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Abstract

In this work, we explore the correlation between wall roughness and turbulent flow
behavior through the framework of asymptotic homogenization theory. The goal is
to derive effective, non-empirical boundary conditions that relate the influence of
microscale surface texture on macroscopic flow characteristics. After reviewing the
theoretical foundations of turbulence and the impact of rough surfaces on velocity
profiles, we employ a multiscale upscaling approach to extract the so-called slip
length and interfacial permeability coefficients, which appear in the homogenized
boundary conditions.

A numerical simulation is carried out using STAR-CCM+ to solve a steady, three-
dimensional laminar flow over a representative rough surface composed of hemi-
spherical cavities. From the dimensionless velocity and pressure fields, the slip
coefficient in the streamwise direction (λx = 0.1034) and the interfacial permeability
(Kit f

xy = 0.0084) are extracted.

These coefficients serve as effective parameters that describe how surface texture
alters flow behavior and may be used to simplify future simulations or improve
surface design. The results validate the asymptotic framework and suggest promis-
ing directions for future work, including the implementation of Direct Numerical
Simulation (DNS) and the investigation of alternative roughness geometries such as
hexagonal packing.
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Symbology

Symbols

Re . . . . . . . . . . . . . . . . . . . . . . . . . Reynolds number

u . . . . . . . . . . . . . . . . . . . . . . . . . Time average velocity

u′ . . . . . . . . . . . . . . . . . . . . . . . . . Instantaneous velocity variation from the
average

T . . . . . . . . . . . . . . . . . . . . . . . . . Period

t . . . . . . . . . . . . . . . . . . . . . . . . Time

x . . . . . . . . . . . . . . . . . . . . . . . . Stream direction

y . . . . . . . . . . . . . . . . . . . . . . . . Normal-wall direction

z . . . . . . . . . . . . . . . . . . . . . . . . Span direction

u . . . . . . . . . . . . . . . . . . . . . . . . Stream velocity component

v . . . . . . . . . . . . . . . . . . . . . . . . Normal-wall velocity component

w . . . . . . . . . . . . . . . . . . . . . . . . Span velocity component

ρ . . . . . . . . . . . . . . . . . . . . . . . . Density

p . . . . . . . . . . . . . . . . . . . . . . . . Pressure

ν . . . . . . . . . . . . . . . . . . . . . . . . Kinematic viscosity

µ . . . . . . . . . . . . . . . . . . . . . . . . Dynamic viscosity

τRe . . . . . . . . . . . . . . . . . . . . . . . . Reynolds shear stress

τv . . . . . . . . . . . . . . . . . . . . . . . . Viscous stress

τT . . . . . . . . . . . . . . . . . . . . . . . . Total shear stress
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τw . . . . . . . . . . . . . . . . . . . . . . . . Wall shear stress

ζ . . . . . . . . . . . . . . . . . . . . . . . . Dimensionless parameter

u+ . . . . . . . . . . . . . . . . . . . . . . . . Dimensionless wall velocity

y+ . . . . . . . . . . . . . . . . . . . . . . . . Dimensionless ordinate

δ . . . . . . . . . . . . . . . . . . . . . . . . Thickness of the boundary layer

κ . . . . . . . . . . . . . . . . . . . . . . . . Von Karman constant

B,C . . . . . . . . . . . . . . . . . . . . . . . . Experimental constants

U+ . . . . . . . . . . . . . . . . . . . . . . . . Logarithmic velocity distribution

k . . . . . . . . . . . . . . . . . . . . . . . . Sand grain roughness height

ks . . . . . . . . . . . . . . . . . . . . . . . . Equivalent sand grain roughness height

∆U+ . . . . . . . . . . . . . . . . . . . . . . . . Roughness function

ka . . . . . . . . . . . . . . . . . . . . . . . . Mean roughness height

kq . . . . . . . . . . . . . . . . . . . . . . . . Root mean square height

kt . . . . . . . . . . . . . . . . . . . . . . . . Maximum peak to valley height

kz . . . . . . . . . . . . . . . . . . . . . . . . Average peak to valley height

ES . . . . . . . . . . . . . . . . . . . . . . . . Effective slope

λ . . . . . . . . . . . . . . . . . . . . . . . . Solidity

ksk . . . . . . . . . . . . . . . . . . . . . . . . Skewness

ku . . . . . . . . . . . . . . . . . . . . . . . . Kurtosis

PDF . . . . . . . . . . . . . . . . . . . . . . . . Probability density function

mθ . . . . . . . . . . . . . . . . . . . . . . . . θth moments of the PDF
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DNS . . . . . . . . . . . . . . . . . . . . . . . . Direct numerical simulation

l . . . . . . . . . . . . . . . . . . . . . . . . Microscopic lenght scale

L . . . . . . . . . . . . . . . . . . . . . . . . Macroscopic lenght scale

ϵ . . . . . . . . . . . . . . . . . . . . . . . . Lenghts ratio

R . . . . . . . . . . . . . . . . . . . . . . . . Microscopic Reynolds number

S . . . . . . . . . . . . . . . . . . . . . . . . Traction vector
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1 Introduction

Fluids, in most cases of technical interest, have a turbulent flow and this is a complex
phenomenon that needs to be studied. It occurs when the Reynolds number is above
approximately 4000; since Re is the ratio between the inertial and viscous forces, it
means that we are in situations where the speed or density of the fluid is high. Both
cases are extremely common if we think for example at means of air, land and naval
transport, but not only of course.
One of the topics that arouse greatest interest in the study of turbulent motion
concerns the factors that generate friction and energy losses caused by it and how
to reduce them. In this paper, we discuss the link between the roughness of the
surfaces and the speed of the fluid, trying to find an analytical law that can allow us
to predict how much it can influence the fluid velocity, without having to resort to
empirical results.
Each surface has its own roughness which can be superficial, when intrinsic to the
material of which it is made (microscopic scale), or due to singular asperities such
as screws or bolts, for example necessary for fixing "smooth" panels (macroscopic
scale). In particular, for the first case, surface texture, also known as surface finish
and surface morphology, comprises a series of geometrical irregularities that are
randomly or uniformly extended over a smooth surface. As you will see later, the
problem is to make the effects of each individual surface comparable and that their
evaluation takes place in an analytical and therefore repeatable way. To do this,
every real surface is traced back to an ideal model that causes the same effects as it.
Nowadays, this occurs through a large number of empirical correlations obtained
from various studies carried out.
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2 Generalities on Turbulent Flow

Turbulent flow is a common state of fluid motion interested by continuous and
random fluctuations of all the quantities representing the motion itself. It is charac-
terized by the presence of vortices that contribute to the exchange of momentum and
energy between the various areas of the flow field, with consequent mixing of fluid
properties; this makes the state of motion three-dimensional and time dependent.
Because of this, also nowadays there is no general solution to the Navier-Stokes
equations about turbulent flow of an incompressible, Newtonian, continuum fluid,
but we have different ways to study it. The most common analytical treatment is rep-
resented by a time-averaged approach (also called as Reynolds-averaged approach)
that assumes turbulence as a statistical phenomena. It is known that, choosing a suf-
ficiently long time interval, the temporal average value of velocity (equal for other
properties) is stationary; this allows us to express istantaneous velocity as the sum of
the time average value ū and the instantaneous deviation from the average u′, called
agitation component:

u = ū + u′ (2.1)

where

ū = lim
T→+∞

1
T

∫ t0+T

t0

u(x, t)dt (2.2)

and
ū′ = 0 (2.3)

but the moment is not zero

u′2 = lim
T→+∞

1
T

∫ t0+T

t0

(u − ū)2dt (2.4)

Figure 2.1: Instantaneous and mean velocity profiles in fully-developed channel flow [1].

The agitation components represent the chaotic fluctuations of fluid particles which
they comport pressure and energy losses in the fluid path. That means that there are
other shear stresses components due to it, add to viscous frictions effects; these are
the Reynolds stresses [2, 3].
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2.1 The Reynolds Stresses
Considering a fluid particle immersed in a turbulent flow field, due to the agitation
component of the velocity in normal direction to the surface, it will move away from
there, passing from slower area dA to a faster one. So, the slower particle has a mass
flow rate (ρv′dA); arriving in a faster zone of fluid, it will increase his velocity by u′

and the particle receives from the faster fluid a flow rate, in direction of motion and
in units of time, as (ρv′dA)u′. This quantity also represent the flow rate decrease of
fluid inside dA.
By Newton’s second law, the force acting on a mass in a certain direction is equal to
the change in velocity of momentum in the same direction; so the force acting in the
direction of motion on a fluid element inside da, due to the passage of fluid particles
through da and the consequent change in momentum is equal to (ρv′dA)(−u′) =
−ρv′u′dA. Dividing this shear force by area dA where it acts, we obtain what we can
consider an instantaneous turbulent shear stress, also called Reynolds shear stress,
expressible as:

τRe = ρu′v′ (2.5)

where u′v′ is the time average of the product of the agitation components u′ and v′.
Although any agitation component time averaged is zero, the time average of the
product is not, as previously stated (2.4) [2].

2.2 Velocity profile on a smooth flat surface
Here we consider fully developed, turbulent, two-dimensional flow (x,y). This
means that the flow is statistically stationary and homogeneous in the downstream
direction; hence ∂u

∂x = 0. Due to no-slip condition the velocity flow field on the surface
is u = v = w = 0 (time average values) and u′ = v′ = w′ = 0 (agitation components),
where the letters u, v, w respectively refer to the velocity components along the
reference x,y,z directions [3].

Figure 2.2: Reference triad.

Since the flow is two-dimensional, w = 0 everywhere, and w′v′ = 0. So, we have:

u = u(y) + u′; v = v(y) + v′ (2.6)

From the continuity equation for time average values we obtain
dv
dy
= 0; considering

no slip condition we can say that:

u = u(y) + u′; v = v′ (2.7)
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From the mean flow Reynolds-averaged equations

0 = −
1
ρ

∂p
∂x
−
∂u′v′

∂y
+ ν

∂2ū
∂y2 (2.8)

0 = −
1
ρ

∂p
∂y
−
∂v′

2

∂y
(2.9)

0 = −
1
ρ

∂p
∂z

(2.10)

Deriving for x the (2.9) (2.10) equations we have
∂
∂y
∂p
∂x
= 0,

∂
∂z
∂p
∂x
= 0, so we conclude

that
∂p
∂x

only depend on x.
Introducing viscous and Reynolds stresses

τv = µ
∂ū
∂y

τRe = −ρu′v′ (2.11)

and known that the total shear stress in given by the sum of Reynolds and viscous
stresses, hence:

τT = µ
∂ū
∂y
− ρu′v′ (2.12)

substituting into equation (2.8)

∂p
∂x
−
∂τT

∂y
= 0 (2.13)

And given that the first term is only a function of x and the second is only a function
of y, for the equation to be satisfied, they can only be both constants.
The trend of τT in y is therefore linear and must also satisfy the boundary condition

on the surface (when y=0, τT(0) = τw); using the pressure gradient at the wall
dpw

dx
we can obtain a more explicit form of the linear trend in y of τT:

τT =
dpw

dx
y + τw (2.14)

In laminar flow τT = τv = µ
∂Ū
∂y

so, we could solve the equation for U and find

Poiseuille’s profile. For turbulent cases, it turns out to be more complex to solve
because of the new unknown represented by τRe. In another way, we can proceed
with the dimensional analysis:

ū = f
(
τw

ρ
, h, ν, y

)
(2.15)

7



It is defined with uτ =
√
τw

ρ
a velocity scale, sometimes called as friction velocity,

based on the wall shear stress. There are five quantities that are expressed by
two mutually independent dimensions: L,T. By Π Buckhingham’s theorem, there is
therefore a relation between (5− 2) = 3 quantity in dimensionless form, for example:

u+ = f (ζ, y+) (2.16)

where

• u+ =
ū
uτ

: dimensionless wall velocity, equal to the ratio between the average

velocity ū and the friction velocity uτ

• ζ =
y
h

: dimensionless ordinate equal to the ratio between the ordinate and a
geometric quantity of the channel h. This ordinate essentially represents an
ordinate of the same order of magnitude as the actual dimensional one

• y+ =
y
δ

: dimensionless ordinate equal to the ratio between the ordinate and a

viscous length, defined as δ =
ν
uτ

. This unit is commonly called unit of the

wall and represents an ordinate capable of conveniently representing the areas
of the field very close to the wall.

Considering the case where
lim
ζ→0

f (ζ, y+) = f (y+) (2.17)

The (2.16) become
u+ = f (y+) (2.18)

That is the complete similarity condition (independence of the h variable). The area
where this relationship holds is called the inner layer. In particular, if within this
area we are further close to the wall (h ≃ 0) we find that:

τT ≃ τw = µ
dū
dy
= cost (2.19)

Figure 2.3: Viscous and turbulent shear stress distributions in the near-wall region.
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At the wall the flow is dominated by viscous effects, then there is a buffer layer that
precedes the overlap region, where turbulent effects are even more preponderant, up
to the outer layer: moving away from the wall −u′v′ becomes even more important
and experiments have shown that it rapidly dominates momentum transport; this is
what makes the prediction of turbulent boundary layers so difficult [3].
By Millikan’s theory the overlap region is characterized by both limits ζ → 0 ,

y+ →∞ (which represents the inner and outer layer); calculating the derivatives
dū
dy

for both conditions:
dū
dy
= uτ

d f
dy+

dy+

dy
= uτ

uτ
ν

d f
dy+

(2.20)

dū
dy
= uτ

dF
dζ

dζ
dy
= uτ

dF
dζ

1
h

(2.21)

Multiplying for
y
uτ

to render the equations dimensionless, we find the relation:

y+
d f
dy+

= ζ
dF
dζ
= cost =

1
κ

(2.22)

where κ is Von Karman constant.
Focusing on the inner layer, integrating the previous equation, we found the loga-
rithmic law:

U+ =
ū
uτ
=

1
κ

log y+ + B (2.23)

where (κ ≃ 0.41, B ≃ 5.1) are experimentally known constants. The log-law can
explain velocity field in transition state between buffer layer and turbulent region,
this mean that the velocity is congruent to the logarithm of the distance from the
wall.

Figure 2.4: The log law represents satisfactorily the experimental data for entire inner layer,
except for the closest zone at the wall where the trend is linear, as mentioned previously [2]
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3 Roughness effects on turbulent flow and study
approach

For a turbulent boundary layer over a smooth surface, a thin layer of laminar flow
known as the viscous sublayer forms along the entire length of the surface. For
the same flow over a rough surface, the roughness increases flow instability close
to the wall which can lead to increased localised turbulence disrupting the viscous
sublayer, thereby generating the roughness sublayer and affecting pressure drop
and heat transfer. That translates in a drag increment that the surface offers at fluid
passage.

Figure 3.1: Boundary layer flows over (a) smooth and (b) rough surfaces [4]

Nikuradse investigated the effect of wall roughness on turbulent flows by measur-
ing the pressure drop in pipes coated with uniform sand. His detailed experiments,
insight into previous experiments, and correlation of his data set the stage for the
prediction of rough-wall flows [5]. Based on Nikuradse’s sand-grain experiments,
Schlichting considered roughness effects on the flow by defining a roughness scale
that reflects the effects of roughness characteristics on the flow. He considered the
rough surface as a smooth one covered with a layer of uniform packed spheres,
as dense as possible, where the diameter can be chosen to describe length scale;
it is called sand grain roughness height (k). However, when the shape of rough-
ness deviates from the sand-grain, a single parameter cannot describe the sand
grain roughness anymore. In this case, geometrical parameters may be applied to
characterize these type of surfaces. Therefore, an equivalent length scale was intro-
duced by Colebrook and White so-called equivalent sand-grain roughness (ks). The
equivalent sand-grain roughness is an equivalent roughness height for irregular, and
non-uniform rough surfaces that produce the same results as the uniform sand-grain
of the Nikuradse for a fully rough flow regime.
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Figure 3.2: Equivalent sand-grain roughness [4]

Thus, the "roughness Reynolds number" (k+s ) was defined as:

k+s =
ksuτ
ν

(3.1)

This parameter is introduced to account that wall roughness alters the law of the wall
used to describe the viscous sublayer. It is also used to classify the flow into three
regimes depending on equivalent sand grain roughness: k+s < 4 for the hydraulically
smooth regime, 4 ≤ k+s ≤ 70 for the transitionally rough regime and k+s > 70 for the
fully rough regime [6].

3.1 Velocity profile on a rough flat surface
Depending on the rough flow regime, the viscous sublayer could partially (in tran-
sitionally rough regimes) or completely (in fully rough regimes) be destroyed by
roughness. However, according to wall similarity hypothesis, the effect of the rough-
ness on the flow is limited to the roughness sublayer, and the outer layer remains
unaffected. In the roughness sublayer, the flow is highly disturbed due to the large
turbulence mixing caused by roughness elements.
Based on these observations, researchers have attempted to develop models for mean
flow over surface roughness, based on the available models of smooth wall flows.
Clauser studied the effect of the surface roughness on the mean velocity distribution
and presented a method that has demonstrated to be robust and widely applied. He
argued that the velocity profile in the viscous sublayer for rough surfaces follows a
logarithmic pattern with a similar slope as for smooth surfaces. He also found that
the sole impact of the roughness is a downward shift of the log-law profile as a func-
tion of the roughness Reynolds number. Clauser and Hama, each in an independent
study, introduced a parameter called roughness function (∆U+) to emulate the effect
of the velocity shift caused by surface roughness. They observed that it shifts the
logarithmic profile downward, commensurate with ∆U+, indicating a shortage in
momentum compared to smooth walls; the velocity change is proportional to ln (k+s )
and is independent of the distance of the wall.
Thus, Clauser proposed the logarithmic velocity distribution for turbulent flow over
rough walls as follows:

U+ =
1
κ

ln y+ + B − ∆U+ (3.2)
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where B is the smooth-wall constant and κ is von Karman constant. In this way
he has shown that the roughness function ∆U+ is a sole function of the roughness
Reynolds number (k+s ).
Hama performed an extensive experimental study and proposed the roughness
function for fully rough flows as:

∆U+ =
1
κ

ln k+s + B − C (3.3)

where C should reach a constant value in the fully rough regime [4].

3.2 Equivalent sand-grain roughness parameters
As previously mentioned (3), equivalent sand-grain roughness ks can be obtained
starting from many geometric parameters. There is no consensus on which rough-
ness parameter best describes a surface in relation to friction drag. Over the years,
many studies have attempted to identify the most appropriate surface parameters;
the following are the most widely used: mean roughness height (ka), root mean
square height (kq), maximum peak to valley height (kt), average peak to valley height
(kz), effective slope (ES), solidity (λ), skewness (ksk) and kurtosis (ku). However, none
of these parameters universally applies to all types of surfaces to describe its rough-
ness [7].
To determine mathematically some of these parameters, it is possible to use the
Probability Density Function (PDF), which represents the probability of a point on
the surface that has height equal to y:∫ +∞

−∞

p(y)dy = 1 (3.4)

The shape of PDF provides useful information about surface’s nature and can be
evaluated by its moments. The central θth moment of the PDF with zero mean, mθ,
is defined as:

mθ =

∫ +∞

−∞

yθp(y)dy (3.5)

The roughness parameters can be defined as

kq =
√

m2 ksk = m3/m3/2
2 ku = m4/m4

2 (3.6)

Effective Slope parameter was introduced by Napoli et al. to distinguish between
roughness and waviness surface. It is defined as the average value of the magnitude
of the slope of the roughness corrugation, written as:

ES =
1

lxlz

∫ l

0

∫ lz

0

∣∣∣∣∣∂k(x, z)
∂x

∣∣∣∣∣dxdz (3.7)

where k(x, z) is the roughness amplitude, while lx and lz are the sampling length
in stream and span directions, respectively. Pyramid roughness and 2D wave-
composite surfaces with an effective slope of approximately less than 0.35, do not
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scale on the roughness height and are classified as wavy surfaces.
Solidity (λ) is defined as the ratio of the average roughness element spacing (ψ) to
the effective slope roughness height (ES); a relation of ES = 2λ has been observed by
several researchers [4].
According to [7] "To effectively describe a rough surface, a combination of the three roughness
categories, namely height, slope, and asymmetry, is considered to be the most appropriate
approach to understanding the impact of these roughness parameters on a turbulent boundary
layer (TBL) and to identify the specific parameters that influence turbulence statistics and
drag coefficient."

3.3 Limitations of the Roughness Reynolds Number
Despite its popularity, the use of k+s entails several conceptual and practical draw-
backs, especially for complex or engineered surfaces.

• Implicit reliance on empirical models

The definition of k+s stems from Nikuradse’s sand-grain experiments, charac-
terised by uniform, closely packed spheres. Applying the same parameter to
real, irregular textures assumes that a single scalar ks can reproduce the same
head loss, an assumption that is inherently empirical and often unjustified.

• Ambiguity in determining ks

There is no unique procedure to infer ks from a given texture. Different geo-
metric metrics (mean height ka, rms height kq, peak-to-valley height kt, effective
slope (ES), skewness, kurtosis, etc.) lead to different values. Consequently,
distinct surfaces may share the same ks yet generate different flow responses,
and vice versa.

• Validity restricted to the fully rough regime

Classical relations, such as Hama’s roughness function

∆U+ =
1
κ

ln k+s + B − C,

are valid only in the fully rough regime, where viscous effects near the wall
are negligible. In the transitional range (4 ≲ k+s ≲ 70), no single universal law
exists, and case-specific calibration is usually required.

• Inability to capture anisotropic or non-local effects

The parameter k+s is a scalar. It cannot account for directional (anisotropic) tex-
tures, non-uniform distributions, multiscale features or three-dimensional in-
teractions among roughness elements, all of which can markedly alter boundary-layer
behaviour.

• Unsuitability for modern engineered surfaces

Contemporary applications increasingly employ micro-textured, gradient, porous
or super-hydrophobic coatings. For such surfaces, the notion of hydraulic
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equivalence with a sand-grain layer is untenable, and k+s fails to predict drag
or heat-transfer variations accurately.

While k+s remains a convenient classification tool for canonical roughness, its lim-
itations motivate the search for alternative approaches. As shown in this thesis,
asymptotic homogenisation offers a more robust framework: it replaces the real tex-
ture with non-empirical, wall-scale boundary conditions, such as slip lengths and
interface permeabilities, directly derived from the surface geometry.
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4 Asymptotic homogenization

Investigating how the microscale features of a surface, such as roughness, can alter
the characteristics of the turbulent motion above it and consequently affect skin-
friction drag or heat and mass transfer effectiveness, is important for both predictive
and optimization purposes in various applications. The numerical complexity and
high computational cost of resolving turbulent fields near and across surface micro-
details pose a significant challenge. This is due to the diverse range of surface
topographies encountered in practice, the computational expense of performing
well-resolved direct numerical simulation (DNS) or large-eddy simulations, and the
uncertainties and errors related to the numerical representation of rough surfaces or
grain shapes and distributions.
Asymptotic multiscale homogenization theory provides a theoretical framework
through which the rapidly varying properties of a heterogeneous surface (such as
irregular, rough, lubricant-infused or porous surfaces) can be replaced with homo-
geneous upscaled parameters, such as Navier’s slip length, which helps formulate
effective boundary conditions, free of empirical coefficients, to be imposed at a hypo-
thetical plane interface next to the actual textured boundary. This approach allows
for the numerical study of the macroscale behavior of channel flow without the
need to resolve flow details in the immediate vicinity of solid protrusions or grains,
thereby reducing mesh requirements and computational costs.

Figure 4.1: No-slip boundary condition on each individual grain

15



Figure 4.2: Effective boundary condition arising from homogenization

The validity of the asymptotic homogenization approach depends on the presence
of well-separated scales. For instance, there must be a microscopic length scale (l)
related to the periodicity of the surface texture and a macroscopic length scale (L),
where L » l, related to the large-scale flow structures in the channel. This allows, by
the definition of the small parameter ϵ = l/L « 1, to find a solution manipulating the
microscale problem by means of an asymptotic analysis up to the required order of
accuracy, in terms of a ϵ [8].

4.1 Upscaling approach
Considering the turbulent flow of a viscous incompressible Newtonian fluid in a
rough wall, the velocity components (û1 = û; û2 = v̂; û3 = ŵ) and pressure p̂
are dependent variables to be evaluated over space (x̂1 = x̂; x̂2 = ŷ; x̂3 = ẑ) and
time t̂ (afterword we will refer to macroscopic parameters with capital case letters
and microscopic parameters with small case letters). The conservation equations
governing the flows are the following:

∂ûi

∂x̂i
= 0; (4.1)

ρ

(
∂ûi

∂t̂
+ û j

∂ûi

∂x̂ j

)
= −

∂p̂
∂x̂i
+ µ

∂2ûi

∂x̂2
j

(4.2)

with ρ and µ the fluid density and dynamic viscosity, respectively.
We now define the micro- and macro- characteristic length scales referring to near-
surface flow and large-scale flow, respectively, as mentioned above:
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Scales Macro Micro

Lenght L l

Velocity Û û

Pressure ρÛ2 ρû2

Time L
Û

l
û

Once the scales are defined, we need to normalize every parameter of the governing
equations to find the dimensionless equations of the problem.

Macro:

Xi =
X̂i

L
; Ui =

Ûi

Û
; P =

P̂
ρÛ2

; T =
t̂ Û
L

(4.3)

The dimensionless continuity and momentum equations are, respectively:

∂Ui

∂Xi
= 0; (4.4)

∂Ui

∂T
+U j

∂Ui

∂X j
= −

∂P
∂Xi
+

1
Re
∂2Ui

∂X2
j

(4.5)

where Re = (ρÛL/µ) is the Reynolds number of the macroscopic problem.

Micro:

xi =
x̂i

l
; ui =

ûi

û
; p =

p̂
ρû2 ; t =

t̂ û
l

(4.6)

The dimensionless continuity and momentum equations are, respectively:

∂ui

∂xi
= 0; (4.7)

R

(
∂ui

∂t
+ u j

∂ui

∂x j

)
= −

∂p
∂xi
+
∂2ui

∂x2
j

(4.8)

where R = (ρûl/µ) is the Reynolds number of the microscopic problem.
The momentum equation (4.9) can be rewritten as follows, since R = ϵ2Re

ϵ2Re
(
∂ui

∂t
+ u j

∂ui

∂x j

)
= −

∂p
∂xi
+
∂2ui

∂x2
j

(4.9)

Next step is to define boundary condition of the problem:

• No-slip condition at the physical interface

ui = 0 (4.10)
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• The virtual surface is defined at x̂2 = ŷ∞, and continuity of velocity and the
traction vectors is applied there, so the matching conditions can be written as:
continuity of velocity

ui

∣∣∣
y=y∞
=

1
ϵ

Ui

∣∣∣
Y=Y∞

(4.11)

continuity of the components of the traction vector at the interface between the
two regions (

∂u1

∂x2
+
∂u2

∂x1

) ∣∣∣∣∣
y=y∞
=

(
∂U1

∂X2
+
∂U2

∂X1

) ∣∣∣∣∣
Y=Y∞
= S12(

−p + 2
∂u2

∂x2

) ∣∣∣∣∣
y=y∞
=

(
−ReP + 2

∂U2

∂X2

) ∣∣∣∣∣
Y=Y∞
= S22(

∂u3

∂x2
+
∂u2

∂x3

) ∣∣∣∣∣
y=y∞
=

(
∂U3

∂X2
+
∂U2

∂X3

) ∣∣∣∣∣
Y=Y∞
= S32.

(4.12)

4.2 Asymptotic analysis of microscale problem
An asymptotic analysis is then performed on the microscopic problem, which is
reconstructed at different orders of the parameter ϵ. Each variable of the problem is
expressed in the following form:

f = ϵ0 f (0) + ϵ1 f (1) + ϵ2 f (2) + ... (4.13)

Furthermore, the gradients are recast using the chain rule

∂
∂xi
→

∂
∂xi
+ ϵ

∂
∂Xi

(4.14)

∂2

∂x2
i

→
∂2

∂x2
i

+ ϵ2 ∂

∂X2
i

+ 2ϵ
∂2

∂xi∂Xi
(4.15)

Asymptotic expressions are substituted in the equations governing the flow in the
microscopic regions to reconstruct the microscale problems at different orders of
ϵ. The resulting systems of equations for the interfacial region can be obtained by
defining a description of the asymptotic expansions. So, the velocity components
and pressure are expressed as follows: ui = ϵ

0u(0)
i + ϵ

1u(1)
i + O(ϵ2)

p = ϵ0p(0) + ϵ1p(1) + O(ϵ2)
(4.16)

At first order, the continuity and momentum equations are as follows
∂u(0)

i

∂xi
= 0

−
∂p(0)

∂xi
+
∂2u(0)

i

∂x2
j

= 0
(4.17)
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Then the boundary condition at the physical interface becomes

u(0)
i = 0 (4.18)

and at the virtual surface; ∂u(0)
1

∂x2
+
∂u(0)

2

∂x1

 ∣∣∣∣∣
y=y∞
= S12−p(0) + 2

∂u(0)
2

∂x2

 ∣∣∣∣∣
y=y∞
= S22∂u(0)

3

∂x2
+
∂u(0)

2

∂x3

 ∣∣∣∣∣
y=y∞
= S32

(4.19)

Where S12, S22, S32 are the components of the traction vector S, exerted on the
surface at y∞ by the external (macroscopic) fluid flow. Since the problem, defined by
equations (4.17);(4.19) and (4.25);(4.28), is linear and driven by the traction vector S,
a general solution to the problem can be expressed in the following form, rewriting
the dependent variables as:

u(0)
1 = u†11S12 + u†12S22 + u†13S32

u(0)
2 = u†21S12 + u†22S22 + u†23S32

u(0)
3 = u†31S12 + u†32S22 + u†33S32

p(0) = p†1S12 + p†2S22 + p†3S32

(4.20)

where parameters marked with (†) are auxiliary variables.
In order to solve the problem, it is necessary to substitute every variable u(0)

i and p(0)

in the dimensionless Navier-Stokes equations applying boundary conditions, this
will give values for auxiliary variables:

∂u†i j

∂xi
= 0;

−

∂p†j
∂xi
+
∂2u†i j

∂x2
j

= 0−p†jδi2 +
∂u†i j

∂x2
+
∂u†2 j

∂xi

 ∣∣∣∣∣
y=y∞
= δi j

(4.21)

The solution of the problem at the first order, forcing it by S22 (j=2), is easily retrieved
as described below: 

∂u†12

∂x2
+
∂u†22

∂x1
= 0 (i = 1)

−p†2 +
∂u†22

∂x2
+
∂u†22

∂x2
= 1 (i = 2)

∂u†32

∂x2
+
∂u†22

∂x3
= 0 (i = 3)

(4.22)
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so that  u†i2 = 0
p†2 = −1

(4.23)

To second order, the equations governing the problem become:

∂u(1)
i

∂xi
= −

∂u(0)
i

∂Xi
(4.24)

−
∂p(1)

∂xi
+
∂2u(1)

i

∂u2
j

=
∂p(0)

∂Xi
− 2

∂2u(o)
i

∂x j∂X j
(4.25)

where the third equation is written in expanded form∂u(1)
1

∂x2
+
∂u(1)

2

∂x1


y=y∞

= −

∂u(0)
1

∂X2
+
∂u(0)

2

∂X1


y=y∞

(4.26)−p(1) + 2
∂u(1)

2

∂x2


y=y∞

= −2
∂u(0)

2

∂X2

∣∣∣∣∣
y=y∞

(4.27)∂u(1)
3

∂x2
+
∂u(1)

2

∂x3


y=y∞

= −

∂u(0)
3

∂X2
+
∂u(0)

2

∂X3


y=y∞

(4.28)

The generic forms hold: 
u(1)

i = u‡i jk

∂S j2

∂Xk

p(1)
i = p‡jk

∂S j2

∂Xk

(4.29)

Replacing generic forms in Continuity and Momentum equations, it lead to the
generic solution:

∂S j2

∂Xk

∂u‡i jk

∂xi

 = ∂S j2

∂Xk

(
−u†i jδik

)
(4.30)

∂S j2

∂Xk

−∂p‡jk
∂xi
+
∂2u‡i jk

∂x2
i

 = ∂S j2

∂Xk

p†jδik − 2
∂u†i j

∂xk

 (4.31)

These are nine decoupled system, corresponding to j,k=1,2,3. The closure problems
(4.21) and (4.31) are to be solved in a representative unit cell of the microscopic
region, subject to periodicity of all dependent variables along x and z and to the
boundary conditions u†i j = 0 and u‡i jk = 0 on the solid grains, which come from the
no-slip condition [8].
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4.3 Effective boundary conditions
Numerical solutions are sought for systems (4.21) and (4.31), with focus on the

values of the fields at x2 = y∞, since u†i j

∣∣∣∣∣
y∞

and u‡i jk

∣∣∣∣∣
y∞

are eventually the necessary

coefficients to close the macroscopic effective boundary conditions of the velocity.
These conditions result from matching the velocity vector at the fictitious interface
between the channel-flow and the interfacial regions.

Finally, the upscaled conditions, second-order accurate in terms of ϵ, are expressed
as:

Ui|Y=∞ = ϵu(0)
i (y∞) + ϵu(1)

i (y∞) + O(ϵ3) = ϵu†i j(y∞)S j2 + ϵ
2 u‡i jk(y∞)

∂S j2

∂Xk
+ O(ϵ3) (4.32)

The numerical procedure to solve the closure problems is similar to that followed by
Naqvi & Bottaro [9] and Ahmed et al. [10] for porous media of either isotropic (such
as spherical grains) or transversely isotropic microstructures in the x̂− ẑ plane (such
as spanwise- or streamwise-elongated elements). We focus on the same parameters
which do not vanish at the matching interface found in these references:

u†11(y∞) = y∞ + λx,

u†33(y∞) = y∞ + λz,

−u‡211(y∞) = u‡121(y∞) = 0.5 y2
∞
+ λxy∞ + Kit f

xy ,

−u‡233(y∞) = u‡323(y∞) = 0.5 y2
∞
+ λzy∞ + Kit f

zy ,

u‡222(y∞) = Kyy,

(4.33)

with λx and λz are the dimensionless Navier slip coefficients in the streamwise and
spanwise directions, respectively;
Kit f

xy and Kit f
zy are the interface permeability coefficients and Kyy is an intrinsic perme-

ability component. The novel contribution here is the incorporation of the effect of
near-interface inertia on the microscale flow behavior, which renders the aforemen-
tioned parameters sensitive to the value of Reλ.

It is convenient to set y∞ = 0 in the fitting relations (4.33) and, hence, to extrapolate
the solutions of the model coefficients to a matching interface located at the upper
boundary of the surface corrugation, that is, the porous/free-fluid interface at Y =
0. Therefore, the values of the parameters λx, λz,K

it f
xy ,K

it f
zy and Kyy are sufficient to

macroscopically mimic the presence of the permeable interface up to second-order
accuracy, with the following effective boundary conditions on the Y = 0 plane:

U|Y=0 = ϵ λx S12|Y=0 + ϵ
2 Kit f

xy
∂S22

∂X

∣∣∣∣∣
Y=0
+ O(ϵ3), (4.34)

V|Y=0 = −ϵ
2 Kit f

xy
∂S12

∂X

∣∣∣∣∣
Y=0
− ϵ2 Kit f

zy
∂S32

∂Z

∣∣∣∣∣
Y=0
+ ϵ2 Kyy

∂S22

∂Y

∣∣∣∣∣
Y=0
+ O(ϵ3), (4.35)

W|Y=0 = ϵ λz S32|Y=0 + ϵ
2 Kit f

zy
∂S22

∂Z

∣∣∣∣∣
Y=0
+ O(ϵ3). (4.36)
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In dimensional form, after extrapolating the boundary conditions from Y = Y∞ to
Y = 0, the effective conditions at the fictitious wall valid up to second order in ϵ read:

û|0 ≈ λ̂x

(
∂û
∂ŷ
+
∂v̂
∂x̂

)∣∣∣∣∣∣
0

+
K̂

it f
xy

µ
∂
∂x̂

(
−p̂ + 2µ

∂v̂
∂ŷ

)∣∣∣∣∣∣∣
0

, (4.37)

v̂|0 ≈ − K̂
it f
xy
∂
∂x̂

(
∂û
∂ŷ
+
∂v̂
∂x̂

)∣∣∣∣∣∣
0

− K̂
it f
zy
∂
∂ẑ

(
∂ŵ
∂ŷ
+
∂v̂
∂ẑ

)∣∣∣∣∣∣
0

, (4.38)

ŵ|0 ≈ λ̂z

(
∂ŵ
∂ŷ
+
∂v̂
∂ẑ

)∣∣∣∣∣∣
0

+
K̂

it f
zy

µ
∂
∂ẑ

(
−p̂ + 2µ

∂v̂
∂ŷ

)∣∣∣∣∣∣∣
0

. (4.39)

The new parameters of the boundary conditions, λ̂x, λ̂z, K̂it f
xy , and K̂it f

zy , correspond to
auxiliary variables that come from asymptotic analysis.

It is important to emphasize that these coefficients are not empirical, but arise from
the solution of auxiliary systems of equations solved in the x̂- or ẑ-periodic ele-
mentary cell. In particular, λ̂x and λ̂z are the components of the Navier-slip vector
λ̂ = (λ̂x, 0, λ̂z), also called the effective slip length. The two terms, K̂it f

xy and K̂it f
zy , are

defined as interface permeabilities since, in analogy to Darcy’s law in the bulk of the
porous domain, they multiply the streamwise and spanwise gradients of the pres-
sure in the expressions of û|0 and ŵ|0. However, they differ from the corresponding
intrinsic permeability components since, near the porous/free-fluid interface, grains
are not as closely packed as in the bulk.

The auxiliary variables (λ̂x, λ̂z, K̂
it f
xy , K̂

it f
zy ) are homogeneous to, respectively, a length

and a surface area, and correspond to the product of their dimensionless counterparts
times l and l2:

λ̂x = λxl,

λ̂z = λzl,

K̂it f
xy = Kit f

xy l2,

K̂it f
zy = Kit f

zy l2.

(4.40)

These coefficients are intrinsic to the geometric characteristics of the boundary and
do not depend on the Reynolds number.

It is important to stress the fact that the first terms in the slip velocity components
( û|0 and ŵ|0), i.e. those containing the slip lengths λ̂x and λ̂z, are of order ϵ, while
all the other terms are of order ϵ2. In the isotropic case we have λ̂ = λ̂x = λ̂z and
K̂

it f = K̂
it f
xy = K̂

it f
zy so that the equations above can be simplified as:

û|0 ≈ λ̂
(
∂û
∂ŷ
+
∂v̂
∂x̂

)∣∣∣∣∣∣
0

+
K̂

it f

µ
∂
∂x̂

(
−p̂ + 2µ

∂v̂
∂ŷ

)∣∣∣∣∣∣
0

, (4.41)

v̂|0 ≈
K̂

it f

λ̃

∂ṽ
∂ŷ

∣∣∣∣∣∣
0

, (4.42)

22



ŵ|0 ≈ λ̂
(
∂ŵ
∂ŷ
+
∂v̂
∂ẑ

)∣∣∣∣∣∣
0

+
K̂

it f

µ
∂
∂ẑ

(
−p̂ + 2µ

∂v̂
∂ŷ

)∣∣∣∣∣∣
0

. (4.43)

The purpose of our study is to correlate Hama’s roughness function ∆U+ to the slip

length λ̂ and to the vertical penetration distance
ˆK it f

λ̂
, both measured in wall units.

4.4 Analytical construction of ∆U+ from homogenized coeffi-
cients

The roughness function ∆U+ represents a downward shift of the logarithmic ve-
locity profile compared to the smooth-wall case, caused by the presence of surface
roughness. Historically, it has been obtained through empirical correlations based
on experimental measurements, as in the well-known Hama formulation. While
this approach has been effective, it is limited to geometries similar to those tested
experimentally and does not offer predictive capability for engineered or irregular
surfaces.

The method adopted in this work, based on asymptotic homogenization theory, pro-
vides a systematic and generalizable way to construct an analytical formulation of
∆U+, relying on λx and Kit f

xy ,computed from a microscale simulation over a represen-
tative periodic cell. By analogy with the classical logarithmic structure proposed by
Hama, one can construct a predictive formula for ∆U+ of the form:

∆U+ =
1
κ

ln
(
1 + aλx + b

√
Kit f

xy

)
Where a and b represent the relative weight of the two homogenized parameters.
These coefficients are calibrated by comparing the analytical prediction of ∆U+ with
data obtained from high-fidelity Direct Numerical Simulations (DNS). Specifically,
for each roughness geometry considered, the following steps are carried out:

1. Compute λx and Kit f
xy from steady laminar simulations (e.g., via asymptotic

homogenization);

2. Measure or retrieve ∆U+ from DNS of turbulent flow over the same surface;

3. Fit the analytical expression by adjusting a and b to minimize the difference be-
tween predicted and DNS values of ∆U+ (e.g., using least-squares regression).

Once this calibration is completed for a given class of rough surfaces, the values of a
and b are held fixed. This is possible because all geometric information is embedded
in the homogenized coefficients λx and Kit f

xy , and the analytical structure of the model
remains valid across varying flow conditions. The resulting formulation becomes a
predictive tool, no longer requiring empirical tuning for each new simulation.

Although not explicitly present in literature, this formula is dimensionally consistent,
physically justified, and compatible with the logarithmic nature of velocity profiles
observed in wall-bounded turbulence. It represents a natural extension of classical

23



roughness models, replacing empirical roughness heights k+s with effective, homog-
enized quantities that capture the influence of geometry through first-principles
analysis.
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5 Modelling and Simulation of flow over rough
surface

Numerical simulations of laminar flow were performed to evaluate slip parameters
λx and Kit f

xy on a rough surface, represented by a layer of spheres, using water as a
working fluid.

5.1 CFD software
STAR-CCM+ by CD-Adapco is the software we used for the simulations. STAR-
CCM+ is a computational fluid dynamics software that enables to simulate multi-
physics systems that operate in real conditions, in both 2D and 3D.
To run a simulation on this software, the following steps need to be performed:

• Definition of all the parameters and field functions;

• Design of the geometry of the problem;

• Set up of the boundary conditions for the domain;

• Mesh generation;

• Visualization and analysis of the results.

5.2 Geometry and Mesh Description
To simulate the behavior of laminar flow over a rough surface, a three-dimensional
computational domain was designed, representing a periodic unit cell. The base
of the cell is a square with side length l = 1, equal to the diameter of a hollow
hemisphere embedded in the lower part of the domain. The hemisphere models the
roughness element. This choice was also dictated by the possibility of comparing
the results obtained with the values deriving from Nikuradse’s experiments.

The domain is vertically divided into two regions:

• Refinement region: the lower zone between the base wall and the interface-i,
which contains the hemispherical cavity. A finer mesh is used here to accurately
capture slip effects and high viscous gradients near the rough surface.

• Upper region: the portion of the domain between interface-i and the top surface,
representing the overlying fluid and completing the periodic cell.

The lateral surfaces of the domain are treated with periodic boundary conditions
to simulate an infinitely repeating system in the horizontal plane. The interface
between the two regions is defined as continuous.
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Figure 5.1: Geometry of the computational domain.
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Figure 5.2: Mesh of the entire domain.
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Figure 5.3: Lower part of the domain with a finer mesh. The hole is due to the sphere which
is tangent to the cell layers.

More details of the mesh refinement strategy are explained in Chapter 6.2.

5.3 Boundary Conditions and Problem Setup

Choice of Physical Models

The physical models activated in the CFD simulation were selected to reflect the
simplifying assumptions of the theoretical framework and to ensure numerical effi-
ciency, while maintaining physical fidelity in the near-wall region. The following is
a rationale for each selected model:

• Laminar flow model (Steady, Laminar)
Although the final application of homogenized boundary conditions may tar-
get turbulent flows, the present simulation focuses on a steady, laminar regime.
This choice was made to isolate and study the intrinsic effect of surface rough-
ness on flow, without the added complexity of turbulence modeling. The
laminar assumption also aligns with the first-order asymptotic analysis, which
is typically formulated under simplified flow conditions.

• Segregated flow solver (Segregated Navier–Stokes equations)
A segregated solver was employed to independently solve the momentum and
continuity equations. This approach reduces the computational cost and is ap-
propriate for incompressible laminar flows where pressure–velocity coupling
does not pose significant stability issues.

• Incompressible fluid with constant properties (Constant Density, Liquid
H2O)
Water was used as the working fluid, modeled as incompressible and with
constant density and viscosity. These assumptions are standard in many wall-
bounded-flow problems and are compatible with the dimensionless formu-
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lation used in asymptotic homogenization. Constant properties simplify the
analysis and are sufficient to capture the effects of geometric texture on mo-
mentum transport.

• Gradient evaluation (Gradients)
The evaluation of gradients for derived quantities was activated to improve
the calculation of viscous shear stress, which is crucial near the wall where
steep gradients are expected. This is particularly important for the accurate
extraction of the slip and permeability coefficients.

• Three-dimensional model (3D)
A three-dimensional domain was essential to fully capture the spatial complex-
ity introduced by the hemispherical cavity and to correctly resolve the three
components of velocity and stress. This is in line with the theoretical deriva-
tion, which considers all directions in the formulation of effective boundary
conditions.

• Solution interpolation (Solution Interpolation)
This option was enabled to enhance numerical convergence, especially in re-
gions with complex geometry and fine mesh, such as the roughness cavity.
Interpolation contributes to the achievement of a stable and accurate solution.

These modeling choices reflect a compromise between physical accuracy and com-
putational efficiency. They are consistent with the objective of characterizing the
microscale flow field and extracting effective macroscopic parameters that can later
be used in more complex, turbulent simulations.

Boundary Conditions

The choice of boundary conditions was made to be fully consistent with the mul-
tiscale homogenization theory, which assumes a periodic microscale structure and
well-separated length scales. Below is a justification for each imposed boundary
condition:

• Top surface: prescribed constant velocity
A uniform velocity was imposed on the top surface of the computational do-
main. This ensures the presence of a well-defined shear flow across the height
of the domain and allows the velocity profile to develop in response to the
presence of the roughness elements below. Since the goal of the study is to
investigate the effect of surface texture rather than to reproduce a specific ex-
perimental flow, prescribing the top velocity allows better control over the
input conditions.

• Bottom wall: no-slip condition on the rough surface
A no-slip condition was applied at the physical wall, including the hemispher-
ical cavity. This accurately models the microscopic boundary, where the fluid
adheres entirely to the solid surface. In the context of homogenization theory,
this setup allows for the computation of effective slip and permeability param-
eters, which emerge as a result of the multiscale analysis applied to a strictly
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no-slip microscale model.

• Lateral surfaces: periodic boundary conditions
Periodic boundary conditions were applied on the lateral faces of the domain to
represent an infinite repetition of the unit cell in the horizontal directions. This
reflects the assumption of spatial periodicity at the microscale and avoids edge
effects that could bias the solution. These conditions are essential to ensure
that the domain functions as a representative elementary volume (REV) of an
extended rough surface.

• Interface between lower and upper regions: continuity condition
The virtual interface between the refined region containing the roughness and
the upper bulk region was defined as continuous in both velocity and stress.
This is consistent with the matching conditions used in asymptotic homoge-
nization, where the microscale velocity and traction vectors must be continuous
across the interface. This interface acts as the fictitious plane on which the ef-
fective boundary conditions are ultimately imposed.

This setup ensures that the simulation is both physically representative and mathe-
matically well posed. It allows for the extraction of effective macroscopic quantities
without resolving the entire wall-bounded turbulent flow, significantly reducing
computational cost.

The decision to perform a laminar steady-state simulation, rather than a turbulent
or time-dependent one, is also strategic. It provides a first validation step for the
theoretical framework and allows for accurate computation of the auxiliary variables
needed to define the slip length and permeability. These parameters can later be used
in more complex simulations, including DNS, to model turbulent flows over textured
surfaces more efficiently.
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6 Conclusions

The main objective of this study was to investigate the relationship between surface
roughness and its effects on turbulent flow, by employing the theoretical framework
of asymptotic homogenization.

6.1 Visualization of Pressure and Velocity Fields
Qualitative analysis of the flow was performed by visualizing dimensionless fields
in characteristic sections of the domain. The results highlight the influence of the
rough surface on local pressure and velocity distributions.

Figure 6.1: Dimensionless horizontal velocity field u†.

The velocity is zero on the hemispherical surface due to the no-slip boundary condi-
tion, and it gradually increases in the vertical direction, reaching its maximum at the
top of the domain where the flow is fully developed. This trend is consistent with
the expected laminar shear profile.
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Figure 6.2: Dimensionless vertical velocity field v†.

The field shows small vertical displacements caused by the interaction of the flow
with the cavity created by the sphere. The slight difference in color between the
left and right halves of the domain suggests that the simulation may not have fully
converged to a symmetric solution, possibly due to residual numerical imbalances.

Figure 6.3: Dimensionless pressure field p†.
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The pressure distribution highlights a lower pressure region inside the cavity. As
with the vertical velocity, the slight asymmetry between the two halves of the domain
may indicate that the solution did not reach full numerical convergence.

6.2 Numerical results
Through CFD simulations carried out on a representative three-dimensional geom-
etry, it was possible to compute two key macroscopic parameters:

• Slip length in the streamwise direction: λx = 0.1034

Figure 6.4: Convergence graphs of λx
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• Interfacial permeability in the xy direction: Kit f
xy = 0.0084

Figure 6.5: Convergence graphs of Kit f
xy

The convergence plots shown in Figures 6.4 and 6.5 illustrate the iterative evolution
of the computed values for the slip length λx and the interfacial permeability Kit f

xy
during the CFD simulation.

In the case of the slip lengthλx, the curve shows a rapid stabilization after a relatively
small number of iterations. This behavior indicates that the tangential velocity field
near the rough surface reaches a steady state quickly and that the horizontal com-
ponent of the solution is well resolved. The smooth convergence of λx confirms the
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reliability of the extracted value and suggests that it accurately reflects the geometric
and physical configuration of the modeled surface.

For the interfacial permeability Kit f
xy , the plot also shows a tendency toward conver-

gence, although with slightly more variation in the early iterations. This could be
attributed to the greater sensitivity of the vertical flow (penetrating the roughness
cavity) to small numerical imbalances or pressure field inaccuracies.

It is also worth noting that the discrete jumps observed in both curves are due to
mesh refinement operations performed during the simulation. As the mesh becomes
progressively finer, particularly in regions of high velocity or pressure gradients,
the local numerical accuracy improves, and this can lead to sudden updates in
the estimated values of λx and Kit f

xy . These adjustments are typical in simulations
involving adaptive or manually refined meshes and are not indicative of instability
but rather of increased resolution of microscale effects.

Instead of starting the simulation with the final, highly refined mesh, a progressive
mesh refinement strategy was adopted. This approach offers several advantages in
terms of numerical stability, convergence behavior, and computational efficiency.

Using a highly refined mesh from the very beginning of the simulation can lead to
several issues:

• Increased computational cost: Fine meshes contain a large number of cells,
which significantly increases memory usage and computation time, especially
during early iterations when the solution is still far from convergence.

• Numerical instability: Solving the Navier–Stokes equations on a fine mesh
with a poor initial guess can lead to divergence or oscillatory behavior in the
solver. Starting with a coarser mesh and progressively refining allows the
solver to build a better approximation of the solution step by step.

• Improved convergence: Gradual refinement helps reduce residuals (Fig. 6.6)
and allows for a smoother convergence trajectory, as the solver adapts to in-
creasingly accurate flow structures. This is particularly important in regions
with strong gradients, such as around the roughness cavity.
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Figure 6.6: The residual represents the local error between the actual value of the solution
and the value it should have if the equations were satisfied perfectly.

In this simulation, the refinement was focused particularly in the lower region of
the domain, around the hemispherical cavity, where viscous effects and velocity
gradients are more intense. The mesh refinement improves the local resolution in
these critical zones, leading to more accurate estimates of the slip and permeability
coefficients.

Although this strategy introduces slight discontinuities (or “jumps”) in the con-
vergence curves, it ultimately leads to a more stable and reliable solution. These
jumps correspond to mesh updates and should be interpreted as signs of increased
numerical precision rather than inconsistencies.

In summary, both graphs confirm that the simulation achieved good numerical con-
vergence, which is essential for the reliability of the extracted parameters. These
results validate the accuracy of the computational setup and support the use of λx

and Kit f
xy within the asymptotic homogenization framework described in the earlier

chapters.

These values provide an effective macroscopic description of the microscale behavior
induced by surface roughness. In particular, the slip length quantifies how much the
fluid appears to slip over the rough surface compared to a perfectly smooth one.
The interfacial permeability, instead, expresses the extent to which the roughness
allows vertical fluid penetration, affecting local pressure gradients and momentum
exchange.
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6.2.1 Importance of λx and Kit f
xy

The knowledge of these parameters proves to be extremely useful for several reasons:

• Reduction in computational complexity: Instead of resolving the detailed
geometry of the roughness, the wall can be modeled using effective boundary
conditions, significantly reducing the mesh size and computational cost.

• Prediction and optimization: The extracted coefficients allow one to evalu-
ate and compare the effectiveness of different surfaces in reducing drag or
improving heat and mass transfer.

• Engineering applications: These tools are valuable in the design of surfaces
for aerodynamic, naval, HVAC (Heating, Ventilation, and Air Conditioning),
biomedical applications and any context in which fluid structure interaction is
involved.

In conclusion, the theoretical–numerical approach based on homogenization theory
proves to be a powerful and versatile strategy for advanced flow modeling on
complex surfaces. It is capable of producing coherent, interpretable, and reusable
results for real-world engineering problems.
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7 Future research developments

7.1 DNS Implementation Using Homogenization Parameters
Building on the results obtained from the present study, several directions can be
taken to deepen the understanding of roughness-induced flow phenomena and
to validate the asymptotic homogenization framework in more realistic turbulent
conditions.
One of the most promising future developments consists in performing a Direct
Numerical Simulation (DNS) of turbulent flow over the same rough surface. Unlike
the current laminar steady-state simulation performed with CFD, which models flow
behavior using simplified assumptions and effective boundary conditions, DNS fully
resolves all the temporal and spatial scales of turbulence without any turbulence
modeling.

The key differences between the two approaches are as follows:

• CFD (current approach): Steady-laminar simulation with simplified physical
models (e.g., constant density, no turbulence model); provides averaged or
filtered results at low Reynolds numbers.

• DNS (proposed): Fully transient, three-dimensional simulation that captures
the complete spectrum of turbulent structures; significantly more accurate but
extremely computationally expensive.

Using the slip length λx and the interfacial permeability Kit f
xy obtained in this work

as inputs for the modeling of boundary condition or as validation parameters, DNS
could help:

• Verify the consistency between homogenized models and resolved turbulence
data;

• Refine the effective boundary conditions at higher Reynolds numbers;

• Validate the proposed empirical law for ∆U+ and obtain the coefficients a and
b.

• Compare the results with those obtainable through empirical methods

7.2 Alternative Surface Geometry: Hexagonal Packing
Another interesting research direction involves modifying the surface topology by
changing the distribution of the roughness elements. In the present configuration,
the rough surface consists of hemispheres arranged in a square-packed pattern, with
one sphere per unit cell. An alternative proposed is to implement a hexagonal
packing of the spherical elements.

38



Figure 7.1: Difference between the two provisions

Hexagonal arrangements are known to offer more compact configurations and can
influence the effective slip and permeability coefficients due to reduced interstitial
spacing and altered shear-layer development. This change in geometry may yield
the following results:

• Different values of λx and Kit f
xy due to altered flow recirculation patterns;

• Enhanced anisotropy effects in the velocity and stress fields;

• Potential drag reduction or enhancement depending on the configuration.

Simulating such a configuration, both in laminar and turbulent regimes, would con-
tribute to a more complete understanding of how surface texture and packing density
influence macroscopic flow behavior. Furthermore, it may help design optimized
rough surfaces for specific engineering goals, such as heat transfer enhancement or
drag minimization.

The proposed developments would bring this research closer to practical and indus-
trial relevance by validating theoretical predictions through high-fidelity simulations
and by exploring geometries that more closely resemble engineered surfaces.
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