.50,Φ = 0.85 1.300 0.80 0.50 0.088

λ = 20, c = 0.50,Φ = 1.00 0.16 0.069 0.093 0.016

λ = 20, c = 0.70,Φ = 0.85 2.16 1.48 0.68 0.116

λ = 20, c = 0.70,Φ = 1.00 0.32 0.13 0.18 0.031

Unfortunately, the computational costs prohibit the usage ofDNS at the Reynolds
numbers commonly encountered in engineering applications. For small values of
∆h, the formula (4.2.5) turns out to be useful to make some predictions of drag re-
duction at higher Reynolds numbers. If we consider a turbulent flow atRe = 2800

and one at Re = 106, with the same ∆h+, we can obtain that

∆Cf |Re=106

∆Cf |Re=2800

=
(2Cf )

− 1
2 |Re=106 + (2k)−1

(2Cf )
− 1

2 |Re=2800 + (2k)−1
≈ 0.6. (4.2.6)

It can thus be argued that the drag reduction advantage decreases with the in-
crease of the Reynolds number. The interpretation embodied by the equation above
has been suggested to us by Paolo Luchini.
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Figure 4.5: Turbulent statistics for different values of ∆h+. (a) Mean velocity
profiles normalized by the friction velocity uτ of each case; (b) root mean square
of the streamwise velocity component; (c) root mean square of the wall normal
velocity component; (d) root mean square of the spanwise velocity component. All
the root mean squares are normalized with the friction velocity uτ0 of the reference
no-slip case, in order to highlight their decrease in the buffer layer and log-law
region.
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Figure 4.6: Turbulent structures inside the channel. (a)-(b) Iso-contours of the
instantaneous spanwise vorticity component in the y − z plane at x = πH in the
range [−6, 6], plotted with an increment of 0.2, for ∆h+ = 0.016 (left) and ∆h+ =

1.566 (right); (c)-(d) instantaneous iso-surfaces of the Q-criterion (Q = 0.7) for
the same cases, colored by the streamwise velocity component.



Chapter 5

Conclusions and perspectives

The flow over superhydrophic and liquid-impregnated surfaces has been stud-
ied from two points of view: the microscopic and the macroscopic one. The mi-
croscopic problem has attempted to remove some approximations used in the pre-
vious models simulating the flow in the proximity of the wall asperities filled with
gas/oil, taking into account different viscosity ratios between the working and the
lubricant fluid and the effect of surface tension. The main goal of this problem
was the derivation of the protrusion heights as function of the salient geometrical
and physical parameters involved in the problem, since they are a direct measure
of the drag reduction properties of such coatings. The macroscopic problem has
involved direct numerical simulations of a turbulent flow in a plane channel at
moderate Reynolds number; the slippage at the walls has been modeled through
the Navier boundary conditions, which directly employ the values of the protrusion
heights coming from the solution of the microscopic problem. The results can be
summarized in the following way:

• The modal analysis of the flow over SHS highlighted the presence of a new
streamwise wall-vortex mode in the case of a single SH wall, driven by the
wall boundary condition and capable to reduce significantly the value of the
Reynolds number for the onset of the instability. The non-modal analysis
shows that while the presence of two SH walls yields a slight reduction in
energy growth over time, the case of only one SH wall produces an increase
of the disturbance kinetic energy for a large range of values of h|| when θ
is sufficiently greater than zero. It is further shown that, for a single SH
wall, beyond a threshold slip length, for values of the inclination angle of the
micro-ridges around 45◦ the gain becomes unbounded with the final target
time, a sign of the onset of the wall-vortex modal instability.

124



125

• a boundary integral formulation for the longitudinal and the transverse flow
over SHS/LIS has been proposed and numerically solved using the bound-
ary element method. The viscosity ratio λ between the working and the
lubricant fluid has shown the major non-trivial effect in the variation of both
protrusion heights, profoundly altering their behavior as function of the de-
pression into or protrusion out of the wall cavity assumed by the interface.
Other interesting features, such as the presence of a maximum value in the
transverse slip length for λ < 1 and its disappearance for λ > 1, have been
well delineated by the calculations.

• a new remedy accounting for mass conservation at low viscosity ratio has
been proposed and validatedwithin a standard boundary element framework.
The method is easy-to-implement and has given better results with respect
to known methodologies [Pozrikidis, 2001];

• the direct numerical simulations have showed that slippage at the walls can
be conveniently modeled through the Navier boundary conditions, at least
as long as the periodicity of the wall texture is smaller than b+ ≈ 20. The
most important parameter impacting drag reduction has been found mainly
in the quantity ∆h = h||−h⊥ [Luchini et al., 1991], but some care is needed
since the flow is more influenced by the value of the longitudinal protrusion
height h||, with this effect growing with the slippage in the streamwise direc-
tion [Luchini, 2015]. However, up to the limit of applicability of the Navier
boundary conditions, to consider the drag reduction as function only of ∆h

is a reasonable approximation. Moreover, the simulations have shown a very
good agreement with the analytical correlation proposed by Luchini [1996],
which can be conveniently used for a quick approximation of the drag reduc-
tion induced by SHS, LIS or, in general, non-smooth walls.

Future developments
This work presents some natural extensions that could lead to a better under-

standing of the slippage and drag reduction phenomena induced by SHS/LIS coat-
ings:

• The study of flow over different wall coatings has been undertaken primarily
assuming the decoupling of the Stokes equation into two almost stand-alone
problems (i.e. the transverse and the longitudinal problem). This simplifi-
cation is not possible in the case of general three dimensional lattices, which
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have not been studied yet with the same details as the two dimensional ge-
ometries;

• there are few numerical simulations or models analyzing the robustness of
the interface under working conditions. This is a very important point in
practical applications and a challenge from a numerical point of view. For
LIS, which up to today seem to be most promising in terms of large scale
applications, it would be interesting to study non-newtonian effects on the
physics of the interface and their consequences on the slippage properties of
the surfaces;

• there are several works studying the turbulent flow over SHS/LIS with var-
ious degrees of approximation at the walls (Navier boundary conditions,
striped no-slip/no-shear surfaces with different textures etc.). The simula-
tions are limited to moderate Reynolds numbers and thus, could be interest-
ing to study the effect of slippage on turbulence at high Reynolds number,
for example through large eddy simulations;

• direct numerical simulations of turbulent flow over SHS/LIS, including gas/oil
cavities at the walls without taking advantage of any approximation, is a
fascinating topic even if computationally very expensive. A step in this di-
rection has been made recently by Seo et al. [2018], even if a full dynamic
coupling of the lubricant layer with the external fluid still needs to be dealt
with.
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