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The problem
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Chapter 1

Combustion instability

The words combustion instability refer to a broad range of processes giving rise to os-
cillations in heat release and resonant coupling between combustion and acoustics and
resulting in sound emission, structural vibrations, intensi�ed heat �uxes to the walls of
the combustor [1].

Combustion instability is a current research topic of thermo-acoustics, which investi-
gates sound in �uids where thermal processes occur. In particular, combustion instability
raises di�cult issues and constitutes a challenging area in combustion research. Under
normal operating conditions (often a�ected by turbulence), �ames 1 generate heat-release
rate �uctuations that seem to be essentially incoherent. Under unstable operation, a res-
onant loop is established among the �ow (which may carry various types of disturbances),
combustion (which feeds the oscillation with energy), and the acoustic modes of the sys-
tem (which are responsible for sound emission). This feedback synchronizes heat-release
rate and pressure perturbations of pressure and temperature. For example, Fig. 1.1 dis-
plays such feedback in a combustor with a premixed �ame 2. In the following, we are
going to consider premixed �ames only.

The above described feedback can give rise to large oscillation levels that may have
detrimental consequences. Enhanced heat �uxes to the combustor walls and intense vibra-
tions lead to mechanical failure and in extreme cases to destruction of the system. Such
phenomena are speci�cally damaging in devices with large power densities, a situation
prevailing in high-pressure systems (gas turbines, aeroengines, liquid propellant rockets).
Combustion instability seems to be particularly dangerous in lean combustion, i.e. when-
ever the relative fraction of oxidizer in the mixture of unburnt gases which impinges on
the �ame is more than enough to ensure complete combustion of all the available fuel
3. Recent issues in combustion instability are found in modern (heavy-duty) gas turbines
for power production (GT), which rely on lean, premixed combustion to reduce polluting

1A �ame is a self-sustaining propagation of a localised combustion zone at subsonic velocities [2].
2In premixed combustion, fuel and oxidizer are mixed before they undergo combustion.
3An equivalent de�nition of lean combustion is that φ < 1, where the equivalence ratio φ is de�ned

as the ratio between the value of the ratio of fuel mass fraction and oxidyzer mass fraction and the
corresponding value in stoichiometric combustion [4]. In lean combustion, no fuel remains in the burnt
gases. In contrast, stoichiometric combustion (no oxidizer and no fuel remains in the burnt gases) and
rich combustion correspond to φ = 1 and φ > 1 respectively.

3
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Figure 1.1: An example of feedback in thermo-acoustics. The fuel/air mixture �ows from
the inlet (on the left) towards the �ame. It may carry perturbations of fuel/air ratio,
which a�ect the heat release due to combustion at the �ame. The resulting oscillations
of heat release produce acoustic waves, which start from the �ame are re�ected on the
combustor walls. This occurs both downstream (in the region of burnt gases) and upstream
(in the region of unburnt gases). In turn, acoustic �ames re�ecting on the upstream side,
near the fuel/air inlet, may trigger perturbations of fuel/air ratio [3], and a feedback is
established. Other perturbations carried by the �ow towards the �ame are perturbations of
vorticity, which a�ect the shape -hence the heat release- of swirl-stabilised �ames. Vorticity
perturbations may be e.g. produced by upstream re�ection of acoustic waves on the inclined
swirler blades [1].

emissions -see e.g. Fig. 1.2- but are more sensitive to resonant coupling, leading to insta-
bility [1]. The present work focusses on GT, while still having in mind possible connections
of the combustion instability problem with other problems of physics and engineering.

In order to help the reader to �gure out what we are speaking about, here are some
information about GT. Before entering the turbine, the air -previously compressed- gets
heated by one or more combustors. Fig. 1.3 displays the core of a typical GT. Some GT
include 24 combustors, symmetrically located all around the symmetry axis (Fig. 1.4).
Each combustor is fed with air and fuel; it includes a burner, a plenum, and a combustion
chamber which embeds a �ame. Fig. 1.5 displays a conceptual lay-out of one combustor.
Fig. 1.6 displays a cross section of a GT, where the location of one burner and of the
corresponding combustion chamber are highlighted. Typical values for the combustors of
the displayed GT are p0 = 17.7 bar, total (air + fuel) mass �ow 28.2 Kg/s, temperature
at the inlet 882 K and fuel molar fraction 0.04.

In the GT community, the popular nickname for a destructive combustion instability
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Figure 1.2: As the equivalence ratio decreases, NOx formation reduces - from Ref. [5]. In
lean combustion the �ame temperature is reduced due to an excess of air, as combustion
occurs at low equivalence ratios. A decrease in (thermal) NOx formation follows. Below
the lean blow-out (LBO) limit there is just no fuel enough to sustain combustion.

is humming 4. Fig. 1.7 displays a typical signal
∆p

p0

as a function of time when humming

occurs in a GT combustor. Here ∆p and p0 are humming amplitude and unperturbed
pressure respectively. Typically a cycle has a duration τ ≈ 1− 10 ms. As for the order of

magnitude, p0 ≈ O (10) bar ≈ O (106) Pa, then
∆p

p0

= 0.01 corresponds to ∆p ≈ O (100)

mbar ≈ O (104) Pa.

In order to grasp the physical implications of Fig. 1.7, we recall that sound is under-
stood in terms of pressure variations accompanied by an oscillating motion of a medium.

4A common witness' remark is that the system 'hums' when the catastrophe occurs.
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Figure 1.3: The core of a typical GT. Air �ows in the direction from the compressor (on
the left) to the turbine (on the right). Before entering the turbine, it gets heated by the
combustors, symmetrically located all around the symmetry axis (not displayed here; they
are connected to the yellow region in the �gure).

Generally speaking, compression and rarefaction lead to heating and cooling respectively.
Thus, sound propagation is always involved with heat -as a matter of principle at least-
even if no net source of heat is present. When it comes to ordinary speech, however,
pressure variations are about 0.05 Pa, and correspond to temperature variations and dis-
placements of small mass elements of air of ≈ 40µK and ≈ 0.2µm respectively. So, the
thermal e�ects of sound cannot be observed in daily life. Since such e�ects are commonly
related to irreversible processes like e.g. heat transport, hence to growth of entropy, a
common approximation is that sound propagation is adiabatic, i.e. it leaves entropy un-
changed. Remarkably, if we apply the same approximation when ∆p = 3 · 104 Pa we
get 24 K and 10 cm respectively. These variations are due to sound propagation only, as
we have taken in account no oscillation of the heat source. This result casts doubt on
the relevance of the adiabatic approximation when it comes to humming in GT. It shows
also that humming severely a�ects the �ow inside the combustor, as even the oscillation
velocity of a small �uid mass element undergoing a 1-cm oscillation at τ ≈ 10 ms is of the
same order of magnitude of the velocity of the �ow in a GT combustor without humming.

Fig. 1.8 displays the e�ect of humming on the combustor walls. If the combustion
chamber which embeds the �ame has a linear size ≈ 1 m, then 104-Pa humming leads to
a mechanical stress ≈ 104 N ≈ 1000 tons on the chamber walls, oscillating with period
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Figure 1.4: Each combustor (rose) is part of a ring-shaped structure (grey) which encircles
the symmetry axis of the GT.

τ . This is enough to induce severe damage in most cases -let alone the thermal stresses.
From the �nancial point of view, a rough estimate of humming-related costs over all the
world (including repair and substitution of damaged components) is > 1 billion $/yr.
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Figure 1.5: Conceptual lay-out of a combustor in a GT (from an Ansaldo Energia patent).
Combustion occurs in a combustion chamber (20) embedded in a plenum (21). The latter
feeds the former with air, which comes from an air intake (3). The inner walls of the
combustion chamber are coated with ceramic tiles (24). Fuel enters the system through
(22). The C-shaped �gure inside the combustion chamber stands for the �ame.
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Figure 1.6: An example of GT cross section. The red and the blue circles embed a burner
and the corresponding combustion chamber respectively.
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Figure 1.7:
∆p

p0

(dimensionless) vs. time (number of cycles). Some non-linear models

describe humming as a limit cycle -basically, a stable, periodic oscillation- hence the title.
Remarkably, the ramp-up has no clear exponential dependence on time, in contrast with
the predictions of a widely popular class of linear models.
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Figure 1.8: A component of a combustor after humming has occurred.
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Chapter 2

A bit of taxonomy

Before further discussion, we recall that combustion instability is de�nitely far from being
the only instability which may a�ect premixed �ames. For example, even if:

• the combustion processes have been properly ignited 1;

• the �ame is described as a mathematical surface in space, or, more generally, as a
volume with negligible thickness 2, as Da >> 1, He << 1, and Pe >> 1,

the temperature jump across the �ame, the combined e�ects of heat and particle di�usion
and gravity may still trigger Darrieus-Landau [8] (Fig. 2.1), thermo-di�usion (Fig. 2.2)
and Rayleigh-Taylor instability respectively [9].

And even if

1This requires that the relative abundance of fuel and air lies in the so-called �ammability limit. No
�ame is ignited if either too few fuel or too few air is present. Of course, GT manufacturers are supposed
to be able to �x this problem e�ectively.

2This is typically the case where both Da >> 1, Pe >> 1 (thin �ame), and He << 1 (acoustically
thin �ame) Da, Pe and He and being the Damkoehler number [4], i.e. the ratio of convective time-scale
and chemical time-scale, the Peclet number [6], i.e. the ratio of the typical linear size L of the combustor
and the �ame thickness, and the Helmholtz number [7], i.e. the ratio the �ame thickness and the typical
wavelength of combustion instability.

� As for Da >> 1, it implies that combustion and other chemical reactions are so fast that they
allow the �ame where they occur to be much thinner than the typical �ow structures. If turbulence
occurs and if many chemical reactions are simultaneously taken into account, rigorously speaking a
Damkoehler number is to be de�ned for each chemical reaction and each length-scale involved in the
turbulent spectrum separately. Usually, the condition Da � 1 is not true for the tiniest turbulent
whirls at the Kolmogorov length-scale, but the typical convective time-scale of the latter is so
short with respect to τ that their e�ect are seldom explicitly taken into account when discussing
combustion instability. As for the value of Da referred to in the text, it is reasonable to compute
it for whirls at the typical turbulence length lT , the integral length of the Appendix on the impact
of �ame velocity.

� As for Pe >> 1, the typical linear size L of the combustor is ≈ 1 m and the �ame thickness lies in
the range from 0.1 mm to 1 mm.

� As for He << 1, usually the typical wavelength of combustion instability and the �ame thickness
lie in the ranges from 0.1 m to 1 m and from 0.1 mm to 1 mm respectively.

13
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Figure 2.1: The Darrieus-Landau instability, or hydrodynamic instability, can occur in
exothermal reacting �ows due to the acceleration of the burning gases. A small distur-
bance can alter the �ame front and cause �ame wrinkling. Therefore, with respect to the
reactants, convex and concave regions will be present. These gases accelerate normal to the
�ame front. In convex regions, the streamlines have to diverge toward the �ame front and
converge after the �ame front. The opposite is true for the concave region of the �ame.
Because the reactants velocity drops as approaching the �ame and the burning velocity
stays approximately constant, the convex parts tend to grow - from Ref. [5]. Stabilisa-
tion is possible provided that the �ame velocity depends on the �ame curvature, in order
to compensate the displacement of the �ame. Accordingly, Darrieus-Landau instability
may be particularly dangerous for perturbations with large wavelengths, where the �ame
curvature remains relatively low everywhere [6].

• Darrieus-Landau instability plays no role 3, e.g. as Ma � 1,

3For uniform impinging �ow, this stabilisation requires that the �ame is not perfectly �at, and that its
radius of curvature is shorter than a typical (Markstein) length [6]. (To this purpose, other researchers
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Figure 2.2: Thermo-di�usion instability. Unstable (stable) regime on the left (right) for
Le < Lecr (Le > Lecr). - from Ref. [4]. In the unstable regime, when the �ame front is
convex towards the fresh gases reactants di�use towards burnt gases faster than heat di�use
towards cold fresh gases. These reactants are heated and then burn faster, increasing the
local �ame speed with respect to the �ame speed of the unperturbed �ame. On the other
hand, for fronts convex towards the burnt gases, reactants di�use in a large zone and
the �ame velocity is decreased compared to the �ame speed of the unperturbed �ame. This
situation is unstable, and the �ame front wrinkling (as well as the �ame surface) increases.
In the stable regime, a similar analysis shows that the �ame is stable, and the �ame surface
decreases.

• thermo-di�usion instability is suppressed 4, e.g. as Le = 1,

[10] would rather refer to the role of �ame stretch -see Appendix on �ame velocity for a de�nition).
The larger the latter, the easier the stabilisation. A dimensionless measure of Markstein length is the
Markstein number Ma, i.e. the ratio of Markstein length and �ame thickness

4This requires that the stabilising e�ect of heat di�usion, which aims at suppressing the destabilising
jump of temperature across the �ame, overcomes the e�ect of particle di�usion, which feeds the hot region
of burnt gases with further fresh, unburnt gases and sustains therefore the temperature jump [9]. Formally,
this implies that Le > Lecr, where the Lewis number Le and Lecr are the dimensionless ratio between
heat di�usion coe�cient and particle di�usion coe�cient and a numerical threshold slightly smaller than
1 respectively. As for laminar �ames, see e.g. equation (1.16) and Figs. 1.4, 2.31 of [4]. Again, di�erent
chemical species may have di�erent value of Le. A universal, simplifying assumption is just Le = 1 for

most practical purposes. An alternative, equivalent de�nition of the Lewis number is Le ≡ Sc

Pr
, where

the Schmidt number Sc and the Prandtl number Pr are the dimensionless ratio of kinematic viscosity
and particle di�usion coe�cient and of kinematic viscosity and heat di�usion coe�cient respectively.
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• and Rayleigh-Taylor instability is not relevant 5, e.g. as Fr >> 1,

as it is usually assumed in GT �ames, the location of the GT �ame as a whole may change
abruptly due to �ashback 6, lift-o� 7 and blow-o� 8, depending on the �ame shape, the
�ow of unburnt gases impinging on the �ame and the �ame velocity, which in turn are
strongly a�ected by turbulence [2]. In fact, GT high power density implies large bulk ve-
locities which can compromise the anchoring of the �ame. In all cases, GT �ames cease to
burn in a predictable manner compatible with the purposes of commercially competitive
energy production 9. This is why GT designers are primarily concerned with stabilisation
against undesired motions of �ame location.

In industrial combustors, such stabilisation usually relies on refractory burner tiles
(see Fig. 2.3), blu� (i.e. unstreaming) bodies and swirlers - see Fig. 2.4 for an example
of swirler. Tiles represent a nearly adiabatic boundary, reradiating back to the �ame and
then maintaining locally the �ame velocity at a desired level. Blu� bodies and swirlers
act on the �ow of the unburnt gases and create recirculation zones in it, i.e. vortices
which spread burnt gases (Fig. 2.5), leading both to easier ignition of unburnt gases,
lower emission of NOx in premixed combustion and better local matching of �ame speed
and in�ow velocity - see Fig. 2.6. In particular, recirculation zones make available a region
where the �ow velocity is su�ciently low and comparable to the characteristic turbulent
burning rate (de�ned as the volumetric rate of reactant consumption per unit mean �ame
cross-sectional area) which in turn is related to the turbulent �ame velocity) [11]. Here
we anticipate that swirl allows the �ame to satisfy a condition satis�ed by stable, steady
�ames, i.e. (the turbulent counterpart of) equation (13.21) below.

Swirl-induced stabilisation is commonly used in today's GT [2]. If su�ciently high
swirl is given to the �ow of reactants, then vortex breakdown occurs (Fig. 2.7), i.e. a
Inner Recirculation Zone (IRZ) appears right along the axis of the swirler and acts as
an aerodynamic �ameholder [12]. IRZ is a recirculation bubble which results from the
radial pressure gradient generated by the guided rotating �ow (large tangential velocity
component of the �ow) and the �ow expansion through a nozzle at the chamber inlet.
The radial pressure gradient and axial velocity components decay producing a negative
axial pressure gradient and a reverse �ow or IRZ (Fig. 2.8). In con�ned con�gurations,
the sudden expansion of the �ow at the chamber inlet is partly controlled by �ow recircu-
lating bubbles present at the outer edges. Such bubbles are usually referred to as Corner
Recirculating Zones (CRZ) or Outer Recirculating Zones (ORZ) - see e.g. the vortex in
Fig. 2.5. Thin regions with highly non-uniform �ow separate the IRZ from the ORZ, often
referred to as the Inner Shear Layer (ISL) and the Outer Shear Layer (OSL) respectively

5The dimensionless ratio between convective and gravitational terms in the equation of motion is
related to the so called Froude number Fr. If Fr >> 1 then gravity-related e�ects like Rayleigh-Taylor
instability are negligible.

6Flashback means that the �ame suddenly moves towards the fuel inlet.
7Lift-o� means that the �ame suddenly starts �oating inside the combustor, far from all walls.
8Blow-o� means that the �ame suddenly moves away from the fuel inlet.
9Correspondingly, when it comes to �ame stabilisation we have to specify against what. This is very

important when looking e.g. for information in the literature, as the same words �ame stabilisation are
given di�erent meanings by di�erent authors.



17

- see Fig. 2.9. Usually, swirl-stabilised �ames are located not too far from these layers
[13] [12].

Under speci�c conditions (still not clearly mastered) the the IRZ becomes unstable
giving rise to the Precessing Vortex Core(PVC), a vorticity tube of helical shape located
at the outer rim of the IRZ. This thin vortex tube has a helicoidal shape can be co- or
counter-rotative to swirl, i.e. it can turn around the swirler axis in the swirl or opposite
direction (Fig. 2.10). In some cases several vortex tubes may coexist at the same time [13].
PVC is commonly retrieved in swirled �ows when no �ame occurs, both in experiments
and in the results of computational �uid dynamics (CFD). When combustion occurs,
however, the situation is far less clear, as combustion may suppress PVC [14]. Indeed,
according to common wisdom a conservative assumption is to neglect PVC altogether,
but for fully detached �ames. We are going to refer to PVC-free, swirl-stabilised �ames
in the following, unless otherwise speci�ed.

Figure 2.3: Tile rows on the inner wall of a test rig - from Ref. [15].
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Figure 2.4: Axial eight-vane swirler, side view (left) and front view (right) - from Ref.
[16].
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Figure 2.5: A simple example of vortex which spreads burnt gases. The fresh gases inside
are convected by the mean �ow downstream and are also simultaneously mixed with the
burnt product gases. - from Ref. [5].
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Figure 2.6: Artist's view of the �ow patterns for a �ame with inlet swirl - from Ref. [2].
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Figure 2.7: A simple example of VB for increasingly swirled �ow without combustion
(swirl increases from a. to f.) - from Ref. [14]. Meridian cross section in cylindrical
coordinates. VB occurs at c.
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Figure 2.8: Schematic diagram of processing leading to CRZ formation at atmospheric
unperturbed pressure: (1) tangential velocity pro�le creates a centrifugal pressure gradient
and sub-atmospheric pressure near the central axis; (2) axial decay of tangential velocity
causes decay of radial distribution of centrifugal pressure gradient in axial direction; (3)
thus, an axial pressure gradient is set up in the central region towards the swirl burner,
causing reverse �ow - from Ref. [17].
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Figure 2.9: Meridian cross-section of an axisymmetric combustor. The upstream swirled
�ow (black arrow) is embedded between an inner recirculation zone (IRZ) and an outer
recirculation zone (ORZ). The �ame surface lies not too far from the shear layers displayed
in blue - from Ref. [16].
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Figure 2.10: Computed velocity �eld in PVC - from Ref. [14].



Chapter 3

The Holy Grail

A common misconception deserves further attention here. The misconception lies in the
academic vision of humming as an unwanted perturbation of an otherwise quiet system
(possibly a�ected by noise). Combustion instability cannot be properly described as hum-
ming in all cases. Basically, combustion instability is ubiquitous in GT and involves a
whole spectrum of well-peaked frequencies -see Fig. 3.1 for an example. Unavoidably,
both manufacturers and users have to cope with them. This academic vision has been
correctly called poetic by a senior GT designer. It is even possible that some mild com-
bustion instability spontaneously develops and saturates at a far-from-dangerous level,
thus subtracting energy from the really dangerous modes and preventing the occurrence
of humming. Unfortunately, most popular available models based on linearisation of the
conservation equations of the �uid are unable to describe this highly desirable condition,
as the latter requires energy exchange among modes, which is usually a nonlinear phe-
nomenon.

The well-peakedness of the frequencies in the humming spectrum means that each
mode has its own τ , which is usually not far from the period of oscillation of the acous-
tic eigenfrequency of the combustor. Physically, this is likely to be due to the fact that
the typical wavelength of humming and the linear size of the combustor are often of
the same order of magnitude. Since humming involves sound, its onset requires e�cient
transmission of acoustic energy from one side of the combustor to another side, and such
transmission is possible only at frequencies near the acoustic eigenfrequencies. Luckily,
GT combustion is strongly subsonic, i.e. the Mach numberM of the �ow of unburnt gases
impinging on the �ame is � 1; it follows that Mach-related, Doppler corrections to the
eigenfrequencies may be safely neglected. Once the combustor geometry is known and the
speed of sound is known everywhere across the system 1, eigenfrequencies are an output
of numerical codes which solve the (Helmholtz ) wave equation for acoustic waves.

Thus, we sort of know at which frequency humming may occur, provided that it ac-
tually occurs. To date, what we do not know is precisely if humming will occur or not
in a given GT combustor. To put it in other words, the still unsolved problem, our Holy
Grail, is to predict when and why the amplitude of a given mode grows up to dangerous

1This is basically equivalent to know the temperature everywhere, a piece of information routinely
delivered in output even by commercial CFD codes.

25
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Figure 3.1: Power spectral densities of pressure �uctuations for a swirl-stabilised combus-
tor - from Ref. [18].
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levels, like those displayed in Fig. 1.7. In the following, we refer to this problem as to
humming prediction. The problem has been successfully solved in very particular cases
only [19] [20] [21], whose relevance to real-life GT is not always obvious.

This time, the fact that

M << 1

makes things worse, as it makes the convective time-scale (related to the �uid motion)
to di�er considerably from the acoustic time-scale (related to the propagation of sound).
Usually, coexistence of phenomena with vastly di�erent time-scales makes predictions dif-
�cult. This is true also in the (by now) well-known case of swirl-stabilised combustion
well within the limits of the �ammability domain, and where the simplifying assumptions

Da >> 1, He << 1, P e >> 1, F r >> 1, Ma >> 1, Le = 1

hold. As we shall see, it is tempting to assume that -just as Doppler corrections to the
eigenfrequences are small- convection plays no role at all in the onset of humming. We
are going to see that this simpli�cation is as attractive as dangerous.

As it usually happens in �uid dynamics, we have introduced many dimensionless quan-
tities above. Humming too has its own dimensionless quantity, the so-called Strouhal

number St: it is de�ned as the humming frequency
1

τ
multiplied by some typical length

and divided by some typical velocity. Usually, it is said that humming starts whenever
St > 1, so that humming-free combustors correspond to St < 1. Not surprisingly, there
is no unambiguous, generally accepted de�nition of St -for an example, see e.g. Ref. [22].
This lack corresponds precisely to the absence of a generally accepted physical model for
the onset of humming.

A somehow intermediate goal exists between the relatively simple computation of
eigenfrequencies and the Holy Grail. Once experimental data are available for di�erent
burners with and without humming, it is still possible to interpolate between them and
predict the behaviour of burners which do not di�er considerably from the older ones. As
we are going to see, the involved mathematics is not too cumbersome and leads to many
useful information. As for the di�erence between di�erent possible goals of simulation in
humming-related research, namely computation of frequencies, interpolation and predic-
tion we refer to Fig. 3.2.
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Figure 3.2: Goals of humming-related research. To predict if humming will a�ect a com-
bustor which is still in its design phase, starting from �rst principles, is the most di�cult
goal (red). To compare results of computation with experimental data in di�erent combus-
tors with and without humming and to interpolate the results is somehow easier (orange).
By far, the most common results found in the available literature focus on computing the
frequencies of possible humming excitations (yellow).



Chapter 4

Rayleigh, and beyond

The onset of humming is an example of spontaneous birth of self-sustaining pressure os-
cillations in a �uid, driven by a source of heat - in this case, combustion. Experiments
by Sondhauss [23], Rijke [24], Riess [26], Taconis [27], Biwa et al. [28], Meija et al [29]
and Hong et al. [30] have shown that it is the energy exchange between the �uid and the
source of heat, rather than the detailed nature of this source, which plays a fundamental
role. Back in the XIX century Rayleigh has summarised this fact in a work [31] which
contains the by now well-known words:

If heat be given to the air at the moment of greatest condensation, or be
taken from it at the moment of greatest rarefaction, the vibration is encouraged.
On the other hand, if heat be given at the moment of greatest rarefaction, or
abstracted at the moment of greatest condensation, the vibration is discouraged

The similarity with a GT Brayton thermodynamical cycle is striking: maximum ef-
�ciency in converting heat into acoustic energy is obtained whenever heating (cooling)
occurs at the time of maximum compression (expansion). Many authors [32] [33] [34]
have translated Rayleigh's works in rigorous mathematical form - Rayleigh's criterion -
in di�erent ways. Basically, Rayleigh's criterion is a time-averaged and space-averaged
energy balance of the perturbation, and allows us to describe stability against humming
as the outcome of a balance between a stabilising and a destabilising term.

The main advantage of Rayleigh's criterion is that it depends on no detailed micro-
scopic model of the �ame and of the �uid around it. Accordingly, our poor knowledge of
turbulent combustion in GT leaves the validity of the Rayleigh-based predictions unaf-
fected. Nevertheless, Rayleigh's criterion is far from being a common tool in GT manu-
facturers' R & D on humming, partly because of its convoluted mathematical structure
which requires full knowledge of the acoustic spectrum across the combustor volume for
utilisation, partly because of the unphysical assumptions it relies upon, which include e.g.
the lack of any motion of the �uid mixture inside the combustor when no humming occurs.

The present work aims at:

• discussing di�erent forms of Rayleigh's criterion, as well as its generalisation, Myers'
corollary;

29
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• highlighting the connection between Rayleigh's criterion and thermodynamics;

• deriving results relevant to GT.

Fig. 4.1 displays the corresponding work�ow. Part II is dedicated to the �rst goal.
We start from the constitutive equations for a �uid mixture of reacting gases inside a GT
combustor. Then, derive di�erent forms of Rayleigh's criterion in a particular case, in
order to show its range of validity and its limits. A short review of conventional tools for
humming analysis and prediction, namely modal analysis and �ame transfer function, is
also presented for comparison. Finally, we discuss a generalisation of Rayleigh's criterion,
Myers' corollary. We show how Rayleigh's criterion and Myers' corollary provide us with
formally similar, necessary conditions of stability for steady and unsteady unperturbed
states respectively.

We have seen that Rayleigh's criterion is somehow connected to Brayton's cycle. In-
deed, the connection to thermodynamics goes still deeper. From the point of view of
thermodynamics, humming is connected to many experiments in thermo-acoustics even
outside the domain of combustion. Moreover, the constitutive equations both Rayleigh's
criterion and Myers' corollary are based on include the �rst principle of thermodynamics,
applied to a small mass element of the �uid. If we apply the second principle of thermody-
namics too, then a number of further results follow. These results include Le Châtelier's
principle of thermodynamics. We show in Part III that �ames which are stable according
to Rayleigh's criterion are also stable according to Le Châtelier's principle, that formula-
tions of the stability problem exist which are equivalent to Rayleigh's criterion, and that
similar results hold also for unsteady unperturbed states, in agreement with the results on
Myers' corollary. Finally, our discussion on thermodynamics allows us to retrieve many
results of thermo-acoustics, as a benchmark.

Three Chapters in Part IV are dedicated to the third goal. The �rst chapter deals
with �ames without humming. We apply the formulations of stability quoted above to
the conservation equations of mass, momentum and energy in the particular case of ax-
isymmetric, swirl-stabilised �ames where in�nitely fast, one-step combustion is assumed.
It turns out that even humming-free �ames may abruptly switch from one shape to an-
other, depending on the heat release, the switch number and the �ame velocity. Usually,
hysteresis occurs when the �ame reverts to the original state. Even if scarcely relevant
to GT, we retrieve also the condition of stability against thermo-di�usion instability for
quasi-�at �ames, including the well-known Bunsen �ame, as a further benchmark.

The second chapter deals with the onset of humming. We show that only some models
-out of those available in the literature- are actually compatible with thermodynamics.
Moreover, we start from Myers' corollary and work out an expression for a dimensionless
quantity which can play the role of Strouhal number.

The third chapter deals with stabilisation of humming. Starting from the results of
previous Chapters, and in agreement with experimental data available in the liteature,
we suggest a new, competitive, patented approach to stabilisation of humming, based on
electromagnetic waves in the GHz range. The corresponding computations have been the
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subject of a collaboration between Ansaldo Energia and CNR-IMIP, Bari, Italy.

The �nal Parts include the conclusions, the bibliography and some Appendices.

Figure 4.1: To start with, we review classical results of humming-relevant dynamics of air-
fuel mixtures in premixed GT combustors, i.e. various versions of Rayleigh's criterion.
Correspondingly, we discuss also the related well-known concepts of modal analysis and
�ame trasfer function. We review also a generalisation of Rayleigh's criterion to more
realistic conditions, namely Myers' corollary. Secondly, we discuss the link of Rayleigh's
criterion with thermodynamics, i.e. with Le Châtelier's principle, and show that formu-
lations of the stability problem exist which are equivalent to Rayleigh's criterion. Finally,
we apply our results to the description of stable, premixed, swirl-stabilised �ames. As for
the humming onset, we obtain also an explicit expression for a Strouhal number. As for
the stabilisation of humming, we discuss the properties of some control systems, and write
down some explicit prediction for future experiments.
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Chapter 5

The constitutive equations

We consider a viscous �uid mixture of k = 1, . . . n reacting chemical species where both
heat conduction and particle di�usion occur. We assume no net mass source and no body
force, and invoke no detailed model of combustion.

The mass balance of the �uid mixture, the mass balance of the k-th chemical species,
the momentum balance, the �rst principle of thermodynamics and the entropy balance
read [4] [22] :

dρ

dt
+ ρ∇ · v = 0 (5.1)

ρ
dYk
dt

= ωk −∇ · (ρYkVk) (5.2)

ρ
dv

dt
+∇p = ∇ · Π (5.3)

du = Tds− pd(
1

ρ
) +

n∑
k=1

gkdYk (5.4)

ρT
ds

dt
= Q+ Φ−∇ · q− ρ

n∑
k=1

gk
dYk
dt

(5.5)

respectively. Here the total time derivative is
d

dt
=

∂

∂t
+ v · ∇.
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The quantities ρ, p, T , v, q = −λ∇T , and Π are the mass density, the pressure, the tem-
perature, the velocity, the heat �ow due to heat conduction with thermal conductivity λ
and the viscous stress tensor of the �uid mixture respectively.

Radiation losses are often neglected in application to GT combustors; in case, they can
be added to q with no loss of generality.

The quantities Φ ≡
∑3

i,j=1 Πij
∂vj
∂xi

and Q ≡ −
∑n

k=1 ∆h0
f,kωk are the viscous power density

and density of heat release respectively, where the heat release is the amount of heat pro-
duced per unit time by combustion. We stress the point that -unless otherwise speci�ed-
our results depend on no detailed information concerning the microscopic physics rulingQ.

The quantity −ρ
∑n

k=1 gk
dYk
dt

is the outcome of the existence of n > 1 chemical species

in the system.

Finally, the quantities gk, Yk, Vk, hk, ∆h0
f,k and ωk are the chemical potential per unit

mass, the mass fraction, the di�usion velocity, the enthalpy per unit mass, the formation
enthalpy per unit mass at reference temperature 300 K and the production rate of the
k-th chemical species respectively, where the identities

∑n
k=1 Yk ≡ 1,

∑n
k=1 ωk ≡ 0 and∑n

k=1 YkVk ≡ 0 hold. Together with (5.2), these inequalities lead to n − 1 independent
equations in the Yk's.



Chapter 6

A particular case

6.1 Simpli�ed equations and useful relationships

We start with the case where two chemical species are present and where both viscosity,
heat conduction and particle di�usion are negligible, i.e.:

n = 2 Π = 0 λ = 0 Vk = 0 (6.1)

Furthermore, we assume caloric perfection, i.e. all chemical species are assumed to behave
as perfect gases with the same constant values of speci�c heat at constant pressure and
constant volume.

As we are going to see, even this simpli�ed case allows us to identify some fundamental
issues of the stability problem in thermo-acoustics. To this purpose, in this Section we are
going to follow the treatment of [32] in some detail. The general case will be addressed
again in the following Sections.

The mass balance (5.1) is unchanged. There is just 1 independent equation (5.2), which
remains uncoupled from the other equations and will be considered no more. The balance
of momentum (5.3) and the �rst principle of thermodynamics (5.4) reduce to

ρ
dv

dt
+∇p = 0 (6.2)

and to

du = Tds− pd(
1

ρ
) (6.3)
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respectively.

As for perfect gases, the equation of state, the internal energy u per unit mass and the
total di�erential of entropy s per unit mass are:

p = rρT (6.4)

ρu =
p

γ − 1
du = cvdT (6.5)

ds

cp
=
dT

T
− γ − 1

γ

dp

p
=
dp

γp
− dρ

ρ
(6.6)

respectively, where γ =
cp
cv

and cp and cv = cp − r are the speci�c heat per unit mass at
constant pressure and constant volume respectively. For future reference we write here
also the following auxiliary relationship:

γ − 1

γ
=

r

cp
(6.7)

Finally, equations (5.5) and (6.4) give:

ds

dt
=
rQ

p
(6.8)

We rewrite the equations above in a more convenient form with the help of a little algebra.
Dot product of both sides of equation (6.2) by v leads to:

ρ

2

d|v|2

dt
= −∇ · (pv) + p∇ · v (6.9)

Moreover, equations (5.1) , (6.3) and (6.5) give:

dp

dt
= (γ − 1)ρT

ds

dt
− γp∇ · v (6.10)
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Together, equations (6.9) and (6.10) lead to the exact relationship:

ρ

2

d|v|2

dt
+

1

2ρc2
s

dp2

dt
+∇ · (pv) =

γ − 1

γ
ρT

ds

dt
(6.11)

which we are going to invoke again and again in the following. Here cs ≡
√

(
p

ρ
)s is the

well-known Laplace's formula for the adiabatic speed of sound; in a perfect gas we have

c2
s = γ

p

ρ

Remarkably, equation (6.11) contains the time derivative of the square of both velocity
and pressure. Suitable addition of a term which is proportional to the time derivative of
squared entropy allows suitable generalisation of (6.11) for problems where entropy too
undergoes perturbations. To this purpose, let us multiply each side of equation (6.8) by
ps

rcp
,add the result side by side to equation (6.11) and invoke (6.7) . We obtain:

ρ

2

d|v|2

dt
+

1

2ρc2
s

dp2

dt
+

p

2rcp

ds2

dt
+∇ · (pv) =

r + s

cp
Q (6.12)

Here the squares of velocity, pressure and entropy appear on the L.H.S. on an equal
footing.

6.2 The unperturbed �uid is at rest

6.2.1 Energy balance of a perturbation

Further progress requires linearisation. We write a = a0 + εa1 for the generic quantity a

with
∂a0

∂t
= 0 and 0 < ε� 1. Physically, this means that we consider small perturbations

of a steady state. Here we assume:

v0 = 0 (6.13)

i.e., the unperturbed �uid is at rest. The general case v0 6= 0 will be discussed below.
Furthermore, we limit ourselves to the the relevant limit for subsonic combustion: M � 1

where M ≡ |v|
cs

is the Mach number. In the same limit we neglect also ∇p0 [4]. Equation

(6.13) implies the Mach number of the unperturbed �ow to vanish exactly.
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We show in the Appendix on the energy balance of a perturbation in the zero Mach
case that the relationships above make equation (6.12) to reduce to:

∂E

∂t
= −∇ ·W+D (6.14)

where E, W and the Rayleigh index D are de�ned as follows:

E ≡ ρ0|v|2

2
+

p2
1

2ρ0c2
s0

+
p0

rcp

s2
1

2
(6.15)

W ≡ p1v1 (6.16)

D ≡ T1Q1

T0

− p0

rcp
s1v1 · ∇s0 (6.17)

In particular, let us consider the particular case (referred to as isentropic in the follow-
ing) where both ∇s0 and terms ∝ O(s2

1) are negligible. Then, equations (6.6) , (6.15) and
(6.17) give:

E ≡ ρ0|v|2

2
+

p2
1

2ρ0c2
s0

(6.18)

D ≡ (γ − 1)p1Q1

γp0

(6.19)

while W remains una�ected. It is also possible to derive equations (6.14), (6.16), (6.18)
and (6.19) from (1) and the part ∝ O(ε) of the linearised version of equation (6.2), namely:

ρ0
∂v1

∂t
+∇p1 = 0 (6.20)

after dot product of both sides of the latter by v1.
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Integration on a �xed volume V of both sides of equation (6.14) leads to:

d

dt

∫
V

dxE = −
∫
Ab

da ·W+

∫
V

dxD (6.21)

where Ab is the boundary surface of V and da is its surface element vector and we have
applied Gauss' theorem of divergence. The volume integral on the L.H.S. depends only

on time: this is why we have replaced
∂

∂t
with

d

dt
.

In the isentropic case E is given by (6.18) and the L.H.S. of equation (6.21) has the
simple meaning of total energy of an acoustic perturbation, while equation (6.15) provides
an additional term ∝ s2

1 which takes into account possible non-adiabaticity. The fact that
entropy spottiness s1 may give a contribution to a form of energy in the disturbance may
at �rst seem to be a little puzzling, especially because entropy is normally taken as a
measure of the unavailable energy. The important thing to be recognized is that we are
speaking here of the energy in a perturbation; and as such, changes in entropy distribution
of a gas will always induce a change in the �uid motion and hence, a change in the kinetic
energy in the disturbance [33].

In contrast to popular belief, it is not at all obvious that (6.18) and (6.19) are to be
preferred to (6.15) and (6.17) respectively. Generally speaking, in fact, the sound does not
propagate with adiabatic velocity cs across a �uid where propagation is far from being an
adiabatic and reversible process. Should e.g. compression occur adiabatically, the �uid
would be heated correspondingly, while non-vanishing heat losses (due e.g. to radiation or
conduction) may induce a mismatch between compression and heating. Laplace's formula
for the speed of sound applies to the former case only, and its validity is not granted [31].

On the R.H.S. of equation (6.21), the quantity
∫
A
da ·W is precisely the net amount

of acoustic energy lost across the boundary per unit time because of sound propagation
[8], and inclusion of contributions due to s1 leaves it una�ected. If positive, it acts a sink
of energy.

As for the quantity
∫
V
dxD, it achieves a maximum when Q1 and T1 (or Q1 and p1,

in the isentropic case) are in phase. The isentropic case has been described in detail by
Rayleigh [31]. Physically, we expect such phase matching to correspond to a maximum
e�ciency of the transformation of heat into mechanical (here, acoustic) energy. For sim-
ple geometries, analytical formulas for the phases corresponding to stable and unstable
regimes are available -see e.g. Sec. 6.6.1 of [35]. In real-life applications, however, phases
are heavily a�ected by noise [36].

The advantage of volume integration lies in the fact that in many applications to com-
bustion some regions inside a given combustor usually excite the oscillation by burning in
phase with temperature (or pressure), while other regions damp the instability by burning
out of phase. The overall e�ect of �ame-acoustics coupling can only be predicted looking
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at the integrals computed on the combustor volume.

Finally, the contribution to D due to ∇s0 (from (6.17)) tends to decrease the acoustic
energy of the perturbation whenever s1v1 · ∇s0 > 0. This means that any perturba-
tion which tries to raise entropy where it is already large gets damped. Qualitatively at
least, this conclusion seems to agree with thermodynamics. In fact, the growth of such
perturbation tries to separate further the system far from thermodynamical equilibrium,
where entropy is maximum and uniform everywhere; we expect therefore this growth to
be prevented in agreement with the second principle of thermodynamics.

In summary, we may consider equation (6.21) as an acoustic energy balance of a per-
turbation, which can a�ect entropy too. On the R.H.S., the balance of the propagation
of sound (which carries acoustic energy away from the system) and the transformation of
heat into acoustic energy rules the evolution of the acoustic energy of the perturbation
on the L.H.S., duly corrected for non-adiabaticity.

Finally, let us focus on combustion problems inside a combustor volume Vb, where Q
s ruled by combustion processes. In this case, we derive a simple relationship which turns
out to be useful in the following. Combustion occurs within the �ame, whose volume Vf
is usually order-of-magnitude smaller than Vb. Accordingly, Q di�ers from zero inside the
�ame only. Moreover, in many problems of lean, premixed, subsonic combustion pressure
gradients are small [4], and large temperature gradients are located at the �ame - see e.g.
Fig. 6.1 and Fig. 6.2. The same holds therefore for ∇s0.

As far as D is localised at the �ame, we may write

∫
Vb

dxD =

∫
Vf

dxD (6.22)

a relationship which will turn to be useful below. Here we anticipate that (6.22) is going
to allow us to discuss the impact of �ame geometry (through Vf ) on stability. Admittedly,
combustion occurs in a small fraction of the whole �ame volume, the so called reaction
zone -see Fig. 6.3.

However, the actual value -usually referred to as Zel'dovich number Ze in the literature
[6]- of the ratio between the �ame thickness and the reaction zone thickness depends on
the detailed microscopic description of combustion. For simplicity, it is usually taken as
a constant quantity in humming research. Typically Ze ≈ 10 in many applications.
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Figure 6.1: Map of suitably normalised pressure computed in a combustor. Pressure is ≈
uniform across Vb. Adapted from Ref. [15].

6.2.2 An isolated system with no dissipation

Now we may link equation (6.21) with our investigation of stability. By stability we mean
that |ξ| diverges nowhere at any time, where we have introduced 1 the vector ξ = ξ (x, t)
such that

v1 =
∂ξ

∂t

1Here we adapt the treatment of [37], originally conceived for stability in magnetohydrodynamics.
The advantage is that no information on the spectral properties (discreteness of the spectrum, and the
like) of the operators involved is required.
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Figure 6.2: Maps of reaction rate (top) and of suitably normalised temperature (bottom)
computed in a combustor. Huge temperature gradients occur where the reaction rate is
large, i.e. when combustion occurs. Adapted from Ref. [15].

Physically, ξ is the displacement of a small element of �uid which undergoes a pertur-
bation v1 of velocity. Rigorously speaking, we would better add the words in the reference
system at rest with the unperturbed small mass element of �uid to this description of ξ;
however, this addition is not relevant as far as (6.13) holds. It will be relevant in the
discussion of the v0 6= 0 case.

To start with, let us focus our attention on an isentropic perturbation with v · da = 0
everywhere on Ab. In this case equation (6.21) leads to:

∫
V

dx

(
ρ0|v|2

2
+

p2
1

2ρ0c2
s0

)
= U (6.23)
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Figure 6.3: The structure of a laminar premixed �ame. The �ame is made of two re-
gions, the preheat (or di�usion) region and the reaction region. Combustion occurs in the
reaction region, heat di�usion occurs from the reaction zone towards the preheat region.
Here the unburnt gases impinge on the �ame from the left to the right. Temperature in-
creases considerably across the �ame, starting from the upstream value Tu. The rate of
combustion reactions is strongly peaked in the reaction zone.

with U = const. ≥ 0. Here not only (6.13) holds, but no heating process and no propa-
gation of acoustic energy occurs, so that the total acoustic energy U of the perturbation
is a constant quantity.

In order to discuss the connection between (6.23) and stability, we are going to discuss
the evolution of ξ (x, t) with the help of the linearised equations of motion. (Generalisa-
tion of this discussion will be helpful when dealing with the case v0 6= 0 in the following).
To this purpose, we take ξ (x, t = 0) = η (x) as initial condition, and -in agreement with
the v · da = 0 assumption of no sound propagation across the boundaries- we take also
ξ · da = 0 as boundary condition. Moreover, we rewrite the linearised balance of momen-
tum (6.20), internal energy (1) and mass
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∂ρ1

∂t
+ ρ0∇ · v1 = 0 (6.24)

(straightforwardly from equation (5.1)) as:

ρ0
∂2ξ

∂t2
+∇p1 = 0 (6.25)

p1 + γp0∇ · ξ = 0 (6.26)

and

ρ1 + ρ0∇ · ξ = 0 (6.27)

respectively. Together with the boundary condition ξ · da = 0, equations (6.25), (6.26)
and (6.27) allow us to rewrite equation (6.23) as

K +B = C K ≡ 1

2

∫
V

dxρ0|
∂ξ

∂t
|2 B ≡ −γp0

2

∫
V

dxξ · ∇ (∇ · ξ) (6.28)

with C = const. It is easy to show that B ≥ 0 is a necessary and su�cient condition for
stability.

It is a su�cient condition, because if B ≥ 0 then C = const. prevents unbounded

growth of K, hence of |∂ξ
∂t
|.

In order to show that it is also a necessary condition, we show that B < 0 is a su�cient
condition for instability. Suppose an initial perturbation η (x) such that B (t = 0) < 0,
∂ξ

∂t
(t = 0) = 0. It follows that C < 0 at all times as K (t = 0) = 0. After introducing

the integral I (t) ≡
∫
V
dx
ρ0

2
|ξ|2(which is basically ∝ the mass-weighted volume-average of

|ξ|2), straightforward computation gives both
dI

dt
(t = 0) = 0 and

d2I

dt2
= 2 (K −B), and

equation (6.28) leads therefore to:
d2I

dt2
= (4K − 2C) > −2C > 0 at all times. It follows
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that I (t) grows without bound as t→∞, indicating that |ξ| increases somewhere at least
as fast as t.

In spite of its rather abstract mathematical form, this result ensures stability of the
unperturbed state against perturbations satisfying equation (6.23). In fact, the de�nition

of ξ and equation (6.26) give C = U , K =
∫
V
dx

(
ρ0|v|2

2

)
and B =

∫
V
dx

(
p2

1

2ρ0c2
s0

)
> 0

after integration by parts. Positiveness of B ensures stability.

Physically, this means that the amplitude of acoustic perturbations in a �uid initially
at rest where no sound propagates across the boundary of the system and no heating
occurs never diverges. An advantage of our discussion is that our results do not rely on
any assumption concerning the spatio-temporal (e.g. oscillating) behaviour of the pertur-
bation.

It is worthwhile to stress a further consequence of the positivemess of B, which admit-
tedly is rather trivial but has far-reaching consequences. Linearity of equations (6.25) and
(6.6) ensures that a system is stable (i.e., |ξ| diverges nowhere at any time) if and only if
E never diverges. In contrast with the former, the latter stability condition deals with a
volume integral, and is therefore uniquely suitable to the evaluation of the overall e�ect
of �ame-acoustics coupling quoted above. Accordingly, we are going to identify stability
with the lack of divergence of E in the following.

6.2.3 Rayleigh's criterion

Let us investigate what happens if dissipative processes occur. Together with the formula
for cs0, equations (6.20) and (1) lead to:

∂2p1

∂t2
−∇ ·

(
c2
s0∇p1

)
= (γ − 1)

∂Q1

∂t
(6.29)

Physically, this equation means that a change in the net amount of heat supplied to the
small mass element (e.g. at the �ame through combustion) is a source of acoustic waves,
which propagate with velocity cs0. Generally speaking, and in contrast with turbulence
(whose impact on acoustics is described by Lighthill's analogy [38]) the �ame acts as
monopole source of acoustic waves [39]. Propagation of sound across the boundary is also
allowed, provided that we we drop the boundary condition ξ · da = 0. All the same, if the
source is known then stability can be checked with the help of the energy balance (6.21),
as E increases with increasing |ξ|.

For instance, suppose harmonic variations for all variables allows to write the pertur-

bation a1 of the generic quantity a as a1 (x, t) = <{(â (x, t) exp

(
−2πit

τ

)
}. where <{a}

denotes the real part of the complex number a and â is a real, slowly varying function of
time. Whether these functions grow with time over an oscillation period τ will determine
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the stability of the combustor [4]. Integrating both sides of (6.21) on time over τ and
dividing by τ gives

d

dt

∫
Vb

dx〈E〉 = −
∫
Ab

da · 〈W〉+

∫
Vb

dx〈D〉 (6.30)

where 〈a〉 ≡ 1

τ

∫ τ
0
dta is the time-average of a over τ . The growth rate of E may also

be expressed may also be expressed by assuming that the amplitudes of the perturbation
change slowly with time in comparison to τ , i.e. that â ∝ exp (grt) with |grτ | << 1, or,
equivalently, that:

a1 (x, t) ∝ exp (−iωt) (6.31)

with complex ω, τ =
2π

<{ω}
and gr = ={ω} where ={a} denotes the imaginary part of

the complex number a and
|={ω}|
|<{ω}|

<< 1. In this case
∂

∂t

∫
Vb
dx〈E〉 = 2={ω}

∫
Vb
dx〈E〉

as E is quadratic in the perturbation amplitude, and equation (6.30) gives [34]:

={ω} =
−
∫
Ab
da · 〈W〉+

∫
Vb
dx〈D〉

2
∫
Vb
dx〈E〉

(6.32)

Now, equation (6.15) ensures that if a perturbation occurs then the denominator on the
R.H.S. of equation (6.32) is positive. We draw therefore the conclusion that the system
described by equations (5.1) - (6.6) is unstable against the growth of the amplitude of an
oscillation with period τ if and only if:

∫
Vb

dx〈D〉 >
∫
Ab

da · 〈W〉 (6.33)

Moreover, the cases

∫
Vb

dx〈D〉 <
∫
Ab

da · 〈W〉 (6.34)

and
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∫
Vb

dx〈D〉 =

∫
Ab

da · 〈W〉 (6.35)

correspond to damped oscillation (i.e., stability) and to constant-amplitude oscillation re-
spectively. In the latter case, if both sides vanish then the amplitude of the oscillation
vanishes also identically. Together, relationships (6.33), (6.34) and (6.35) are usually re-
ferred to as Rayleigh's criterion of thermo-acoustics 2 .

Not surprisingly, and just as in the energy balance (6.21) it is derived from, Rayleigh's
criterion predicts instability, marginal stability and stability whenever the R.H.S. of (6.33)
-henceforth referred to as destabilising term- is larger, equal to or smaller than the L.H.S.
-the stabilising term- respectively. The destabilising and the stabilising term are time-
averages on a period τ of volume and surface integrals taking into account dissipative
processes occurring in the �uid bulk (including combustion heat release) and propagation
of sound across the boundaries respectively.

In particular, (6.35) may be obtained straightforwardly from time averaging of both

sides of (6.21), provided that we rede�ne 〈a〉 ≡ limτ→∞
1

τ

∫ τ
0
dta. This is far from surpris-

ing, as time-averages from 0 to τ and from 0 to∞ give the same result for purely periodic
functions ={ω} = 0. Remarkably, we may replace the ={ω} = 0 assumption with the
assumption E < ∞ at all times, given the well-known fact that the time-average from 0

to ∞ of
da

dt
vanishes for arbitrary quantity a [41].

The main di�erence between Rayleigh's criterion and the original (6.21) is the assump-
tion (6.31) of periodic oscillation in time with a well de�ned period τ , an assumption
usually satis�ed in real-life applications where the combustors exhibit a discrete acoustic
frequency spectrum with well-de�ned peaks. In a nutshell, Rayleigh' criterion is the time-
averaged and volume-averaged energy balance of an acoustic perturbation, duly corrected

for non-adiabaticity, with a well-peaked frequency spectrum (as
|={ω}|
|<{ω}|

<< 1).

Apart from that, the validity of Rayleigh's criterion relies just on the linearisation of
the simple equations (5.1) - (6.6) under the constraint (6.13). The main advantage of
Rayleigh's criterion is precisely its validity regardless of the detailed microscopic descrip-
tion of heating processes and turbulence. In fact, its proof requires no detailed information
concerning combustion. As for turbulence, it plays no role as far as (6.13) holds and the
detailed dependence of v1 on space and time is of no relevance in the low Mach approxi-
mation. This independence allows e.g. utilisation of Rayleigh's criterion in the analysis of
instabilities by post processing the results of compressible CFD software packages like e.g.
those based on compressible Large Eddy Simulation (LES ) of unstable combustors [4].

2As for the isentropic case, ∇Q inside the �ame plays a negligible role in Rayleigh's criterion provided

that the upstream Mach number M is low enough, namely M <
(
−1 + Td

Tu

)−2
where Td and Tu are the

values of temperature of the unburnt and the burnt gases respectively -see equation (6.17) of [40]. This
condition is satis�ed in most cases, marginally at least
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For example, it is possible to start from these results and map the Rayleigh index across
the �uid, in order to ascertain which regions of the �uid actually contribute to instability.
Di�erent regions of �uid may therefore trigger humming at di�erent frequencies [5]. By
far and large, Rayleigh's criterion is the only generally accepted stability criterion in the
community of humming researchers.

As stated above, the �rst and most obvious consequence of Rayleigh's criterion is that
the onset of humming is facilitated whenever the �uctuating quantities p1, Q1 etc. within
the Rayleigh index are in phase. Dephasing such quantities is therefore the aim of most
approaches to humming stabilisation, as discussed below.

Moreover, Rayleigh's index is negligible outside the �ame in all combustion problems
discussed below. It follows that the volume integrals of the Rayleugh's index reduce to
volume integrals on the �ame volume. Admittedly, such information is in implicit form
only, as the �ame volume appears just as the domain of integration of the destabilising
term. Correspondingly, equation (6.22) allows (6.34), (6.35) and (6.33) to provide us with
information on the shape of stable, marginally stable and unstable �ames. Generally
speaking, and in contrast with Vb, Vf may change with time, and we are just allowed to
replace

∫
Vb
dx〈D〉 with 〈

∫
Vf
dxD〉 (not with

∫
Vf
dx〈D〉!) when deriving both (6.34), (6.35)

and (6.33). For example, (6.35) is equivalent to:

〈
∫
Vf

dxD〉 =

∫
Ab

da · 〈W〉 (6.36)

In the following, a substantial part of the present work is concerned with in-depth
discussion of this equation.

By far, the most widely known version of Rayleigh's criterion is the isentropic case,
where equations (6.19) and (6.16) give D and W respectively. Even so, further modi�ed
versions are available. For example, a common (if oversimpli�ed) approach is to neglect
〈W · da〉 altogether [42]. The impact of viscosity, heat conduction, mass sources and
body forces (like e.g. gravity), insofar neglected, has been taken into account in [33]. It
turns out that, just as for the heat release, suitable modulation of either body forces and
mass sources may have a stabilising e�ect; both viscous dissipation and heat conduction
in the bulk of the �uid are also stabilising [43]. Finally, the impact of chemical reactions
on Rayleigh's criterion is discussed in [44]. It turns out that a speci�c chemical reaction
may either raise or lower or lave una�ected the amplitude of a perturbation, depending
on both the rate of the reaction and the values of the enthalpy of the chemical species
involved, as both a�ect the heat release. Here all such e�ects are encompassed in the
quantity Q1.

Depending on the authors, versions of Rayleigh's criterion including non-zero 〈W ·
da〉 6= 0 and the contribution of entropy gradient are referred to as extended or gener-
alised Rayleigh's criterion, but the fundamental structure remains the same. As for the
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pros and cons of Rayleigh's criterion, see Fig. 6.4

Figure 6.4: Pros and cons of Rayleigh's criterion. See text for details.

6.2.4 A trouble with Rayleigh

So far, we have quoted just one application of Rayleigh's criterion (the post-processing
of compressible LES results) and one consequence (the relevance of relative phases of the
perturbations of various physical quantities). Is it possible to make use of Rayleigh's cri-
terion in the form (6.33)-(6.34)-(6.35) discussed above in a more straightforward manner?
The answer is likely to be negative for two reasons.

Firstly, these relationships hold in the linear regime, and their validity whenever non-
linear e�ects are relevant is doubtful. For instance, if we take the Fourier transform of
both sides of (6.20) in the low Mach limit we obtain

|v1|
|v0|

=
1

γM

|p1|
p0

where a is the Fourier transform of the generic quantity a. Even for small humming am-
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plitude
|p1|
p0

<< 1 the L.H.S. may be ≈ 1 (and the linearisation approximation may fail)

either for M << 1 or for |v0| ≈ 0; the latter condition is veri�ed e.g. near the center of
recirculation zones in real combustors. Moreover, periodic oscillations with constant am-
plitude are usually described with the help of limit cycles, a feature of nonlinear dynamics
where the validity of (6.35) is no trivial matter. For the moment, we limit ourselves to
linear theories. Nonlinear models will be discussed later.

Secondly, for all its generality Rayleigh's criterion provides just a link between per-
turbations of di�erent physical quantities p1, s1 and the like. In particular, Rayleigh's
criterion provides us with implicit information only as far as the shape of humming-free
�ames is concerned, through (6.22). Evaluation of the latter requires solution of the equa-
tions of motion in all cases, leaving to Rayleigh's criterion the role of stability check of
the solutions.

6.2.5 Modal analysis and transfer function

Luckily, equation (6.32) ensures that the sign of ={ω} encompasses the same physical
information of (6.33) - (6.35) - (6.34). In order to compute this sign, we start with the

homogeneous version (
∂Q1

∂t
= 0) of equation (6.29). Usually, it is possible to write the

solution as a linear superposition

p1 (x, t) =
∑
n

cnϕn (x) exp (−iωnt) (6.37)

where ϕn (x) solves the eigenvalue problem∇·(c2
s0∇ϕn)+ω2

nϕn = 0 with eigenvalue ω2
n and

the cn are constant coe�cients. As for the general inhomogeneous problem (with source
∂Q1

∂t
6= 0) where combustion is taken into account, standard Green function techniques

are available for the solution in the time domain, provided that the source is known [45].

An alternative, quite popular approach is to write the Fourier transform Q1 (ω) of
Q1 (t) as a function ((�ame) transfer function, FTF) Q1 (ω) = fFTF{v1 (ω) , p1 (ω)} of
the Fourier transforms v1 (ω) and p1 (ω) of v1 and p1 - see Fig. 6.5 and Fig. 6.6 3.

Then, ωn is found solving the eigenvalue problem given by the following couple of equa-
tions:

ω2
np1 +∇ ·

(
c2
s0∇p1

)
= iωn (γ − 1) fFTF{v1, p1} (6.38)

3Many authors assume the FTF to depend on v1 (ω) only. For a comprehensive review, see Chapter
2 of [46].
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Figure 6.5: Schematic description of a �ow-�ame coupling described by a FTF -from Ref.
[47].

−iωnρ0v1 +∇p1 = 0 (6.39)

Equations (6.38) and (6.39) are derived from applying Fourier transform to both sides of
equations (6.29) and (6.20). The system (6.38) - (6.39) is made of two equations in two
unknown quantities v1 and p1. Together with the de�nition of the FTF, equation (6.38)
is basically the well-known Helmholtz' equation [4] [48]. In analogy with electronics, it
can be said that (6.38) represents the feedback e�ect of acoustics on the �uid dynamics,
represented by (6.39). This is why f{v1, p1} is called (�ame) transfer function. FTF
often depends on v1 only.

Here the signal is made of perturbation of both pressure and velocity, i.e. two physical
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Figure 6.6: A description of the feedback provided by (6.38). The small circle on the left
represents equation (6.39). Pressure and velocity perturbations act as input and output
quantities of (6.39) here. The rectangle represents the FTF. Its output Q1 acts as input
of the feedback equation (6.38), displayed as a triangle here. In turn, the output of the
latter equation acts as input of (6.39).

quantities. As for the third quantity entering E in the general case, entropy, we observe
that equations (6.13) and (6.8) ensure that its perturbation is localised at all times at
the location of heat production (where Q1 6= 0) and does not propagate across the system.

Finally, if we take the curl of both sides of (6.20) then equation (6.13) leads to the
conclusion that the perturbations of vorticity ∇ ∧ v vanish identically. Things are going
to change when (6.13) no longer holds.

Formally, the system (6.38) (6.39) is homogeneous, so that we may still invoke (6.37).
Once all ωn's are known, we may focus our attention on that particular ωn with the max-
imum imaginary part ={ωn}, say ={ωn} = gmax . If gmax < 0 then the imaginary parts of
all other ωn are also negative. Then (6.37) ensures that |p1| is a monotonically decreasing
function of time. In this case, linearity of (6.20) , (6.6) and (6.24) ensures that E is a
monotonically decreasing function of time, hence stability. In contrast, if gmax > 0 then
|p1| ≈ exp (gmaxt) diverges as t→∞, and the system becomes unstable in the same limit
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t→∞. We stress the point that no instability may be predicted here but in this limit.

The approach described above (usually referred to as modal analysis in the literature)
is currently the topic of a vigorous research e�ort. As for the crucial question whether a
given combustor with given boundary conditions undergoes humming or not, the simple
stability criterion gmax < 0 has the same physical meaning of Rayleigh's criterion in the
form (6.34). With respect to the latter, it has the advantage that no explicit computation
of E is ever required: for example, it does not require to decide if the isentropic formula
(6.15) or the more general (6.18) is to be utilised. This is far from being trivial, as it is
often di�cult to ascertain which correlation is actually relevant starting from experimen-
tal data - see Fig. 6.7.

Furthermore, if instability occurs then once gmax is known the corresponding frequency
ωn and the corresponding eigenfunction are also known. Since the latter depends on space
we know the location of the peaks of pressure perturbation p1 Consequently, we know also
the position of the location of maximum mechanical stress induced by humming on the
combustor surface, a piece of information of great engineering relevance.

A further advantage of humming analysis based on FTF is that it allows quick utilisa-
tion of the measurements taken in systematic experimental campaigns at a manufacturer's
test rig. To �x the ideas, let us suppose we measure oscillations on a combustor (say, I)
with typical length, say, L = 1 m, and obtain the FTF of this combustor from the mea-
surements 4. Then, let us repeat the same measurements on a similar combustor (say,
II) but with L = 1.2 m, and obtain the FTF of this combustor. When it comes to a
combustor III with L = 1.1 m (all the rest being equal), cheap interpolation between I
and II is likely to provide reliable results for III.

Moreover, once FTF is known then not only the system of equations (6.38) - (6.39)
may be solved with the help of well-known software for realistic combustor geometries,
but the FTF formalism allows utilisation of Bode-Nyquist stability criteria, in further
analogy with electronics.

Finally, according to many authors [24] [49] [7] the value of <{ωn} is often very near

to the (real) value ωn0 of the same quantity computed in the much simpler case
∂Q1

∂t
= 0

see Fig. 6.8. Since the propagation of the signal occurs at the speed of sound, our anal-
ogy with electronics intuitively explains why ωn ≈ ωn0: humming onset relies on acoustic
feedback, and the latter is particularly strong when transmission of acoustic energy across
the system achieves maximum e�ciency, i.e. at resonance. This fact allows us to choose
ωn = ωn0 as an initial guess when solving numerically the eigenvalue problem (6.38) (6.39)

in a given geometry, provided at least that
|={ω}|
|<{ω}|

<< 1 at all steps of the iteration pro-

cedure. Admittedly, spatial derivatives still appear in the eigenvalue problem. However,

4It is also possible to compute the FTF with the help of both CFD and acoustic codes: the latter
provide us with the response of the system to perturbations of the unperturbed �ow computed by the
former. Comparison with experiments overcomes numerical uncertainties.



56 CHAPTER 6. A PARTICULAR CASE

Figure 6.7: Normalised �uctuations of temperature, heat release and pressure vs. time
(s) in a ocombustor in humming - from Ref. [20]. Fluctuations of all quantities are well
correlated to each pther. These data seem to make it di�cult to decide if D is ruled by the
correlation between e.g. �uctuations of heat release and temperature or by the correlation
between �uctuations of heat release and pressure (as in the isentropic case).
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these derivatives are routinely dealt with through standard approaches like e.g. �nite
element methods.

From manufacturers' point of view, modal analysis seems to be promising because
of the powerful and reliable numerical methods which -in principle- allow humming pre-
diction in combustor design. Today, this goal is successfully achieved in three separate
classes of problems at least -see [19], [20] and [21]- which are discussed in more detail below.

Generally speaking, in the framework of linear stability analysis the case of modal
analysis is somehow complementary to Rayleigh's criterion: in contrast with the latter,
the former allows humming prediction -and not just stability check a posteriori - but re-
quires both validity of assumption (6.37) and knowledge of the FTF.

As for the validity of the assumption (6.37), its violation may have far-reaching conse-
quences: it can cause algebraic growth of oscillations for a short time even though all the
eigenvectors of the system could be decaying exponentially with time [50]. This means
that p1 (t) may include terms which scale as t exp (−iωt). As a consequence, even if modal
analysis predicts stability (gmax < 0) E may grow at t < ∞ even if it goes to zero at
t → ∞. Moreover, this temporary growth may push the system initially at rest outside
the linear regime towards a stable, constant-amplitude oscillation (a limit cycle). In this
case, predictions provided by modal analysis could be over-optimistic [51]. Generally
speaking, if (6.13) holds then the solutions of the system of equations (6.29) and (6.20)
do satisfy (6.37): it is said that the problem is normal. For an overview of the pros and
the cons of modal analysis from the point of view of a GT manufacturer, see Fig. 6.9.

As for the FTF, the original treatment of [49] focussed on rocket engines with liquid
fuels: it linked the onset of thermo-acoustic instabilities and the dynamics of evaporation
of liquid fuel droplets. Then, a simple analytical expression

fFTF ∝ nFTF · exp (iωτFTF )

for the FTF (referred to as n− τ in the literature) has been introduced in formal analogy
with [49] for the premixed combustion of gaseous fuels. Here nFTF and τFTF describe a
coupling strength and a delay time respectively.

The n− τ FTF puts in evidence the relationship between the FTF and the Rayleigh
index. Let us e.g. focus our attention on a tube of length L where the pressure per-
turbation vanishes at both ends and where a concentrated heat source (not necessarily
a �ame!) is located at position xf with 0 ≤ xf ≤ L -see Fig. 6.10. Here we follow
the discussion of Ref. [52]. An ansatz for p1 which satis�es the boundary conditions is

p1 ∝ sin

(
2πt

τ

)
sin
(πx
L

)
. According to the n− τ FTF model and to equation (6.20), the

perturbation heat release which results from the corresponding perturbation of velocity is

∝ sin

[
2π

τ
· (t− τFTF )

]
· cos

(πx
L

)
· δ (x− xf ) where the factor cos

(πx
L

)
comes out from

the one-dimensional Euler equation (6.20) linking perturbations of pressure and velocity.
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Figure 6.8: Ampli�cation of acoustic energy (dimensionless) vs. normalised frequency
(dimensionless) in a combustor. Here the normalised values of ωn0 are 0.5, 1.5, 2.5 etc.
Near-resonance response of the �ame to external excitation results in large ampli�cation
of acoustic energy - from Ref. [7].
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Figure 6.9: Modal analysis for GT: pros and cons. See text for further details.
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Figure 6.10: A tube of length L with vanishing pressure perturbations at both ends and a
concentrated heat source at x = xf .

In the isentropic version of Rayleigh's criterion, the resulting Rayleigh index is:

D ∝ cos

(
2πτFTF

τ

)
· sin

(
2πxf
L

)
(6.40)

This expression becomes greater than zero (and humming occurs, as the stabilising
acoustic energy �ux across the boundaries vanishes identically with these boundary con-

ditions) in the regions of the plane
(xf
L
,
τFTF
τ

)
plotted in red in Fig. 6.11. It is obvious

that the actual occurrence of instability depends critically on τFTF .

Given its deceptively simple structure, the n−τ FTF has given birth to a vast amount
of research -for a review see [53]. In particular, it allows modal analysis of an one-
dimensional system with uniform unperturbed �ow (∇v0 = 0 ) to exhibit transition from
stability to instability as the phase <{ω} · τFTF exceeds some threshold values [35]. This
result �ts Rayleigh's original remarks concerning the relevance of relative phases in hum-
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Figure 6.11: Graphical representation of Rayleigh index in the isentropic version of
Rayleigh's criterion. The horizontal and the vertical axis display

xf
L

and
τFTF
τ

respec-

tively. Red (blue) regions correspond to positive (negative) Rayleigh index.
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ming onset.

Moreover, in the modal analysis of [35] it turns out that <{ω} itself depends weakly
on τFTF , and this result too recalls further Rayleigh's words [31]:

If the air be at its normal density at the moment when the transfer of heat
takes place, the vibration is neither encouraged nor discouraged, but the pitch
is altered. Thus the pitch is raised, if heat be communicated to the air a quarter
period before the phase of greatest condensation, and the pitch is lowered if the
heat is communicated a quarter period after the phase of greatest condensation.

This success has motivated decade-long research concerning FTF in more realistic cases
- for a review, see e.g. [46]. In the case of the so-called distributed time transfer func-
tion [54] [55], for example, the scalar quantities nFTF and τFTF are replaced with scalar
�elds nFTF (x) and τFTF (x) de�ned at each point of the �ame. As a result, many ana-
lytical expressions for the FTF are available, which usually contain adjustable parameters.

Physically, the basic idea underlying a distributed FTF is that heat release �uctua-
tions are coupled to velocity oscillations occurring at a reference upstream section after
a time lag which depends on the position on the �ame, i.e. a distribution of time-delays
τFTF (x) is to be taken into account. This distribution is computed with the help of CFD,
which allows to compute the time-of-�ight of a particle of fuel from the inlet to a given
point x on the �ame.

In particular, some of these models allow manufacturers to perform modal analysis of
their own combustors with the help of simpli�ed description of the combustor geometry
(low order models). A popular example of low order model is the (acoustic) network.
The system is descibed as a network of simple elements. Each of the latter is described
by its own transfer function (possibly in multidimensional form, commonly referred to as
transfer matrix ). Pressure and velocity perturbations are the usual variables of choice.
Together, the FTF, the conservation equations at the boundaries among adjacent network
elements, the transfer matrices of the latter and the �ame jump conditions yield a set of
linearised equations in the frequency domain, to be solved to determine the frequency and
the growth rate of the oscillation. For an example of acoustic network, see Ref. [56] as
well as Fig. 6.12 and Fig. 6.13.

It turns out [19] that modal analysis with CFD-computed distributed FTF provide
predictions concerning both the onset and the frequency of humming in agreement with
experiments, where the latter have been

designed in order to have an acoustic behavior as closest as possible to an
ideal wall

Here the words ideal wall refer to a particularly simple boundary condition (v1 = 0)
which does not involve any mean �ow. For such purposedly prepared experimental set-up,
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Figure 6.12: Example of acoustic network - from Ref. [56].
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Figure 6.13: Detail of Fig. 6.12: the burner - from Ref. [56]. Pressure losses are concen-
trated in L− ζ blocks.
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well-known numerical methods allow solution of (6.38) - (6.39) with the help of Dirichlet
and/or Neumann boundary conditions. It remains to be seen if such approach is relevant
to real-life industrial combustors. For example, ideal wall boundary condition implies
that the energy of the re�ected acoustic wave -as computed starting from the solutions
of equations (6.38)-(6.39) above- is equal to the energy of the impinging acoustic wave.
This prevents conversion of impinging acoustic waves into non-acoustic perturbations (see
below), in contrast e.g. with the models of [3] and [1].

Actually, a posteriori comparison of numerical results with experimental data ob-
tained from measurements either in existing combustors or in dedicated test-rigs allows
manufacturers to �nd the values of such parameters, but then the capability of humming
prediction from scratch in new combustors -obviously a feature of highest relevance to
manufacturers- is lost for good.

Indeed, a priori computations of the FTF from �rst principles are available. Usually,
they are:

• either limited to the low-frequency limit [57]

• or related to problems a�ected by quite restrictive assumptions concerning the (usu-
ally Bunsen-like, conical) shape of the unperturbed �ame - see e.g. [58] and Fig. 6.14
- and/or the boundary conditions [19] and/or the direction of propagation of the
wave [20]

• or the result of cumbersome LES simulations [59]. According to [13], today LES
is the only current modeling strategy that correctly predicts mean statistical (i.e.
mean and Root Mean Square) �ow features in strongly swirled �ows.

In particular, LES allows computation of FTF starting from the computation of the
response of the �ame to a siren located outside it (typically near the fuel inlet) ringing
at a given frequency, i.e. it positions the sound source at a given location far from the
�ame. Implicitly, therefore, LES-assisted computation postulates -without further proof-
that humming instability is of convective, not absolute nature -for a discussion, see [4].

Furthermore, even if LES provides accurate computation of FTF, the latter enters just
the R.H.S. of Helmholtz' equation (6.38). Thius means that the �ow computed by CFD
a�ects the source of acoustic oscillations. But no information concerning v0 ever enters
the L.H.S. of (6.38). This means that the unperturbed �ow leaves propagation of signals
across the combustor una�ected. This implicit assumption is criticised below.

Moreover, LES start from the ωn = ωn0 guess discussed above 5 (with ={ωn0} = 0)
and lead therefore to meaningful result only if numerical errors -due e.g. to the very CFD

algorithm- never exceed the small threshold
|={ω}|
|<{ω}|

<< 1. Fig. 6.15 displays a qualitative

sketch of the incertitudes corresponding to di�erent approaches to CFD.

5This requirement is somehow relaxed in [55].
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Figure 6.14: Schematic of axisymmetric conical �ame geometry for computations of FTF
- abridged from Ref. [58].
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Figure 6.15: Time evolutions of local temperature computed with DNS, RANS or LES in
a turbulent �ame - from Ref. [4].
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This condition should be veri�ed for each CFD-assisted modal analysis 6. Generally
speaking, �ame models obtained experimentally or numerically are known to be uncertain.
Addressing the sensitivity of thermoacoustic results with respect to the input parameters
is thus a necessary and important step towards reliable predictions of unstable modes in
GT. Fig. 6.16 displays a typical result of modal analysis, i.e. a set of modes, each with
its own frequency and growth rate. Should no uncertainty is present, each mode would
correspond to a single point (black symbols) in the frequency plane.

A systematic investigation is available -Ref. [48]- which assesses the incertitude of the
results of FTF-assisted modal analysis -with a n− τ FTF provided by LES- for the fun-
damental acoustic mode of a real, swirl-stabilised combustor. A Monte Carlo sampling
is used on the two-dimensional space (nFTF , τFTF ). The Monte Carlo simulation relies
on 4000 computations of solution of Helmholtz' equation, where 1 computation requires
almost 10 minutes when using 24 processors. Admittedly, no clear, accurate analysis on
the uncertainty range of nFTF and τFTF is available in the literature; the authors assume
a 10% uncertainty for both quantities. Each couple of values of nFTF and τFTF in input
corresponds to a complex frequency in output. Stability (instability) is predicted to occur
when the growth rate exceeds a damping factor due to acoustic losses. (Here the condition
|={ω}|
|<{ω}|

<< 1 seems to be overlooked altogether). This damping factor is derived from

comparison between experiments on one side and the results of Helmholtz' computations
which assume zero losses on the other side, and is therefore also a�ected by uncertainty.
Fig. 6.17 displays the results. Even if the uncertainty on the damping factor is neglected
and if no non-normality is taken into account, it turns out that the probability that hum-
ming is triggered is 23%. To �x the ideas, a 50% value would correspond to throwing dice.

Recently, the de�nition itself of the variables which the FTF is built upon has been
questioned [47] [7]. As we have seen, the familiar treatment of the FTF relies on the
choice of the perturbations of velocity and pressure as fundamental quantities of the lin-
earised theory. However, there is nothing special with this particular couple of variables.

6A more general issue concerning linearisation seems to be at stake here. When applied to a system of
nonlinear equations, superposition of a small perturbation on an unperturbed state makes sense provided
that no uncertainty a�ects our knowledge of the unperturbed state. (This is e.g. the case of thermo-
acosutical problems where analytical descriptions of the unperturbed state are available; an example is
v0 = 0 everywhere. Another example is the search for local bifurcations in nonlinear dynamics [60]). In
this case, in fact, we can always take the relative amplitude of the perturbation as small as we like. Thus,
the error due to linearisation remains under control even as it propagates and grows with time. (Such
growth occurs e.g. in chaotic systems like those occurring in �uid dynamics, with their strong sensitivity
against small perturbatins of the initial conditions). It follows that linearity of the equations describing
the evolution of the perturbation remains valid at all times. But if the unperturbed state itself is known
up to a certain degree of con�dence only (as it is customary when the unperturbed state is described with
the help of CFD), then the superposition of an in�nitely small perturbation is meaningless, because the
evolution of the perturbation gets mixed up with the uncertainty on the unperturbed state. In summary,
two basic requirements seem to be in con�ict here, regardless of both the adopted solving algorithm and
the available CPU computing power. On one side, the initial perturbation amplitude must be as small
as we like in order to make all linearisation-induced errors negligible at all times. On the other side, the
initial perturbation amplitude must be large enough to overcome the blurring due to the uncertainties
a�ecting our description of the unperturbed state.
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Figure 6.16: Location of six thermo-acoustic modes in a typical combustor. Here,
growth rate and frequency stand for ={ω} and <{ω} respectively. Modes 1, 4 and 5
are dangerous and should be controlled since the growth rate is positive. If uncertainties
are present, each mode belongs to an admissible region of the frequency plane. Mode 2
(and maybe 6) also are somehow dangerous and should be controlled. The �gure suggests
that taking into account uncertainties is required for reliable predictions of combustion
instabilities.- from Ref. [48].
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Figure 6.17: ={ω} vs. <{ω} from a Monte Carlo simulation of LES-assisted modal anal-
ysis of the fundamental acoustic mode in a swirled combustor. Each grey circle coresponds
to the result of one Helmholtz' computation. The horizontal line ={ω} = αB = 125 s−1

corresponds to the damping threshold. Lack of humming and onset of humming predicted
for ={ω} < αB and ={ω} > αB respectively. However, αB too is a�ected by an un-
certainty ∆α = ±10 s−1. Accordingly, LES-assisted modal analysis is able to provide no
meaningful prediction of stability vs. instability for αB−∆α < ={ω} < αB+∆α. Looking
at all grey circles above the horizontal line ={ω} = αB, moreover, it turns out that the
probability that humming is triggered is 23%. Results are weakly dependent on the detailed
distribution functions used for nFTF and τFTF - from Ref. [48].
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Figure 6.18: Progressive and regressive waves in a one-dimensional model - see Ref. [7].
Labels u and d refer to upstream and downstream respectively.

Even within a simpli�ed, one-dimensional description of the system, if another couple

is selected, namely the quantities f =
1

2

(
p1

ρ0cs0
+ u1

)
and g =

1

2

(
p1

ρ0cs0
− u1

)
which

correspond to progressive and regressive waves respectively and are linear combinations
of the perturbations of pressure and of axial velocity, then the FTF modi�es accordingly
- see Fig. 6.18.

This choice has the advantage of satisfying the causality principle automatically, i.e. it
allows natural distinction of causes and e�ects (in contrast, perturbations e.g. of velocity
at a given time are always the sum of the contributions of incomping and outcoming waves,
as the superposition principle holds). It turns out that with this new choice of variables
modal analysis leads to a insofar undetected new class of modes (referred to as intrinsic
modes in the literature). In contrast with the results of previous analysis, and in formal
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analogy with Darrieus-Landau instability outside thermo-acoustics, intrinsic modes come
into existence because of the temperature jump at the �ame -see Appendix C of - [7]- not
just because of the phases as it could be expected when looking at Rayleigh's criterion. A
new set of (�ame-intrinsic) eigenmodes adds to the purely acoustic modes. Correspond-
ingly, thermoacoustic instability may occur even in a perfectly anechoic environment, in
agreement with experiments. This is not surprising, as the theory of intrinsic modes drops
the assumption of isentropic �uids which Rayleigh's criterion relies upon [47]. It has also
been shown that the linear analysis of stability based on the variables quoted above leads
to a su�cient criterion for stability, namely a system is stable if all its subsystems are
stable -see relationship (36) of Ref. [7]- or, equivalently, to a necessary criterion for insta-
bility. In analogy to Rayleigh's criterion, this criterion relies on the energy balance of an
acoustic perturbation, suitably rewritten with the help of the new variables -see equation
(27) of [7].

Unfortunately, this criterion is no su�cient criterion for instability -or, equivalently,
it provides manufacturers with no necessary criterion for stability against humming. For
practical purpose, therefore, it is likely to be just too restrictive: combustors which satisfy
the criterion may as well be stable. To put it in other words, a system may be stable
even if some subsystems are unstable, provided that enough damping compensates such
instability in the remaining subsystems.

There is also a further, more physical reason which seems to weaken the relevance of
this criterion to GT �ames. The temperature jump at the �ame drives both �ame-intrisic
modes and Darrieus-Landau instability. Both may be unstable for a perfectly �at �ame of
�nite size (in the He << 1 limit, e.g. the diameter of the combustor may be much smaller
than all relevant wavelengths, and the one-dimensional approach applies [7]). If suitable
�ame shapes (not captured in the one-dimensional approach) are able to compensate the
destabilising e�ect of the temperature jump as far as Dariieus-Landau is concerned, it is
conceivable that �ame-intrinsic modes too get stabilised.

Finally, even if the FTF is known, solution of the system (6.38) - (6.39) for a real
combustor requires knowledge of the relevant boundary conditions. This issue is far form
trivial and its discussion lies beyond the scope of the present work. Basically, validity
of simple boundary conditions (like e.g. ideal wall) involving no mean �ow seems to be
questionable for real combustors - see e.g. our discussion of DECBC above. Admittedly,
the corrections due to v0 6= 0 on (6.38) - (6.39) are just of order ∝ (M). Rather, it is likely
that v0 6= 0 a�ects boundary conditions. The latter should e.g. allow transformation of
acoustic waves into non-acoustic waves at the wall, in contrast with the boundary con-
ditions quoted above (for a more detailed description of non-acoustic modes, see below).
Here we limit ourselves to recall that these boundary conditions are written with the help
of acoustic impedances, complex-value functions of a complex frequency. These functions
describe the acoustic coupling of the combustor with the external world. Accordingly,
both the air supply system, the fuel supply system and the combustion chamber outlet
have their own acoustic impedance. Both measurement of acoustic impedances in realistic
environments and their computation to the degree of accuracy required by modal analysis
are still an active �eld of research.
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Figure 6.19: FTF for GT: pros and cons (focussed on computational issues). See text for
further details.

To date, although many di�erent models for the FTF have been utilized so far in order
either to match a measurement or to produce the desired behaviour, it seems justi�ed to
agree with the words of Ref. [46]:

a clear physical explanation of the mechanism leading to an ampli�cation
has not been provided yet

As for the pros and the cons of FTF from the point of view of a GT manufacturer,
see Fig. 6.19. Admittedly, the list is somehow biased towards computational issues, and
neglects questions concerning experimental techniques.

Remarkably, this very ignorance concerning the source term
∂Q1

∂t
limits also the use-

fulness of the rigorous approach to the solution of (6.29) based on Green function [45].
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6.3 The unperturbed �uid is not at rest

6.3.1 Much ado for nothing?

We have shown that the assumption (6.13) is crucial for the validity of both Rayleigh's
criterion (6.33) (6.34) (6.35) and the assumption (6.37) of modal analysis.

As far as the computation of <{ω} is concerned, indeed, (6.13) agrees well the as-
sumption of low Mach number. In fact, if v0 6= 0 then Doppler e�ect modi�es <{ω}
into <{ω} − k · v0 , where k wave number vector of the wave with frequency ω and

|k| ≈ O

(
1

L

)
, |ω| ≈ O

(cs0
L

)
for an acoustic wave propagating across a system of linear

dimension L, so that the relative contribution of v0 to <{ω} is
k · v0

ω
≈ O (M) << 1.

But we have already shown that the computation of <{ω} is only part of the story.
From the point of view of Rayleigh's criterion and modal analysis, the onset or the sup-
pression of instability depend on ={ω}, which in turn depends on a balance between
heating and sound propagation, i.e. a destabilising and a stabilising term respectively.

In some well-known problems of thermo-acoustics, like e.g. Rijke's tube, the heating
source does not depend on v0, so that (6.13) is a customary assumption. Not surprisingly,
original Rayleigh's work focussed on Rijke's tube. To date, Rijke tube is the experiment
par excellence for teaching Rayleigh's criterion. We will discuss Rijke's tube in depth
in the following. Here we note that the review of [43] shows that Rayleigh's criterion
provides us with a fairly good description of Rijke's tube even when turbulence is present.

In combustion problems, in contrast, the heating source does depend on v0. For ex-
ample, equation (6.10) gives:

∇ · v0 =
Q0

(cpρ0T0)
(6.41)

at the order ∝ O (ε0) even if we neglect ∇p0 in the low Mach limit. According to (6.41),
if (6.13) holds then the unperturbed heat release density Q0 vanishes. In this case, any

oscillating perturbation Q1 of Q with period
2π

ω
heats the �uid for half period and cools

it during the other half period, a behaviour scarcely compatible to what is expected in
combustion [22].

Admittedly, one may wonder if (6.13) is really meaningless for practical applications
to unstable combustors, given the fact that combustion occurs at the �ame only, hence
Q0 6= 0 in a very small region only.

All the same, even if we decide to neglect ∇·v0 everywhere the stability problem with
v0 6= 0 di�ers signi�cantly from the v0 = 0 problem discussed above in many cases. To
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grasp this point, let us rewrite the linearised balance of mass (6.24) and momentum (6.20)
as well as the linearised equation of pressure (1) in the case v0 6= 0 with ∇ · v0 = 0 (as
discussed above) and ∇p0 = 0 in the low Mach limit. We obtain:

(
∂

∂t
+ v0 · ∇

)
ρ1 + ρ0∇ · v1 = 0 (6.42)

ρ0

(
∂

∂t
+ v0 · ∇

)
v1 +∇p1 = −ρ0v1 · ∇v0 (6.43)

and

(
∂

∂t
+ v0 · ∇

)
p1 = (γ − 1)Q1 − γp0∇ · v1 (6.44)

respectively. Two cases are possible. Firstly, v0 6= 0 but ∇v0 = 0, i.e. v0 is uniform
and the unperturbed �uid moves at uniform velocity as a whole, like a rigid body. Since
∂v0

∂t
= 0, in this case the frame of reference at rest with an arbitrary small mass element

of the unperturbed �uid moves at the same, constant velocity v0 with respect to the lab
frame of reference for all small mass elements of the �uid (i.e., the two frames of reference
are inertial). With no need of further computation, Galileian relativity principle requires
therefore physics to be the same in both frames of reference. This implies that what we
observe in the lab is just what we would observe should we move at velocity v0, i.e. at rest
with the unperturbed �uid. In particular, results of stability analysis remain unchanged.
(This result lies e.g. at the core of the analysis contained in Sec. 2 of [61]). Of course,
the case v0 = 0 discussed above is just a particular case of ∇v0 = 0.

Things change considerably if ∇v0 6= 0. This latter case is relevant e.g. to combustors
where the �ames are sustained by recirculation zones. Physically, the frame of reference
at rest with the arbitrary small mass element of unperturbed �uid and the lab frame of
reference are inertial no more (Coriolis and centrifugal forces appear). Mathematically,
there is no more just one transformation of coordinates which helps ut to get rid of all
terms ≈ O (v0) in (6.42) , (6.43) and (6.44). Galileian relativity principle no longer ap-
plies. This is a far-reaching result, which deserves in-depth discussion.

Again, let us start from the discussion of the evolution of ξ (x, t) in the problem with
no sound propagation across the boundaries and no heat production. If we take the
Fourier transform in time of the L.H.S. of (6.42) then we observe that the term v0 · ∇ is
responsible for the Doppler correction k ·v0 to <{ω}. The same holds for equations (6.43)
and (6.44) as well. As discussed above, and in agreement with the low Mach limit, we
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may neglect these terms altogether. Even so, however, the term −ρ0v1 · ∇v0 survives on
the R.H.S. of equation (6.43) . This term di�ers from zero as ∇v0 6= 0. We may repeat
the algebra step-by-step and obtain a modi�ed version of equation (6.25) , namely:

ρ0
∂2ξ

∂t2
+∇p1 = −ρ0 (ξ · ∇)v0 (6.45)

In contrast, the other two equations ruling the evolution of ξ (x, t) , namely equations
(6.26) and (6.27) remain unchanged as we neglected the Doppler-related terms. As a
consequence, in (6.28) the previous result C = const. is replaced by

C 6= const.

Physically, this means that the amplitude of acoustic perturbations in a �uid initially
in non-uniform motion may diverge even if no sound propagates across the boundary of
the system and no heating occurs. Positiveness of B ensures stability no more.

Indeed, the implicit assumption underlying both Rayleigh's criterion and modal anal-
ysis is that an energy balance of the perturbation actually exists (equation (6.21)). How-
ever, even within the framework of a linearised, perturbative analysis of stability it is the
total energy of the �uid -not the energy of the perturbation- which is conserved when
no heating occurs and no energy is lost across the boundaries [8]. Generally speaking,
it is not possible to decouple the contribution of the perturbation from the contribution
of the unperturbed �uid. For example, if no net source of energy and no energy �ow
across the boundaries occurs, then energy is conserved. But it is the total energy of the
�uid which is conserved, not the energy of the perturbation and of the unperturbed �uid
taken as separate entities. We are going to show that, in contrast with the fundamental
assumption of [33], there is simply no such a thing as an energy of the perturbation in the
general case ∇v0 6= 0.

Admittedly, the latter statement is rather startling, to say the least. In this respect,
it is worthwhile to quote Ref. [7]:

A de�nition of perturbation energy implies a decomposition of �ow per-
turbations into acoustics, vortices and entropy, but this decomposition is not
unambiguous. [...] The core issue is however that none of the norms leads
to a conservative energy potential, which is needed for the construction of a
rigorous stability criterion. Strictly speaking, energy provides a stability crite-
rion only if it is monotonously decreasing for stable systems. [...] This does in
general not apply to (acoustic) perturbation energy. Investigations [...] show
that due to the acoustic-�ow-�ame-acoustic interaction even low order linear
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thermo-acoustic systems are non-normal. As a consequence (acoustic) pertur-
bation energy may rise even if the thermo-acoustic system is asymptotically
stable ("transient growth").

To �x the ideas, let us consider the velocity v = v0+v1 of a small mass element of �uid.
The kinetic energy of this small mass element is proportional to |v|2 = v2

0 +v2
1 + 2v0 ·v1.

Suppose the perturbation to be a periodic function of time with period τ , say v1 =

v10 sin

(
2πt

τ

)
, and take the time-average, so that 〈|v|2〉 = 〈v2

0〉+ 〈v2
1〉+ 2〈v0 ·v1〉. Now,

we follow the argument of [8] and show that the total kinetic energy ∝ 〈|v|2〉 unambigu-
ously splits into the kinetic energy of the unperturbed �uid ∝ 〈|v0|2〉 and the kinetic
energy of the perturbation ∝ 〈|v1|2〉 -and is therefore possible to compute the latter sep-
arately from the former- whenever ∇v0 = 0. To this purpose, we take advantage of the

formal relationship v0 =
∫
dt
dv0

dt
which reduces to v0 = v0 (t = 0) + (v0 · ∇)v0t + O (ε)

as
d

dt
=

∂

∂t
+v ·∇ and

∂v0

∂t
= 0. Accordingly 〈v0 ·v1〉 ∝ (v10 · ∇)v0

∫ τ
0
dtt cos

(
2πt

τ

)
6= 0

for arbitrary v10 unless ∇v0 = 0.

Physically, in the general case of non-uniform unperturbed �ows the kinetic energy of
the perturbation is coupled to the kinetic energy of the unperturbed �uid, i.e. the per-
turbation and the unperturbed �uid may exchange energy. This is why the perturbations
may become unstable even if no heat is produced inside the �uid and no acoustic power is
injected into the system from the external world. This additional source of instability -the
available kinetic energy of the unperturbed �uid- is accounted for nowhere in Rayleigh's
criterion and modal analysis.

Mathematically, problems arising from the linearised balance of momentum (6.43) are
usually not normal [62] and assumption (6.37) no longer holds. As we have seen, this
allows modal analysis to lead to over-optimistic predictions, and perturbations of �uids
initially in non-uniform motion to achieve the status of stable oscillations of �nite ampli-
tude even if gmax < 0, the energy being supplied by the motion of the unperturbed �uid.
Even if Mach number is low, its impact is far from negligible [63]. An example is given
in [64] -see Fig. 6.20.

The converse is also true: unless suitable damping is added by hand (through e.g.
the boundary conditions), modal analysis may predict positive growth rate even if the
system is stable, i.e. if no humming occurs. Even worse, in the case discussed in Ref. [1]
the damping rate is no output of modal analysis; it is estimated a posteriori looking at
the amplitude of the saturated acoustic oscillation when instability occurs. This seems
to be a further suggestion of the poor prediction capability of modal analysis -see Fig. 6.21.

Transient growth related to non-normality may allow even systems with gmax < 0 to
access to nonlinear regime where linearised analysis becomes meaningless: the combined
e�ects of non-normality and non-linearity causes the occurrence of subcritical transition
to instability from initial states, even if the latter have small energy [50].



78 CHAPTER 6. A PARTICULAR CASE

Figure 6.20: Saturated pressure amplitude (normalised to the unperturbed pressure and
computed via a limit cycle) vs. growth rate (computed via modal analysis) for di�erent
values of τFTF . Depending on the actual value of τFTF , �nite humming amplitude is
obtained even for negative growth rates [64]. Remarkably, the �gure displays a correlation
between the growth rate and the saturated amplitude, and the authors claim their results
to be in agreement with experiments. Per se, however, the negative sign of the growth rate
is no hallmark of lack of humming, in contrast with what we expect e.g. from equation
(6.32).
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Figure 6.21: <{ω} vs. growth rate at di�erent values of the perturbation amplitude [1]. We
stress the point that the authors' last words in the caption of this Figure show precisely
that the estimate of the damping rate relies on the amplitude of the saturated acoustic
oscillation when the combustor is unstable.

A further argument, due to [65], makes it clear how Galileian invariance prevents
separability of the kinetic energy of the perturbation from the kinetic energy of the un-
perturbed �uid. The equation of motion (6.2) enjoys Galileian invariance, i.e. its re-
sults must be invariant when we apply the Galileian coordinate transformation xK =
x − Vt, tK = t from the space-time coordinates (x, t) of the lab frame of reference
(where a generic quantity a is measured) to the coordinates

(
xK , tK

)
of another frame of

reference K moving at constant velocityV with respect to the lab (and where the quantity
aK is measured). Linearisation is a popular tool for solving (6.2). When linearising, we
write a = a0 + a1 and assume a1 to depend on both space and time, i.e. a1 = a1 (x, t).

In contrast, a0 does not depend on time t, i.e.
∂a0

∂t
= 0. Like all physically acceptable

methods of solution of (6.2), linearisation too must satisfy Galileian invariance, hence if

a = a0 + a1 then aK = aK0 + aK1 where aK0 must not depend on tK , i.e.
∂aK0
∂tK

= 0. The

chain rule gives

∂aK0
∂tK

=
∂aK0
∂a0

[V · ∇a0 (x)]
∂t

∂tK

with V =
∂x

∂t
,
∂aK0
∂a0

6= 0 (trivially, aK depends on a when no perturbation occurs),

∂t

∂tK
= 1 and Galileian invariance for arbitrary V requires ∇a0 (x) = 0. This means that
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linearization is physically acceptable if the the unperturbed quantity is not only constant
in time, but also uniform across space. In particular, if v plays the role of the quan-
tity a, it follows that the linearisation invoked above leads to physically acceptable results
(like e.g. the existence of an energy balance (6.21) of the perturbation) only if∇a0 (x) = 0.

In agreement with this conclusion, the review work of [66] shows that none out of the
many attempts to write down an explicit, physically acceptable generalisation of equation
(6.15) for E to problems where ∇a0 (x) 6= 0 is successful, as far as premixed combustion
is concerned. In fact, all available formulas lead to physically unacceptable results, like
a sudden increase of

∫
Vb
dxE after switching o� the �ame. (Historically, it was precisely

this requirement of physical soundness which has led Chu to write down equation (6.15);
the latter, however, applies to the v0 = 0 case only). The authors claim this behaviour is
to be ascribed to non-normality for v0 6= 0. The role played by mutual orthogonality of
di�erent modes of excitation when deriving Rayleigh's criterion is discussed by Culick in
Ref. [67] - in particular, see its equations (20) and (27). Even if written in 1987, Culick's
conclusion seem still to be valid:

There is presently no procedure for constructing a de�nition of energy as-
sociated to general nonlinear motions.

6.3.2 Convective waves: generalities

If v0 6= 0 perturbations of both entropy and vorticity may propagate across the system.
They are not encompassed in Rayleigh's criterion, modal analysis and the system of
equations (6.38) - (6.39); the latter equations are concerned with acoustic perturbations
only. Perturbations which propagate across the �uid with velocity v and not with the
sound velocity cs are called convective. Both entropy and vorticity perturbations are
convective 7.

6.3.3 Entropy waves

As for entropy perturbations, equation (6.8) shows that where no heating occurs (i.e. out-

side the �ame) the quantity s1 satis�es the equation
∂s1

∂t
+ v0 · ∇s1 = 0, i.e. propagates

with the velocity of the unperturbed �uid v0. Generally speaking, the very existence of
entropy perturbations cast doubts on the validity of the common identi�cation -see Sec. 1
of [22]- of irrotational and solenoidal perturbations of v as acoustic and convective pertur-
bations respectively, as entropy perturbations are both irrotational and convective. Direct
numerical simulation (DNS, i.e. a particular kind of �uid dymnamic computation) shows
that entropy perturbations propagate across a turbulent �uid with no strong dissipation

7Admittedly, if (6.13) holds then non-propagating perturbations of entropy and vorticity located at a
�xed position at all times are possible, as a matter of principle at least. But no exchange of energy is
possible between these hypothetical perturbations and the acoustic waves, in the framework of linearised
treatment at least, where interacting waves must have the same frequency which in the case of convective
waves at zero mean �ow is zero. In fact, acoustic waves obey equation (6.29), and their amplitude is
therefore proportional to a time derivative, which vanishes in the zero frequency limit.
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[68]. Even in the low Mach limit, it has been shown that neglecting entropy perturbation
leads to large errors [63] in the analysis of stability. For instance, in the analysis of Ref.
[69]:

The growth rate of the acoustic mode is signi�cantly mispredicted, suggest-
ing that the coupling between entropy and acoustic �uctuations exhibit a strong
unstable thermo-acoustic mode, while purely acoustic analysis shows a stable
eigenmode.

Such errors are ∝ O (M1) and ∝ O (M0) whenever the �ow is perfectly premixed and is
not perfectly premixed respectively [70] 8.

In this case, interaction of an acoustic wave coming from the �ame at the fuel inlet in
a combustor may produce perturbations of stoichiometry -hence of entropy- which in turn
follow the �uid and propagate towards the �ame, where they perturb the heat release and
induce therefore generation of further sound waves [3]. Since stoichiometry a�ects heat
release heavily -see Fig. 6.22- perturbations of stoichiometry leads to oscillations of heat
release, which in turn produce acoustic oscillations according e.g. to (6.29) 9. Fig. 6.23
displays some mutual relationships among perturbations of stoichiometry, �ame area and
�ame shape (encompassed in the notion of �ame stretch, a geometry-related quantity
which depends on both �ame speed and �ame curvature - see the Appendix on �ame
velocity).

Interference of acoustic and entropy perturbations in premixed combustor is also pos-
sible [71]. Finally, entropy perturbations may be related to temperature variations (hot
spots) resulting from unsteady combustion. They convect with the �ow, and in the ab-
sence of acceleration (i.e. in a constant �ow area downstream of the heat release zone),
they do not have any acoustic waves associated with them. When the hot spots are ac-
celerated, however, as it happens at the combustor exit/turbine inlet in a typical GT,
acoustic waves are generated. The downstream propagating acoustic waves pass through
the turbine, eventually appearing as a component of the exhaust noise, while the upstream
propagating acoustic waves a�ect the �ame within the combustor, and thus can in�uence
thermo-acoustic stability [68].

8Here the words perfectly premixed denote an operation mode that generates a perfectly homogeneous
fuel/air mixture without any spatial or temporal �uctuations of the mixture fraction. This is usually
achieved by locating the fuel injection su�ciently far upstream of the combustor. In order to minimise
the inherent risks of �ame �ashback and autoignition, industrial systems are usually designed with a
rather short mixing section that does not provide full spatial and temporal homogenization. Usually,
such a setup is called partially premixed.

9This fact is of great practical relevance. In fact, many models of humming assume a one-dimensional
geometry, where the �ame area Af is a constant quantity -see e.g. Ref. [34] and Ref. [61]. In this
geometry, mass conservation and equation (10.1) below require at given heat release that Af is inversely
proportional to the �ame velocity. But in lean combustion any perturbation of stoichiometry, like those
perturbations carried by entropy waves, modi�es the �ame velocity, and cannot therefore leave Af un-
a�ected. This fact makes it di�cult for one-dimensional models to take properly into account entropy
waves in lean combustion. This is far from surprising, as propagation of convective waves depends on the
�ow, which is intrinsically a three-dimensional quantity.
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Figure 6.22: Qualitative plot showing dependence of �ame speed sL and heat of reaction
hR on fuel/air ratio φ - from Ref. [58]. In the formalism of our equation (10.1), hR =
Yfuel ·HLHV . Lean combustion corresponds to region I.
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Figure 6.23: (From Ref. [58]). Fundamental processes controlling the heat release response
of premixed �ames to equivalence ratio oscillations. Routes labeled S denote additional
routes due to in�uence of �ame stretch. We refer to (10.1) below in the text. Equiva-
lence ratio perturbations cause �uctuations in the local �ame speed (route 2a) and heat
of reaction (route 1) along the �ame surface. These �uctuations in the �ame speed and
mixture heat of reaction then cause the local heat release rate to oscillate. This is a direct
route of in�uence. Additionally, �ame speed variations also excite �ame wrinkles that
propagate along the �ame. This leads to an oscillation in the burning area of the �ame
(route 2b), thereby causing the net heat release rate to oscillate. This is an indirect route
of in�uence. It is to be noted that the indirect route of in�uence is also non-local, i.e. the
�ame area �uctuations at a given time and position are a convolution of the �ame surface
oscillations at all upstream locations at earlier times. Due to oscillations caused in the
�ame shape because of equivalence ratio perturbations, oscillations arise in the curvature
of the �ame front, which can perturb the �ame displacement and consumption speeds [4],
thereby establishing another route by which the �ame speed �uctuates (route 2S). These
�uctuations in �ame speed can then disturb the heat release directly (route 2Sa) or indi-
rectly through burning area �uctuations (route 2Sb). Remarkably, stretch rate oscillations
are indirectly caused by equivalence ratio oscillations, i.e. equivalence ratio oscillations
perturb the displacement �ame speed, which causes �ame wrinkles, which lead to oscil-
lations in �ame stretch, which can now perturb both the displacement and consumption
speeds of the �ame.
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Recently, it has been proposed that suitable boundary conditions (the so called De-
layed Entropy Coupled Boundary Condition, or DECBC)) allow equation (6.29) to take
into account also the e�ect of entropy waves [69]. The explicit construction of DECBC,
however, relies on the choice of a particular expression for E. Now, this expression is
basically equivalent to one of the generalisations of equation (6.15) ruled out as physically
unacceptable in [66] for �uids where vorticity is not identically zero -to convince oneself,
just compare equation (23) of [69] for the �uctuation of enthalpy (= energy + pressure
· volume) with equation (21) of [66] for the energy disturbance in the same isentropic
approximation. However, the authors of [69] have to be credited with the result that re-
alistic boundary conditions for real combustors which convective waves propagate across
should depend also on the unperturbed �ow, i.e. on unperturbed value of Mach number
-but for the above discussed articular experimental set-up at least.

Another trick which aims at describing the impact of v0 6= 0 is due to Culick and
Yang and is reviewed in [72]. The idea is to make use once more of equation (6.29), with
the proviso that its R.H.S. is replaced by a new, scalar term which encompasses all e�ects
related to v0 6= 0 including heat release due to combustion and entropy perturbations. It
turns out that this method allows perturbative algorithms to provide numerical results
in good agreement with analytical results if v0 = 0; otherwise, according to the words of
Ref. [73] the agreement remains good

to �rst order in mean �ow and zeroth order in the expansion of perturba-
tions [...] as long as the mean �ow is kept small

Again, this is far from surprising, as the method leaves the L.H.S. of (6.29) unchanged,
so that perturbations keep on travelling across the system at velocity cs0 no matter how
the source term on the R.H.S. is like.

6.3.4 Vorticity waves

A vorticity wave is a mode of oscillation supported by Euler equation; it is convected by
the �ow and features velocity disturbances in a direction perpendicular to that of the �ow.

If we take the curl of both sides of equation (6.2) and invoke equation (5.1) for v0 6= 0
we obtain the exact relationship [74].

d

dt

(
∇∧ v
ρ

)
=

(
∇∧ v
ρ
· ∇
)
v+

1

ρ3
∇ρ ∧∇p

On the R.H.S., the �rst and the second (baroclinic) term describe how the stretch-
ing of vortex lines intensi�es local vorticity, and how vorticity can be created when the
pressure gradient and the density gradient are not aligned respectively. The latter acts
e.g. when acoustic modes propagates azimuthally across an axisymmetric �ame. In the
isentropic case p = p (ρ), the baroclinic term vanishes and we are left with the local ver-
sion of Kelvin's theorem of circuitation for inviscid �uids; integration of both sides on
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Figure 6.24: (From Ref. [1]).

an arbitrary surface Σ leads to
d

dt

∫
Σ
da · ∇ ∧ v = 0, i.e. the circuitation

∫
Σ
da · ∇ ∧ v

is conserved during the �uid motion along v for arbitrarily chosen Σ . It follows that
perturbations of vorticity travel across the �uid with velocity v.

As an example, it can be shown [1] that an acoustic wave impinging on an inclined
surface (like e.g. a blade) undergoes conversion (partially, at least) into a vorticity wave
-see Fig. 6.24- of comparable amplitude -see Fig. 6.25.

All the way around, for swirl-stabilised �ames perturbations of vorticity lead to per-
turbations of the �ame shape, hence of the heat release [75]. Not surprisingly, this e�ect
is particularly of interest in swirling �ows -see Fig. 6.26.

The examples discussed above show that the sources of convective perturbations inside
the combustor include the interaction between the acoustic waves originated at the �ame
and the combustor wall. (Generation of convective perturbations at the �ame is also
possible, but we are not interested in it at the moment). This suggests that if acoustic
resonances occur, at whose frequencies the transmission of acoustic energy towards the
combustor walls is particularly e�ective, then the generation of convective waves is also
strong. Generally speaking, moreover, it is also noted that in many devices with a con�ned
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Figure 6.25: (From Ref. [1]).
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Figure 6.26: (From Ref. [1]). On the right, the velocity perturbation of the acoustic wave
a�ects the motion of vortices. This hints at the inadequacy of one-dimensional models,
which are nevertheless of common use in thermo-acoustics. On the left, the transfer
function (on the left) depends also on the perturbation amplitude. In this case it is referred
to as �ame description function (see text). Inside the small pictures, the red lines and the
dashed rectangles represent the �ames and the blades respectively. The swirl number is a
dimensionless quantity, measuring the ratio of azimuthal to axial momentum �uxes in a
swirling �ow (see text).
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�ame signi�cant entropy and mass fraction disturbances can exist up to the combustor
boundaries. In this case, the disturbance energy �ux does not reduce to an acoustic energy
�ux within the combustor [22]. We shall see in the following that the impact on humming
of convective �ames may be far from negligible when the �ames is con�ned within a com-
bustor. In this case, neglecting v0 implies neglecting the energy exchange between the
perturbation and the �uid, a potentially destabilising e�ect which adds to the e�ects of
heat production and sound propagation already taken into account in Rayleigh's criterion.

In contrast, uncon�ned �ames are contained by de�nition within no closed container,
and acoustic resonances are not so well peaked. Indeed, it turns out that for uncon�ned
�ames the description provided by Rayleigh' criterion and modal analysis �ts experimental
data [21].

6.3.5 Convective waves and the success stories of modal analysis

It is worthwhile to recall here that, in spite of all the problems listed above, standard
modal analysis based on n − τ FTF with nFTF and τFTF provided by CFD has met
considerably success in two di�erent cases at least, namely the problem with ideal wall
and the problem with uncon�ned �ame discussed in Ref. [19] and Ref. [21]. In spite of
their di�erences, both problems seem to have one feature in common: the lack of coupling
between convective and acoustic modes. In [19], the boundary condition ensures that the
acoustic energy of the acoustic wave impinging upon the wall is equal to the energy of
the acoustic wave re�ected from the wall, hence no energy is left to be converted into
convective waves, unlike the situation described in [1]. In [21], there is just no wall such
conversion may occur, as the �ame is uncon�ned. If there is no coupling between convec-
tive and acoustic waves, then there is no interaction between the unperturbed �ow (which
carries convective waves) and sound: the acoustic perturbation evolves therefore just like
in a �uid at rest (apart from a small Doppler correction on frequency), the system (6.38)
- (6.39) is normal and modal analysis works �ne.

This argument suggests that every system �uid + �ame + combustor where convective
waves and acoustic waves are decoupled, no matter why, should be correctly described
with the help of the by now standard CFD-FTF-modal analysis approach.

Indeed, a recent paper [20] shows that if the acoustic modes propagate azimuthally,
i.e. perpendicularly to the unperturbed �ow, then modal analysis predicts humming. As
usual, CFD allows to write the transfer function. According to genera consensus, such
azimuthal modes are responsible for high-frequency humming, or screech. This results
seems to strengthen our argument: convective waves propagate along the unperturbed
�ow only, so that their interaction with acoustic modes propagating perpendicularly to
the unperturbed �ow is likely to be negligible. Remarkably, however, the FTF computed
in [20] for azimuthal modes di�ers from the FTF computed for acoustic modes which
propagate along the unperturbed �ow, like those modes investigated in [49] and [61], and
requires separate computation.

We conclude that humming prediction from scratch is a solved problem for systems
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�uid + �ame + combustor where convective waves and acoustic waves are decoupled. It
remains to be solved for all other systems - like e.g. swirl-stabilised GT combustors where
swirled blades forbid such decoupling.
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Chapter 7

A more general case - Myers' corollary

7.1 Generalities

Here we discuss the more general case where both approximations (6.1) and the assump-
tion of caloric perfection are dropped. We retain the assumptions of no net mass source
and no body force, and invoke again no detailed model of combustion. Finally, we limit
ourselves to small perturbations of a steady state no more, but allow large perturbations
of (possibly) unsteady state to occur, i.e. we still write a = a0 + εa1 but we allow both
ε ≈ 1 and a0 = a0 (x, t). This is in agreement with our discussion of Galileian invariance
above. So far, no detailed information on the dependence of a and a1 on space and time is
required. Remarkably, in the particular case where a is just the position of a small mass
element, then the relationship a0 = a0 (x, t) allows us to consider an unperturbed state
with non-zero velocity, i.e. to go beyond (6.13).

In the following, we take also a0 = 〈a〉 , i.e. we identify the unperturbed value of a
with the time-average on a (slow) time-scale much longer that the typical time-scale of
the perturbation a1, so that the time-averaging procedure erases all terms evolving on the
fast time-scale of the perturbation (〈a1〉 ≡ 0). In particular, let us apply our discussion

to to the time derivative
da

dt
=
d〈a〉
dt

+
da1

dt
. The slow term

d〈a〉
dt

on the R.H.S. coincides

with the time-average 〈da
dt
〉 of da

dt
because the time-average erases the fast term

da1

dt
, i.e.

〈da
dt
〉 ≈ d〈a〉

dt
(7.1)

More to the point, let us rewrite the de�nition of time-average 〈a〉 ≡ 1

τ

∫ τ
0
dta without

requiring that τ is the period of humming. If we write a (t) = a0 + a10 cos

(
2πt

τ1

)
+

a20 cos

(
2πt

τ2

)
+ . . . with τ2 >> τ >> τ1 then (7.1) holds up to terms ∝ O

(τ1

τ

)
. A

similar result holds even if we allow a10 to evolve in time on a time-scale >> τ1, etc. In a
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combustor a�ected by humming with period τ , for instance, this humming period intro-
duces a natural distinction between slow and fast time scales, ≥ τ and < τ respectively.
We are going to invoke (7.1) in the following. Finally, if a0 does not depend on time then
we retrieve the case discussed in the previous Sections.

With the help of cumbersome but straightforward algebra, it has been shown [22] that
equations (5.1), (5.3), (5.4), (5.2) and (5.5) still lead to equation (6.14). Now, the latter
equation is referred to as Myers' corollary in the literature, since it is a generalisation of
a simpler result originally found in [76]. The de�nitions of E, W and D, however, are
much more cumbersome:

E = ρ (H1 − 〈T 〉s1)− 〈m〉 · v1 − p1 − ρ
n−1∑
k=1

(gkYk1 − 〈gk1Yk1〉) (7.2)

W = m1 (H1 − 〈T 〉s1) + 〈m〉T1s1 + 〈m1H1〉 − T 〈m1s1〉+m〈T1s1〉 (7.3)

D = Dξ +Ds +DQ∗ +DQ∗ +Dψ +Dψ∗ +DYk (7.4)

where we have de�ned the following quantities (i, j = 1, 2, 3):

Dξ = −m1 · ζ1 − 〈m1 · ζ1〉

Ds = − (m1s1) · ∇〈T 〉+ 〈m〉 · (s1∇T1)− 〈m1s1〉 · ∇T +m · 〈s1∇T1〉

DQ∗ = T1Q∗1 + 〈T1Q∗1〉

DQ∗ = T1Q
∗
1 + 〈T1Q

∗
1〉

Dψ = m1 · ψ1 + 〈m1 · ψ1〉

Dψ∗ = m1 · ψ∗1 + 〈m1 · ψ∗1〉

DYk = g1∇ ·m1 + 〈g1∇ ·m1〉+
N−1∑
k=1

(g1kΩ1k + 〈g1kΩ1k〉)

H ≡ h+
|v|2

2
m ≡ ρv

Ωk ≡ ωk −∇ · (ρVkYk)−∇ · (mYk)

ζ ≡ (∇∧ v) ∧ v ψi ≡
1

ρ

∂Πij

∂xi
ψ∗ ≡

n∑
k=1

gk∇Yk
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Q∗ ≡
1

T

[
−∇ · (λ∇T ) + ρ∇ ·

(
n∑
k=1

hkYkVk

)
+ Φ +Q

]

Q∗ ≡ − 1

T

[
n∑
k=1

gkωk +
n∑
k=1

gk∇ · (ρVkYk)

]

as well as the enthalpy per unit mass h and the Gibbs' free energy per unit mass g:

h ≡ u+
p

ρ
g ≡ h− Ts

7.2 Consequences

Myers' corollary (6.14) is an exact relationship, i.e. it holds for arbitrary ε. It is a formal
consequence of the constitutive equations (5.1) - (5.5) . The same holds for its consequence
(6.21) , which is obtained after volume integration of both sides of Myers' corollary on Vb.
As such, the latter equation has been utilised as a self-consistency check for the results of
CFD [22] [77], where E, W and D are computed with the help of (7.2) , (7.3) and (7.4)
respectively after post-processing CFD results. The perturbations of heat release, entropy
and vorticity a�ect the quantities DQ∗ ,Ds, and Dξ straightforwardly. Other contributions
to D are a�ected by particle di�usion.

It turns out in [77] that LES satis�es Myers' corollary quite well -see Fig. 7.1- and is
therefore likely to give self-consistent results, provided that |

∫
Vb
dxDs| ≈ |

∫
Vb
dxDQ∗| -see

Fig. 7.2.

This means that the terms a�ected by �uctuations of both mean �ow and entropy (which
disappear at zero Mach number, as all terms in Ds are of comparable magnitude and are
also comparable with the terms a�ected by perturbation of heat release (which is respon-
sible for the emission of sound) -see Fig. 7.3.

Similar results are obtained in Ref. [22] with the help of DNS -see Fig. 7.4.

Accordingly, self-consistency of both LES and DNS approaches to CFD is not com-
patible with the zero mean �ow assumption (6.13) in the general case.

In agreement with our discussion of the previous Section, Myers' corollary is no energy
balance, as equation (7.2) ensure no positiveness of E. The latter quantity is no energy
density in the general case, as E is not positive-de�nite. It can be shown [77] that E is
positive-de�nite only if both perturbations of Yk and higher-order terms ∝ O (ε2) are neg-
ligible. Again, there is no such a thing as an energy of the perturbation in the general case.

In spite of their cumbersome structure, equations (7.2) , (7.3) and (7.4) provide rel-
evant information on stability. In the case of a stable system, in fact, we expect the



94 CHAPTER 7. A MORE GENERAL CASE - MYERS' COROLLARY

Figure 7.1: From Ref. [77]. R.H.S.(continuous line) and L.H.S. (black squares) of (6.21)
vs. time. Here P is a normalisation factor.
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Figure 7.2: From Ref. [77]. Here P is a normalisation factor.
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Figure 7.3: From Ref. [77]. Here P is a normalisation factor.
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Figure 7.4: From Ref. [22]. A �ame is subject to acoustic forcing at a given forcing
frequency and an ingoing acoustic power �ux AinW2in. Here various terms in Myers'
corollary are displayed. All of them are a) computed by post-processing the output by
a DNS code; b) integrated on the combustor volume c) time-averaged d) computed at
di�erent values of the Strouhal number St. The latter is de�ned in this paper as St ≡
(typical length) · forcing frequency / speed of sound. Note that all terms -including those
responsible for particle di�usion, usually neglected- are approximately equal as St→ 1.
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perturbation amplitude remains �nite at all times. The de�nition of E ensues therefore
that |E| to remain �nite at all times. Now, if we add the slightly more restrictive as-
sumption that |E| remains constant on the slow time scale then (7.1) allows us to write

〈dE
dt
〉 = 0. Remarkably, should we decide to drop even the slightly restrictive assump-

tion invoked we would obtain the same result just by computing the time-average in the
τ →∞ limit, as the time-averaged time derivative of an ever-bounded quantity vanishes
in this limit [41]. For all practical purposes, however, we make a small error if we neglect

〈dE
dt
〉 = 0 whenever τ <∞ is large enough. Now, after taking the time-averages of both

sides of equation (6.21) we retrieve equation (6.35) -or, equivalently, (6.36)- as a necessary
condition for stability.

Now, however, there are four main di�erences:

• The quantities D and W are given by (7.4) and (7.3) respectively.

• We got rid of modal analysis altogether.

• Large perturbation amplitude are allowed. This implies that both (6.35) and (6.36)
apply to non-linear systems as well. If this amplitude is zero, then both sides vanish.

• The unperturbed state may depend on time. For example, it may correspond to a
combustor which undergoes a periodic humming oscillation.

The fact that the unperturbed state is allowed to depend on time has far-reaching
consequences. In fact, the conventional approach to humminh postulates that a system
with no humming is in steady state. This postulate implies that the noise a�ecting the
system when no humming occurs is of purely stochastic nature, and may therefore be
averaged out with no impact on the self-consistency of the deterministic description of
the humming-free state as provided e.g. by CFD. Recently, however, this postulate has
been put in doubt in Ref. [78], where the combustion noise appears to be the outcome of
deterministic chaos possibly leading to intermittency [79] 1. If this is true, then noise in
the humming-free system cannot be just averaged out without loosing essential informa-
tion, and the feasibility of the conventional approach is at stake. In contrast, utilisation
of Myers' corollary allows us both to consider the system in humming as the unperturbed
state and to postulate nothing about the humming-free system.

In the following, we are going to take advantage of a further feature of Myers' corol-
lary. Equations (7.3) and (7.4) show that both W, Dξ, Ds, DQ∗ , DQ∗ , Dψ, Dψ∗ and DYk

are of the form

ab = ac + 〈ac〉
1In the language of non-linear dynamical systems, indeed [60], the well-known resiliency of humming

against any attempt to suppress it once triggered agrees well with the description of humming as a limit
cycle with a �nite basin of attraction: and a limit cycle is a non-chaotic invariant of the dynamical system
which describes the physical system combustor + �ame + �uid. Thus, the transition from humming-free
behaviour to humming becomes a transition from chaotic to non-chaotic behaviour.
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where ab and ac are suitably de�ned, bilinear quantities in the unperturbed quantities
and their perturbations. For example, if ab = DQ∗ , then ac = T1Q∗1, etc. It follows that

〈ab〉 = 2〈ac〉 (7.5)

In the particular case where the unperturbed state does not depend on time (i.e.
∂a0

∂t
= 0

for the generic quantity a), comparison of equations (A.6), (A.8)-(A.10) with (2.22),
(2.24)-(2.26) of [22] shows that Myers' corollary (6.14) still holds provided that we re-
place ab with ac for all the quantities listed above- in our example, DQ∗ becomes just
equal to T1Q∗1. Then,

〈ab〉 = 〈ac〉 (7.6)

Together, equations (7.5) and (7.6) imply that the same necessary stability criterion (6.35)
-or, equivalently, (6.36)- describes lack of instability of both steady and unsteady unper-
turbed states: in the latter case the factor 2 appears on both R.H.S. and L.H.S. of
(6.35)-(6.36) and gets factorized. Again, should both sides of (6.35)-(6.36) vanish, this
would correspond to identically vanishing perturbations. We will take advantage of this
result in the following; in particular, we are going to refer to (6.35) - (6.36) as to necessary
conditions of stability of unperturbed states.

Remarkably, Ds and DQ∗ are the dominant contributions to D in many cases of prac-
tical interest -see the order-of-magnitude estimate in Sec.2.2. of [22]. In particular, the
fact that the contribution of vorticity disturbances is negligible is likely to be a clear dis-
tinction between the fundamental mechanisms involved in combustion stability and those
involved in aerodynamically generated sound [38].

Finally, it can be shown [22] that if (6.1) holds and if 0 < ε� 1 then Rayleigh's crite-
rion is retrieved with the quantities E,W and D de�ned as in the proof of (6.35) - (6.36),
the only di�erence being that the unperturbed state may be an oscillating one -e.g., a
combustor in humming. Admittedly, however, particle di�usion -neglected in (6.1)- seems
to play a relevant role in numerical simulations -see Fig. 7.4.

For a list of pros and cons of Myers' corollary, see Fig. 7.5. For a summary of the
necessary conditions for stability of both steady and unsteady unperturbed states against
perturbations, as provided by dynamics, see Fig. 7.6.
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Figure 7.5: Pros and cons of Myers' corollary for GT. See text for details.
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Figure 7.6: Ranges of validity of the necessary stability criteria (6.35) - (6.36) as pro-
vided by Rayleigh's criterion (in the isentropic version), Rayleigh's criterion and Myers'
corollary. Rayleigh's criterion (in the isentropic version) is useful for small, isentropic
perturbations of unperturbed steady �ows subject to no body forces and enjoying caloric
perfection. Rayleigh's criterion removes the isentropic requirement. Myers' corollary re-
moves all assumption but vanishing body forces. The words the same refer to the couple
(6.35) - (6.36). Results for unsteady unperturbed states derive from the corresponding
results for steady states after time-averaging.
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Chapter 8

Let a hundred �owers bloom...

8.1 The turn of the key

We have seen that linearised, modal analysis of stability is by far the most popular tool
in manufacturers' e�orts aiming at humming prevention, due to its powerful and reliable
numerical methods, the amount of information it provides about the modes which drive
humming and the conceptual simplicity of the criterion of stability it provides - in a nut-
shell, Rayleigh's criterion.

Nevertheless, its physical basis is di�cult to assess - to say the least. This conceptual
weakness weakens its looked-for prediction capabilities. The reason is that the perturba-
tion energy balance it relies upon, basically equivalent to Rayleigh's criterion, takes into
account only the �ow of acoustic energy propagating across the boundaries of the com-
bustor and the fraction of heat release which gets transformed into acoustic energy. The
former and the latter are heavily a�ected by combustor acoustics and FTF respectively;
indeed, the accurate evaluation of both has been given great care for decades.

Unfortunately, no energy exchange between the perturbation and the unperturbed
�uid is taken into account when a non-trivial, realistic description of the unperturbed
�ow is provided. Physically, modal analysis and Rayleigh's criterion consider the contri-
bution of acoustic waves (which propagate at the speed of sound) to the energy balance
and neglect the contribution of convective (entropy, vorticity) waves, which propagate at
the speed of the unperturbed �uid. In the general case, indeed, only the total energy of the
�uid (unperturbed �uid + perturbation) is well-de�ned and may be conserved; speaking
of a perturbation energy as something separated from the remaining energy of the �uid is
nonsensical, because of Galileian invariance of the equations of motion. Modal analysis is
therefore able to provide unambiguous descriptions of selected problems only [19] [21] [20].

To put it in other words, there is no satisfactorily de�nition [66] of the energy of a
perturbation in a moving �uid, where according to [33] a satisfactorily energy should never
increase when there is no combustion and no net �ux at the boundary -it should rather
decrease if viscous dissipation occurs. On the contrary, it seems possible for the moving
�uid to feed the growth of the perturbation with its own energy even if no combustion
and no sound propagation occur. As a consequence, the perturbation energy may grow
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at t < ∞ even if modal analysis predicts stability in the t → ∞ limit. Mathematically,
the linearised stability problem with a non-trivial unperturbed �ow is non-normal.

8.2 The impact of nonlinearities

An obvious way to circumvent these di�culties is to get rid of the linearity approxi-
mation. To understand why, let us come back to the simple one-dimensional case dis-
played in Fig. 6.10. Should we replace the old condition for heat release perturbations

∝ sin

[
2π

τ
· (t− τFTF )

]
·cos

(πx
L

)
·δ (x− xf ) provided by linear theory with the nonlinear

condition [52]:

∝ sin

[
2π

τ
(t− τFTF )

]
cos
(πx
L

)
δ (x− xf ) + ε

[
sin

[
2π

τ
(t− τFTF )

]
cos
(πx
L

)]3

δ (x− xf )

(with |ε| � 1), then we would replace (6.40) with

D ∝ cos

(
2πτFTF

τ

)
· sin

(
2πxf
L

)
·
[
1 +

3

4
ε cos

(π
L

)2
]

Noteworthy, if ε < 0 (> 0), the new, non-linear term has a stabilising (destabilising) e�ect.
Then, it is at least conceivable that non-linearity can help us to take into account some
e�ects not properly dealt with in the linear approach above.

Of course, the physics of humming is somehow related to the compressible Navier-
Stokes equation, which is de�nitely non-linear. To date, however, full numerical descrip-
tion of spontaneously occurring humming oscillation with the help of compressible 1 CFD
in a realistic case and with the help of no unphysical, external siren seems still to be out
of question. Given the huge amount of both computer resources and CPU time required,
in fact, this has been done for selected cases only [4] [22] [77].

Outside the framework of linear analysis, however, the transfer function concept -
renamed (�ame) describing function (FDF), possibly in a simple, sinusoidal form- enjoys
a new renaissance: in fact, if we allow fFTF to be a non-linear function of its arguments
[80], possibly including the perturbation amplitude itself, then the system of equations
(6.29) and (6.20) may lead to a dynamical system, where the well-known results concern-
ing limit cycles, bifurcations etc. apply [60].

1Admittedly, compressibility is usually neglected in subsonic motions which are typical of GT com-
bustors. However, the divergence of v never vanishes at the �ame, as the latter heats up the �uid even
if no sound is present. Of course, compressibility is required when sound is present.
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Most researchers work with a simpli�ed one-dimensional geometry [47] [7] [61]. How-
ever, it has been shown [81] that a multi-step approach may take into account even realistic
combustor geometries. Firstly, solution of the homogeneous version of equation (6.29) in
a combustor �lled with a �uid at rest with no �ame for a given set of boundary conditions
and in the frequency domain provides us with the eigenfunctions of the wave operator.
The set of these eigenfunctions is an orthonormal basis for suitably chosen boundary con-
ditions. Secondly, we look for the solution of the system (6.29) - (6.20) as a sum of a
�nite, properly choses, integer number of such eigenfunctions, the coe�cients of this sum
being functions of time. In some cases a more complicated set of equations, taking into
account non-zero mean �ow as well, replaces the system (6.29) - (6.20). Galerkin methods
are routinely utilised [51]. Thirdly, we assign a FDF and write down a dynamical sys-
tem, whose unknown quantities are the coe�cients referred to above. Finally, we �nd the
attractors and the corresponding basins of attraction of this dynamical system with the
help of either brute force calculations or standard continuation analysis [81]. Remarkably,
such approach takes the evolution of �ame shape in time fully into account - see Fig. 8.1

In the example displayed in Fig. 8.1, the authors identify a humming oscillation with
just one well-de�ned period and the steady state with no humming with a one-dimensional,
attractive limit cycle with non-zero amplitude and zero amplitude respectively. Corre-
spondingly, the onset of humming corresponds to a bifurcation. Usually, some feature of
the impinging �ow, like e.g. its Mach number, plays the role of the control parameter.
Many other authors follow a similar line of reasoning.

A relevant exception is the line of research pursued by Sujith and coworkers, where
the humming-free system and the humming-a�ected system are seen as a chaotic system
and a low-dimensional attractor resectively: in this original approach, combustion noise
is seen as the outcome of a deterministic, rather than stochastic, process [78] [79]. In
another work [82], the authors suggest that even the familiar partition of the humming
prediction problem in two parts, namely the computation of the �ame transfer (or describ-
ing) function and the solution of a wave equation, fails to provide the correct bifurcation
map, and the

describing function technique cannot be applied in general to predict the
nonlinear behavior of a thermo-acoustic system.

Far from being of purely academic relevance, the very nature of humming onset is of
truly down-to-earth interest, as its prediction lies at the core of designers' e�orts aiming
at checking humming danger still from the drawing board.

In particular, when investigating the onset of humming, the interplay between non-
normality and non-linearity rules the behaviour of the system in the neighbourhood of
an initially humming-free steady state. In fact, non-normality and non-linearity tell us
how much any random noise gets momentarily ampli�ed by transient growth and how
large is the minimum deviation from the humming-free state which pushes the system
into the basin of attraction of a humming oscillation respectively. As a consequence, even
if modal analysis predicts stability the system undergoes humming provided that either
the non-normal, transient ampli�cation of noise is large enough and/or if the minimum
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Figure 8.1: The shape of the �ame changes as (dimensionless) time goes by in the system
described by Ref. [81], which oscillates with period T .
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perturbation amplitude which drives ultimately the system to fully-developed humming
is low enough [51].

This approach is attractive because of its basic simplicity, as dynamic systems involve
no partial di�erential equations -unlike modal analysis. Moreover, the structural stability
of attractors like e.g. a limit cycle seems to �t well the observed resiliency of humming to
any e�ort aimed at its suppression. Furthermore, hysteresis, a common feature found in
non-linear dynamic systems, is routinely observed in real-life humming a�ected combus-
tors. Finally, simultaneous utilisation of the bifurcation maps and the sensitivity analysis
as provided by nonlinear analysis and nonnormal, linear analysis seems to be promising
[51].

However, feasibility of a anti-humming strategy based on the description of the com-
bustor as a dynamical system ultimately depends on how accurate the description of the
�ame is. This is true even in the simple case where all nonlinearities are located at the
�ame only 2. In most cases, the FDF is just postulated - just like it usually happens
with its linear counterpart, the FTF, in many works focussed on modal analysis and
non-normality. For example, FDF neglects the e�ect of coupling terms between modes at
di�erent frequencies, since it is a one mode (sinusoid) approximation. Coupling between
di�erent modes in the FDF approach is a topic of current research [83]. As for an overview
of linear and nonlinear approaches to thermo-acoustics, see Fig. 8.2. As for the pros and
the cons of non-linear analysis from the point of view of a GT manufacturer, see Fig. 8.3.

We stress again the point that -as far as the onset of humming is concerned- the �-
nal assessment on the stability of a combustor is an outcome of both linear non-normal
analysis and of non-linear analysis. Both FTF and FDF may contain arbitrary constant
coe�cients, to be eventually obtained after comparison with observations. Detailed com-
putations of both functions rely once more on CFD, and are scarcely less cumbersome
and more reliable than full simulation itself.

8.3 Myers vs. Rayleigh

Talking of reliability, Myers' corollary is a rigorous, Galileian-invariant generalisation of
Rayleigh's criterion which gets rid of most unphysical assumption underlying this crite-
rion -above all, linearisation and vanishing Mach number in the unperturbed �ow. Even
if formally similar to an energy balance, Myers' corollary is no such a thing: it is just
a formal consequence of the equations of motions and of the �rst principle of thermody-
namics. It takes a similar form regardless of the fact that the unperturbed �uid is steady
or unsteady: as a consequence, a necessary criterion can be formulated, in formal analogy

2This case is likely to be far from realistic in GT. Nonlinearity may a�ect either boundary conditions
or the gas dynamics itself inside the combustor. As for the former, they may couple di�erent waves [3]
and a�ect losses -see the discussion in [52]. As for the latter, they are usually negligible in GT, in contrast

with what happens in rockets where
p1
p0

may be larger than 20 % .
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Figure 8.2: Some modeling approaches to thermo-acoustic systems - from Ref. [52].
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Figure 8.3: Pros and cons of nonlinear analysis for GT. See text for details.
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with Rayleigh's criterion, for the stability of both steady and unsteady unperturbed states.

Moreover, validity of Myers' corollary does not rely on caloric perfection (according
to which all gases are perfect gases with constant speci�c heats), nor it depends on the
detailed models of combustion and turbulence. This feature is something new in our anal-
ysis so far, as both modal analysis and the approach based on dynamical systems relies
on some description of the �ame (FTF or FDF) where both combustion and (in realistic
combustors) turbulence have to be kept into account somehow. The only exception has
been precisely Rayleigh's criterion, whose generalization is Myers' corollary. Given the
present uncertainties in the available models of both phenomena, this lack of dependence
on a particular model is a precious advantage we would like to preserve.

Unfortunately, the extremely cumbersome structure of the terms appearing in Myers'
corollary make its practical application unfeasible but for the self-consistency check of
CFD results. People made such check on a con�ned �ame for once, and it ruled out the
fundamental approximation underlying modal analysis, i.e. the zero Mach approximation
for the unperturbed state.

Apart from the equations of motion, the proof of both Rayleigh' criterion and Myers'
corollary relies on the �rst principle of thermodynamics, which of course is valid regardless
of any detailed model of combustion and turbulence. In particular, the �rst principle of
thermodynamics (5.4) has been written for a small mass element of �uid. It is therefore
worthwhile to ask if there is some other result of the thermodynamics of a small mass
element of �uid which has not yet been invoked -explicitly at least.

8.4 A way out?

Usually, thermodynamics deals with steady states. Thermodynamic equilibrium is one of
them: it is the �nal, stable state of the evolution of an isolated system, and the entropy
of this system increases monotonically during relaxation of the latter towards thermody-
namical equilibrium. Once the latter has been achieved, �uctuations are still possible,
but they will relax back to equilibrium. Equilibrium is therefore a stable, steady state
described by a variational principle (maximum entropy at �xed energy and volume), i.e.
the second principle of thermodynamics [84].

Many researchers have focussed their attention on the possible existence of criteria
for stability of steady states which di�er from thermodynamical equilibrium. Such states
may exists e.g. when suitable boundary conditions keep the steady state of a non-isolated
system far from thermodynamic equilibrium. User-selected premixed �ows entering a
combustor are obvious example of such boundary conditions.

Admittedly, as far as �uids far from thermodynamic equilibrium are concerned, the
very notion of steady state is rather ambiguous; all the same, we maintain -as a working
hypothesis- that it still makes sense, possibly after time averaging on time scales � turbu-
lent time scales. When it comes e.g. to real-life GT combustors, for all practical purpose
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steady state means combustor without humming. It has been shown that these criteria
exist and take the form of variational principles in some particular cases at least [85] [86].
In these cases, if a solution of the equations of motion corresponds to a stable, steady
state then it corresponds also to a minimum of some thermodynamic quantity, and any
perturbation tends to increase the value of this quantity with respect to the unperturbed
state. For readers who are unfamiliar with variational principles and the related topic of
variational calculus, some useful results are collected in a dedicated Appendix.

Accordingly, we may discuss stability of steady states with the help of no detailed
analysis of the equation of motion both at thermodynamical equilibrium and in some non-
equilibrium problems. Admittedly, just as pointed out by [87], the equations of motion
provide us with complete information on the evolution of the system; strictly spekimg,
therefore, they make any criterion of stability redundant. All the same, availability of
thermodynamical (i.e., problem-independent) criteria of stability allows us to drop cum-
bersome analysis of the stability of the solutions of these equations, and is useful when
no detailed knowledge of the dynamics of the system is available.

Unfortunately, the very object of manufacturers' interest, humming, is de�nitely no
steady state; it is rather a self-sustaining oscillation based on the balance of many compet-
ing processes, some of which raise entropy. It seems therefore perfectly reasonable to ask
oneself if thermodynamics may provide us with some criterion of stability for oscillating
�uids -for those problems at least where these thermodynamic quantities are well-de�ned
at each time during the oscillation.

For example, Chandrasekhar's classical analysis of the onset of Benard convection cells
[88] starts from the relevant equations of motion and shows that -as the small mass ele-
ment moves in the rotating cell- the �uid selects the con�guration which corresponds to
a constrained minimum of the adverse temperature gradient -the constraint being given
by the balance between time-averaged values of the dissipated power and the mechanical
power delivered by buoyancy.

Unfortunately, to the author's knowledge no generally accepted answer is available in
the literature to date-with the only exception of the observations of [28] discussed below.
We anticipate here that the latter observations are relevant both to Rijke's tube and to
the modern research on humming.

Historically, this analogy between the thermodynamics of an oscillating state and a
steady state has been postulated without proof in Chapter XV of [89], where it is stated
that stable oscillations in �uids minimise the time-average of the amount of entropy
produced per unit time by all irreversible processes, the time-average being taken on a
time-scale much longer than the oscillation period. Unfortunately, however, such minimi-
sation requires validity of the Onsager symmetry relationships [90], which are far from
being satis�ed in a �uid, as they rely on a number of quite restrictive hypotheses including
e.g. the assumption that all phenomenological coe�cients are constant at all times and
uniform across space.
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Later, Glansdor� and Prigogine claimed that that the sign of the time derivative of
the second-order di�erential of entropy provides the looked-for stability criterion [91]. But
Lavenda's arguments show - see Sections 4.2 and 7.1 of [92] - that even if such sign is
known, stability depends on the actual eigenvalues of the linearised equations of motion.
In turn, Lavenda's quasi-thermodynamic approach (QTA) postulates that Onsager and
Machlup's so-called least dissipation principle - one of the results discussed in Sec. IV.5
of [85] - holds even beyond the domain of validity of Onsager's symmetry relationships
it had been originally limited to. Indeed, QTA requires that the system is ruled by the
equations of motion of a generalized, forced, linear harmonic oscillator with constant co-
e�cients. Here we refer to equations (5.2.31) and (6.4.3), to Secs. 6.4, 9.7 and to p.159
of Ref. [92], according to which the

interpretation of the principle of least dissipation will henceforth be me-
chanical in nature

According to the same author, extension of QTA to continuum is possible, but still
relies on the assumption

that the phenomenological coe�cients are constant

(Lucia [93] discusses the particular case of constant mass density). In spite of these
limitations, however, QTA applies successfully to a particular non-linear problem, i.e. the
limit cycle of a Van der Pol oscillator -provided that

the motion behaves as if it were periodic during any single period, whereas
the e�ects of dissipation are only noticeable over the longer space-time of evo-
lution

Again, we retrieve the by now familiar assumption |={ω}
<{ω}

| << 1 of modal analysis.

To make things worse, two further di�culties arise. Firstly, even when thermodynam-
ics provides us with some necessary criterion of stability in the literature, such criterion
takes the form of a variational principle. In contrast, the only generally accepted neec-
ssary stability criterion in humming research, i.e. Rayleigh's criterion in the form (6.34), is
de�nitely no variational principle. We have therefore to �nd a thermodynamic description
of the problem which allows us to retrieve whenever (6.1) and (6.13) hold, while allowing
further necessary criteria to exist, possibly in variational form.

Secondly, no discussion of stability of some unperturbed state which deals with steady
unperturbed state only leads to results which are Galileian-invariant, corresponding there-
fore to physically acceptable solutions of the equations of motion. A correct theory has to
discuss stability of both steady and oscillating states on the same ground. Our discussion
of Myers' corollary has provided us with a clue: if a criterion is available for the stability
of a steady state, then suitable time-averaging may provide a corresponding criterion for
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the stability of the oscillating state. Indeed, we shall see that the criterion found in [28]
satis�es precisely this requirement.

As we are going to show, the second principle of thermodynamics may provide us
with a way out of this conundrum, through one of its corollaries, namely Le Châtelier's
principle. Before discussing this point in-depth, however, it is worthwhile to review some
well-known experimental results which provide us with information about the connection
between thermodynamics and the problem of spontaneous oscillations in thermo-acoustics.
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Chapter 9

A review

9.1 Rijke's tube

9.1.1 The experiment

We start our review with the �rst example of such oscillations, namely Rijke's tube. In
1859 Rijke discovered a way of using heat to sustain a sound in a cylindrical tube open
at both ends [24]. He used a glass tube, about 0.8 m long and 3.5 cm in diameter. Inside
it, about 20 cm from one end, he placed a disc of wire gauze -see Fig. 9.1.

Gauze friction with the walls of the tube is su�cient to keep the gauze in position.
With the tube vertical and the gauze in the lower half, he heated the gauze with a �ame
until it was glowing red hot. Upon removing the �ame, he obtained a loud sound from
the tube which lasted until the gauze cooled down (about 10 s).

Instead of heating the gauze with a �ame, Rijke also tried electrical heating. Making
the gauze with electrical resistance wire causes it to glow red when a su�ciently large
current is passed. With the heat being continuously supplied, the sound is also continuous
and rather loud. Rijke seems to have received complaints from his university colleagues
because he reports that the sound could be easily heard three rooms away from his labo-
ratory. The electrical power required to achieve this is about 1 kW.

Later, Rayleigh reproduced Rijke's experiments [31]. He made use of two layers of
gauze made from iron wire inserted about quarter of the way up the tube. The extra
gauze is to retain more heat, which makes the sound longer lasting.

9.1.2 The model

The sound comes from a standing wave whose wavelength is about twice the length of the
tube, giving the fundamental frequency. The �ow of air past the gauze is a combination
of two motions -see Fig. 9.2.

There is a uniform upwards motion of the air due to a convection current resulting
from the gauze heating up the air. Superimposed on this is the motion due to the sound

117
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Figure 9.1: A simple construction of the Rijke tube, with a gauze in the lower half of a
vertical metal pipe. (Here wire mesh stands for gauze). The tube is suspended over a
bunsen burner. The latter heats the gauze.
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Figure 9.2: Time is increasing from left to right. At the initial time, only upwards convec-
tion occurs (look at the left side of the �gure). If a pressure perturbation occurs such that
a pressure peak occurs right at the centre, then it pushes away the �uid from the centre
(on the second column, look at the red arrow poynting downwards on the upper side of the
�gure). Accordingly, the central pressure peak lowers the upwards, convection-driven ver-
tical motion of the �uid across the lower half of the tube where the gauze mesh is located.
As a result, a longer time is available to heat exchange between mesh and air, the latter
gets heated better and the pressure peak in enforced. As time goes by, the pressure peak
�attens more and more, and even less fresh air gets heated. On the left side of the �gure,
things go all the other way around: there is a pressure drop on the centre, air gets sucked,
there is less time available for heat exchange and air heating is less e�eective, so that less
heat is added by the mesh to the air, and the central pressure is further depressed. Heat
exchange between air and gauze plays a crucial role.
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wave. For half the vibration cycle, the air �ows into the tube from both ends until the
pressure reaches a maximum. During the other half cycle, the �ow of air is outwards
until the minimum pressure is reached. All air �owing past the gauze is heated to the
temperature of the gauze and any transfer of heat to the air will increase its temperature
and its pressure, according to the gas law.

Admittedly, as the air �ows upwards past the gauze most of it will already be hot be-
cause it has just come downwards past the gauze during the previous half cycle. However,
just before the pressure maximum, any small quantity of cool air which comes into con-
tact with the gauze gets heated, and its pressure is increased. This increases the pressure
maximum, so reinforcing the vibration.

During the other half cycle, when the pressure is decreasing, the air above the gauze
is forced downwards past the gauze again. Since it is already hot, no pressure change
due to the gauze takes place, since there is no transfer of heat. The sound wave is there-
fore reinforced once every vibration cycle and it quickly builds up to a large amplitude.
This explains why there is no sound when the �ame is heating the gauze. All air �owing
through the tube is heated by the �ame, so when it reaches the gauze, it is already hot
and no pressure increase takes place.

When the gauze is in the upper half of the tube, there is no sound. In this case, the
cool air brought in from the bottom by the convection current reaches the gauze towards
the end of the outward vibration movement. This is immediately before the pressure
minimum, so a sudden increase in pressure due to the heat transfer tends to cancel out
the sound wave instead of reinforcing it.

The position of the gauze in the tube is not critical as long as it is in the lower half. To
work out its best position, there are two things to consider. Most heat will be transferred
to a small mass element of air where the acceleration of this small mass element along
the tube is a minimum, as heat exchange may occur in this case before the small mass
element gets shifted signi�cantly away from the pressure of the wave (for given initial
position nd velocity of the small mass element). In turn, this occurs where the pressure
gradient of the wave is a minimum (see equation (6.25) 1), i.e. near the end of the tube.
However, the e�ect of increasing the pressure (in thermodynamical jargon: the e�ciency
of conversion of heat into mechanical work) is greatest where there is the strongest heat-
ing, i.e. in the middle of the tube. There is therefore no perfect position for the gauze. A
good compromise is obtained by placing the gauze midway between these two positions,
i.e. one quarter of the way in from the bottom end.

Rijke's tube acts as a half-wave resonator, i.e. its length is equal to one half of the
wavelength of the pressure perturbation. This means that the geometry -here, the length-
�xes the oscillation period unambiguously, as the latter and the wavelength are connected

1When invoking (6.25), which contains no information on the chemical nature of the gas involved,
we postulate that such nature is actually not relevant to the experiment. Indeed, according to [31]
experiments by Chladni and Faraday successfully replicated Rijke's results with gases of di�erent chemical
composition, including hydrogen.



9.1. RIJKE'S TUBE 121

Figure 9.3: Sondhauss' tube - from Ref. [23].

by the distribution of the sound speed across the tube. To put in other words, the period
of the oscillation is a resonant acoustic frequency of the system.

Even if seemingly trivial, we stress the point that the spontaneous production of sound
depends on the exact value of the oscillation period only weakly. In fact, two Rijke's tubes
with the same geometry and basically the same fundamental acoustic eigenfrequency may
produce dramatically di�erent amount of acoustic power if the gauze is located just below
or above the half-length of the tube. Accordingly, the problem of computing the acoustic
spectrum and the problem of predicting the actual production of sound are quite di�erent.
In the language of modal analysis, this means that accurate prediction of <{ω} guarantees
no reliable prediction of humming.

9.1.3 Sondhauss' version

The fact that the period of the oscillation is a resonant acoustic frequency of the system
is is no unique feature of half-wave resonators. In fact, Rijke's tube operates with both
ends open. However, a tube with one end closed will also generate sound from heat, if
the closed end is very hot. Such a device is called a Sondhauss' tube [23] after Sondhauss
who described it in 1850 -see Fig. 9.3.

The phenomenon was �rst observed by glassblowers. Sondhauss' tube operates in a way
that is basically similar to the Rijke's tube. Initially, air moves towards the hot, closed
end of the tube, where it is heated, so that the pressure at that end increases. The hot,
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higher-pressure air then �ows from the closed end towards the cooler, open end of the
tube. The air transfers its heat to the tube and cools. The air surges slightly beyond
the open end of the tube, brie�y compressing the atmosphere. the compression prop-
agates through the atmosphere as a sound wave. The atmosphere then pushes the air
back into the tube, and the cycle repeats. Sondhauss' tube acts as a quarter-wave res-
onator, i.e. its length is equal to one fourth of the wavelength of the pressure perturbation.

Unlike Rijke's tube, Sondhauss's tube does not require a steady �ow of air through it.
All the same, we anticipate here for the sake of future reference that heat exchange plays
a crucial role in both Rijke's tube and Sondhauss' tube. As for the former, see the caption
of Fig. 9.2. As for the latter, it was discovered that placing a porous heater -as well as a
stack, i.e. a porous plug- in the tube greatly increases the oscillation amplitude in both
Rijke and Sondhauss' devices. Today, stacks are suitably designed in order to raise heat
exchange between the working �uid and the material walls in modern thermo-acoustic
devices [23]. This fact is to be recalled below.

9.1.4 The consequences

In spite of its apparent simplicity, Rijke's tube provides us with a lot of useful informa-
tion. First of all, general consensus underlines the crucial role played by the relative phase
of oscillations of pressure and heat release in Rayleigh's criterion: it is this phase which
explains why sound is heard only if the gauze is located at a suitable position inside the
tube [31] [53]. It turns out that both the occurrence of humming and the value of <{ω}
depend on this phase [35]. As we are going to see, however, this relative phase is far from
being the only quantity which is relevant to the triggering of the oscillations.

Secondly, the original Rijke's observation is that sound is spontaneously produced
while the gauze cools down. In modern language, Rijke' tube is a example of those so-
called dissipative structures where order (in this case, temporal order, i.e. an acoustic
oscillation with well-de�ned frequency) arises from relaxation (the cooling of the gauze),
i.e. from entropy growth. And where entropy is at stake, thermodynamics is likely to have
a say. Outside thermo-acoustics, the Belousov-Zhabotinsky chemical reactions provide a
well-known example of dissipative structures [94]. Dissipative structures are usually found
in open thermodynamical systems, i.e. in systems where exchanges of energy and matter
with the external world occur. This is obviously the case both of Rijke's tube - and of
the �ame in an industrial combustor as well. It is worthwhile to check if available results
concerning dissipative structures may o�er useful insight in spontaneous onset of acoustic
oscillations, like in Rijke's tube -and in humming.

Thirdly, Rayleigh's original words If heat be given [. . . ] or be taken quoted above [31]
refer to exchanged heat, not to heat release -let alone combustion. This point is stressed
again and again in many passages of Rayleigh's work. For example, when reviewing an
experiment the author writes [31]:

in order that the whole e�ect of heat be on the side the side of encour-
agement it is necessary that previous to condensation the air should pass not
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merely towards a hotter part of the tube, but towards a part of the tube which
is hotter than the air will be when it arrives there

Here Rayleigh's emphasis on the words hotter than suggest that it was the di�erence of
temperature, hence the heat �ow, which draw his attention. It is only under the assump-
tions (6.1) that the proof of Rayleigh's criterion involves just the heat release. Rather than
the detailed mechanism of gauze heating, it turns out that the heat exchange between
the gauze and the surrounding environment is crucial to the onset of humming in Rijke's
tube. For instance, sound is heard even when the gauze is cooler than the environment
[26] 2.

Moreover, louder and longer sound is heard when many gauze discs are inserted inside
the tube beyond the heated gauze disc, thus delaying air motion and leaving more time
for heat transfer to occur. These discs play the same role of stacks in the above quoted
Sondhauss' tube. In Rijke's own words [24] 3:

when, instead of a single disc, several were placed in the tube, the sound
lasted longer [. . . ] that is because the presence of a greater number of discs,
by diminishing the rapidity of the air current diminishes also the rapidity of
cooling of the �rst disc

This rapidity of the air current acts therefore as a further crucial parameter for sound
generation, beyond the relative phase quoted above. This rapidity is just the relative ve-
locity of the air and the hot gauze, as the hot gauze is at rest in the laboratory reference
system. Together with its equivalent in the �ame, it will be referred to again and again
in the following. Here we anticipate that the quantity in the �ame which is equivalent to
this rapidity is the �ame velocity.

Finally, we have seen that Rijke heard the sound fading away after a while in his
�rst experiments. In order to obtain a sustained sound, Rijke heated the gauze with DC
current. Sound generation starts, provided that the electric current is large enough (i.e.
that the Ohmic power dissipated in the gauze is not too small). Moreover, with the heat
being continuously supplied, the sound is also continuous. It is precisely the self-sustaining
character of the acoustic oscillations heard by Rijke that triggered the attention of both
Rayleigh and modern manufacturers of humming- a�ected combustors 4. Heat released
by combustion is the obvious analog to Ohmic power in Rijke's tube. Just as in the

2More recently, spontaneous growth of acoustic (Taconis' ) oscillations in pipes which are partially
�lled with liquid helium has been reported. See e.g. Ref. [27].

3In his original German paper [25], Rijke refers to the rapidity with the term Schnelligkeit only when
it comes to the air current. Schnelligkeit means velocity.

4In Rayleigh's words [31]

When a piece of �ne metallic gauze, stretching across the lower part of a tube open at
both ends and held vertically, is heated by a gas �ame placed under it, a sound of considerable
power, and lasting for several seconds, is observed almost immediately after the removal of
the �ame. [...] the generation of sound was found by Rijke to be closely connected with the
formation of a through draught, which impinges upon the heated gauze. In this form of the
experiment the heat is soon abstracted, and then the sound ceases; but by keeping the gauze
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latter, humming occurs in modern combustors at large heat release only. Thus, while the
relative phase of pressure and heat release oscillations and the rapidity of the air current
are crucial to decaying sound generation, such heat release is a further, third quantity
which is crucial to continuous sound generation.

9.2 Biwa et al.'s selection rule

Rijke's results are retrieved and generalized by the experimental results of Biwa et al.
[28]. Two solid bodies C and H, at temperature TC and TH > TC respectively, exchange
heat with each other and a �uid -see Fig. 9.4 5.

Figure 9.4: From Ref. [28].

A known, total amount of heat QH �ows out from H per unit time. The �uid, H and C
correspond to the air, the hot gauze disc and the pipe wall in Rijke's tube respectively. The
net amount ∆S of entropy �owing per unit time from H to C is just ∆S = T−1

C QC−T−1
H QH

where QC is the total amount of heat which �ows into C per unit time. Energy balance
gives QH = QC +

∫
Ab
da · 〈W〉, where Ab is a closed surface including C and H - see

equations (1) and (4) of [28]. Then,

∆S =
(
T−1
C − T

−1
H

)
QH − T−1

C

∫
Ab

da · 〈W〉

hot by the current from a powerful galvanic battery, Rijke was able to obtain the prolongation
of the sound for an inde�nite period. In any case from the point of view of the lecture the
sound is to be regarded as a maintained sound.

5The �gure displays a stack. See the discussion on the role of stacks in the Section on Rijke's tube.
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If no sound is generated,
∫
Ab
da · 〈W〉 = 0. If the sound is generated reversibly, then∫

Ab
da · 〈W〉 = 0 and Carnot formula gives the e�ciency: Q−1

H

∫
Ab
da · 〈W〉 = 1− T−1

H TC .

Experiments show that among all permissible modes of operation -either
∫
Ab
da·〈W〉 =

0, i.e. no humming, or
∫
Ab
da · 〈W〉 6= 0 - the system invariably selects the mode with

the lowest ∆S -see Fig. 9.5.

Figure 9.5: The variation of ∆I (a), TH (b) and ∆S (c) as a function of QH , when the
gas oscillations are absent (solid circles) and present (open circles). Open diamonds in
(b) are measured when the gas oscillations are suppressed and those in (c) represent the
corresponding variation of ∆S. The vertical dashed line represents the critical heat �ow
Qcri = 60W. From Ref. [28].

In other words, the stable con�guration satis�es

∆S = min

We stress the point that this selection rule comes from systematic comparison of ∆S
in both steady states and in various oscillating modes: in the latter case, it is the value of
∆S averaged on time on many periods of oscillations which allows such comparison with
the steady-state value of ∆S -see Ref. 5 of [28].

In the following, we are going to see that this result is connected with the experimental
results of Rijke's tube as well as with other relevant experimental results in humming
research. We discuss the theoretical ground of this result with the second principle of
thermodynamics and its connection with Rayleigh's criterion in the next Section.
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9.3 From Biwa et al.'s selection rule to Rijke's tube

Since the system selects the mode with the lowest ∆S, if we want to prevent humming,
i.e. to ensure stability of the

∫
Ab
da · 〈W〉 = 0 state where ∆S =

(
T−1
C − T

−1
H

)
QH , we

must keep the value of
(
T−1
C − T

−1
H

)
QH ≥ 0 as small as possible. In turn, this requires

minimization either of QH or of
(
T−1
C − T

−1
H

)
. As for QH , if the gauze is heated with a

steady Ohmic power, then the latter is equal to QH ; humming prevention requires that
the heat supplied to the gauze is not too large. Furthermore, QH is the heat �owing from
the hot gauze towards the wall and the air; in particular, humming prevention is easier
at low values of heat �ow towards air, hence at large rapidity of the air current. As for
the wall temperature TC , in Rijke's words [24]

the elevation of the temperature of the sides of the tube is rather injurious
than otherwise to the success of the experiment [of humming production]

Thus, humming prevention requires poor wall cooling (or even no cooling at all). In
summary, humming prevention requires minimization of the heat �ow from the �ame
towards the wall, either by reduction of heat release and/or temperature jump between
�ame and wall, or by increase of the rapidity of the air current.

9.4 From Biwa et al.'s selection rule to Rauschenbach's

hypothesis

As for the relative phase, if humming occurs (i.e.
∫
Ab
da · 〈W〉 6= 0 ) then Biwa et al.'s

minimization of ∆S -all the rest being equal- requires maximization of
∫
Ab
da · 〈W〉. This

is in agreement with the following hypothesis, formulated as a rule-of-thumb by a pre-
eminent Soviet rocket engineer in the Sixties, Rauschenbach -see chapter 9, Sec. 45 of [95]:

the development of vibrations in an oscillating combustion system evolves
towards those relationships involving amplitudes and phases which maximize
the amount of acoustic energy irradiated from the region where combustion
occurs

When humming occurs, therefore, phase is locked at a value which maximizes the �ux
of acoustic energy, just as required by Rayleigh's criterion.

9.5 Meija et al. and Hong et al.'s experiments

Now, let us come to combustion. To start with, let us consider a laminar �ame. The
�ame is the equivalent of the hot gauze disc; both are at rest in the laboratory reference
system. Thus, the laminar �ame velocity 6 sL is the physical quantity corresponding to
Rijke's rapidity of the air current -see Fig. 9.6 and Fig. 9.7.
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Figure 9.6: By de�nition, the �ame velocity is the velocity of the fuel-air mixture impinging
on the �ame (from left to right) when the �ame front is at rest in the lab frame of reference.

In a turbulent �ame, of course, the turbulent �ame velocity sT plays a similar role
7: the only di�erence is that sT is always larger than sL. Finally, the (upstream) �ow
of unburnt fuel + air mixture impinging on the �ame is the equivalent of the air �ow
impinging from below in Rijke's tube.

Meija et al's experiments [29] with laminar premixed �ames on a slot burner show that
humming is triggered whenever the burner rim temperature is low enough - see Fig. 9.8
and Fig. 9.9.

In contrast, Hong et al.'s experiments [30] show that humming in a 50-kW backward
facing step combustor can be prevented or signi�cantly delayed by using a material with
low thermal conductivity at the �ame anchoring region; as the thermal conductivity of

6For a �at, laminar �ame an observer riding with the �ame would experience the unburned mixture
approaching at the laminar �ame velocity -see Chapter 8 of [2] and equation (2.24) of [4]. Basically,

the latter velocity is the relative velocity of the �ame at rest and the impinging �uid. It is a positive-
de�nite quantity. If the �ame is not �at, then the concept of displacement velocity is introduced - see the
Appendix on the �ame velocity.

7The turbulent �ame velocity sT is de�ned as the velocity needed at the inlet of a control volume to
keep a turbulent �ame stationary in the mean inside this volume -see Sec. 5.1.1 and equation (5.2) of [4].
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Figure 9.7: Laminar �ame velocity (cm/s) vs. fuel concentration in air (%) for various
fuels.

the �ame-holder increases, the combustor becomes increasingly unstable over a range of
operating conditions - seeFig. 9.10.

Finally, the upstream �ow remains una�ected in both [29] and [30], just like the air
�ow impinging from below was una�ected in [24]. The same holds for heat release (which
depends on the total amount of fuel burnt per unit time, which gets completely burnt in
lean combustion at least): the corresponding quantity in [24] is the constant DC electric
power supplied in order to sustain acoustic emissions. As an example of a physical quantity
of the upstream �ow which can be relevant to the onset of thermo-acoustic instability, and
which is una�ected in [29] and [30], we quote the Mach number of the unperturbed �ow,
which can play a role in both liquid-propellant rocket motors [96] and GT combustors [3].
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Figure 9.8: Perspective view of the slot with the cut through the material. The upper and
lower cooling channels allow a water �ow at temperature Tw and Tamb respectively. A
thermocouple meaures the slot temperature Ts - from Ref. [29].
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Figure 9.9: At t = 0 the whole experiment is at room conditions. Combustion starts at t
= 20 s and instabilisty develops immediately (58 Hz, acoustic mode). Pressure �uctuation
amplitude reaches 113 dB and then decreases as Ts increases. Full stabilisation at t =
400 s, and Ts overcomes 100 oC. At t = 480 s the cooling system (Tw = 3 oC) starts, Ts
decreases abruptly and instability grows up to 110 dB at t = 800 s, while Ts arrives to 50
Â◦C. N.B: p0 = 0.993 bar and Tamb = 20 oC at all times - from Ref. [29].
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Figure 9.10: Overall sound pressure level (dB) vs. equivalence ratio, propane/air mixture,
5.2 m/s inlet velocity, 883 kPa working pressure, 110 g/s inlet mass �ow. Flameholder
in stainless steel (12 W/m/K thermal conductivity) vs. ceramics (1.06 W/m/K thermal
conductivity). Entropy wave at 40 Hz, acoustic mode at 70 Hz (fundamental frequency).
Variations in equivalence ratio at constant inlet velocity (up to 5%) lead to corresponding
variations in heat release - from Ref. [30].
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Chapter 10

Le Châtelier's principle...

10.1 Generalities and examples

The experimental results quoted above seem to con�rm that -for given upstream �ow at
least- the onset of humming depends on the heat �ow from the �ame towards the sur-
rounding environment: i.e., a way to trigger (prevent) humming is to facilitate (obstruct)
such heat �ow. Firstly, we give a simple (even if qualitative) explanation of some of these
results. Then, a more systematic approach follows.

We start from two facts: �rstly, combustion drives humming (i.e., no humming occurs
without combustion); secondly, both exothermic (combustion) and endothermic chemical
reactions (e.g. dissociation of CO2) occur inside a small mass element of the �ame

1.

Now, we invoke Le Châtelier's principle of thermodynamics -which, according to
Secs. 22 and 103 of Ref. [84], follows straightforwardly from the second principle of
thermodynamics- and apply it to our small mass element. Le Châtelier's principle reads:

an external interaction which disturbs the equilibrium brings about pro-
cesses in the body which tend to reduce the e�ects of this interaction

Le Châtelier's principle is known by all chemists, and is extensively applied in the
study of chemical reactions 2. We have already seen Le Châtelier's principle in action
above: when discussing equation (6.17), we have seen that that any perturbation which
tries to raise entropy where it is already large gets damped.

1Even in the popular approximation of one-step, in�nitely fast reaction it is possible to have reactions
both the exothermic and the endothermic way, the former and the latter from the unburnt gases to the
burnt ones and all the other way around respectively. Neglecting the endothermic way takes a further
approximation, namely irreversible combustion [4].

2It is often intuitively justi�ed using a very simple argument: if the opposite of Le Châtelier's principle
held, then equilibrium states would not be stable with respect to small �uctuations and thus they would
not be observable.

133
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Admittedly, we should not take the relevance of Le Châtelier's principle to the prob-
lem of humming for granted. Indeed, researchers have invoked the the so-called local
thermodynamic equilibrium (LTE) either explicitly [90] or implicitly [8]. LTE means that
-although the total system is not at equilibrium- the internal energy per unit mass u is
the same function of the entropy s per unit mass, the pressure p, the mass density ρ, etc.
as in real equilibrium; more generally, the relationships among thermodynamic quantities
will be the same as in real equilibrium [94]. It is LTE which allows us to invoke the
second principle of thermodynamics in any small mass element of �uid at all times, and
it is the second principle -applied to the small mass element- which allows us to invoke
Le Châteliers' principle to the small mass element.

We recall that thermodynamic equilibrium means that both chemical, mechanical and
thermal equilibrium are ful�lled simultaneously 3. Admittedly, not all chemical reactions
inside the �ame can actually be described with the help of LTE. In thermodynamical
jargon, this is to say that chemical equilibrium is not fully realised inside the small mass
element, even if mechanical and thermal equilibria are. Luckily, this fact is explicitly
taken into account e.g. in the Appendix C of [22], so that it leaves the treatment of
Myers' corollary una�ected.

Moreover, our LTE-based argument still seems to be valid at a rule-of-thumb level. In
fact, chemical time-scales depend on the reactions of interest. In most practical combus-
tion devices, fuel oxidation times are short. On the other hand, carbon monoxide (CO)
oxidation to carbon dioxide (CO2) is slower, and formation times of thermal nitrogen
oxides (NOx) are even longer -see Sec. 4.1 of [4]. Then, researchers concerned with de-
tailed analysis of pollution invoke no LTE and focus their attention on chemical kinetics
4. Analogously, the abundance of chemical species like CHO and the free electrons inside
the �ame rule the electric conductivity σ of the �ame, so that researchers concerned with
σ rely also on chemical kinetics -see the Appendix on the electrical conductivity of the
�ame. In all cases, however, the abundance of CO, CO2, NOx, CHO and free electrons is
currently no larger than some parts per million. In our investigation of Rayleigh's crite-
rion and Myers' corollary, the impact of such species on Rayleigh index and the acoustic
�uxW is therefore relatively small. Admittedly, terms like DYk in Rayleigh's index could
weaken the latter statewment; in the following, however, our results will not depend on
the detailed structure of Rayleigh's index. Accordingly, we may neglect the mass fraction
of those chemical species which undergo chemical reactions which in turn cannot be satis-

3By chemical, mechanical and thermal equilibrium we mean that no Yk depends on time, that the sum
of the external forces acting on the small mass element vanishes, and that the Boltzmann exponential
rules the distribution function of the particles of each chemical species respectively

4For example, the simplest way to describe air-CH4 combustion is

CH4 + 2O2 ←→ CO2 + 2H2O

A more realistic -even if still oversimpli�ed- description involves the couple of reactions

2CH4 + 3O2 ←→ 2CO + 4H2O

2CO +O2 ←→ 2CO2

The second reaction is slow, and reliable estimate of CO2 requires dedicated kinetic treatment.
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factorily described with the equilibrium approximation, and we may safely assume LTE.

Le Châtelier's principle implies that any cooling -like e.g. the cooling due to thermal
contact with a wall cooler than the �ame- tends to enhance the relative importance of
exothermic, humming-supporting reactions with respect to endothermic reactions, and
therefore to facilitate humming. Analogously, any external heating of the �ame tends to
lower the relative importance of exothermic, humming-supporting reactions, and there-
fore to suppress humming 5. Remarkably, on the basis of very general arguments it can
be shown that a temperature increase induces a shift in the endothermic direction even
outside the range of validity of LTE [97].

Now, the strategies outlined in [29] and [30] aimed at triggering the onset of humming
by raising heat �ow from the �ame towards the combustor wall decrease also sL while
leaving the upstream �ow una�ected. If the latter condition is satis�ed, indeed, it can be
shown that this heat loss is a decreasing function of sL -see Fig. 10.1.

In-depth discussion is to be found in the following Sections 6.

Here we limit ourselves to stress the fact that even in the simplest model of combustion,
the so called one-step, in�nitely fast, combustion model [4] the laminar �ame velocity is
an increasing function of the combustion rate, i.e. of the number of combustion reactions
occurring per second (only one chemical reaction is considered in this model). If the
external world tries to raise sL and if Le Châtelier's principle holds, then we expect the
system to react in such a way to lower the reaction rate in order to compensate the ex-
ternal disturbance. Since it is combustion which supports humming, it is only reasonable
to predict humming stabilisation. Of course, this is a qualitative discussion only: more
re�ned treatmnet is required.

Remarkably, however, even outside the domain of humming-related research several
authors show that the larger this heat loss, the lower sL, the more likely the onset of ei-
ther quenching [99] or thermo-di�usion instability (possibly coupled to Darrieus-Landau
instability [100]) through increase of Lecr [9]). For curved �ames, investigation of equation
(4.53) of [6] shows that raising or the decrease of both linear and non-linear stabilizing
terms due to heat di�usion along the direction tangential to the �ame surface.

5A common misunderstanding is lurking here. By raising the peak �ame temperature, external heating
fastens the kinetics of the chemical reactions which bring the small mass element of the �uid entering
the �ame to LTE. Per se, however, fastening of chemical kinetics and the relative weight of exothermic
and endothermic reactions at LTE are independent of each other. For example, external heating in the
Haber-Bosch synthesis of ammonia -an exothermic reaction- fastens the reaction but lowers the overall
throughput. Here, Le Châtelier's principle makes the external heating to lower the the relative importance
of exothermic reactions only once LTE is achieved. Luckily, a popular -even if oversimplifying- assumption
is that combustion is in�nitely fast [4], i.e. the snmall mass element achieves LTE as soon as it enters
the �ame, so that detailed chemical kinetics leaves the present discussion una�ected.

6Physically, leaving the upstream �ow una�ected implies that also the speed of sound cs0 before the
�ame remains unchanged. In turn, this implies that the acoustic feedback in the electronic analogy of
equations (6.38) (6.39) remains una�ected. The �ows of heat and entropy quoted above refer exclusively
to the �ame.
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Figure 10.1: From Ref. [98], an abridged version of Fig. 8. Normalised laminar �ame
velocity (y-axis) vs. ratio of the heat of combustion to the heat loss. If we lower the
heat loss we raise this ratio, and sL increases monotonically, i.e. sL is a monotonically
decreasing function of the heat loss.
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As a further example of external heating of the �ame which is bene�cial to humming
control, we may refer to nanosecond repetitively pulsed plasma discharges (NRPP). NRPP
stabilise a lean premixed propane-air �ame at atmospheric pressure under lean conditions
where it would not exist without plasma [101]; a similar result holds for laminar, premixed,
lean methane-air �ame [102]. Moreover, when humming occurs in a swirl-stabilized com-
bustor at atmospheric pressure fueled with natural gas at an equivalence ratio of 0.66
and 43 kW heat release, suitably tuned NRPP with 315 W time-averaged electric power
consumption induce a ten-fold decrease of pressure oscillation amplitude [103].

10.2 Beating around the bush?

Now, we may wonder if this discussion is actually relevant to �ames in industrial GT
combustors, or at least in any experimental set-up which resembles industrial ones more
closely. Indeed, the experiments reviewed so far have little in common with real-life
combustors of GT -from a manifacturer's point of view at least. For example, the lean,
low-Mach combustion in GT combustors occurs very near to the blow-out point, and
therefore not far from the stability line where small perturbations may produce very large
responses. In this Section we are going to provide some arguments which con�rm the
relevance of our discussion focussed on thermodynamics to ndustrial GT combustors.

To start with, we have not yet discussed turbulence, by and large ubiquitous in GT
combustors. Indeed, we expect most of our arguments still to hold -qualitatively at least-
as far as the turbulent �ame velocity sT = sT (sL) is an increasing function of sL [4]. In
particular, both Rayleigh's criterion and Myers' corollary rely on no detailed model of
turbulence for the disturbances a− < a > of the generic quantity a.

Generally speaking, moreover, leaner �ames have lower values of �ame velocity and
are more prone to humming than fuel-richer �ames, while the actual value of fuel mass
fraction is so small that it a�ects upstream �ow only weakly [104]. In particular, the sim-
ple model discussed in [3] for Ansaldo combustors predicts onset of humming whenever
the Mach number M of the upstream unperturbed �ow exceeds a threshold: the leaner
the combustion, the lower the threshold, the easier the onset of humming.

All the way around, indeed, the inlet mixture temperature Tinlet is ∝ M2 all other
quantities (including inlet mass �ow, equivalence ratio and pressure) being equal 7. In
this case, it has been observed that even a slight increase of Tinlet triggers transition from
stable to unstable �ame in a lean-premixed swirl-stabilised combustor [105]. Physically,
raising Tinlet implies raising the speed of sound in the region between the inlet and the
�ame, so that the acoustic feedback in (6.38) - (6.39) becomes more sensitive and hum-
ming gets facilitated 8.

7Since M =
|v0|
cs

, cs ∝
√
Tinlet and |v0| ∝ (inlet mass �ow) · (typical combustor cross section)−1 · ρ−1,

equation (6.4) gives: M ∝
√
Tinlet · p−1, i.e. Tinlet ∝ p ·M2 at given inlet mass �ow and combustor

geometry.
8Admittedly, raising the upstream temperature ≈ Tinlet facilitates the onset of humming while raising
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Furthermore, the region in which a swirled combustor exhibits thermo-acoustic insta-
bilities is shifted to a lower equivalence ratio when adding a small amount of H2 to a
methane-air premixed �ame [106]. Indeed, given the higher value of sL in hydrogen-air
combustion 9 such addition is likely to raise sL: this conclusion is con�rmed by the results
of [107]. Remarkably, the opposite turns out to be true if water is added (e.g. in form
of steam) to the inlet mixture impinging on the �ame: the addition of steam notably
decreases the �ame velocity in both methane-air [107] and air-natural gas [108] premixed
combustion.

Actually, most of the above remarks seem to �nd con�rmation in everyday's working
experience. Indeed, it is well-known that the weather a�ects the overall performance of
a GT power plant. For instance, the hotter the external air, the larger the humming
amplitude. This is in qualitative agreement with our remark about inlet temperature
above. Moreover, given the temperature of the external air, the larger the air humidity
the larger the humming amplitude -see Fig. 10.2.

Indeed, the larger the air humidity at the inlet (i.e. the larger the number and the
mass of water droplets suspended in the air), the larger the amount of heat spent per unit
time by the �ame for water evaporation. But evaporation is an endothermic reaction:
then, according to Le Châtelier the system tends to enhance the relative importance of
exothermic, humming-supporting reactions with respect to endothermic reactions, and
therefore to facilitate humming. Furthermore, addition of a tiny amount of water low-
ers the �ame velocity as noted above, while leaving the upstream �ow basically una�ected.

Our conclusion seems to be rather counter-intuitive: after all, if we pour enough water
onto a �ame (either a di�usion candle �ame or a premixed Bunsen �ame) we extinguish
it altogether, thus suppressing all combustion-driven humming oscillation. Indeed, it has
been reported that increased ambient humidity may decrease combustor acoustic oscilla-
tions -see Sec. 7.3.5 of [109]. This e�ect was attributed to the additional heat capacity of
the water molecules which lowers the peak �ame temperature and thereby reduces the re-
action rate. The solution of the conundrum seems to be as follows. If we pour water onto
a �ame, then the heat release decreases, in agreement with the reduction of the reaction
rate. In contrast, during the usual operation of a GT combustor the heat release is to be
kept as near as possible to the rated value Wc sold to the �nal customer. Accordingly, the
larger the ambient humidity the larger the required amount of heat produced by combus-
tion in order to compensate the larger evaporation of water droplets while maintaining the
net heat release, the larger the relative importance of exothermic, humming-supporting
reactions.

Similar results hold for the ambient air temperature. We have seen that the hotter
the external air, the larger the humming amplitude in a GT combustor at �xed heat re-
lease. In sharp contrast, the same Ref. [109] quoted above hints at a bene�cial e�ect

the �ame velocity [2]. Note, however, that in this case the upstream �ow is not unchanged, and our
previous remarks concerning the �ame velocity do not apply.

9up to 5 time larger than in air-methane combustion, see Tab. 8.2 of [2].
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Figure 10.2: On-�eld data from Ansaldo Energia. Three series of pressure r.m.s. mea-
surements at di�erent values of relative humidity (x-axis) and environmental temperature
(y-axis). Black dots refer to cases where automatic safety systems switch on. Red dots
refer to cases with dangerous pressure r.m.s. with no automatic switch-on. Other dots
refer to non-dangerous cases.
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of an increase of ambient air temperature in suppressing noise. Indeed, such increase is
likely to raise the �ame velocity, as the latter is an increasing function of the upstream
temperature [2], which in turn is an increasing function of the ambient air temperature.
Thus, the impact of increasing ambient air temperature may compensate the sL-lowering,
destabilising impact of both wall cooling [29] and heat conduction across the �ameholder
[30], i.e. it may be stabilising, precisely as observed with [109]; but then the heat release
-which depends also on sL [35]- is not kept at a constant value, unlike the GT combustor
quoted above. Again, the behaviour at �xed heat release di�ers from the behaviour when
the heat release is not �xed.

10.3 Dynamics vs. thermodynamics

As usual in thermodynamics, the discussion in the last Section shows that the choice of
what is kept �xed and what may undergo changes is of paramount importance to the
solution of a given problem. We are going to show that this fact leads us to uncover a
fundamental agreement between Rayleigh's criterion and its generalisation, Myer's corol-
lary, on one side and Le Châtelier's principle and its consequences on the other side.

According to equation (33) of [75] -or, equivalently, to equation (1) of [58]- the heat
release produced in a premixed combustor where all the fuel gets burnt at the �ame (as
it is usually assumed for practical purposes in lean combustion) and where the �ame is
laminar is equal to:

Wc =

∫
flame

da (HLHV · ρu · Yfuel · sL) (10.1)

where HLHV , ρu and Yfuel are the lower heating value (= 5 · 107J · Kg−1 for methane)
10, the mass density and the fuel mass fraction on the upstream side of the �ame respec-
tively. Here HLHV is a constant quantity. Given the upstream �ow -hence both its mass
density and its chemical composition - ρu and Yfuel- if the heat relase too is �xed then
the only way to raise the �ame velocity is to lower the �ame area. In turn, the �ame
area is just the ratio of �ame volume and of the laminar �ame thickness, and the latter
is a decreasing function of sL. It follows that any growth of �ame velocity at given heat
release and upstream �ow corresponds to a reduction of the �ame volume. But according
to equation (6.22) the �ame volume is just the domain of integration of the destabilising
term

∫
dxD of Rayleigh's criterion -as well as of its generalisation, Myers' corollary. Now,

the integrand in this term is positive (on average), as this term has to compensate the
net, stabilising acoustic losses which are positive (sound is actually heard when humming
occurs). Thus, reduction of �ame volume leads to reduction of the destabilising term in

10The lower heating value is obtained by subtracting the heat of vaporization of the water vapor
from the higher heating value. The higher heating value is the amount of energy released as heat by
complete combustion; it is determined by bringing all the products of combustion back to the original
pre-combustion temperature, and in particular condensing any vapor produced.
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Rayleigh's criterion, hence is stabilising. This explains why raising the �ame velocity at
given upstream �ow and heat release is bene�cial to humming stabilisation, no matter
how this growth is obtained -by preventing wall cooling, adding hydrogen of utilising less
humid mixtures of unburnt gases 11. Remarkably, the conclusions drawn from Rayleigh's
criterion and Myers' corollary on one side nicely agree with the conclusions drawn from
Le Châtelier's principle. This correspondence will be investigated further in the next
Chapters.

Noteworthy, the price to be paid for a change in �ame velocity is a change the �ame
shape too. In fact, �ame shape and �ame velocity are not independent from each other
-see (13.21) below. This is why Rayleigh's criterion and Myers' corollary provide infor-
mation on the shape of stable �ames, even if in implicit form. An obvious corollary is
that some �ames are more stable than other, according on their shapes. Investigation on
the shape of stable �ames is the topic of one of the Chapters below.

Equation (10.1) holds for laminar �ames; see equation (6.26) of Ref. [110] and Sec.
4.2 of Ref. [18] for the counterpart in turbulent �ames -like those occurring in GT. Gen-
eralisation of (10.1) to turbulent �ames relies on replacing sL with sT - see e.g. equation
(2) of [111]. In particular, the �ame surface area is expressed with the help of a suitably
averaged �ame surface density [4] and sT replaces sL, bot nothing changes as far as sT is
a monotonic function of sL. Above all, it is still possible -for dimensional reasons at least-
to write the ratio of �ame volume and �ame area as a �ame thickness, which appears
to depend on sL only weakly -see equation (8) of [112]; it appears rather to depend on
the typical turbulent length scales. Consequently, turbulence leaves our discussion un-
changed, provided at least that the sL-raising mechanisms leave the turbulent �uctuation
spectrum una�ected.

This discussion relies on the concept of �ame thickness. Unfortunately, di�erent �ame
models may provide us with di�erent estimates of this quantity, and even di�erent def-
initions: the validity of our qualitative discussion is therefore somehow weakened. A
more rigorous treatment is therefore desirable, which involves no detailed information
concerning �ame thickness. To this purpose, we take advantage of Rayleigh's criterion
and Myers' corollary and present a discussion of the impact of �ame velocity on humming
for both laminar and turbulent, thin, premixed �ames in the Appendix concerning the
�ame velocity. In this discussion it is also assumed that the �ame is globally concave, i.e.
that a suitably weighted average of the total curvature of the �ame is positive. To put it
in other words, the �ame is supposed to show its concave side to the unburnt gases for
most of its surface. Most �ames of practical interest in Ansaldo combustors satisfy this
requirement. This discussion con�rms that raising �ame velocity at given upstream �ow
is bene�cial to humming stabilisation for both laminar and turbulent �ames.

The main idea underlying this result is that everything oscillates periodically with
period τ when humming occurs, including the �ame area Af -see Fig. 10.3 for an example

11Of course, making combustion slightly richer raises Yfuel, and, in lean combustion, also sL, even at
a price of higher pollution
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in a swirl-stabilised combustor. Now, for a sinusoidal 12 function of time Af = Af (t) =
Af (t+ τ) with given period τ , the steeper the slope of Af = Af (t) at a given time, the
larger the maximum amplitude of Af (t) over a period. In turn, the larger the latter
amplitude, the larger the absolute value of the destabiling term in of (6.36) 13, because
the integration domain of this L.H.S. reduces basically to Af for thin �ames as Rayleigh's
index is localised at the �ame at all times. All the way around, it follows that everything
which �attens the slope of Af = Af (t) reduces the absolute value of the L.H.S. of (6.36),
and is therefore stabilising. For globally convex, laminar �ames, it turns out that raising
sL at given upstream �ow leads to such �attening -see the Appendix concerning the �ame
velocity. If τ is large enough (say, τ > the longest time-scale typical of turbulent motions),
then we may safely apply this discussion to turbulent �ames too, as the time-scales of
turbulence and of humming are decoupled 14.

Remarkably, this conclusion leads to predictions of practical interest whenever the re-
quirement that sT and sL behave di�erently under the same perturbation of the system.
For example, it is well known that in the premixed lean combustion of hydrocarbons sT
and sL are an increasing and a decreasing function of pressure respectively -see e.g. Sec.
3.3.5 of Ref. [113]. If we are able to decrease pressure while leaving all other things
una�ected, then we raise sL and lower sT , thus stabilising laminar �ames but destabilis-
ing turbulent �ames with the same heat release, stoichiometry etc. Indeed, the model of
[3] -originally thought for industrial combustors with turbulent �ames- predicts precisely

humming onset when the Mach number -which scales as ∝
√
T

p
for given input mass �ow-

exceeds a stoichiometry-dependent threshold, i.e. it predicts that the smaller the pressure
the easier the humming onset -all the rest being equal.

In the following Sections, we are going to invoke the constraint of �xed heat release
Wc again and again, as this constraint is a requirement for everyday's operation of com-
mercial GT combustors.

We suggest that dynamics and thermodynamics (i.e. Rayleigh's criterion and Myers'
corollary on one side, Le Châtelier's principle on the other side, respectively) agree in
predicting that raising the �ame velocity at given upstream �ow is bene�cial to humming
control. Even if in agreement with many observations, this fact has not been adequately
stressed in present humming-related research. The latter focussed rather on the relative
phases of the perturbations inside the Rayleigh's index, i.e. on the integrand of the desta-
bilising term in (6.35). Our analysis of Rayleigh's criterion and Myers' corollary hints
rather at the role played by the evolution of �ame area when humming occurs, i.e. the

12If Af (t) is no sinusoidal function, we write it as a Fourier series and limit our attention to any of its
sinusoidal or cosinusoidal components, with no loss of generality.

13The integrand of this L.H.S. is positive whenever perturbed quantities oscillate in phase, as required
by Rayleigh's criterion when humming occurs. Then, this L.H.S. is an increasing function of the measure
of its domain of integration. The larger the �uctuation of Af , the larger its contribution to the time-
average of the L.H.S., which is precisely the destabilising term (6.36).

14More generally speaking, application of thermodynamics to turbulent �ames is far from surprising,
as we expect turbulence to leave validity of LTE una�ected as far as the time-scale of microscopic
interparticle collisions responsible for LTE are much shorter than turbulent time-scales.
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Figure 10.3: Time histories of pressure (top) and Af (bottom). Thick black line represent
the computed contribution of the acoustic fundamental mode - from Ref. [18].
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domain of integration of the destabilising term in (6.36). This evolution a�ects the out-
come of the time average, and is a�ected by the �ame velocity 15.

Finally, it must be stressed that the above discussed connection between �ame velocity
and heat losses is no more necessarily valid if the upstream �ow is not constant, e.g. when
a major transition between largely di�erent upstream �ows occurs [114] [15].

15A simple argument shows that stability against humming is not just a matter of relative phases.
Suppose humming occurs in the case described by the isentropic version of Rayleigh's principle: then,
�uctuations of pressure and heat release are in phase. Accordingly, any modi�cation of this relative
phase should hinder humming, no matter if corresponding e.g. to increasing or decreasing fuel content.
However, experience teaches us that decreasing fuel content is destabilising, in contrast with increasing
fuel content. This can be explained when looking at the �ame velocity, not at relative phases.



Chapter 11

... and its consequences

11.1 Generalities

In the following we are going to discuss the connections of the second principle of thermo-
dynamics applied to a small mass element of our �uid mixture -and of its consequence,
Le Châtelier's principle- with Rayleigh's criterion and the experimental results discussed
in the last Section. In particular, we are going to take advantage of the results of [115]
and of [116] in order:

• to derive from Le Châtelier's principle an inequality (the general evolution criterion)
concerning the time derivatives of thermodynamic quantities in a small mass element
of a �uid mixture of reacting species at LTE at all times

• to derive from the general evolution criterion three useful inequalities concerning
quantites related to the entropy balance of a whole, macroscopic system

• to derive from these three inequalities a set of necessary criteria for the stability of
unperturbed, steady states. These criteria include Rayleigh's criterion as a partic-
ular state. Other criteria, even if fully equivalent to Rayleigh's criterion from the
point of view of their physical meaning, take the form of a variational principle.

• to generalise the result to the stability of unsteady unperturbed states. In analogy
with what happens with Rayleigh's criterion and Myers' corollary, it turns out that
the stability criteria for unsteady unperturbed states are formally identical to the
stability criteria for steady unperturbed states, after suitable time-averaging.

As usual, we assume no net mass source, so that equation (5.1) still holds. We are going
to follow the same logical path which has led us from the original version of Rayleigh's
criterion to Myers' corollary, i.e. we start with the case where the unperturbed �uid is at
rest and then we deal with the general case of the unperturbed �uid in motion.

11.2 The general evolution criterion

Let us describe the small mass element with the help of the thermodynamical quantities ρ,
p and Yk. Together, the well-known property of minimum Gibbs' free energy at constant

145
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p and T (itself too a consequence of second principle) and Le Châtelier's principle lead to
the following three thermodynamical inequalities involving these quantities - see [84] and
Sec. XV, 5, 12 of [117]:

(
∂u

∂T

)
ρ,n

≥ 0

(
∂ρ−1

∂p

)
T,n

≤ 0
n∑
i,j

(
∂gj
∂Yi

)
p,T

dYidYi ≥ 0 (11.1)

where i, j = 1 . . . n and ()n means that all Yk's are kept �xed. Remarkably, thermody-
namical inequalities(11.1) hold regardless of the detailed equation of state, of the detailed
model of turbulence etc. They provide constraints on all physically acceptable deviations
from thermal, mechanical and chemical equilibrium respectively.

Together, (5.4) and (11.1) lead to the so-called general evolution criterion [115] [116]:

dT−1

dt

d (ρu)

dt
≤ ρ

∑
i

d (giT
−1)

dt

dYi
dt

+

(
ρ−1T−1dp

dt
+ h

dT−1

dt

)(
dρ

dt

)
(11.2)

where we write da =
da

dt
dt for the generic quantity a. Inequality (11.2) is a tenet of

non-equilibrium thermodynamics [94]. Even if formally trivial, the latter identity endows

(11.2) with a deep physical meaning. We recall that, by de�nition,
d

dt
=

∂

∂t
+v ·∇ where

v is the velocity, a solution of the equations of motion which describe the trajectory of
a small mass element: i.e. v it is a dynamical quantity. In contrast, a may be a ther-

modynamical quantity, like e.g. temperature. Formally, replacement of da =
da

dt
dt in the

thermodynamical inequalities leads to (11.2) ; physically, it means that these inequalities
keep on being valid as the small mass element follows its trajectory according to the laws
of dynamics. To put it in other words, we take for gfanted that if LTE holds within a
small mass element followed along its center-of-mass-motion with velocity v, then all re-
lationships among total di�erentials of thermodynamic quantities remain valid, with the

proviso that da =
da

dt
dt. All the way around, (11.2) is a far-from-trivial constraint to be

satis�ed in order that the small mass element behaves according to the second principle
of thermodynamics during its trip across the system.

11.3 Three useful inequalities

Physically, relationships (5.1), (5.5) and (11.2) correspond to the balance of mass, to the
�rst principle and to the second principle of thermodynamics respectively in a small mass
element of the �uid mixture. It is possible to obtain a corresponding triplet of inequalities
for a whole macroscopic system with volume V =

∫
dx, total internal energy U =

∫
dxρu

and total entropy S =
∫
dxρs, where we allow both V , U and S to depend on time. To
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this purpose, we invoke the identity (Reynolds' transport theorem)

d

dt

∫
Ω

dxa =

∫
Ω

dx

(
∂a

∂t
+∇ · (au)

)
- see equation (II.4.116) of [118] - for an arbitrary quantity a and a domain of integration
Ω with moving boundary, where a point on the boundary moves locally at speed u.

Moreover, it will be helpful to de�ne in the following the quantities

Ph ≡ Q+ Φ P ≡ Ph −∇ · q

The quantity Ph is just the sum of combustion and viscous power (the pedix h is for

heating), while equation (5.5) gives P = ρT
ds

dt
+ ρ

∑n
k=1 gk

dYk
dt

= ρ
du

dt
+ pρ

d

dt

(
1

ρ

)
.

Furthermore, we neglect the contribution ∝ dYk
dt

of particle di�usion (as customary in

most researches on combustion [4]), so that

P = ρT
ds

dt

Physically, P reduces therefore to the net amount of heat delivered per unit time and
volume to the small mass element, which is heated by combustion and viscous power and
cooled by radiation and heat conduction. (Here we stress the point that the quantity q in
the de�nition of P is a local quantity, and therefore P includes no convective transport;
convection -if any- is due to �ow patterns on a spatial scale >> the spatial scale of a
small mass element).

Moreover, we assume that an unperturbed state exists and write both a = a0 (x) +
a1 (x, t) for the generic quantity a and P0 = 0.

The �rst relationship will allow us to retrieve Rayleigh's criterion. Admittedly, it
contradicts Galileian invariance. Moreover, we have seen that Rayleigh's criterion in its
original form takes into account no motion of the unperturbed �ow; then, it is only self-
consistent that the heat produced in the unperturbed state per unit time is removed by
conduction and radiation only (as P0 = 0).

All the same, suitable rede�nition of the unperturbed steady state as an unperturbed
time-averaged state will allow us to overcome this di�culty: after all, our discussion of
Myers' corollary has shown that the necessary criterion of stability sounds the same way
in both cases. In particular, once a criterion for the stability of an unperturbed state
a0 = a0 (x, t) has been established, it holds also for the stability of unperturbed �uid in
motion as we are free to identify a0 as the unperturbed position of moving small mass
element of �uid, provided that each quantity is replaces by a time-average on a suitably
chosen time-scale τ and that the time derivative of this quantity refers to its evolution on
time-scales much longer than τ .
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Finally, physical intuition -in agreement with Le Châtelier's principle- suggests that
a state where an increase of T induces a decrease in energy losses is a bad candidate for
stability, as any decrease in energy losses is likely to induce further increase of T . Analo-
gous arguments hold for cooling processes 1.

Accordingly, we assume

∫
dx (∇ · q1)

[
d

dt

(
1

T

)]
≤ 0 (11.3)

Under the assumptions listed above, (5.1), (5.5), (11.2) and (11.3) lead to the following
three inequalities:

d

dt

∫
dx
Ph
T
≤ c1

dV

dt
+ c2

∫
dxPh (11.4)

− d

dt

∫
dx

[
∇ · (ρsv) + q · ∇

(
1

T

)]
≤ c1

dV

dt
+ c2

∫
dxPh (11.5)

d

dt

∫
dx
P

T
≤ c3

d2V

dt2
+ c4

d2U

dt2
(11.6)

after volume integration on the system. For details, see the proof of the equations (3.1),
(3.2) and (B.8) in [116]. Here c1, c2, c3 and c4 are constant quantities.

Physically, the quantities
∫
dxPh ,

∫
dx
Ph
T

and
∫
dx
P

T
are equal to the total heating

power, the total amount of entropy produced per unit time by heating (combustion +

1When it comes to the description of stable oscillations, Rayleigh's words are helpful again [31]:

[...] the heat received at this moment (of normal density) has no e�ect either in encour-
aging or discouraging the vibration. The same would be true of the entire operation of the
heat, if the adjustment of temperature wore instantaneous, so that there was never any sen-
sible di�erence between the temperatures of the air and of the neighbouring parts of the tube.
But in fact the adjustment of temperature takes time, and thus the temperature of the air
deviates from that of the neighbouring parts of the tube, inclining towards the temperature of
that part of the tube from which the air has just come. From this it follows that at the phase
of greatest condensation heat is received by the air and at the phase of greatest rarefaction
is given up from it, and thus there is a tendency to maintain the vibrations
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Figure 11.1: From LTE to the inequalities concerning entropy production. See text for
details.

viscous) processes and the total time derivative
dS

dt
of total entropy S respectively (the

latter identity follows from both P = ρT
ds

dt
, (5.1) and repeated application of Reynolds'

transport theorem). The consequences of (11.4), (11.5) and (11.6) have been discussed in
some detail in [116]. These inequalities are of purely thermodynamical origin and invoke
no detailed model of the physical processes ruling heat production and transport. Just
like the second principle of thermodynamics (in the form of Le Châtelier's principle) holds
within any arbitrary smallmass element within the �uid mixture at all times, (11.4), (11.5)
and (11.6) hold for the system as a whole at all times: they are constraints imposed on the
evolution of the system by the second principle, and carry no further physical meaning
than the original thermodynamical inequalities quoted at the beginning of this Section.
For the line of reasoning leaing to these inequalities, see Fig. 11.1.

In the following, we are going to discuss the relevance of these inequalities to humming.
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11.4 Variational principles and selection rules

11.4.1 Steady unperturbed state

Here we discuss (11.4) and (11.5) together as they spare the same R.H.S. and hold simul-
taneously. According to (11.4) and (11.5), a necessary condition for the stability of the
unperturbed state is that the latter satis�es the following variational principles (we skip
the subscript 0 below, unless otherwise stated):

∫
dx
Ph
T

= min with �xed V and

∫
dxPh (11.7)

∫
dx

[
∇ · (ρsv) + q · ∇

(
1

T

)]
= max with �xed V and

∫
dxPh (11.8)

In fact, if the unperturbed state violates (11.7) , then (11.4) forbids stability against

perturbations which conserve both V and
∫
dxPh but lower

∫
dx
Ph
T
. Similar arguments

hold for (11.5) and (11.8). Of course, there is no warranty alytogether that our system
actually relaxes to a stable state. But if it does, then Le Châtelier forces the stable state
to satisfy both (11.7) and (11.8).

Remarkably, (11.7) has been applied to the description of a laminar �ame by [119].
But in their work the utilization of (11.7) is justi�ed because the authors choose to start
from a particular, suitably chosen formula for the entropy produced per unit time and
volume inside the �ame -see their equations (2.1) and (2.2). Indeed, this formula allows
utilisation of the well-known linearised treatment of non-equilibrium thermodynamics de-
veloped in [90], which leads precisely to minimisation of entropy production for stable
steady states provided that the total entropy production due to all irreversible processes
(namely, combustion and heat conduction) is taken into account, not just the contribution
of conduction as in (11.7). Unfortunately, however, the treatment of [90] relies on On-
sager's symmetry relationships, which are scarcely relevant to �uids (for instance,validity
of Onsager's relationships requires that the heat conductivity is uniform across the �ame).

Admittedly, it is possible to follow the approach of [90] and to derive from mini-
mization of total entropy production (due to both irreversible processes of combustion
and heat conduction) the conservation equations of a one-dimensional,premixed, laminar
�ame [120]: but the price to be paid is the introduction of the �ame velocity itself into
the explicit espression of both the thermodynamic �uxes and the phenomenological coef-
�cients (see equations. (2.23) and (2.33) of [120]), a price which casts further doubt on
the validity of the underlying assumption of Onsager's symmetry. In contrast with [119]
and [120], we are not going to attempt derivation of the full set of consrvation equations
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from the results of our discussion in thermodynamics. Rather, we shall limit ourselves
to make use of the results of thermodynamics in order to check stability of the solutions
of the conservation equations against perturbations. Accordingly, we need no Onsager's
symmetry, we do not invoke the treatment of [90] and we rely on no assumption about
heat conduction but (11.3).

11.4.2 Unsteady unperturbed state

To date, we have assumed that the unperturbed state does not depend on time. If we
remove this assumption, then we may consider the unperturbed state as a time-average
which removes the e�ect of any fast time-scale. In this case the time derivative of the

generic quantity a (e.g. a =
∫
dxPh , a =

∫
dx
Ph
T

etc.) refers just to evolution on a

slow time-scale. Formally, we may take the time-average of both sides of the relationships
(11.4) and (11.5), invoke (7.1) and obtain

d

dt
〈
∫
dx
Ph
T
〉 ≤ c1

d〈V 〉
dt

+ c2〈
∫
dxPh〉 (11.9)

− d

dt
〈
∫
dx

[
∇ · (ρsv) + q · ∇

(
1

T

)]
〉 ≤ c1

d〈V 〉
dt

+ c2〈
∫
dxPh〉 (11.10)

In strict analogy with the above results, we may derive from (11.9) and (11.10) the fol-
lowing necessary criteria of stability in the form of variational principles:

〈
∫
dx
Ph
T
〉 = min with �xed 〈V 〉 and 〈

∫
dxPh〉 (11.11)

〈
∫
dx

[
∇ · (ρsv) + q · ∇

(
1

T

)]
〉 = max with �xed 〈V 〉 and 〈

∫
dxPh〉 (11.12)

Here (11.11) and (11.12) are the obvious generalisation of (11.7) and (11.8) respectively to
the general case of an unperturbed state which depends on time. The formal similarity be-
tween the stability criteria with steady unperturbed state ((11.7) and (11.8) and unsteady
unperturbed state ((11.11) and (11.12) recalls the similarity observed above between the
stability criteria derived from Myers' corollary for steady and unsteady unperturbed state.

Before further discussion, we remark that both (11.11) and (11.12) take the form of
selection rules. According e.g. to (11.11), between a steady, humming-free state and a
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state a�ected by humming oscillation with given period the system will select the con�g-
uration which minimizes the total, time-averaged amount of entropy produced per unit
time by heating. (Such choice may occur e.g. when the system is near a bifurcation).
This resembles the observations of [28]. The same holds if the choice is between di�erent
limit cycles, or, in contrast, two di�erent steady states with di�erent �ame shapes.

Before applying our discussion to the investigation of the properties of humming-free
premixed, �ames, in the following we are going to show that the experimental results of
[28], [29], [30] and [95] discussed above con�rm our �ndings. Moreover, we are going to
invoke the -insofar neglected- relationship (11.6) in order to retrieve Rayleigh's criterion
as a particular case.

Finally, the thermodynamic nature of our results makes allows them to be valid out-
side the domain of combustion. To show this, we shall retrieve a stability criterion -due
to Eddington in its original version- for the stability of a star against spontaneous oscil-
lations due to bistability of its opaqueness to radiation: the basic mechanism of radial
oscillations in Cepheid stars.

To start with, we observe that equation (5.1), the de�nition of
d

dt
and the formulas

for P and Ph allow us to write

∇ · (ρsv) = −∂ (ρs)

∂t
+
Ph
T
− ∇ · q

T

Let us replace this relationship in the maximised quantity on the L.H.S. of (11.8) in a
system with constant volume and constant total heating power. Many particular cases
are possible. The next Section is concerned with the discussion of these particular cases.

For a summary of the necessary stability conditions for both steady and unsteady
unperturbed states -as provided by thermodynamics- see Fig. 11.2 and Fig. 11.3. For the
connection between stability criteria according to dynamics and to thermodynamics, see
Fig. 11.4.
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Figure 11.2: Necessary stability conditions for steady unperturbed states, as provided by
thermodynamics. The label Biwa et al. refers to the benchmarks discussed below. See text
for details.
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Figure 11.3: Necessary stability conditions for unsteady unperturbed states, as provided by
thermodynamics. See text for details.
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Figure 11.4: Necessary stability conditions for steady and unsteady unperturbed states, as
provided by dynamics and by thermodynamics. As for dynamics, the words the same refer
to the couple (6.35) - (6.36). As for thermodynamics, the words the same refer to the
couples (11.11) - (11.7) and to (11.12) - (11.8). Results for unsteady unperturbed states
derive from the corresponding results for steady states after time-averaging. Rayleigh's
criterion appears in both dynamic and thermodynamic column, as its isentropic version
is a particular consequence of Le Châtelier's principle. See text for details.
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Chapter 12

Benchmarks

12.1 From the general evolution criterion to Biwa et

al.'s selection rule

For example, we may consider a system where no combustion and no viscous heating
occur, i.e. Ph = 0, and where no matter �ows across its boundary, so that

∫
dx∇·(ρsv) =∫

da · (ρsv) = 0 (here and in the following we invoke both Gauss' theorem of divergence

and the identity ∇ ·
(q
T

)
= q · ∇

(
1

T

)
+

1

T
∇ · q again and again). An example of such

a system is the couple of the solid bodies C and H in the experiment of [28], so that q,
when positive, denotes the heat �ux coming out from the bodies into the �uid. In steady

state we neglect the contribution
∫
dx
∂ (ρs)

∂t
=

∂

∂t

∫
dx (ρs) of the partial time derivative.

In this case, (11.8) is equivalent to maximisation of
∫
da · q

T
= T−1

H QH −T−1
C QC = −∆S,

i.e. to minimisation of ∆S. Note that we obtain the same result if we work with (11.12),
as far as we keep on neglecting the contribution of the partial time derivative after time-
averaging. We have therefore retrieved the selection rule experimentally found in [28].

12.2 From the general evolution criterion to Meija et

al. and Hong et al.'s experiments...

A more general case, where both assumptions Ph = 0 and
∫
da · (ρsv) = 0 are removed

even if the constraints of constant volume and constant total heating power are retained,
is also of interest. In this case we may subtract the minimised quantity in (11.7) from the
maximised quantity in (11.8) and obtain maximisation of

∫
dx

[
∇ · (ρsv) + q · ∇

(
1

T

)
− Ph

T

]

Substitution of the expression for ∇ · (ρsv) derived above leads to maximisation of

157
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−
∫
da · q

T
+ 2

∫
dx

[
q · ∇

(
1

T

)]
, i.e. to:

∫
da · q

T
− 2

∫
dx q · ∇

(
1

T

)
= min with �xed V and

∫
dxPh (12.1)

This result applies e.g. to a �ame in thermal contact with a wall at given heat release∫
dxPh. For thin �ames the volume V = Vf may be safely assumed to be very small at

all times. Moreover, we recall that q represents heat conduction and radiation, and both
processes are usually assumed to play a negligible role in the cooling of the �ame bulk,
at least as far as GT combustors are considered. Accordingly, we may neglect the volume
integral here (it will be taken into account below). In contrast, the surface integral is
given a relevant contribution ∫

wall

da · q
Tw

by the exchange of heat bewteen the �ame and the wall at temperature Tw. Minimisation
of this quantity is therefore a necessary condition for stability of a steady state, i.e. a

con�guration without humming. Any attempt to cool the wall (i.e. to raise
1

Tw
or to

raise the heat conductivity of the wall (hence to raise the amount of heat da · q which
�ows from the �ame towards the wall across a surface element da per unit time) attempts

at driving the system away from a minimum of the heat exchange
∫
wall

da · q
Tw

, hence to

destabilise the humming-free state and to trigger humming. (Note that in this problem
the domain of integration is the �ame, not the wall, so that q is positive when �owing into
the solid wall, in contrast with the convention we have adopted for the discussion of the
experiment of Biwa et al.) Our result agrees with the experimental �ndings of [29] and [30].

12.3 ...and beyond, to Arpaci et al.'s results on �ame

quenching

We may wonder what happens if we decide to neglect the surface integral and to retain
the volume integral in the minimised quantity of (12.1). Physically, this decision is justi-
�ed e.g. when temperature gradients are large. This the case of �ames near quenching,
when the �ame borders on extinction due to thermal contact with a cooler wall located
at the so-called quenching distance from the �ame, and conduction rules q. As for the
order of magnitude, the quenching distance is ≈ the �ame thickness [2], and temperature
gradients are therefore huge. No �ame survives at distances < quenching distances.
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Starting from (12.1) we obtain maximisation of∫
dx q · ∇

(
1

T

)
at given heat release and �ame volume. Remarkably, this maximisation retrieves Arpaci
et al.'s results about quenching - see Sec. 7 of [121], the maximised quantity being the
amount of entropy produced in the �ame bulk by irreversible heat transport [90]. We take
this fact as a further con�rmation of our arguments.

12.4 From the general evolution criterion to Rauschen-

bach's hypothesis

We may draw a further consequence from (11.5) in the limit of low Mach number and of
caloric perfection when (6.1) holds. Equations (5.1), (6.2) and (6.3) lead to the balance
of internal + kinetic energy [8]:

∂

∂t

(ρ
2
|v|2 + ρu

)
= −∇ ·

[
ρv

(
h+
|v|2

2

)]
+ ρT

(
∂s

∂t
+ v · ∇s

)

Now, we invoke the de�nition of the total time derivative
d

dt
as well as (6.4), the

assumption of caloric perfection and the formula h = cpT for perfect gases and obtain:

∂

∂t

(ρ
2
|v|2 + ρu

)
= −∇ ·

(
ρv
|v|2

2
+

γpv

γ − 1

)
+ ρT

ds

dt
(12.2)

Finally, in the low Mach limit we take p >> ρ
|v|2

2
and write

∂

∂t

(ρ
2
|v|2 + ρu

)
= − γ

γ − 1
∇ · (pv) + ρT

ds

dt

If, furthermore, (6.13) holds, then volume integration, time-averaging, equations (6.13)
and (6.16) and Gauss' theorem of divergence leads to:

∫
Vb

dx〈ρT ds
dt
〉 =

γ

γ − 1

∫
Ab

da · 〈W〉
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A dramatic simpli�cation on the L.H.S. occurs if we neglect the contribution of
p1

p0

to (6.6) in agreement with the M � 1 assumption, so that s1 = cp
T1

T0

. In this

case T = ζ exp

(
s

cp

)
with ζ constant, positive quantity and then T

ds

dt
=

df

dt
with

f ≡
∫ s
ds'ζ exp

(
s′

cp

)
. We stress the point that f is a monotonically increasing func-

tion of s. It follows that

ρT
ds

dt
= ρ

df

dt
=
∂ (ρf)

∂t
+∇ · (ρfv)

where we have invoked (5.1). The last two relationships lead to

∫
Ab

da〈ρfv〉 =
γ

γ − 1

∫
Ab

da · 〈W〉 (12.3)

and the time-average allows us to get rid of the contributiuon of the partial time deriva-
tive. Since f is a monotonically increasing function of s and heat conduction is negligible
for (6.1), the maximisation prescribed by the variational principle (11.8) reduces to max-
imisation of the L.H.S. of (12.3). Then, (12.3) implies maximisation of

∫
Ab
da · 〈W〉, i.e.

Rauschenbach's hypothesis [95] discussed above in connection with the experiments of
[28]

12.5 From the general evolution criterion to Rayleigh's

criterion

So far, we have not yet utilised (11.6). Together, (11.6) and the identity
∫
dx
P

T
=
dS

dt
lead to:

d2S

dt2
≤ c3

d2V

dt2
+ c4

d2U

dt2
(12.4)

For a relaxation process where both V and U are constant at all times (like, e.g., in iso-
lated systems), (12.4) implies

d2S

dt2
≤ 0
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Evolution towards thermodynamic equilibrium ( S = max ) of isolated systems ( U =
const., V = const.) provides us with a well-known example of such relaxation.

As for non-isolated systems -like e.g. the combustor of a GT- suitable boundary con-
ditions -like e.g. a constant �ow of air and fuel- may keep the relaxed state far from
thermodynamic equilibrium. Now, if we focus our attention on necessary conditions of
stability, then we are free to select the perturbation which we invoke in order to test sta-
bility. For example, we may wonder what happens if we apply a perturbation which leaves
both V and U una�ected. In this case, both repeated utilisation of (7.1) and arguments
which are similar to those discussed above allow us to derive from (12.4) the following
necessary condition for stability

∫
dx
P

T
= min

In the following, we are going to show that this condition includes Rayleigh's cri-
terion (more precisely, the relationships (6.34) and (6.35) with the acoustic energy �ux
and the energy density de�ned in (6.16) and (6.17) respectively) in the zero Mach limit
where the unperturbed state does not depend on time and (6.1) holds. This proof shall
enable us to identify the con�gurations candidated to stability by Rayleigh's criterion
with those candidated to stability by Le Châtelier's principle. In turn, this identi�cation
allow us to describe the combustors which are possibly free from humming according to
Rayleighs' criterion with states corresponding by any of the Le Châtelier's consequences
discussed so far - and in particular with those steady-state solutions of the constitutive
equations (5.1) - (5.5) which satisfy the necessary condition (11.7) for the stability of
steady (i.e. humming-free) states. Of course, we are perfectly free to choose (11.8) rather
than (11.7), but the choice of (11.7) spares us any need for a description of the heat �ux q.

We are going to take advantage of this fact in the following Chapters. Here we an-
ticipate that -in contrast to what happens with Rayleigh's criterion- our discussion will
require no explicit knowledge of the spectrum of acoustic �uctuations.

Now, it comes to the proof. Basically, it is a generalisation of the proof contained in
Appendix C of [116]. The minimum property quoted above ensures that any perturbation

of the minimized quantity near a stable state is non-negative: d

(∫
dx
P

T

)
≥ 0. The do-

main of integration is the combustor volume Vb, which is a constant quantity. Taking the

time-average we have 〈d
(∫

dx
P

T

)
〉 ≥ 0. Starting from here, we show in the Appendix

on the auxiliary relationships concerning Rayleigh's criterion that the following chain of
inequalities holds:

∫
Vb

dx〈D〉+ T0 max

∫
Vb

dx〈(∇ · q1)

(
1

T

)
1

〉 ≤ K

∫
Ab

da · 〈W〉 (12.5)



162 CHAPTER 12. BENCHMARKS

where we have de�ned K ≡ FmaxT0 max, T0 max is an upper bound on the unperturbed
temperature T0, Fmax is a suitably chosen constant and we have explicitly written down
the domains of integration, i.e. the combustor volume Vb for the volume integration and
the combustor surface Ab on the R.H.S. and the R.H.S. respectively. For the moment, let
us neglect the contribution ∝ ∇ · q1 of heat conduction and radiation, as it is custom-
ary in premixed combustion. In the Appendix on the auxiliary relationships concerning
Rayleigh's criterion we show that it is always possible to choose Fmax in such a way that
(12.5) reduces to (6.34) and (6.35) if the operator ≤ reduces to < and to = respectively.

12.6 Outside thermo-acoustics: Eddington's Cepheids

Now, let us investigate what happens if radiation and conduction are the dominant con-
tributions to (12.5). This may happen e.g. in a system where no heating processes occur
(i.e. 〈D〉 = 0 and heat is mainly transported, across the system, not produced within
it) and where either boundary conditions force v · da = 0 on the boundary or adiabatic
processes only occur (so that 〈W〉 ·da = 0). In this case the necessary condition (12.5) for

the lack of oscillations reduces to
∫
V
dx〈(∇ · q1)

(
1

T

)
1

〉 ≤ 0, i.e. -not surprisingly- the

time-averaged version of (11.3). Since d

(
1

T

)
= −Gdp and G is both positive-de�nite

and lower-bounded everywhere at all times for quasi-adiabatic perturbations in a neigh-
bourhood of a stable steady state, then

∫
V

dx〈p1 (∇ · q1)〉 ≥ 0 (12.6)

The physical meaning of the stability criterion (12.6) is due to Eddington [122]:

Consider the mode in which thermal dissipation acts in the case of a sound
wave. The air is hottest at a point of maximum compression. If this heat leaks
away, the compressed �uid loses some of its spring, and the expansion which
follows has diminished energy -consequently, the waves decay. If, on the other
hand, the air could be persuaded to lose heat at points where it was rari�ed and
coolest, the ensuing compression would be assisted and the waves reinforced

The two cases correspond to the occurrence of the operator > and < in (12.6) respectively.

Marginal states too (oscillations with stable amplitude) which correspond to the case =,
are also well described by Eddington:
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Intermediately, a loss or gain of heat at a point of normal density neither
dissipates nor increases the energy [...] the material relatively loses heat as it
passes through its normal density expanding, and gains heat at the same stage
contracting; but neither gains nor loses when most compressed or most rari�ed

These words resemble closely Rayleigh's words [31]:

if the air be at its normal density at the moment where the transfer of heat
takes place, the vibration is neither encouraged nor discouraged

Remarkably, however, Eddington was not concerned with the onset of spontaneous acous-
tic oscillations in a Rijke's tube. Rather, he investigated spontaneous oscillations of a
Cepheid star. A Cepheid is a member of a class of pulsating variable star. Typical
Cepheids pulsate with periods of a few days to months, and their radii change by several
milion Km (30 %) in the process -see e.g. Tab. III of [123]. Helium is the gas thought
to be most active in Cepheid pulsation. The more helium is heated, the more ionized
it becomes. But He++ is more opaque than He+. At the dimmest part of a Cepheid's
cycle, the ionized gas in the outer layers (envelope) of the star is opaque, and so is heated
by the star's radiation, and therefore it begins to expand. As it expands, it cools, and
so becomes less ionized and therefore more transparent, allowing the radiation to escape.
Then the expansion stops, and reverses due to the star's own gravitational attraction.
The process then repeats [124].

The mechanics of a Cepheid oscillation as a heat engine was proposed by Eddington in
1917, while Rayleigh worked with Rijke's tube in 1876. However, to the author's knowl-
edge Eddington was no aware of Rayleigh's observations. Despite the huge di�erences
between the two spontaneously oscillating systems, Rijke's tube and a Cepheid, Rayleigh
and Eddington's arguments are quite similar, as thermodynamics is the same in both
cases 1.

As for the assumptions underlying (12.6), no heating (nuclear) process occurs in the
envelope, and heat is mainly transferred across the layers from the star nucleus towards
the external world, Moreover, it can be safely assumed that the time-averaged speed van-
ish on the boundaries, provided at least that the out�ow of matter has a negligible e�ect
on the star mass balance during one oscillation. Indeed, radiation plays a crucial role in
the oscillation, in contrast to oscillations involving GT �ames.

The main problem left behind in our discussion is that -unlike both Rijke's tube and
GT combustors- star dynamics is heavily a�ected by gravity, which is a body force -and we
have self-consistently neglected body forces so far. According to [33], suitable modulation

1For example, comparison of equation (1) of Ref. [124] with our formula (6.17) shows that a source
term of oscillation in Eddington's work coincides with the destabilising term of Rayleigh's criterion for
∇s0 = 0.



164 CHAPTER 12. BENCHMARKS

of body forces may be stabilising. In the particular case of gravity, however, it turns out
that its modulation reduces to adding the gravitational potential to u, h and the gj's
everywhere at all times, in agreement with the small correction theorem -see equation
(24.16) of [84]. Given the identity

∑n
k=1 Yk ≡ 1, it follows that gravity leaves both (5.4)

and (11.1) - hence the general evolution criterion (11.2) and all its consequences (11.4),
(11.5) and (11.6) - una�ected, provided that by u, h etc. we keep on referring to the
corresponding expressions in absence of gravity. Since gravity is a conservative force, it
is far from surprising that gravity leaves both dissipation-relevant quantities P and Ph
una�ected.
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Chapter 13

Absence of humming

13.1 Generalities

Rayleigh's criterion provides a necessary condition of stability for premixed �ames. We
have shown that if a �ame is stable according to Rayleigh's criterion then it is also stable
according to Le Châteliers' principle of thermodynamics, whose range of validity is far
larger than the range of validity of Rayleigh's criterion and which lead to various corol-
laries, including variational principles and selection rules.

Accordingly, if we make use of any of the latter corollaries our results will be grounded
on the same �rm basis of Rayleigh's criterion itself, while getting rid of the limitations
intrinsic of this criterion, including the zero mean �ow approximation and the lack of
explicit information concerning the shape of humming-free �ames.

In this Chapter we apply our previous results to the description of premixed, lean,
swirl-stabilized combustors (more precisely, of systems made of �ame, �uid and combus-
tor) which undergo no humming.

Again, we stress the point that absence of humming means no absence of combustion
instability. Here we assume that, once triggered, the latter instability either relaxes back
to the unperturbed state or saturates to some uno�ensive, low level- and lead the system

to no catastrophic failure where quantities like e.g. | d
dt

∫
dx
Ph
T
| diverge beyond control.

We investigate the consequences of this assumption, namely the necessary conditions
for the system not to be destroyed. Hopefully, steady-state GT operation can be described
as a stable steady state, where stability is given the meaning stated above and combustion
instability is either of harmless amplitude or is averaged out on the time-scale of interest
to the user (� 1 s) 1.

To this purpose, �ve intermediate steps are useful here and in the following.

1This is also why we assume the unperturbed state to be (swirl-)stabilised against �ashback, lift-o�
and blow-o�.
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• We neglect viscous heating in comparison with combustion heating, so that Ph is
due to combustion only.

• We remember that combustion occurs in the �ame only regardless of the occurrence
of humming, so that as for the domain of integration we may replace the combustor
volume with the �ame volume.

• We introduce a distinction between an upstream region (where no burnt gas is
present) and the downstream region (where burnt gases are present). The �ame
separates the upstream region from the downstream region.

• Even if turbulence occurs we assume that the �ame thickness is negligible with
respect to the linear size of the combustor, so that the �ame is a smooth mathe-
matical surface in space. Correspondingly, we refer to sL as to the �ame velocity
everywhere; fur turbulent �amess it is to be replaced by its turbulent counterpart
sT . Admittedly, this assumption is strongly unphysical. Basically, in fact, even in
case of small turbulent �uctuations and large Damkoehler number for all chemi-
cal species -see [4]- we are going to identify �ames without humming with �ames
where all other instabilities are also suppressed, so that speaking of a �ame surface
in steady state is meaningful. However, this strong restriction is useful for mathe-
matical convenience, and we are going to show that it allows to obtain physically
meaningful results.

• We assume for simplicity that both the temperature Td of the downstream region
and the temperature Tu < Td of the upstream region are uniform on the �ame
front (subscripts u and d refer to the upstream and to the downstream region
respectively). This approximation corresponds to neglect high-frequency modes
(see pag. 325 of [53]), and is also likely to be quite unphysical. However, it will be
dropped in the following.

13.2 Shapes of stable �ames

13.2.1 The absence of humming as a problem of variational cal-

culus

A necessary condition for the absence of humming

The aim of this Chapter is to write down a necessary condition for stability which in-
volves the �ame shape explicitly, in contrast with Rayleigh's criterion which does so only
implicitly.

For simplicity, we neglect both particle di�usion, heat conduction and radiation. We
assume that complete combustion occurs, i.e. no fuel is present on the downstream side of
the �ame. Moreover, we consider just n = 3 chemical species, i.e. air, fuel and combustion
products; this implies that we have just 2 independent equations for the Yk's (say, for air
and fuel) because of the identity

∑n
k=1 Yk ≡ 1. In premixed combustion both air and fuel

are present on the upstream side of the �ame. Finally, we assume both caloric perfection
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and in�nitely fast, irreversible combustion [4] where the heat release density is

Ph = P0kYairYfuel (13.1)

while the number of combustion reactions per unit time and volume and the production
rate of air and fuel are kYairYfuel, −AkYairYfuel and −BkYairYfuel respectively, with the
quantity k = k (T ) > 0 which plays the role of an Arrhenius coe�cient and A, B and P0

positive constant coe�cients. Outside the �ame no combustion occurs, i.e. k = 0 2.

In the last Chapter we have shown that if a system �ame + �uid undergoes no hum-

ming then we may describe it as a steady-state (
∂

∂t
= 0) solution of the constitutive

equations which satisfy the necessary condition (11.7) for the stability of steady states.
Utilisation of (11.7) spares us the need for information on q. Starting from both (5.1),
(5.2), (6.2), (12.2) and the de�nitions of P and Ph we obtain the following equations in
steady state:

∇ · (ρv) = 0 (13.2)

v · ∇Yair + AkYairYfuel = 0 (13.3)

v · ∇Yfuel +BkYairYfuel = 0 (13.4)

ρ (v · ∇)v+∇p = 0 (13.5)

∇ ·
(
ρv
|v|2

2
+

γpv

γ − 1

)
− P0kYairYfuel = 0 (13.6)

As for the homogeneous version of (13.3) and (13.4) outside the �ame, see equations (A3)
and (A4) of [125]. As for (11.7), since combustion is localized at the �ame the minimized

2Positive values of A and B mean that the number of air and fuel particles lowers as the number of
combustion reactions increases. Indeed, the present treatment is a slight generalization of the treatment
in Chapter 2 of [4], where the additional condition Yair ≈ 1 is included for lean combustion.
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quantity
∫
dx
Ph
T

reduces to a volume integral
∫
Vf
dx
Ph
T

on the �ame volume, in agreement

with (6.22). The constraint of �xed volume V ≡
∫
V
dx = Vf = const. plays just the role

of the de�nition of Vf ; as such it is automatically satis�ed, and will be dropped below.
Physically, it means that the �ame is assumed to stand at rest when no humming occurs.
The constraint of �xed heat release reads

∫
Vf
dxPh = Wc. In the following we focus our

attention on the geometry of stable �ames; accordingly, we are going to keep the pro�les
of both T and Ph across the �ame �xed

3. Then equation (13.1) makes the constraint of
�xed heat release to reduce to

kYairYfuel = P ∗ (13.7)

where P ∗ is some known function of x which satis�es the property
∫
dxP ∗ =

Wc

P0

. Its

exact structure is of no interest in the following.

Again, just like in Rayleigh's criterion, the �ame volume appears as the domain of
integration of a volume integral. The novelty lies in the fact that the volume integral is
a minimised quantity, and that the minimisation is constrained by (13.2), (13.3), (13.4),
(13.5), (13.6) and (13.7). The constrained variational principle links �ame geometry and
�ame stability. Here and in the following, we are going to make use of tools of variational
calculus, which are brie�y described in the corresponding Appendix.

After introducing 8 Lagrange multipliers µ (x), ζ (x), ϑ (x), ξ (x), ν (x) and λ (x) for
the constraints (13.2) - (13.7) which involve 8 physical quantities ρ (x), v (x), Yair (x),
Yfuel (x), p (x) and T (x), the constrained minimization in (11.7) leads to:

∫
V

dxL = min (13.8)

where we have introduced the Lagrangian density

3This makes sense even if Yair ≈ 1 as integration of the equations of motion (13.4) and (13.6) leads
in this case to equations (2.35) and (5.37) of [4] (or to its generalisation to Le 6= 1 in Sec. 4 of Ref. [6]).
In turn, these equations unambiguously link the suitably normalised pro�les of T and of Yfuel across the
�ame. Even at �xed pro�les, the upstream (or equivalently, downstream) values of both T and Yfuel
may still undergo variation. This is why we are still allowed to consider both T and Yfuel as Lagrangian
coordinates in the following.
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L ≡ kYairYfuel
T

+ µ∇ · (ρv) + ζ (v · ∇Yair + AkYairYfuel) +

+ ϑ (v · ∇Yfuel +BkYairYfuel) + ξ · (ρv · ∇v+∇p) +

+ ν

[
∇ ·

(
γpv

γ − 1
+
ρv |v|2

2

)
− Ph

]
+ λ (kYairYfuel − P ∗)

and we have taken into account that no combustion occurs outside the �ame. (We have
dropped the dependence on x for simplicity. Moreover, we have explicitly written the
generic domain of integration V -rather than Vf of Vb- with no ambiguity, as volumes are
constant quantities here). There are 16 Lagrangian coordinates in (13.8), i.e., µ, ζ, ϑ, ξ,
ν, λ, ρ, p, T , v, Yair and Yfuel. Correspondingly, there are 8 + 8 = 16 Euler-Lagrange
equations. The fact that we consider ρ, p and T as independent variables allows our
results to depend on no particular choice of the equation of state. The Euler-Lagrange
equations include the 7 balance equations (13.2), (13.3), (13.4), (13.5), (13.6) and (13.7).
Steady-state con�gurations of the system combustor + �uid + �ame solve these equations.
If these steady-state solutions are also stable, then they solve also the remaining 9 Euler-
Lagrange equations. The search of a stable con�guration reduces therefore to a problem
of variational calculus 4.

Jump conditions across a thin �ame

As expected, solving the Euler-Lagrange equations explicitly in the general case turns
out to be quite a formidable task. Luckily, dramatic simpli�cation occurs if we focus our
attention on the neighbourhood of a thin �ame in the limit of low Mach number. In this
case, in fact, the jump conditions at the �ame take a simple form [8] [6]:

p|du = 0 v‖|du = 0 v⊥|du = αv⊥u (13.9)

where α 6= 0 is a function of Tu; moreover, a⊥ ≡ (a · n)n, a‖ ≡ a − a⊥ = (n ∧ a) ∧ n
for an arbitrary vector a and n is the unit vector (n · n ≡ 1) normal to the �ame and
pointing outwards, in agreement with the convention of [4] (n · vd > 0, n · vu < 0).

Further simpli�cation occurs if we neglect ∇‖a for the generic quantity a in the follow-
ing. Admittedly, this can be taken for granted in �at, unstretched �ames only, which the
jump conditions (13.9) have been originally proven for, but which are also never stable
because of the Darrieus-Landau instability. Luckily, if the �ame is not too stretched then

corrections due to �ame curvature are of order ∝ O

(
1

Pe

)
� 1 where the Peclet number

4Indeed, a necessary condition for any �eld to solve the extremum problem (13.8) is that this �eld
solves the corresponding Euler-Lagrange equations. Thus, mathematics nicely �ts thermodynamics.
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Pe ≡ δL
L

is � 1 for thin �ames, δL being the laminar �ame thickness [6]. In particular,

neglecting ∇‖T is equivalent to neglect high-frequency modes -see p. 325 of [53]- and is
reasonable in steady-state analysis.

Humming vs. shape and upstream �ow

We show in the Appendix on the auxiliary relationships concerning stable �ames that
(13.8) and (13.9) lead to a necessary condition for stability against humming which takes
the form of a relationship between the upstream �ow and the shape of the stable �ame:

∫
u

(vu · n)(∇∧ n)‖da = 0 (13.10)

where
∫
u
da denotes surface integration on the upstream face of the �ame. Since we are

dealing with steady states with �xed pro�les of T across the �ame and negligible ∇‖T , we
anticipate here that equations (14.1) and (14.2) below ensure that the minimized quantity∫
dx
Ph
T
|steady in (11.7) is equal to

∫
dxPh
Tf

with Tf constant quantity, just as ∇T = 0 were

uniform with T = Tf everywhere across the �ame. In the latter case, it is possible to
show (see Sec. 3 of [126]) that the solutions of the Euler-Lagrange equations of (11.7)
solve also the Euler-Lagrange equations of the variational principle

∫
dxPh = min with �xed V and T = Tf everywhere (13.11)

Again, we drop the constraint of �xed volume
∫
Vf
dx = Vf , as it plays just the role of the

de�nition of Vf and is automatically satis�ed for thin �ames (see below) where it can be
taken at an arbitrarily small value whose actual value is not relevant. Now, the fact that
combustion occurs inside the �ame only ensures that

∫
dxPh =

∫
Vf
dxPh; moreover, the

constraint of �xed heat release 5 reads
∫
Vf
dxPh = Wc and the facts that the pro�le of

Ph is �xed and that ∇‖Ph is negligible ensure that
∫
dxPh ∝ Vf , so that minimisation of∫

dxPh in (13.11) implies minimisation of the �ame volume. Finally, for a thin �ame the
�ame volume is an increasing function of both the �ame thickness and the �ame area

Af ≡
∫
u

da

But the former is uniform across the �ame as all parallel gradients of the type ∇‖a are

5Remarkably, the constraint of �xed heat release
∫
Vf
dxPh = Wc leaves the validity of (13.11) unaf-

fected: the former gives the value of the heat release, the latter requires that this value is a minimum,
i.e. that any perturbation raises it.
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negligible, so that minimisation of the �ame volume required by (13.11) implies minimi-
sation of Af . The equations of motion a�ect this minimisation through (13.10), and we
obtain:

∫
da = min. with

∫
(v · n)(∇∧ n)‖da = 0 (13.12)

where we have dropped both the pedix 'u' (for simplicity, unless stated otherwise) and the
constraint on temperature T as no quantity involved in (13.12) depends explicitly on T ;
let it be understood that the pro�le of temperature across the �ame remains �xed. The
reciprocity principle for isoperimetric problems of variational calculus 6 - see Sec. IX.3 of
[127]- ensures that the relaxed state which satis�es (13.12) satis�es also:

∫
(v · n)(∇∧ n)‖da = max. with �xed

∫
da (13.13)

Once v is known upstream, (13.13) provides us with information about possible shapes
of stable �ames. In particular, equation (13.13) is a necessary condition for the absence
of humming which involves two things:

• the upstream �ow

• the shape of the �ame

Then, it takes still a couple of independent pieces of information concerning this �ow and
this shape in order to �nd the actual shape of a stable �ame for a given upstream �ow.
As we are going to show, the required pieces of information are the fact that the Mach
number is low and the fact that the �ame is thin.

Equation (13.13) has far-reaching consequences. We are going to investigate some of
these consequences in the following.

13.2.2 Axisymmetric, swirl-stabilised, thin �ames...

Axisymmetric

The discussion undergoes dramatic simpli�cation in the axisymmetric case:
∂

∂χ
≡ 0 in

the cylindrical coordinate system {r, χ, z}. We refer to Fig. 13.1.

6In a nutshell, and stated in non-rigorous words, the reciprocity principle says that the solution of
the variational principle A = min . with the constraint of �xed B solve also the variational principle
B = max . with the constraint of �xed A. For example, the sphere is both the solid with given surface
area which encompasses the maximum volume of space and the solid with given volume which is bounded
by the minimum surface area. Basically, the reciprocity principle follows from the fact that the two
variational principles lead to the same Lagrangian density with di�erent de�nitions of the Lagrangian
multipliers.
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Figure 13.1: Geometrical quantities for an axisymmetric �ame surface - see text for de-
tails.

To start with, let us write down some useful mathematical relationships, which will
turn out to be useful in the following. If the boundary surface of the �ame volume takes

(locally at least) the form G(x) = const., then n = − ∇G
|∇G|

. The actual value of the

constant value of G on the �ame has no physical meaning.

We invert G = G(r, z) locally and write G = z − f(r), so that ∇G = (−f ′, 0, 1), f ′ ≡
df

dr
= tan η and (∇∧ n)‖ = −(0, Kf ′, 0) where K ≡ f ′′

(1 + (f ′)2)3/2
=

dη

dl
, tan η,

dl =
√

1 + f ′2dr and l are the curvature, the slope, the line element and the arc length
respectively [128] of the curve z = f(r) which belongs to the plane (r, z) and whose rota-
tion generates the boundary surface of the �ame volume. The area element of the �ame
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is da = 2πrdl.

Swirl-stabilised

Streamfunction We focus our attention on the word swirl in this Section. The reason
of the word stabilised will be clear in the next Section.

In the low Mach limit we write ∇ · v = 0 on the upstream side the �ame 7. The
axisymmetric solution of this equation in cylindrical coordinates has the form:

v =
∇ψ ∧ eχ

r
+
F (ψ) eχ

r
(13.14)

where we have introduced the stream function ψ = ψ(r, z) (with the dimensions of a
velocity times an area) and the unit vector eχ in the azimuthal direction - see equation
12 of Ref. [129] 8 and Fig. 13.2 for a stream function map in a swirled, axisymmetric �ow
where no combustion occurs.

The velocity has components vr = −1

r

∂ψ

∂z
and vz = +

1

r

∂ψ

∂r
on the meridian plane

χ = const., while the azimuthal component of the velocity is just vχ =
F

r
, and F is

a function of ψ. The components of v on the upstream side of the �ame lie on ψ = const.
surfaces. As for the physical meaning of ψ, �rst of all we note that ψ and ψ − ψ0, with
ψ0 = const., lead to the same v -a fact which will turn out to be useful in the following.

Moreover, equation (13.14) implies that v · n = −1

r

dψ

dl
, i.e.:

2πdψ = −v · nda (13.15)

i.e. dψ is proportional to the mass �ow −ρuv · nda which comes from the upstream side
of the �ame and impinges on the annulus of �ame area da 9. In particular, equations
(13.10), (13.13) and (13.15) lead both to:

∫
Kf ′dψ = 0 (13.16)

7Here and in the following we focus our attention on the swirl of the upstream �ow only, in contrast
e.g. with the approach of Ref. [12] which focusses on swirled downstream �ows. Physically, in fact,
causality requires that it is the impinging �ow which a�ects the �ame shape in premixed combustion.

8When dealing with ψ, we are going to invoke again and again relationships taken from Ref. [37]
below, where the role of v on the upstream side of the �ame is played by an axisymmetric magnetic �eld
at zero divergence.

9On the upstream side v · n < 0 because n points outside, i.e. from the �ame towards the unburnt
gases -see Fig. 1
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Figure 13.2: Meridian cross-section of iso-ψ surfaces in a swirled, axisymmetric �ow with
PVC and no combustion -from Ref. [5].

and to:

∫
Kf ′dψ = max. with �xed

∫
da (13.17)

In turn, (13.17) implies:

δ

(∫
Kf ′dψ +

∫
θda

)
= 0 (13.18)
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where θ is a Lagrange multiplier with ∇θ = 0. We are going to invoke (13.17) and (13.18)
again and again in the following.

It takes no further computation, however, to show that (13.17) allows no �ame with
K = 0 everywhere (henceforth referred to as perfectly �at �ame) to be stable 10. In fact,
(13.17) reduces to maximisation of the �ame area -hence of the heat release- for such
�ames: and this is rather a condition for instability. Accordingly, we shall consider no
perfectly �at �ame as an eligible candidate to stability in the following.

The equations of motion provide us with a link of ψ and F . As usual by now, we write

p >> ρ
|v|2

2
, ∇p ≈ 0 in the low Mach limit and neglect viscosity, so that equation (6.2)

in steady state (
∂

∂t
≡ 0) reduces to v∧∇∧ v = 0. Substitution of equation (13.14) leads

therefore to the following equation 11:

∂2ψ

∂r2
− 1

r

∂ψ

∂r
+
∂2ψ

∂z2
+

1

2

d (F 2)

dψ
= 0 (13.19)

The stream function ψ(r, z) solves equation (13.19) for a given pro�le ∝ F (ψ) of the az-
imuthal velocity. The ψ = const. surfaces are topologically similar to possibly distorted,
nested tori labelled by ψ. Solution of equation (13.19) requires a boundary condition, say
ψ = ψb.

Physically, the dependence of F on ψ describes the dependence of the azimuthal com-
ponent of v on the other components of v, or, to put it in other words, it represents the
swirl in the �ame-supporting upstream �ow [129]. The words �ame-supporting are given
a precise meaning below, and the impact of swirl on stability is also discussed. To start
with, a short discussion of the concept of swirl is required.

Swirl The swirl depends on the boundary conditions, including e.g. the blade pitch in
the swirler at the combustor inlet. Usually, combustor designers de�ne a swirl number SN
as a suitably normalized, dimensionless ratio of the axial �ux of azimuthal momentum

10We recall we are dealing with premixed �ames supported by a �ow impinging from the side of unburnt
gases. We discuss neither �ames where the incoming �ows of unburnt gases impinges from both sides of
the �ame, nor �ames where fresh gases and combustion products are separately blown against the �ame
from opposite sides; in both cases, admittedly, �ames may be both �at and stable -see Fig. 2.20 of [4].
Moreover, we should not identify our perfectly �at �ame with a stagnation point �ame; by de�nition, in
fact, a stagnation point �ame has zero total curvature everywhere -see eq. 2.89 and page 71 of [4]- i.e. (in

our formalism) Ktot = K +
1

r
= 0 everywhere. As for the de�nition of total curvature, see our Appendix

on �ame velocity.
11See equation (12) in [129]. This equation is called Grad-Shafranov equation in [37].
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and the axial �ux of axial momentum, where both �uxes have been integrated on the
combustor radius Rb. Generally speaking, the larger SN , the more swirled the �ow. In
the case of negligible pressure jump, we have [1]:

SN ≡
∫ Rb

0
drr2vzvχ

Rb

∫ Rb
0
drrv2

z

Depending on the detailed combustor design, many approximate expressions of SN are
available. Usually, detailed computation of SN is an output of full CFD computations.
Generally speaking, however, and in agreement with physical intuition, it turns out that
SN is an increasing function of the angle between the direction of the �ow at the exit of
the swirler's blade and the axis of symmetry of the combustor, or, equivalently, of the

angle βswirl (0 ≤ βswirl ≤
π

2
)) between the swirler blade and the axis of symmetry of the

combustor [1]. For example, if βswirl = 0
(
βswirl =

π

2

)
then the axial �ow of azimuthal

momentum is negligibly small (in�nitely large) with respect to the axial �ow of axial
momentum, and SN goes to 0 (to ∞). Remarkably, the same holds also for the axial and
azimuthal �ow of mass: the larger βswirl, the larger the azimuthal mass �ow with respect
to the axial mass �ow.

In the language of equation (13.19), it is customary [37] to de�ne the following dimen-
sionless function of ψ:

q (ψ) ≡ 1

2π

dϕ

dψ

where

ϕ = ϕ (ψ) ≡
∫
Aψ

F

r
d2x = 2π

∫ ψ

ψ0

q (ψ′) dψ′

is the �ux of the azimuthal component vχ =
F

r
of v across the surface Aψ bounded by

ψ(r, z) = const. in the meridian plane. Here the constant quantity ψ0 plays the role of an
extremum of integration.

Usually, regions with large shear (i.e. where |∇v| is large) correspond to large gra-
dients of q. Moreover, it can be shown -see again Ref. [37]- that q (ψ) is precisely the
number of turns made by a �ow line in the azimuthal direction per each closed loop made
by the �ow line in the meridian plane: as such, q (ψ) goes to zero (to ∞) as SN goes
to zero (to ∞) and is a monotonically increasing function of SN for all values of ψ. In
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contrast with SN , however, q (ψ) depends on ψ: it is therefore a local measure of the
inclination of the �ow lines. As such, it will be utilised in the following.

Thin

Now, the assumption of thin �ame de�ned above allows us to give the words �ame-
supporting �ow a precise meaning. For a thin �ame, G (x) is a steady state solution of
the well-known G-equation [75]

∂G

∂t
+ v · ∇G− sL|∇G| = 0 (13.20)

Here we have written the G-equation for a laminar �ame; see [4] for its generalisation to
a turbulent �ame, which is essentially equivalent to (13.20) provided that we replace sL
with its turbulent counterpart sT . Together, (13.20) in steady state 12 and the de�nition
of n lead to the simple relationship 13

v · n = −sL (13.21)

This is the relationhip which links the �ame shape (through n), the �ame velocity and
the impinging �ow. Stabilisation strategies against lift-o�, �ashback etc. refer to this
relationship - and since v is swirled, this is also why we speak of swirl-stabilised �ames
here. Equation (13.21) satis�es the requirement of causality, as it ensures the upstream

12In the Appendix on the auxiliary relationships concerning stable �ames we have exploited the thinness
of the �ame in order to reduce an integral on the �ame surface to the sum of the contributions of the
upstream and the downstream side of the �ame. Here the �ame thinness allows us to make a small error
if we identify the generatrices of both the upstream and the downstream side of the �ame with the same
function G. This is equivalent to say that the di�erence between the solutions of equations (2) and (3)
of [75] is small.

13There is a formal di�culty here. Strictly speaking, G is no Lagrangian coordinate, and equation
(13.20) is therefore no allowable equation of motion in the framework of our variational problem, even in
its simpli�ed version (13.18). The fact that the constant value of G on the �ame has no physical meaning
allows us to overcome this di�culty. With no lack of generality, in fact, we may asusme this constant value
to vanish identically on the �ame. Then, straightforward algebra shows that if a function y (x) solves
(13.20) in steady state with y = 0 everywhere on the �ame, then it solves also the Euler-Lagrange equation

of the variational principle
∫
dxMv = min . with Lagrangian density Mv ≡

y (v · ∇y)
2

2
− ys2L|∇y|2

2
and

Lagrangian coordinate y (here we take ∇sL = 0 for simplicity). Now, let us add
∫
dxλMv to the

minimised quantity in (13.11) with λ Lagrange multiplier. We have therefore to solve the variational
problem

∫
dx (L+ λMv) = min ., which replaces (13.8). We retrieve (13.21) below as the Euler-Lagrange

equation corresponding to λ. Moreover, all other Euler-Lagrange equations coincide with the Euler-
Lagrange equations of (13.8) -so that (13.13) remains una�ected- provided that λ = 0. Physically, this
agrees with the requirement of causality: in fact, it is the upstream �ow which determines the shape of
the �ame.
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�ow -i.e., the �ow before combustion has occurred- to rule �ame shape and stabilty. This
is why we focus our attention throughout this discussion on the upstream �ow. Equation
(13.21) has a further consequence, as it links �ame stability and the impinging �ow just
near the �ame. This suggests that the detailed pattern of upstream �ow far from the
�ame a�ects the stability of the latter only weakly. It follows that even if the �ame lies
near a highly sheared region, we make a small error if we assume that q ≈ const. upstream
far from the �ame. We shall take advantage of this fact below.

We stress again the point that there is nothing special with sL; in case of turbulent
�ame, we may just replace sL with its turbulent counterpart sT [2] here and in the follow-
ing, provided at least that the concept of �ame surface and of the related vector n still
makes sense.

Together, (13.14), (13.21) and the de�nition of n provide us with the following equation

∂ψ

∂r
+ f ′

∂ψ

∂z
− rsL

√
1 + f ′2 = 0 (13.22)

Equation (13.22) holds at the �ame -see Fig. 13.3. It is a connection among ψ, sL and f ,
i.e. between the upstream �ow, the microscopic physics of combustion and the shape of
the �ame respectively. This connection is of purely kinematic nature, and is satis�ed at a
�ame with �ame velocity sL whenever the latter is fed by an upstream �ow with stream
function ψ. This is the looked-for meaning of the wordings �ame-supporting �ow.

Equation (13.22) is the third one out of the three above quoted, independent conditions
required for the description of the shape of a stable, axisymmetric, swirl-stabilised �ame:
it is precisely the condition dictated by the requirement (13.20) of a thin �ame.

The other two requirements are dictated by le Châtelier's principle and by the fact that
the Mach number is low, i.e. by (13.18) and by (13.19) respectively.

As for (13.18), equations (13.15) and (13.21) make the variational principle to deal with
a single integral with the same di�erential of integration variable dummy da.

As for (13.19), it links ψ and the boundary conditions -including the swirl.

Our search for a self-consistent description of the shape of stable, premixed, axisym-
metric, swirled, thin �ames is over. We are going to discuss some properties of such shapes
in the following.

Before further discussion, however, we would like to stress an implicit but important
consequence of the three conditions we have just found. Since they describe a humming-
free con�guration with the help of the relationships (13.21) and (13.22) which hold just
at the �ame, no detailed knowledge of the upstream �ow far form the �ame is explicitly
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Figure 13.3: The same as in Fig. 13.1, but with iso-ψ surfaces in addition. Green lines
displays the intersection of iso-ψ surfaces with the meridian plane. At the �ame, equation
(13.22) links the derivatives of the streamfunction, the �ame velocity and the slope of the
�ame generatrix f (r). Detailed knowledge of ψ far upstream is not relevant here.

involved. To put it in other words, knowledge of the solution ψ for (13.19) is required near
to the �ame only. According e.g. to (13.21), the only quantities relevant to stabilisation at
each point of the �ame are the local values both of �ame velocity and of the angle between
n and the tangent to the iso-ψ surfaces in the meridian plane. It follows that, far from
the �ame on the upstream side, we are allowed to content ourselves with approximate
solutions for ψ only. We are going to take advantage of this possibility below. Finally,
with the wordings upstream �ow we are going to refer to a shortcut for upstream �ow
near to the �ame, which supports and stabilises it in the following.



182 CHAPTER 13. ABSENCE OF HUMMING

13.2.3 ...with non-negligible curvature

We are going to limit further our attention on two particular cases.

Firstly, we shall discuss �ames with non-negligible curvature (K 6= 0 everywhere) and
where the velocity v of the �ow impinging on the �ame is ≈ tangent to the �ame -i.e.
v · n ≈ 0- almost everywhere. The quantity v · n achieves its maximum value v · n = |v|
just at a location which we refer to as the �ame tip in the following. Such �ames are
of practical interest in manufacturers' test-rigs as they resemble real GT combustors. As
such, we are going to apply our result to a case of relevance to Ansaldo.

Secondly, we shall discuss stable �ames with negligible curvature (K ≈ 0 everywhere).
Even if scarcely relevant to manufacturers of GT combustors, the discussion will allow
us to retrieve some well-documented result of �ame stability. We take this outcome as a
further benchmark of our approach to �ame stability focussed on thermodynamics.

13.3 Bistability...

Shapes of stable �ames correspond to solutions of (13.18). In order to facilitate the search
for such solution, we start with the discussion of the constraint (13.16). To this purpose,
we rewrite (13.16) with the help of both (13.15) and the relationship da = 2πrdl as follows:

∫
Kf ′v · nrdl = 0 (13.23)

As for the �ames with non-negligible curvature, the quantity v · n achieves its maximum
value v ·n = |v| just at a location which we refer to as the �ame tip in the following. If we
denote with ltip the value of the arc length at the tip, then the L.H.S. of (13.23) is ruled by
the contribution of a neighbourhood of ltip. Equation (13.23) is satis�ed whenever Kf ′ is
an odd function of l− ltip. Two con�gurations are possible for a stable �ame (bistability):

1. K (l − ltip) = −K (ltip − l) f ′ (l − ltip) = +f ′ (ltip − l)

2. K (l − ltip) = +K (ltip − l) f ′ (l − ltip) = −f ′ (ltip − l)

In con�guration 1., K =
dη

dl
changes sign at the tip, while f ′ = tan η does not. The

opposite occurs in con�guration 2.

Here we have written con�guration and not just �ame because equations (13.19) and
(13.22) ensure that both the �ame shape and the upstream �ow di�er in 1. and 2. Nev-
ertheless, both con�gurations may correspond to the same value of the heat release, as
the constraint (13.23) contains no explicit information on combustion.
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Bistability follows straightforwardly from (13.8), i.e. from our application of Le Châte-
lier's principle to the description of humming-free, premixed, lean, subsonic, axisymmet-
ric, swirl-stabilised, thin �ames with non-negligible curvature. Remarkably, bistability is
observed both in CFD simulation and in experiments [18] [12] [11] [15] -see Fig. 13.4. In
the following, we are going to focus our attention precisely on system like those displayed
in Fig. 13.4.

Finally, stability of con�gurations 1. and 2. implies that both correspond to a min-
imum of the heat release according to (13.11). Should the heat relase change then the
selection rule (13.11) would dictate which con�guration is selected by the system, just
like in Biwa et al.'s experiment [28]. Now, two minima of the same quantity are usually
separated by a maximum, which in our case corresponds to a maximally unstable con�g-
uration. A sharp growth of �uctuations at the commutation is therefore to be expected,
in agreement with the reports of [12] and [16]. See for instance Fig. 13.5.

13.4 ...and commutation

13.4.1 A further simpli�cation: highly elongated �ames

Here we are going to discuss a possible transition (commutation) from con�guration 1. to
con�guration 2. and back.

Commutation between di�erent �ame shapes, even if no humming occurs, is commonly
observed in GT when raising power from ignition up to full power. It is even a good thing
in some combustors, as the �ame after commutation exhibits a much weaker combustion
instability than the �ame before commutation. It can also be said that if no commutation
occurs -whatever the physical reason- then the expected amplitude of pressure �uctuations
at full power is signi�cantly larger than if commutation has occurred -compare Fig. 13.6
and Fig. 13.7. Indeed, we expect the �ame to depend on a limited number of param-
eters, like the air �ow rate, the temperature etc. But this is just a hope. In practice,
there are hidden parameters -like the actual temperature of the walls of the combustion
chamber, possible leaks etc.- which are beyond control today and are likely to remain
beyond control in a foreseaable future. But even when all parameters are supposed to be
well controlled (as in the lab), the �ow itself may exhibit multiple states: bifurcations are
possible. A thorough investigations of possible bifurcations in GT lies outside the scope
of the present discussion. All the same, we are going to see that thermodynamics has a say.

We have seen that the selection rule which is relevant to the commutation is given by
(13.11). In the discussion of (13.11) we have also shown that it is equivalent to minimi-
sation of the �ame area Af for our problem. Generally speaking, con�gurations 1. and
2. share a common property: |f ′| is an even function of l − ltip. Then, when it comes
to compute the heat release - with the help e.g. of either the formula (10.1) or of its
generalisation for turbulent �ames - the integrand is the same for both the side l < ltip
and the side l > ltip of the �ame, provided that we neglect ∇‖sL, or - which is the same
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Figure 13.4: Maps of normalised temperature computed in a axisymmetric combustor in
con�guration 1. (top) and con�guration 2. (bottom). In both con�gurations: a) everything
is symmetric with respect to the symmetry axis (the thin, brown, horizontal line); b) the
upstream, impinging �ow of unburnt gases is painted in blue and green; c) the boundary
line between green and yellow represents the �ame; d) violet stars shows the locations of
the �ame tips and correspond to l = ltip; e) l < ltip on the side nearer to the symmetry
axis; f) l > ltip on the side farther from the symmetry axis. The angle η is displayed at
one point of the �ame in con�g. 1. only for clarity. The small black segment represents
an interval dl of curvilinear length. It is displayed in con�g. 2. only for clarity. As for 1.,
the �ame shows its concavity and its convexity towards the upstream �ow for l < ltip and
l > ltip respectively, hence K changes sign at the �ame tip. As for 2., the �ame shows its
concavity towards the upstream �ow for both l < ltip and l > ltip, i.e. K does not change
sign at l = ltip. Adapted from Ref. [15].
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Figure 13.5: Normalised pressure drop ζ across the �ame and normalised humming am-
plitude vs. �ame temperature, suitably rescaled with a constant additive factor −Tref (K).
As for the meaning of pressure drop across the �ame, see text. The values of temperature
on the extreme left and the extreme right of the �gure correspond to two stable con�gu-
rations, with minimum humming amplitude. The latter has a maximum between them.
-adapted from Ref. [12].

because of (13.21) - provided that we neglect ∇‖ (v · n).

In turn, this makes sense because v · n ≈ 0 almost everywhere for highly elongated
�ames along a direction almost parallel to the axis of symmetry of the combustor for
most of their surface, like those displayed in Fig. 13.4. Then, Wc reduces approximately
to twice the contribution of one side of the �ame (the two contributions are almost equal
as the �ame is thin). In the following we shall therefore consider just one side of the
�ame, namely the l < ltip side near to the inner shear layer (ISL) displayed in Fig. 2.9.
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Figure 13.6: Commutation ( transition) occurs during load ramp up from ignition to full
power in a GT - from Ref. [14].

We select this particular side -rather than the �ame side near the outer shear layer
(OSL) displayed in the same Figure- even if the gradients of q are large at both lay-
ers, because it o�ers the concavity to the impinging �ow, which is a common feature
of con�gurations 1. and 2. and allows therefore meaningful comparison between them
(these con�gurations di�er from each other precisely because one of them o�ers concav-
ity everywhere to the impinging �ow, while the other one o�ers also convexity somewhere).

The price to be paid for our simplifying assumption of highly elongated �ames is that
we turn down full description of what happens in a neighbourhood of the �ame tip. Phys-
ically, this make sense as far as the �ame tip provides a small contribution to Af , as
minimisation of Wc is equivalent to minimisation of Af . Thus, we are going to look for
a minimum of the latter quantity, computed as twice the contribution of one �ame side.
Once we have neglected the contribution of the tip, for our elongated �ames it makes
sense to write |f ′| >> 1. In turn, this leads to dramatic simpli�cation.

Let us introduce the opening angle β between our �ame and the direction of the axis
of symmetry of the combustor, whose vertex is located at the �ame anchor point on the
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Figure 13.7: No commutation occurs in the same GT load ramp of Fig. 13.6. All other
things being equal, the �uctuation level (noise) at full power is signi�cantly higher: the
horizontal red line in the noise plot is the same of the noise plot in Fig. 13.6 - from Ref.
[14].

ISL side - we refer to Fig. 13.8, where the �ame anchor point is de�ned as the point with
coordinates r = r1, z = 0. We are going to remove the ambiguity related to the words our
�ame below. Since we consider the contributions of the two sides to be essentially equal,
we limit ourselves to the anchor point on the ISL side. This is equivalent to say that we
consider the anchor points on the OSL and the ISL sides to be very near.

In particular, we assume that the value of the z coordinate for both anchor points
is zero. Having in mind our treatment below of the commutation discussed in [15] - see
Fig. 13.4 - this approximation is well justi�ed. Admittedly, this assumption forces us to
neglect the relevant case of detached �ames, which can be related to PVC [14].

Accordingly, let it be clear that by upstream region we mean just the region embedded by
ISL and OSL with black arrows in Fig. 2.9 (as the �ame is located near the sheared layers)
here and in the following. Correspondingly, ISL only is displayed in the following Figures
(usually by a thickened, black, continuous line). Admittedly, a detailed description of the
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geometry of the upstream region is quite complicated, and requires full CFD treatment.
Luckily, no matter how distorted and elongated the upstream region may be we need no
such exact solution ψ of equation (13.19), because equation (13.21) ensures that only the
upstream �ow immediately near the �ame is relevant to stability.

Finally, if the anchor point on the ISL side has a radial coordinate r1 not too far from the

symmetry axis r = 0, then we may safely write β ≈ π

2
− η.

Figure 13.8: Geometrical quantities for a highly elongated, axisymmetric �ame. The ISL
side of the �ame referred to in Fig. 2.9 is displayed in the interval r1 ≤ r ≤ r1 +h tan (β),
and β ≈ π

2
− η for small r1 - see both text and the Appendix on axisymmetric �ames for

details.

For highly elongated �ames along the direction of the symmetry axis, we may safely as-

sume β ≈ π

2
− η and 1 << |f ′| = | tan η| ≈ 1

| tan β|
provided that the radial coordinate r1
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of the �ame anchor point on the ISL side of the �ame is not too far from the symmetry
axis r = 0. Accordingly, we take tan β << 1. Axisymmetry allows us to assume f ′ > 0,
hence tan β > 0 with no loss of generality, and 0 < β << 1. Since β is small, its absolute
variation along the radial coordinate is also small. Accordingly, we make a small error
by taking β ≈ const. along the whole �ame side; we de�ne it by requiring that the two
points (r = r1, z = 0) and (r = r1 + h tan β, z = h) in the meridian (r, z) plane belong to
the �ame surface G = const., i.e. that:

f (r = r1) = 0 (13.24)

f (r = r1 + h tan β) = h (13.25)

where we have introduced a typical elongation length of the azimuthal �ow in the up-
stream zone

h ≡ ϕ
dϕ
dz

which plays the role of typical length of the system �ame + upstream zone along the
direction of the symmetry axis 14. Remarkably, indeed, both the �ame and the upstream
�ow are quite elongated -again, see Fig. 13.4. Our strategy is to take advantage this fact
in order to derive from both equations (13.19), (13.22) and from the smallness of tan β a
single equation for tan β. Then, we are going to show that each solution corresponds to
a di�erent solution of the Euler-Lagrange equations of the variational principle (13.18).
Depending on the swirl number and other parameters, the system switches to the con�g-
uration which corresponds to a minimum of the combustion heat release, i.e. -according
to (13.12)- to a minimum of Af .

13.4.2 Open vs. closed con�gurations...

In agreement with our discussion on bistability, we apply equations (13.19) and (13.22) to
a �ame with non-negligible curvature and to the corresponding upstream �ow and show
in the Appendix on the auxiliary relationships concerning axisymmetric �ames that two
real distinct solutions for tan β may exist:

14This is de�nitely not to say that the �ame actually extends from z = 0 up to z = h tanβ, as the
boundary conditions (13.24) and (13.25) are only useful to �nd the �ame shape. The actual size of the
�ame where combustion occurs a�ects the �ame area and, consequently, the heat release. This point is
to be discussed below, in the Section concerned with the quantity rmax.
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tan β± =

Γ±

√
Γ2 − 4

(
Γ +

1

2

)
2Γ + 1

(13.26)

where we have de�ned the positive-de�nite dimensionless quantity

Γ ≡
(
Sw
h

)2
(2πψ0)

sL

Here the dimensionless quantity Sw ≡
√

2πq (ψ0)
1

ψb − ψ0

∫ ψb
ψ0
qdψ, the length h ≡ ϕ

dϕ
dz

and

the positive-de�nite quantity ψ0 increase with increasing swirl number SN , increasing elon-
gation of the upstream �ow along the axial direction and increasing total �ux impinging
on the �ame respectively. For our applications, we show in the Appendix on the auxil-
iary relationships concerning axisymmetric �ames that we can take ψ0 > ψb = 0 with no
loss of generality. We discuss in detail the connection between Sw and SN in the following.

Equations (10.1), (13.15) and (13.21) lead to the order-of-magnitude estimates 2πψ0 =

sLAf =
Wc

HρuYfuel
, i.e. Γ =

(
Sw
h

)2
Wc

HρuYfuelsL
. This is equivalent to:

Γ =
πk2

12

√
1 + tan2 β

tan β
(13.27)

where we have de�ned k ≡
√

3SwDb

h
with Db = 2 · Rb combustor diameter, and we have

invoked the identity sin β =
tan β√

1 + tan2 β
. In fact, equation (13.21) allows us to write

sL = vz sin β as v ≈ vzez for the upstream �ow, and the typical axial velocity vz is just

equal to 2πψ0

(
π
D2
b

4

)−1

=
Wc

HLHV ρuYfuel

(
π
D2
b

4

)−1

.

Indeed, when deriving (13.26) we have tacitly assumed q ≈ const. This is justi�ed as
far as we consider the bulk of the upstream �ow far from both ISL and OSL, as gradients
of q are relevant at shear layers by de�nition. Since we are allowed to content ourselves
with approximate solutions for ψ far from the �ame on the upstream side, our assumption
q ≈ const. leads to a small error as far as �ame stability is concerned.

Together, equations (13.26) and (13.27) link β and k. Of course only real values of β
are physically allowable.
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According to (13.26):

• if Γ < 2 +
√

6 there is no real solution for β, i.e. no stable con�guration may exist;

• if Γ > 2 +
√

6 two real solutions β− and β+ > β− for β exist, i.e. two distinct
con�gurations are candidate to stability. We refer to the con�gurations with β+

and β− as to open and closed con�gurations respectively in the following.

Fig. 13.9 displays the dependence of β− and β− on k. Physically, k increases with increas-
ing swirl number SN (as Sw is an increasing function of SN), with increasing combustor
diameter Db and decreasing elongation h of the upstream zone. In turn, the lower the
elongation 15 the larger β, and according to equation (13.21) the larger β the larger sL
for given impinging �ow v 16.

Fig. 13.9 shows that no stable solution exists if the swirl is too small, in agreement
with the general consensus about swirl stabilisation. We conclude that a minimum amount
of swirl is required in order to allow existence of stable, premixed, thin, axisymmetric,
elongated �ames with non-negligible curvature. In this case, the selection rule Af = min .
- equivalent to (13.11) for the purpose of our discussion - dictates which con�guration
is actually stable. As we have seen, the constraints of �xed Vf and Tf on (13.11) are
automatically satis�ed for thin �ames with given pro�les of temperature across the �ame.
In order to compute the heat release, we need an expression for f in each case. To this
purpose, we need the solutions of the variational principle (13.18) which follows from
(13.11).

13.4.3 ...and the corresponding shapes

Together with the de�nitions of the curvature K and of the area di�erential da, relation-
ships (13.15), (13.18) and (13.21) lead to:

δ

∫
Lrdr = 0 (13.28)

where we have neglected ∇‖sL, as usual by now, we have divided everything by sL and

we have de�ned both µ ≡ 2πθ

sL
and

Lr ≡
f ′′f ′r

1 + (f ′)2 + µr

√
1 + (f ′)2

15See the scaling
z

h
= tanβ in the Appendix on the auxiliary relationships concerning axisymmetric

�ames for given �ame position f = z
16The dependence of Γ on the square of Sw and h follows from the non-linearity of equation (13.19).

It means that the actual direction of rotation (clockwise or counterclockwise)of the swirled �ow around
the axis of symmetry of the combustor is not relevant in the following, just as expected because of
axisymmetry.
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Figure 13.9: β+ (red) and β− (dotted blue) vs. k. If the swirl is so small that k < 2.7,
corresponding to Γ < 2 +

√
6, then no real solution exists.

If the boundary conditions on the Lagrangian coordinate f (r) are assigned, then the
Euler-Lagrange equation of the variational problem (13.28) in the f ′ >> 1 limit reduce
to

f ′′ + µ (f ′)
2

= 0

As for the boundary conditions, we take (13.24) and (13.25). Then, the solution of
the Euler-Lagrange equation is:
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f (r) =
1

µ
ln

[
1 +

r − r1

h tan β

(
eµh − 1

)]
(13.29)

Equation (13.29) links f (r), r1, µ, β and h and provides us with the shape of the ISL
side of a stable �ame (far from the �ame tip at least) 17. We are going to refer to such
shape as to the �ame shape below, for brevity. Accordingly, the �ame shape in an open
con�guration di�ers from the �ame shape in a closed con�gurations. Correspondingly,
there are di�erent values µ+, µ− for µ, etc.

Remarkably, the insofar overlooked assumption of negligible viscosity provides us with
a further link of µ and β. Negligible viscosity implies that commutation conserves circui-
tation, i.e. the �ux of vorticity ∇ ∧ v. In particular, commutation conserves the axial

�ux of vorticity ≈ π

(
D2
b

4

)
ez · ∇ ∧ v in a combustor with diameter Db. As for the order

of magnitude, we may write ez · ∇ ∧ v ≈ µvz, because
1

µ
is the only quantity with the

dimensions of a length which appears in Lr. Moreover, sL = vz sin β in highly elongated

�ames with small r1 because of equation (13.21) and of β ≈
π

2
−η. Finally, as far as we are

interested in �ame shapes only and leave temperature pro�les una�ected inside the �ame,
commutation leaves sL una�ected. Then, conservation of the axial �ux of vorticity implies:

µ+

sin β+

=
µ−

sin β−
(13.30)

At its face value, admittedly, this result seems to be just a meaningless trick. Indeed,
we have not solved the equation of motion (6.2) - we have not even solved equation (13.19)
for the stream function; all the same, we claim to link the shape of the upstream �ow
before and after commutation. Of course, it is perfectly possible - it is even likely - that
vorticity is not proportional to velocity with a proportionality factor which is constant
across the upstream region of the �uid, neither before nor after commutation. However,
here is where our discussion of bistability turns out to be useful. The existence of two
distinct con�gurations for �ames with non-negligible curvature, as well as the existence
of a selection rule of selection between them, is a result of thermodynamics. As such, it
is no matter of detailed description of the �ow. Such description is needed when details
are investigated for a given set of operational and geometrical conditions of a particular
combustor. But if we try to answer to questions concerning e.g. the impact of the swirl
number on commutation, �rm thermodynamical grounds spare us the trouble of comput-
ing more-or-less exact solutions of the equation of motion.

Finally, our knowledge of the �ame shape -equation (13.29)- allows us to compute the
value of Af to be minimised. Free parameters are the anchor point r1, the elongation of

17Starting from (13.29), it is easy to see that |f ′| >> 1 in the limit of small tanβ, just as expected.
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the supporting recirculation zone h and the quantity k, which, together with h, encom-
passes the e�ects of the swirl, the �ame velocity and the combustor diameter. Once k is
known, equations (13.26), (13.27) and (13.30) give both the β's (if they exist as physi-
cally acceptable, i.e. real values) and the ratio of the µ's. Once one of the µ's -say, µ+-
is known, h and r1 allow computation of f (r) for both open and closed con�gurations
with equation (13.29). Since we are going to discuss �rstly the commutation from open
to closed con�guration, we start from µ+, which describes the structure of the upstream
�ow in open con�guration, i.e. before the commutation. The stable con�guration is the
con�guration with the lower Af . Since the contribution of the �ame tip to

Af =

∫
da =

∫
ISL

da +

∫
OSL

da = 2 ·
∫
ISL

da = 2 · (2π)

∫ rmax

r1

r
√

1 + f ′2dr (13.31)

is neglected, computation ofAf reduces to an integral in dr on some interval r1 ≤ r ≤ rmax.
(The factor 2 comes from the fact that Af is twice the contribution of just one �ame
side). In the following, we are going to discuss both the physical meaning of rmax and
an example of transition from open to closed con�gurations as k varies for a physically
reasonable choice of r1, rmax and µ+ in a particular problem where commutation has been
thoroughly investigated both experimentally and numerically [15].

13.4.4 From open to closed...

Choosing r1, rmax and µ+

Estimate of r1 We start from the open con�guration discussed in [15], which discusses
premixed, lean, axisymmetric, swirled, thin �ames with non-negligible curvature. In par-
ticular, we refer to Fig. 10 and 12 of this paper. Both �gures show that the �ame shape
is basically the same on both sides of the �ame tip. However, the ISL and the OSL side
of the �ame do not exactly coincide near the inlet, in contrast with our assumption un-
derlying (13.31); accordingly, we take r1 to be somehow in the middle between the two
layers. Then, Fig. 12 makes it reasonable to take the radial coordinate r1 of the anchor
point at about one tenth of the combustor diameter -see Fig. 13.10. A similar estimate
holds also for the closed con�guration depicted in Fig. 13 of the same paper. Then, we
write:.

r1 = 0.1 ·Db (13.32)

Estimate of rmax Fig. 10 shows that the reaction rate is quite strongly peaked near
the anchor point. Admittedly, this is in contradiction with our assumption of negligible
∇‖sL. In order to overcome this obstacle, we make the (simplifying!) assumption that
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Figure 13.10: Fig. 12 and 13 of Ref. [15]. Both r1, β (not in scale) and the temperature
map are displayed in open and closed con�guration. The symmetry axis corresponds to
r = 0.

combustion occurs just in a small neighbourhood of the anchor point.

When looking at its face value, admittedly, this assumption seems no less devoid of
physical meaning than the assumption of negligible ∇‖sL it is supposed to improve upon.
However, we are focussing on commutation, which is a fast process 18. It is therefore
quite reasonable to take the distribution of heat release on the �ame to be the same on
both con�urations immediately before and after the commutation: there is just no time
available to change it during the commutation.

In particular, if the reaction rate of the chemical reactions ruling heat release is peaked
near the anchor point before commutation, the same will be true after commutation too.

18Indeed, when observed on Ansaldo combustors commutation is not slower than 1 second [15].
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We can take into account of this fact in our formalism by taking the same value of rmax
in (13.31) before and after commutation, i.e. for both open and close con�guration. The
only commutation-relevant parameter becomes therefore tan β, whose physical meaning
becomes also perfectly unambiguous: tan β is the �ame slope at the anchor point.

The choice of not-too-large an interval of r1 has two further advantages:

• it allows us to get rid of the unphysical assumption of uniform �ame velocity all
along the �ame;

• it allows us to represent (qualitatively) the impact of the so called pilot �ame, an
auxiliary, non-premixed �ame near the symmetry axis which helps control of the
larger �ame. Actually, it is the pilot mass �ow rate which drives commutation in
the experiments reported in [15].

In particular, when looking at the region of largest reaction rate in Fig. 10 we feel allowed
to take:

rmax = 1.3 · r1 (13.33)

A similar estimate holds also for the closed con�guration depicted in Fig. 11 of the same
paper - see Fig. 13.11.

Estimate of µ+ When discussing commutation from open to closed con�guration, ex-
plicit computation of Af in open and closed con�guration is needed; in turn, this requires
explicit evaluation of µ+. Physically, this is equivalent to provide information on the actual
structure of the upstream �ow pattern before the commutation. Equation (13.30) ensures
that this structure in open con�guration di�ers from the structure in closed con�guration.
Here it is worthwhile to stress once again the point that the commutation is a change
in the whole structure of the con�guration made of the �ame and of the �ow supporting it.

Once again, we take advantage of the fact that no detailed knowledge of such pattern
is required far upstream, as far as equation (13.26) re�ects the impact of the interaction
between the upstream �ow and the �ame. Thus, even if the geometry of the upstream
�ow in Fig. 2.9 is quite compicated and distorted geometry, to our purposes it is enough

to recall that the �ame lies near a shear layer where | dq
dψ
| >> 1 is large, where the �ow

far upstream has neglibible | dq
dψ
|. It is therefore enough to provide for the upstream

�ow a description which satis�es the condition | dq
dψ
| ≈ 0. For the sake of mathemati-

cal convenience, we neglect the distortion of the upstream �ow pattern altogether, and
depict it as a simple vortex with egg-like cross-section in the meridial plane - see Fig. 13.12.
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Figure 13.11: Fig. 10 and 11 of Ref. [15]; both rmax (not in scale) and the map of
reaction rate for air-methane combustion are displayed in open and closed con�guration.
The symmetry axis corresponds to r = 0.

This way, admittedly, we neglect the OSL altogether. However, the resulting error
seems to leave the validity of our discussion una�ected, as far as bistability (described by
(13.26)) and commutation (described by minimisation of Af in (13.31)) are concerned.

Now, our discussion includes two further steps:

• we provide some information concerning the vortex;

• we show that it satis�es the condition | dq
dψ
| ≈ 0.

If we denote with 2 · Rvort the radial size of the upstream �ow pattern with radius
Rvort, then an estimate of the distance Rin of this structure from the symmetry axis of
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Figure 13.12: In the meridian plane, the cross-section of an equi-ψ surface in the upstream

region where | dq
dψ
| ≈ 0 is displayed as an egg-like closed contour (blue). As for the z-

dependen quantities Rin and Rvort, see text. All other things are the same as in Fig. 13.8.

the combustor is given by:

2 ·Rvort (z) +Rin (z) =
Db (z)

2

where we have explicitly taken into account the dependence of all quantities on the axial

coordinate z. This means that the combustor radius
Db

2
is the sum of the radial size of

the upstream �ow structure and of the distance of the latter from the symmetry axis of
the combustor. Physically, this refers to the obvious (but not yet invoked) fact that the
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combustor embeds the upstream �ow.

An expression for the z-averaged value Rv of Rvort is of interest, as the same dimen-
sional reasons leading to equation (13.30) allow us to write

µ =
cµ
Rv

with cµ constant, dimensionless quantity to be determined. To this purpose, we as-
sume Db = const. along z for simplicity, so that after z-averaging of both sides of the
relationship above we may write:

2 ·Rv =
Db

2
−Ri

where a rough estimate for the z-averaged value Ri of Rin is:

Ri =
Rin (z = 0) +Rin (z = h)

2

with:

Rin (z = 0) = r1 and Rin (z = h) = r1 + h · tan2 β

Remarkably, the latter choices for Rin (z = 0) and Rin (z = h) recall the boundary condi-
tion on r1 (which has led to equation (13.29)) and the scaling (33) discussed in the �nal
lines of the Appendix on the auxiliary relationships concerning axisymmetric �ames. In
turn, this re�ects the fact that just one quantity β describes the whole con�guration in our
discussion, even if the elongation of the upstream �ow pattern di�ers from the elongation
of the �ame.

As for the value R+ of Rv in the open con�guration, the relationships above lead to:

R+ =
Db

4
− r1

2
− h tan2 β+

4
(13.34)
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In order to compute

µ+ =
cµ
R+

(13.35)

we have yet to evaluate cµ. Now, according to p. 330, Sec. 12.C of Ref. [130] 19, the value

cµ = 4.493 (13.36)

corresponds to a solution of equation (13.19) which satis�es the requirement q (ψ) ≈ const.
stated above. In particular, we have

0.72 ≤ q (ψ) ≤ 0.82

everywhere across the upstream zone. Together, equations (13.26), (13.27), (13.29),
(13.30) (13.31),(13.32), (13.33), (13.34), (13.35) and (13.36) allow us to look for the
minimum of Af as the latter quantity changes with varying values of the swirl-related
dimensionless quantity k both in open and closed con�guration.

Swirl number

For the quasi-uniform values of q (ψ) found above, the de�nition of Sw gives:

Sw ≈ 2.2 ·
√
q (ψ0) (13.37)

where q (ψ0) represent the actual swirl acting on the �ame as the latter is stabilised near
a high-shear layer. This value may di�er from the values 0.72 - 0.82 inside the upstream
zone, as ψ0 >> ψ inside that zone -see Appendix on axisymmetric �ames.

This fact provides us with a link between the swirl-related quantities k and Sw we
have introduced above and the familiar swirl number SN . To this purpose, we recall that
q = q (ψ0) is the number of turns made by a �ow line in the azimuthal direction per each
closed loop made by the �ow line in the meridian plane. As for the open con�guration
before commutation, an estimate for q (ψ0) is [37]:

19Again, we take advantage of a formal result for q (ψ) from magnetohydrodynamics. In particular,
the result we refer to here holds for a solution of the equation ∇ ∧ v = µv, whose axisymmetric version
is a particular case of equation (13.19).
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q (ψ0) =
radius of one turn in the meridian plane

radius of one turn in the azimuthal plane
· vχ
vz
≈ R+

Rb

tan βswirl (13.38)

where the de�nition of βswirl allows us to write:

vχ
vz
≈ tan βswirl (13.39)

and the simple, following relationship holds 20 [1]:

SN =
2

3
tan βswirl (13.40)

links tan βswirl ≈
vχ
vz

and the swirl number SN . Relationships (13.37), (13.38) and (13.40)

give:

SN ≈ 0.14 · Rb

R+

S2
w = 0.02 · Db

R+

(
h

Db

)2

k2 (13.41)

Together, relationships (13.34) and (13.41) give the connection between k, Sw and SN .

13.4.5 Commutation vs. heat release

As for the impact of heat release Wc on commutation, generally speaking Wc increases
with increasing Af . Now, Fig. 13.13 displays Af vs. k at di�erent values of SN for both
the open con�guration β = β+, µ = µ+ and the closed con�guration β = β−, µ = µ−.
At �xed SN , Af decreases with increasing k in both open and closed con�guration. Now,

under the same condition k ∝ Db

h
. Then, we may say that Wc is an increasing function

of the normalised elongation
h

Db

∝ 1

k
, i.e. both Af and Wc decrease with increasing

k. In Fig. 13.13, raising Wc corresponds therefore to going from right to left along the
horizontal axis.

Note that the problem of what happens asWc changes at �xed SN is of great practical
relevance, as the market makes the manufacturers to design GT with very low park load

20for axial swirlers at least. But even in radial swirlers, SN remains proportional to the tangent of an
average angle of the �ow at the exit of the blades. See equations (4) and (5) of Ref. [1].
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and very high ramp gradient. This means that the same combustor with the same swirler
blade angle βswirl (and, correspondingly, the same SN according to (13.40)) is supposed
to wrk with �ames at very di�erent values of Wc.

Let us denote with kcr the value of k such that Af+ = Af−. In Fig. 13.13, kcr is the
value of the horizontal coordinate of the point of intersection between the continuous line
and the dotted line. The same �gure shows that Af+ < Af− -i.e., the open con�guration
is stable- if and only if k > kcr -i.e., Wc is not too large. When Wc exceeds this threshold
the situation is reverted and the closed con�guration becomes stable, i.e. commutation
occurs. We conclude that raising the heat release Wc at �xed swirl number SN leads the
system to commutation. Our result is in agreement with everyday GT experience, where
commutation from open to closed con�guration occurs during the ramp in heat release [15].

Figure 13.13: Af (arbitrary units, vertical axis) vs. k (horizontal axis) at SN = 0.5 for
open con�guration (continuous line) and closed con�guration (dotted line).
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13.4.6 Commutation vs. swirl number

As for the impact of SN on commutation, Fig. 13.16 displays Af vs. SN when k = kcr, i.e.
at commutation 21. The larger SN , the larger the value of Af at commutation, hence the
larger the value of heat release Wc at commutation. We conclude that raising the swirl
number SN at �xed heat release Wc hinders commutation, i.e. any increase of swirl tends
to stabilize the open con�guration. Our result is in agreement both with observations -see
Fig. 13.14- and with the results of CFD -see Fig. 13.17.

Figure 13.14: Two premixed air-methane �ames with the same stoichiometry and the
same values of p0 and Wc but with di�erent swirl. The more swirled �ame is on the right
- from Ref. [131].

21The commutation condition eliminates one out of the three independent quantities h, k and SN

which appear in relationships (13.34) and (13.41), so that it is possible to write e.g. SN = SN (k) at
commutation. See e.g. Fig. 13.15
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Figure 13.15: k (vertical axis) vs. SN (horizontal axis) at commutation. The commutation
condition Af+ = Af− eliminates one out of the three independent quantities h, k and SN
which appear in relationships (13.34) and (13.41).

13.4.7 Commutation vs. �ame velocity

As for the impact of the �ame velocity on commutation, we have seen that the larger k
for given swirl and combustor diameter, the lower the elongation, the larger the �ame
velocity for given impinging �ow 22. Thus, raising sL while leaving the upstream �ow
una�ected in a given combustor tends to delay the commutation.

Remarkably, Le Châtelier's principle seems still to be able to tell us something about
commutation. Broadly speaking, if we raise Wc we push the system towards humming.
According to Le Châtelier's principle, we expect that the system tries to counteract our

22Equation (13.29) implies that the lower h, the lower |f ′|. In turn, the lower |f ′| the more negative
the axial component of n, and the larger sL according to (13.21).
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Figure 13.16: Af (arbitrary units, vertical axis) vs. SN (horizontal axis) at commutation.

e�orts to push it towards humming. Now, we have seen that raising Wc triggers com-
mutation from open to closed con�guration. Then, we may reasonably expect that com-
mutation is precisely the answer of the system predicted by Le Châtelier's principle,
i.e. that the closed con�guration shows relatively lower combustion instability amplitude
than the open one no matter what the acoustic eigenfrequencies of the combustor are like.

Together, the latter results lead us to the conclusion that if we raise the fuel content
-hence sL- while leaving the upstream �ow una�ected we obtain the open con�guration,
which has higher combustion instability amplitude than the closed con�guration. This
conclusion agrees -qualitatively at least- with the experimental results reported in Ref.
[16] -see Fig. 13.18.

There is no contradiction with our previous conclusions concerning the bene�cial e�ect of
raising sL at given upstream �ow. In fact, sL-raising at given upstream �ow and commu-
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Figure 13.17: Mean temperature �elds and streamline patterns for two di�erent swirl
numbers -from Ref. [18].

tation from 'open' to 'close' are fundamentally di�erent processes, as the former relies on
a smooth perturbation of the �ame shape while the latter relies on an abrupt change of
�ame geometry. Neverheless, both have a stabilising e�ect (as for the stabilising e�ect of
commutation, remember Fig. 13.6 and Fig. 13.7); hence -again by Le Châtelier's principle-
the former hinders the latter. If we raise sL at given upstream �ow then the system an-
swers by delaying commutation. After all commutations have occurred, sL-raising only
remains for stabilisation. As for GT, commutation occurs as Wc exceeds a threshold dur-
ing load ramp. After full power has been achieved in the closed con�guration, if humming
still occurs then raising sL at given upstream �ow may be helpful.
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Figure 13.18: Di�erent swirling �ame con�gurations in an axisymmetric air-methane
combustor with constant Reynolds' number at the inlet, inlet temperature and pressure but
at di�erent values of the fuel content - from Ref. [16]. The red line on the left is the blow-
out limit, which no stable �ame is ignited below. At constant constant Reynolds' number
at the inlet, inlet temperature and pressure the total air+fuel mass inlet in�ow is constant
too. Accordingly, the higher the fuel content the larger Wc. Broadly speaking, the higher
the fuel content, the larger the level of �uctuations, the more open the �ame. The word
broadly is justi�ed because experiments show at least six di�erent con�gurations -some of
them metastable- rather than just two, as in the text. Intermittence is also reported in
[16], which is not displayed here. Flame shape seems therefore to be just a variable of a
dynamical system [60], just like pressure [78]. Similar behaviour is reported at di�erent
lengths of the combustor, i.e. the results liste above do not depend on the detailed values
of the acoustic eigenfrequencies - another blow to modal analysis.

13.5 Numerical predictions

13.5.1 Opening angles vs. swirl number at commutation

At commutation, the opening angles β+ and β− are functions of the swirl number SN
23. Remarkably, all these quantities are observable ones, or at least can be computed by

23According to (13.29), the shapes of these functions depend on r1 and on Db.
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CFD. They are therefore a matter of falsi�able predictions after rewriting the solutions
of (13.26) and (13.27) as functions of SN . Together, the results displayed in Fig. 13.9 and
Fig. 13.15 lead to the results displayed in Fig. 13.19, which displays the opening angle of
the open con�guration and of the closed con�guration vs. the swirl number. For example,
if SN = 0.5 then commutation occurs when the open con�guration has an opening angle
β+ ≈ 0.57 rad ≈ 33 o, and leads the �ame to a closed con�guration with opening angle
β− ≈ 0.26 rad ≈ 15 o. These values are compatible with the results of Ref. [15] displayed
in Fig. 13.10.

Figure 13.19: β+ (rad, continuous red line) and β− (rad. dotted blue line) vs. swirl number
(horizontal axis) for the system described in the text.

13.5.2 Pressure drop across the �ame

A further prediction concerns the pressure drop across the �ame displayed e.g. in Fig. 13.5.
It is customary to assume ∇p0 to be perfectly zero across the �ame in most humming-
relevant research concerned with subsonic �ames [4]. Indeed, this is not rigorously true:
a small pressure drop across the �ame is routinely measured. We are going to compute it
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and to compare its value before and after commutation.

According to eq. (3.53) of Ref. [6], where the momentum balance is solved across a
curved �ame with Pe >> 1 (thin �ame), M << 1 (subsonic combustion) and Re >> 1
(negligible viscosity), the pressure jump reads:

pN |du = −Pe−1 · Iσ ·mN · 2 · cN (13.42)

where the following dimensionless quantities have been introduced:

• a dimensionless pressure pN ≡
p

ρus2
L

;

• the Peclet number Pe ≡ L

δL
(supposed to be >> 1); here L is the typical combustor

size, as usual by now;

• a dimensionless, monotonically increasing function Iσ of temperature (whose exact
structure is not relevant in the following);

• a dimensionless impinging mass �ow mN ≡
|m|
ρusL

;

• and the dimensionless �ame curvature cN ≡ −
∇N · nN

2
with dimensionless gradient

operator ∇N ≡ L ·∇ and with nN ≡ −n unit �ame surface vector poynting towards
the burnt gases (in contrast with the de�nition given in [4], utilised throughout the
present work). The de�nition of nN ensures that 2cN is minus 1 twice the normalised
curvature.

Equation (13.42) generalises equation (13.9) to �ames of �nite thickness. In dimensional
form, in fact, equation (13.42) reduces to:

p|du = Iσ · δL · |m| · sL ·K (13.43)

and equation (13.9) is retrieved in the limit δL → 0.

Further simpli�cation of (13.43) is possible in the limit of elongated �ames, where the
impinging �ow is mainly along the direction of the symetry axis because of the scaling

(33) so that |m| ≈ ρuvz and β ≈
π

2
− η so that equation (13.21) reduces to vz ≈

sL
sin β

.

Accordingly, (13.43) becomes:
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p|du = Iσ · δL · ρu · s2
L ·

K

sin β
(13.44)

Remarkably, commutation leaves all quantities on the R.H.S. of (13.44) una�ected but
K

sin β
. It follows that:

(
p|du
)

+

(p|du)−
=
K+ sin β−
K− sin β+

(13.45)

For small β, furthermore, equation (13.29) and the de�nition of K lead to:

K ≈ − tan β (13.46)

in the limit of small h (which is the relevant limit to our problem, as we have assumed
the region near the anchor point to provide the main contribution to the heat release).

This way, β-lowering commutation raises the curvature radius
1

|K|
, i.e. the closed �ame

looks straighter than the open �ame - in agreement with what is displayed in Fig. 13.4.
Now, our choice of the ISL side for f is well justi�ed: according to Fig. 13.4, in fact, it
is this side where the maximum jump of temperature across the �ame occurs, and it is
therefore here that the largest pressure drop is expected.

Remarkably, according to (13.46) K < 0 in both open and closed con�guration. Ge-
ometrically, this means that the ISL side o�ers its concavity towards the impinging �ow
in all cases. Physically, if K < 0 then (13.45) and (13.46) imply that the pressure in
the downstream region (which the �ames o�ers its own convexity to) is lower than the
pressure in the downstream region (which the �ames o�ers its own concavity to). This
is why we have consistently spoken of pressure drop, and this is also why the L.H.S. of
(13.42) is referred to as negative surface tension in Sec. 3.4 of Ref. [6]. Finally, we are
interested in comparing the pressure drop before and after commutation. According to
(13.46), the L.H.S. of (13.45) at commutation depends on the values of β+ and β− at
commutation, i.e. on the swirl number SN .

Experimentally, the dimensionless quantity ALFA ≡ |m|
πR2

b

√
1

2 · ρu · |p|du|
is measured

[15]. It turns out that commutation raises ALFA -see Fig. 13.20.

According to (13.45) and (13.46), commutation changes the value of ALFA:
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Figure 13.20: ALFA vs. time. Commutation occurs between 15.06:02 and 15.06:09. The
last value of ALFA immediately before commutation is ≈ 0.61. The �rst value of ALFA
immediately after commutation is ≈ 0.65.

ALFA−
ALFA+

=

√
cos β−
cos β+

(13.47)

Fig. 13.21 displays
ALFA−
ALFA+

at commutation vs. the swirl number SN .

Commutation raises ALFA, in agreement with observations. In particular, if we take

SN = 0.5, then the computed value of
ALFA−
ALFA+

is 1.07. For comparison, according to

Fig. 13.20 experimental data are ALFA+ = 0.61 and ALFA− = 0.65, hence
ALFA−
ALFA+

=

1.065. Theory agrees well with experiments, within experimental error bars at least.

Remarkably, SN = 0.5 is the same value of swirl number we have utilised in computing
β+ and β− a tcommutation, and those computed values too were not in disagreement with
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Figure 13.21:
ALFA−
ALFA+

at commutation vs. swirl number (horizontal axis) for the system

described in the text.

the output of CFD computations. We take this fact as a con�rmation of the validity of
our discussion.

13.6 Anticommutation and hysteresis

Anticommutation

We have shown that the system undergoes commutation from the open con�guration to
the closed con�guration when the heat release in open con�guration exceeds the heat re-
lease in closed con�guration, as the system selects the con�guration with the lowest value
of heat release. According to Fig. 13.13, the lower k, the larger Af (henceWc) at given SN .

In particular, we have also shown that a threshold value kcr for k exists. If k > kcr
(k < kcr), then the open (close) con�guration is stable. For given burner diameter Db,
the actual value of kcr depends both on the location r = r1, z = 0 of the �ame anchor
point on the l < ltip �ame side near the ISL and on the parameter rmax. To put it in
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other words, kcr depends on the �ame shape in the initial (i.e.) open con�guration.

As for r1, it is the same for both open and closed con�guration in our treatment, as
the same boundary condition (13.24) applies to the �ame shape (13.29) in both cases.

As for rmax, we have justi�ed our choice (13.33) for the initial con�guration of the
commutation problem, i.e. the open con�guration.

Usually, commutation occurs at a given time during GT load ramp, i.e. (roughly
speaking) as the heat release is gradually raised up to its rated value starting from zero.
The very arguments discussed above lead to the conclusion that anticommutation, i.e. the
switching from closed to open commutation, occurs at a given time when the heat release
is gradually lowered starting from its rated vale down to zero. In Fig. 13.13, anticommu-
tation is just what happens when we go beyond the thershold, starting from the left side
and moving towards the right side of the �gure. Actually, anticommutation is routinely
observed in Ansaldo GT.

As a matter of principle, however, there is no reason why the threshold value kcr−A for
k in the anticommutation case should coincide with the corresponding value kcr in com-
mutation. Physically, in fact, the initial con�guration of anticommutation is the closed
one, not the open one. Thus, even if both Db and r1 are the same, rmax can be di�erent,
i.e. the closed �ame may violate the relationship (13.33). In particular, the closed �ame
is closer to the symmetry axis than the open �ame; rigorously speaking, the fact that
β− < β+ makes the value of r which correspond to a given z = f in the equation (13.29)
for the �ame shape to be lower in the closed con�guration than in the open con�guration.
Accordingly, we expect that the value of rmax in the closed con�guration is lower than the
value of rmax in the open con�guration.

Fig. 13.22 displays Af vs. k in both commutation and anticommutation at �xed value
of the swirl number SN = 0.5. As for commutation, the condition (13.33) holds for the
initial con�guration of commutation, i.e. the open con�guration. Just as in Fig. 13.13,
the continuous line and the dotted line display Af vs. k computed for open and closed
con�guration respectively under this condition (13.33); kcr is the value of the horizontal
coordinate of the point of intersection between the continuous line and the dotted line,
and represents the threshold valid for commutation. The latter occurs as k crosses kcr
coming from values larger than kcr towards values lower than kcr. In particular, the initial,
open con�guration is stable if and only if k > kcr -i.e., Wc is not too large. When Wc

becomes larger than this threshold the situation is reverted and the closed con�guration
becomes stable, i.e. commutation occurs.

As for anticommutation, we replace (temptatively) (13.33) with the following condi-
tion, valid for the initial con�guration of anticommutation, i.e. the closed con�guration:

rmax = 1.25 · r1 (13.48)
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In Fig. 13.22, the XXX line and the +++ line display Af vs. k computed for open and
closed con�guration respectively under this condition (13.48); kcr−A is the value of the
horizontal coordinate of the point of intersection between the XXX line and the +++ line,
and represents the threshold valid for anticommutation. The latter occurs as k crosses
kcr−A coming from values lower than kcr−A towards values larger than kcr−A. In particu-
lar, the initial, closed con�guration is stable if and only if k < kcr−A -i.e., Wc is not too
small. When Wc becomes lower than this threshold the situation is reverted and the open
con�guration becomes stable, i.e. anticommutation occurs.

Figure 13.22: Af (arbitrary units, vertical axis) vs. k (horizontal axis) at SN = 0.5
when condition (13.33) holds (continuous line: open con�guration, dotted line: closed
con�guration) and when condition (13.48) holds (XXX line: open con�guration, +++
line: closed con�guration).

Even if qualitative ((13.48) is just a reasonable guess), our discussion strongly suggests
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that the same selection rule -namely, minimisation of Wc- rules both commutation and
anticommutation. The di�erence between commutation and anticommutation lies in the
initial conditions, i.e. in the �ame shape before the transition.

Hysteresis

Fig. 13.22 shows that kcr−A > kcr, or, equivalently, that the value of Wc ∝ Af which
anticommutation occurs at is lower than the value ofWc ∝ Af which commutation occurs
at 24.

From a practical point of view, this implies that the heat release which anticommuta-
tion occurs at in GT is lower than the heat release which commutation occurs at, i.e. that
in order to retrieve the open con�guration once we are in the closed one it is not enough
to lower the load down to the value where commutation has occurred, but we need to
lower it even further (hysteresis).

Hysteresis implies that di�erent �ow patterns may correspond to the same value of k,
hence of the swirl number, depending on the past history of the system. Indeed, this has
been observed even when no combustion occurs - see Fig. 13.23

Hysteresis too is observed in Ansaldo GT. We take this fact as a further con�rmation
of the validity of our results.

13.7 Kuramoto-Sivashinsky and Bunsen

As for �ames with K ≈ 0, the de�nition K ≡ f ′′

(1 + (f ′)2)3/2
implies that f ′′ ≈ 0, hence

|f ′| ≈ const. and |f ′|2 ≈ const.. (Remember that perfectly �at �ames are never stable).
This implies that the impinging velocity is approximately uniform all along the �ame,
i.e. sL ≡ −v · n ≈ const. (according to (13.21)). Finally, we assume that the radial
coordinate r lies in the interval rA ≤ r ≤ rB. Correspondingly, in this Section by the
word everywhere we mean everywhere in the interval rA ≤ r ≤ rB.

Under the assumptions listed above, we show in the Appendix on the auxiliary re-
lationships concerning �ames with negligible curvature that the necessary criterion of
stability (13.17) takes the simple form:

∫ rB

rA

drLR = min. LR ≡ (F ′)
2

(1− rι)− 3

4
(F ′)

4
(13.49)

24The proportionality constant between Wc and Af being essentially given by the �ame velocity, the
stoichiometry and the mass density upstream according to (10.1), it remains una�ected by the transition
both at commutation and at anticommutation.
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Figure 13.23: Meridian cross section of two di�erent swirled �ows measured at the same
swirl number SN = 0.56. (S stands for SN). On the left (right) side, SN was increasing
(decreasing) -from Ref. [14]

where ι ≡ 2πθ

sL
(1 +$) and $ ≡ min (|f ′|2) are constant quantities everywhere, while the

Lagrangian coordinate is F = F (r) ≡
∫ r
rA
dr′
√

(|f ′|2)−$
1 +$

+ F (rA) and F (rA) is a con-

stant quantity, whose actual value is not of interest for the moment. As usual, the prime
denotes derivation on r. Physically, the quantity F = F (r) represents the deviation of the
�ame slope from the slope of a perfectly �at �ame with K = 0 everywhere. Typically, the

scaling (F ′)2 << 1 holds as |f ′|2 ≈ const. Moreover, if K ≈ 0 then f ′′
√

1 + (f ′)2 ≈ f ′′·
const.

We show in Appendix on the auxiliary relationships concerning �ames with negligible
curvature that the Euler-Lagrange equation of the variational principle (13.49) is well
approximated in the limit of negligible curvature by:

g′′ + (g′)
2

+ υgiv − ς = 0 (13.50)
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where g = lnF , while υ and ς are constant quantities. Equation (13.50) is just the
steady-state version of the well-known Kuramoto-Sivashinsky equation. This equation
describes both the triggering and the non-linear saturation of the thermo-di�usion in-
stability, which may a�ect �ames with negligible curvature even if the Darrieus-Landau
instability is stabilised [132]. Its steady-state version describes possible steady, stable
states where thermo-di�usion instability gets saturated. As expected, here 'steady-state'
means 'time-averaged on time-scales much longer than the typical time-scale of �uctu-
ations'. Equation (13.50) describes the deviation of the shape of a �ame with small
curvature from the shape with exactly zero curvature everywhere.

A relevant, particular case of stable, premixed, axisymmetric �ame with negligible
curvature described by equation (13.50) is the well-known Bunsen �ame 25 [133] [134].

25The shape of a Bunsen �ame is almost conical, and a conical surface has K = 0.
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Chapter 14

The onset of humming

14.1 A threshold

In this Chapter we discuss what happens when humming is triggered, i.e. when the sys-
tem �ame + �uid + combustor moves from a stable, steady con�uguration to humming.
Given the complexity of the issue, the discussion is only qualitative.

Remarkably, the constraint of �xed 〈
∫
dxPh〉 (say, 〈

∫
dxPh〉 = Wc ) corresponds

precisely to the operational condition of combustors in GT, which are usually set at
a customer-assigned value of the heat release Wc. When choosing between a steady,
humming-free �ame and a �ame oscillating with period τ , according to (11.11) the sys-

tem selects the con�guration which minimises 〈
∫
dx
Ph
T
〉 as the stable one. Here the �xed

volume is the volume Vb of the combustor, while -as we have seen- the period τ is not
too far from the period of some acoustic harmonic of the combustor �lled with �uid at
rest without �ame. In principle at least, we have therefore a tool for providing an answer

to the question if humming actually occurs. Let us compute 〈
∫
dx
Ph
T
〉 in both cases:

humming-free combustor and combustor with humming.

We have assumed that both the temperature Td of the downstream region and the
temperature Tu < Td of the upstream region are uniform on the �ame front. This as-
sumption allows us to say that we make a small error if we take the temperature T out

of the volume integral
∫
dx
Ph
T

provided that we replace T with some suitably-de�ned

weighted spatial average 1

Tf ≡
∫
dxPh∫
dx
Ph
T

(14.1)

1In steady state at least, Tf is perfectly well-de�ned, as the shapes of both T (x) and Ph (x) inside
the �ame are constant

219
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This replacement makes sense, in the framework of the present qualitative discussion
at least. Accordingly, if no humming occurs then we have:

〈
∫
dx
Ph
T
〉|steady =

∫
dx
Ph
T
|steady =

Wc

Tf
(14.2)

What if humming occurs? Generally speaking, the constant combustor volume Vb
satis�es at all times the relationship

Vb = Vd (t) + Vf (t) + Vu (t)

where Vd = Vd (t) and Vu = Vu (t) are the volume of the downstream region and the
upstream region respectively. The �ame is thin, then we neglect Vf in comparison with
Vd and Vu at all times below. Let Vd (t) reach its minimum value (say, Vmin) at a time t0.

Then, Vd (t) attains its maximum value Vmax = Vmin+4V at a time t0+
τ

2
and returns back

to the value Vmin at a time t0 + τ 2. Correspondingly, Vu (t0) = Vu (t0 + τ) = Vb − Vmin
and Vu

(
t0 +

τ

2

)
= Vb − Vmin −4V .

Furthermore, the total amount Stot (t) of entropy contained in the combustor at the
time t is Stot (t) = (ρs) |dVd (t) + (ρs) |uVu (t) and is not constant. Indeed, the entropy per
unit volume (ρs) |d in the downstream region (where burnt, hot gases are present) is larger
than the corresponding quantity (ρs) |u on the upstream side (where unburnt, cold gases
only are present). Consequently, Stot oscillates between a minimum value Smin and a max-
imum value Smax, where Smin = Stot (t0) = Stot (t0 + τ) = (ρs) |u (Vb − Vmin) + (ρs) |dVmin
and Smax = Stot

(
t0 +

τ

2

)
= (ρs) |u (Vb − Vmin −4V ) + (ρs) |d (Vmin +4V ) In order to

return back to the initial value Stot (t0), at the time t0 + τ the total amount of entropy
lost by the combustor across the boundaries due e.g. to the gas �ow must be equal to
Smax−Smin = (ρs) |du4V where (ρs) |du = ((ρs) |d − (ρs) |u). Here and in the following, we
write a|du ≡ a|d − a|u for the generic quantity a. The combustor is given this amount of
entropy by combustion inside the �ame, as no entropy is produced outside the �ame (for
negligible viscosity at least). Thus, the time-averaged net amount of entropy produced
per unit time which must be carried away is

〈
∫
dx
Ph
T
〉|oscillating =

(ρs) |du4V
τ

(14.3)

2The value of the humming period τ is near to the period of some acoustic harmonic of the combustor
without the �ame, hence it depends basically on the combustor geometry; as such, it will be taken as a
constant quantity in the following.
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According to the selection rule (11.11), the transition from steady to oscillating systems

occurs when 〈
∫
dx
Ph
T
〉|oscillating = 〈

∫
dx
Ph
T
〉|steady, i.e.:

(ρs) |du4V
τ

=
Wc

Tf
(14.4)

Non-oscillating �ames are stable against perturbations of amplitude 4V and period τ
when the L.H.S. of (14.4) is larger than the R.H.S., i.e. when Wc is not too large. This
result is of purely thermodynamical origin, and holds therefore regardless of the detailed
dynamics of the oscillation.

Let us discuss some consequences of (14.4). Firstly, as far as τ > 0 equation (14.4)
implies that 4V > 0 at the transition. This conclusion is in agreement with the results
of the numerical simulations of [51], which suggest that the simplest mathematical model
of the transition resembles the arrangement of a subcritical Hopf bifurcation and a saddle
node bifurcation [60], leading just to 4V > 0 at the transition -see e.g. Figs. 1 and 13
of [51], where the value of 4V > 0 at the transition is to be computed at the value βh
of the heat release parameter. In turn, this arrangement makes hysteresis possible. In
contrast, supercritical Hopf bifurcations seem to be ruled out, as they require 4V = 0 at
the transition -see e.g. Fig. 1.13 of [135].

Secondly, if the �ame remains within the combustor at all times, then Vb ≥ 4V and
(14.4) gives:

(ρs) |duVbTf
τ

≡ Wthreshold ≥ Wc (14.5)

According to (14.5), no stable, humming-free �ame exists for Wc ≥ Wthreshold. Typical
order-of-magnitude estimates are τ ≈ 10−2s, Vb ≈ 1 m3, Tf ≈ 1.5 · 103K, (ρs) |du ≈
102J · m−3 · K−1 hence Wthreshold ≈ 50MW , i.e. just in the range of commercial com-
bustors for energy production. Unfortunately, however, our result is just an upper bound
on the actual threshold value, as Wc ≤ Wthreshold; moreover, it holds only as an order-of-
magnitude estimate.

Thirdly, as usual by now let us keep the upstream �ow (hence Tu and (ρs)u) un-
changed. It follows that both Tf and (ρs) |du are increasing functions of Td. In turn, Td
is an increasing function of sL in lean combustion at �xed Tu [2]. Then, Wthreshold too is
an increasing function of sL in lean combustion at �xed Tu. Just as expected from our
discussion of the previous Section, it follows that raising sL at �xed upstream �ow has a
stabilising e�ect on humming, as it raises Wthreshold. We may achieve such goal e.g. by
raising the fuel content; all the way around, generally speaking, the leaner the �ame the
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more prone to instability [53].

14.2 A quality factor

We have seen that Rayleigh's criterion is connected with Le Châtelier's principle of ther-
modynamics, and that the latter principle leads to further necessary criteria of stability
of the unperturbed, steady state of a �uid at rest; these criteria agree therefore with
Rayleigh's criterion. We have also shown that the same criteria apply also to the stability
of oscillating unperturbed state, after suitable time-averaging. In agreement with ther-
modynamics, the generalisation of Rayleigh's criterion to oscillating unperturbed states,
Myers' corollary, leads after time-averaging to predictions which are formally identical to
Rayleigh's ones, provided that the Rayleigh's index is suitably rede�ned. Accordingly, we
are allowed both to invoke Myers' corollary in order to gain information about humming,
and to expect that such information is in agreement with Le Châtelier's principle. This
is the topic of this Section.

Starting from Myers' corollary, we show in the Appendix on the �ame velocity that
the following inequality:

1

τ

[〈〈
Ktot

dsd
dsL

dsL
dsT

sT

〉
s

〉
f

]−1

< 1 (14.6)

is a rule-of-thumb necessary condition for the lack of humming in combustors with pre-
mixed, turbulent, globally concave �ames. Here τ is the humming period, as usual;
moreover Ktot and sd are the total curvature of the �ame and the �ame front speed rel-
ative to the �ow respectively [4]; here and in the following we refer to the Appendix for
all de�nitions. Finally, 〈〉f and 〈〉s denote averaging on the �ame surface (weighted by
the Rayleigh index) and averaging on the small-scale �ame surface convolutions induced
locally by the turbulence, respectively. In contrast with the former averaging, the latter
averaging leads to results which depend on the position on the �ame, but allows us to
get rid of high-frequency, small-scale, turbulence-related e�ects. Formally, the L.H.S. of
(14.6) is positive for our �ames. Reasonably, in fact, the contribution of Ktot is positive
on average for globally concave �ames. Moreover, relationship (7) ensures that the dis-
placement speed is an increasing function of sL everywhere, as far as no quenching occurs.

Finally, sT is an increasing function of sL, i.e.
dsL
dsT

is also positive.

Physically, each term on the L.H.S. of (14.6) takes into account the impact of a dif-

ferent quantity on humming. To start with, we have seen that the humming frequency
1

τ
is near to an acoustic eigenfrequency when no �ame is present. As such, it grows with
increasing function of the speed of sound cs, which in turn is an increasing function of
temperature. A simple way to raise cs everywhere across the combustor is to raise the
temperature of the unburnt fuel mixture upstream. Then, the hotter the upstream �uid
mixture (all other quantities being unchanged) the larger the L.H.S. of (14.6) the more
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likely the onset of humming.

As for the �ame velocity, the exact dependence of sT on sL is still matter of debate
[113]; popular scaling laws predict either a linear dependence sT ∝ sL [4] or a square-root

dependence sT ∝
√
sL [112]. In both cases

dsL
dsT

sT is an increasing function of sT . In turn,

this fact has two consequences. Firstly, we have seen that sT is an increasing function of
pressure [113]. Then, the lower the pressure (all other quantities being unchanged), the
lower sT , the larger the L.H.S. of (14.6), the more likely the onset of humming

3. Secondly,
if we lower sL (al other quantities being equal) -by decreasing e.g. the fuel content in lean
combustion- we lower also sT , and again we facilitate humming.

Up to now, all these results agree with the predictions of our simple model [3]. But

(14.6) contains new information: the geometry of the �ame. While the quantity
dsd
dsL

depends on the �ame stretch only weakly (see the Appendix on the �ame velocity), the
total curvature is signi�cantly di�erent in open con�guration and in closed con�guration.
In the open con�guration, a signi�cant fraction of the �ame exhibits its convex side to-
wards the incoming �ow, while no such convex side exists in the closed con�guration. As
a result, the radius of curvature changes sign along the �ame in the open con�guration,
in contrast with the closed case. It follows that the �ame-averaged curvature is larger
in the closed case than in the open case, hence the commutation from open to closed
�ames lowers the L.H.S. of (14.6) and makes humming more di�cult. Everyday working
experience shows that commutation occurs as Wc grows; and when Wc exceeds a thresh-
old, humming is triggered. Then, we can understand commutation as a further example
of Le Châtelier's principle: as we push the system towards humming by raising Wc the
system (which is initially in open con�guration) tries to resist by commuting to a more
stable, close con�guration. It is therefore really possible to speak of a thermodynamics of
humming onset.

Basically, the L.H.S. of (14.6) is a dimensionless quantity, i.e. the humming frequency
1

τ
normalised to the ratio of a typical velocity and a typical length, as K−1

tot and sT have

the dimensions of a length and a velocity respectively. As such, the L.H.S. of (14.6) is
much like a Strouhal number. It is customary to de�ne a Strouhal number in problems
where a �uid start oscillating, and the de�nition of this number depends on the particular
problem -as an example of application to humming, see e.g. [22]: the larger Strouhal, the
more likely the onset of humming. In our discussion, the typical length is the reciprocal
of the total curvature of the �ame, i.e. it is directly related to the �ame geometry.
Thus, inequality (14.6) is an explicit link of the �ame geometry and the stability against
humming. As a matter of principle, it can be expected that the dimensionless L.H.S.

3The reader could object that in real combustor the unburnt mixture is supplied by a compressor,
so that a growth of working pressure in the combustor is unavoidably associated with a growth in the

upstream temperature, hence of cs ∝
√
T . All the same, for adiabatic compression T ∝ p

1−
1

γ , and sT
increases much faster with pressure [113], so that the L.H.S. of (14.6) is still a decreasing function of
pressure.
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of (14.6) may allow comparison between di�erent con�gurations of the system �ame +
�uid + combustor as far as humming onset is concerned, just like Reynolds' number Re
allows comparison between di�erent con�guration as far as turbulence is concerned. If
this is true, then the L.H.S. of (14.6) plays the role of a quality factor for the stability
against humming. Such assessment may be of practical relevance when applied e.g. to
the well-de�ned, rated, steady-state con�guration of a combustor in a real-life GT plant
to be sold to customers.



Chapter 15

The control of humming

15.1 Passive vs. active strategies

Historically, Rayleigh's criterion has provided the physical basis for various strategies aim-
ing at controlling the humming oscillation. We recall that GT manufacturers aim at such
control without increasing pollution (they could otherwise make use of fuel-rich �ames,
which are both more stable and more polluting than lean �ames).

A passive approach aims at maximizing the stabilizing contributions in Rayleigh's
criterion through modi�cation of the acoustics of the combustion chamber, either by in-
creasing acoustic damping via Helmholtz-type resonators or by disturbing the propagation
of sound waves via ba�es. A simple, cheap (and therefore popular) passive method is
just to drill holes. Long before theoretical models were available, manufactures drilled
damping holes in the combustion chamber front plate in combustors a�ected by severe
humming. Here the term passive refers to modi�cations of a combustion system that,
during system operation, will not be changed any more and/or will require no external
supply of energy. Usually. passive methods work in a small operating range only, covering
a narrow frequency interval. As e.g. for damping holes, poor damping e�ect and frequency
tuning overcompensated the advantages of simplicity and low maintenance requirements.
As for Helmholtz resonators -see Fig. 15.1- they allow a safe growth of the heat release
up to 20 % [136]. Generally speaking, the instability amplitude is substantially reduced
if the resonator is tuned such that its resonant frequency coincides with the instability
frequency. Then, a separate resonator is required for each frequency that needs to be
suppressed [137].

An alternative active approach relies on suitably modulated injection of either fuel
and/or sound [138]. Under ideal conditions, modulation is performed in a manner to have
the corresponding system variable �uctuate precisely in counter-phase with the �uctua-
tions constituting the combustion instability, thus damping them. The term active refers
to utilization of an external power supply. Such feedback control -Fig. 15.2-works well
in simple thermo-acoustic systems but is challenging in industrial systems because the
sensors and actuators have to withstand very harsh environments. For example, fuel �ow
modulation has been considered as actuation mechanism for active control of combustion
instability in practical applications, using mechanical devices such as valves. However,
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Figure 15.1: A drawing of a combustor with a Helmholtz resonator (in the red circle).

because these fuel valves tend to have a non-negligible space requirement and to have
limited technical performance, few easily implementable solutions are currently a�ord-
able. To date, no approach seems to provide manufacturers with the ultimate solution,
and suitable combination of active and passive strategies is required for each machine [139].

In the following, we are going to take advantage of our investigation on the humming-
relevant thermodynamics in order to discuss the properties of a possible new class of
non-mechanical actuators for the active approach.

15.2 Electromagnetic actuators: DC, NRPP...

DC

In principle, should electromagnetic �elds replace mechanical actuators, wearing of the
latter would be no more matter of concern in the active approach.

In particular, DC electric �elds seem to a�ect both the �ame velocity [140] and the
FTF [141] of premixed methane-air �ames, where the FTF is de�ned as the ratio of the
relative heat release rate oscillation and the relative �ow velocity oscillation. In the ex-
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Figure 15.2: Conceptual lay-out of an active control system.

periment of Ref. [141], a DC electric �eld has been applied to a Bunsen which plays also
the role of anode. It turns out that the impact of the �eld on a Bunsen conical (laminar)
�ame is much stronger than on a �at �ame. Fig. 15.3 displays the measured time delay
(normalised to the humming period) vs. the humming frequency for Bunsen �ames with
di�erent shapes under the same DC 4 kV voltage. In all cases, the amplitude of the (ar-
ti�cially superimposed) velocity perturbation was ≤ 6% the mean �ow velocity, and the
electric power delivered to the �ame was ≤ 0.5%Wc. Negative values of the time delay
correspond to the �ame approaching the fuel inlet. Of course, Bunsen di�use �ames are
scarcely an adequate model for realistic multi-MW premixed TG. Moreover, DC coupling
e.g. to a pilot in industrial burner is far from being a trivial issue. All the same, the
very fact that the absolute value of the normalised time delay is much larger than the

stabilisation threshold
π

2
in almost all cases even at such small values of the electric power

suggests that �ame stabilisation through electric �eld is worth being further investigated
in detail.

In principle, charge carriers are being produced in hydrocarbon �ames in the form of
positive and negative ions as well as electrons. This process is called chemionization and
happens during the oxidation of neutral particles -atoms and molecules. Usually, both the
positive ions and the negative ions are rather unstable at high �ame temperatures, and
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Figure 15.3: From Ref. [141]. L and V are a typical length and the applied voltage
respectively.

therefore decay quickly into electrons and neutral particles. If an external DC electric �eld
is applied to a �ame, the most important processes will happen in the region between the
reaction zone and the electrodes. Due to the applied electric �eld, positive and negative
charge carriers are separated from each other and accelerate as they travel towards the
corresponding electrode. As a result, an electric current will �ow between the electrodes
depending on the applied voltage. The current-voltage characteristics shown in Fig. 15.4
can be used to divide the the e�ects into three distinct regimes, as follows:

• At low applied voltage, the current is proportional to the voltage. Positive ions and
electrons recombine. Negative ions decay. All of them form neutrals. Recombination
rules physics. With increasing voltage, an increasing amount of charge carriers are
removed fro the reaction zone and go the electrodes, at the expense of recombination.

• When the majority of charge carriers have been removed, further increase of voltage
raise the current no more as no more charge carriers are available.

• At even larger voltage, an appreciable number of electrons extracted from the �ame
are accelerated on their way to the anode up to kinetic energies that are high
enough to ionize neutrals. Ionization rules physics. The ionization rate is linear in
the density of available free electrons, but increases exponentially with the ratio of
the applied voltage to the ionisation voltage.
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Figure 15.4: Current-voltage characteristics for a DC electric �eld applied to a premixed
�ame (from [142]). Here UBT and Isat are the breakdown threshold voltage and the corre-
sponding electric current.

As for DC �elds, the absorbed power is the product of voltage and current, then it is
much larger in the ionization phase. Usually, it is ≈ 0.002 % - 0.01 % times Wc. Since
Wc ≈ tens of MW in GT and too large values of dissipated power are far from desirable,
DC actuators for active control of humming are investigated in the recombination regime.

The in�uence of electric �elds on �ames in the �rst regime can be explained with
the help of a simple 1D schematic diagram, as shown in Fig. 15.5. A positively charged
wire mesh is placed above a premixed burner with a �at, 1D �ame. Due to the electric
�eld, charge carriers are separated and accelerated towards the corresponding electrodes.
The electrons and negative ions are accelerated towards the positively charged electrode,
whereas the positive ions move in a counter�ow to the incoming fresh gas towards the
electrically grounded burner rim. In general, the ions collide with neutral molecules from
the incoming mixture after passing the mean free path length. The latter is quite small
and the positive ions are accelerated once more by the electric �eld after each collision,
each positive ion undergoes a multitude of collisions with neutral molecules. Therefore,
even small ion concentrations are su�cient for a noteworthy momentum transfer to the
fresh gas. Unlike the ions, electrons play only a minor role in the total momentum transfer
due to their low mass. Similarly, the impact of negative ions is also rather low due to their
low concentration. As a result of the collisions of the fast ions with the neutral molecules
within the fresh gas region, a clearly observable shift of the �ame front occurs. This can
be attributed to the following two di�erent mechanisms:

• The �rst mechanism, usually named the ionic wind or electrohydrodynamic e�ect,
relies solely on the transfer of momentum from the accelerated positive ions to the
incoming neutral molecules. This momentum transfer to the fresh gas molecules
changes the �ow pattern above the burner rim. As a consequence, the �ame front
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is shifted towards the burner exit 1.

• The second mechanism is based on the generation of radicals by the collisions of
accelerated electrons with neutral molecules. Radicals are produced upstream of
the e�ective reaction zone and increase the reactivity of the mixture. Hence, the
�ame also responds with a change of the reaction zone.

Figure 15.5: Premixed �ames without ionic wind (left) and with ionic wind (right) - from
Ref. [142].

Experiments [142] show that application of DC �eld in the recombination regime to
a 50 kW premixed turbulent �ame allows dramatic reduction of CO emissions in the
range 1 ≤ p0 ≤ 10 bar. The reduction of CO emissions scaled proportionally to the ratio
of voltage and pressure (This is not surprising, as electric voltages and �elds in gaseous
conductors below breakdown scale usually with pressure) -see Fig. 15.6. I the experiments,
maximum current and voltage were 3.3 mA and 40 kV respectively.

Admittedly, the DC �eld leads also to slight increase in NOx emissions. However, this
increase could be inverted to a decrease using leaner mixtures, which was possible since
the lean blow-o� limit too was shifted to a higher air number by the stabilizing action
of the electric �eld. The DC �eld allows an increase of the air-to-fuel ratio with a lean
blow-o� limit shift of up to 8 %. Due to this shifted lean blow-o� limit, an overall 40 %
decrease of NOx emissions could be achieved with concurrent reductions of CO emissions
by 60 %, compared to the case without the application of electric �elds. Preheating was
also favorable due to the increased reactivity of the mixture.

NRPP

In spite of its interesting features (the control of humming-relevant phases, the reduction
of pollution and/or the increase of the lean blow-o� limit), DC has the disadvantage that

1The ionic wind is a well-known e�ect of electricity since the XIX century.
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Figure 15.6: CO and NOx emissions vs.
voltage

p0

- from Ref. [142].

the dissipated power increases with the applied voltage, which in turn increases with the
distance between electrodes at given electric �eld. In order to prevent the electrodes to be
too near to the �ame and to shield them from the ensuing thermal stresses, the distance
between them cannot be to short, and this is likely to lead to large amount of dissipated
power.

It is reasonable to ask ourselves what happens if the frequency νRF of the applied
electric �eld is not zero, like in the DC case. Intuitively, we expect that if νRF is smaller
than the typical collision frequency of electrons with neutrals, i.e. if an electron under-
goes at least one collision while it oscillates under the e�ect of the applied electric �eld,
then things should not di�er too much from the DC case, and the application of the �eld
should be still bene�cial. Approximately, this means νRF < 10 GHz (see the Appendix
on the RF-�ame interaction). In contrast, if νRF is larger than this threshold, then elec-
trons oscillations are basically collisionless, and the �ame remains una�ected (this is why
nobody expects e.g. visible light to stabilise humming).

Remarkably, oscillating electric �elds propagate across vacuum (and across the gaseous
mixture in GT combustors) as electromagnetic waves at the speed of light. This suggests
that power may be transmitted to the �ame by sources which are located far away - a
fact which helps thermal shielding of the sources themselves.

Finally, electromagnetic waves at νRF < 10 GHz have wavelengths > 3 cm and are
emited by sources with linear size ≈ this wavelength. Such size is compatible with the
lay-out of GT combustors.

In the following, we are going to discuss two examples of electromagnetic actuators in
the GHz requency range, namely NRPP and RF.
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Generally speaking, electromagnetic �elds may generate a plasma near the �ame 2. In
particular, plasma actuators are routinely investigated in �ow control outside combustion
research -see e.g. Ref. [144].

As for combustion, plasma-assisted combustion techniques have bene�cial e�ects on
�ammability limits and facilitate combustion of lean mixtures; a far-from-complete list
[145] includes dielectric barrier discharges and NRPP, whose bene�cial e�ects on hum-
ming have been reviewed in the Section on Le Châtelier's principle above. Here we recall
that when humming occurs in a swirl-stabilized combustor at atmospheric pressure fueled
with natural gas at an equivalence ratio of 0.66 and 43 kW heat release, suitably tuned
NRPP with 315 W time-averaged electric power consumption induce a ten-fold decrease
of 3-mbar pressure oscillation amplitude [103]. Fig. 15.7 displays a conceptual lay-out
of the epxperiment: small violet segments represent the discharge. Fig. 15.8 shows that
the �ame is markedly shifted bottomwards, i.e. towards the fuel inlet, by NRPP. This is
agreement with an increase in the �ame velocity. As for the Joule power dissipated in the
discharge, Fig. 15.9 shows how suitably pulsed discharges (with repetition frequency in
the range 30 - 50 KHz) allow us to achieve a large peak value even if the averaged value
is relatively low. Finally, Fig. 15.10 shows the stabilising e�ect of NRPP. Remarkably,
the higher the repetition frequency the better; this is possibly due to a NRPP power
deposition time inside the �ame < the time of �ight of the air-fuel mixture across the
�ame at large repetition frequency.

In a similar experiment, NRPP make a humming-a�ected, lean, premixed swirl-
stabilised air-methane �ame in open con�guration to commute to a humming-free, closed
con�guration -see Fig. 7 of Ref. [146].

2By de�nition, a (classical) plasma is a gaseous medium containing unbound positive and negative
electric charges whose behaviour is ruled by collective e�ects. The latter words mean that charged
particles are so close enough together that each charged particle in�uences many nearby charged particles,
rather than just interacting with the closest particle; these collective e�ects are a distinguishing feature
of a plasma. More quantitatively, it can be shown under quite general assumptions that the radius of

in�uence of a single charged particle, the so-called Debye (screening) length λD, is equal to λD =

√
ε0kBT

nee2

where ε0 = 8.85·10−12F ·m−1, kB = 1.38·10−23J ·K−1, ne is the density of free electrons, e = 1.6·10−19C
and the temperature T is expressed in Kelvin degrees. It can also be shown that the de�nition of plasma

requires that the number of free electrons available in a sphere of radius λD is >> 1, i.e.
4πλ3Dne

3
>> 1.

Moreover, in most cases the Debye length is also much smaller than the typical linear size L, i.e. L >> λD.
In this case, the plasma is quasi-neutral, i.e. i.e. the net electric charge density of a plasma is roughly
zero everywhere. Any process which brings T to a large enough value (or lowers ne correspondingly) may
transform a gas or a mixture of gases -e.g. air- into a plasma. In this case, ions (electrons) play the role
of positively (negatively) charged particles; even in a plasma, they may coexist with electrically neutral
particles (atoms, molecules), dependng on the actual values of temperature and density. In particular,
plasmas where the density of charged particles is much smaller than the density of neutrals are referred to
as weakly ionized. Physical causes of the transformation of gases into plasmas include e.g. the application
of su�ciently strong electromagnetic �elds: lightning is a well-known example. Even if the external
world applies no electromagnetic �eld, however, combustion itself may do the job: indeed, �ames are
quasi-neutral, weakly ionised plasmas [143]. As we shall see, a striking feature of plasmas is that their
electric conductivity may be order-of-magnitude larger than the electric conductivity of gases -as it is
clearly shown by the example of lightning.
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Figure 15.7: From Ref. [103].

Unfortunately, short life cycles -due to overheating and erosion of electrodes- and sig-
ni�cant power consumption are the problems to be faced [147].

As for the electrodes, optimization of their electromagnetic coupling to the �ame forces
them to be located never too far from the �ame itself, making their protection from the
harsh conditions of the combustion chamber di�cult. Similar arguments apply also to
DC electrodes. In a nutshell, good electromagnetic coupling (a desirable thing) implies
good thermal coupling (an undesirable thing).

As for power consumption, should 315 W be enough to suppress humming in a
Wc = 43kW premixed �ame, then linear extrapolation (if any) to a Wc = 50MW GT
combustor would still require 366 kW electric power supply to the electrodes even for
3-mbar-amplitude humming, hardly an easy task in real-life operating conditions.
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Figure 15.8: From Ref. [103].

15.3 ..and radiofrequency (RF)

As for the problems with electrodes, bombardment [148] [149] [150] [151] [152] [153] of
the �ame with electromagnetic waves with frequency in the GHz range -referred to as RF
here- seems to be an obvious answer. A conceptual lay-out of the experiment is displayed
in Fig. 15.11. A more detailed lay-out is displayed in Fig. 15.12.

In fact, RF waves may propagate from the antenna across the gaseous mixture to-
wards the �ame, even if the antenna is located far from the �ame. Thus, the RF antenna
plays the role of an electromagnetic actuator, which could be free of the problems which
a�ect existing electromagnetic actuators. Admittedly, this is only true in the so-called
weak �eld limit, i.e. when the maximum electric �eld of the RF wave exceeds a given
threshold nowhere. If this condition is not satis�ed, the RF electric �eld triggers an elec-
tric breakdown which in turn leads to unwanted, parasitic electric arcs which waste RF
energy and -possibly- erodes material surfaces like electrodes, combustor inner walls etc.
We are going to see in the following that the weak �eld approximation is satis�ed in all
cases of practical interest.

As for the power consumption, we recall that RF power absorption occurs within the
�ame only [152] -unlike NRPP. In contrast with both DC �elds and NRPP- RF creates
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Figure 15.9: From Ref. [103].

Figure 15.10: From Ref. [103].
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Figure 15.11: A conceptual lay-out of the experiment - from Ref. [148].

Figure 15.12: A more detailed lay-out of the experiment. Dimensions are in inches - from
Ref. [148].

no plasma outside the �ame in the weak �eld limit. As we shall see, RF takes rather ad-
vantage of the existence of free electrons inside the �ame due to combustion even before
RF. It follows that no power is wasted in the �uid around the �ame. As a consequence,
we expect that RF may be more e�cient than NRPP.

Physically, in fact, all �ames contain a tiny number of free electrons. Their number
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increases dramatically with increasing temperature. When RF is injected, free electrons
absorb a small fraction of RF power; then, this absorbed amount of power goes to the rest
of the �ame because of collisions. Absorption of RF power depends on the free electron
density, which in turn depends on the �ame electric conductivity σ, a quantity which is
usually overlooked in humming research. In particular, it is shown in the Appendix on
RF-�ame coupling that -at least if the RF frequency does not exceed tens of GHz- the
density Pa of RF power absorbed inside the �ame is proportional to σ, i.e.:

Pa ∝ σ (15.1)

In turn, σ vanishes for vanishing density of free electrons. Here we anticipate the result of
the Appendix on electrical conductivity, that there are basically no free electrons outside
the �ame, while some free electrons are always available within the �ame; moreover, their

density is largest in the very thin reaction region of thickness
δL
Ze

where the combustion

reaction rate peaks inside the �ame.

According to the scaling (15.1), moreover, there is another reason for optimism oc-
ncerning RF capabilities in humming control. We show in the Appendix on the electrical
conductivity of the �ame that σ is a monotonically, very rapidly increasing function of T :
it changes by more than 10 orders of magnitude in the range 900 K < T < 2200 K. Now,
this very fact suggests that application of RF may trigger a positive feedback, just like a
lighted match in a microwave oven: RF starts heating the �ame according to (15.1), the
ensuing �ame heating raises σ, in turn this growth raises Pa etc., unless a large e�ciency
in RF absorption is achieved even if the volume of the absorbing region is tiny.

Intuitively: even if no arc is triggered and fully uncontrolled breakdown is never
achieved, we are on the verge of the knee between saturation zone and ionisation zone in
Fig. 15.4, just when σ starts rising, so that no large electric �eld is required in order to
raise Pa. Even so, the impact on the �ame is large precisely because the region where RF
absorption occurs is tiny. Moreover, it is the �eld itself which raises σ, hence we retrieve
the increased reactivity of the DC case with no need of raising Tu and with no increase in
pollution (just as in the DC case). Finally, since no free electron exists outside the �ame
-unlike DC and NRPP- we waste no energy in accelerating them towards the electrodes.
For the same reason, RF automatically couples to the �ame regardless of its detailed mo-
tion (which is always much slower than the propagation of RF waves at the speed of light).

Here we anticipate that RF impact on humming is due to the capability of RF in
controlling the laminar �ame velocity sL. This leads to a further argument in support
of RF. Indeed, we have seen that combustion in GT combustors occurs very near to the
blow-out point, and therefore not far from the stability line where small perturbations
may produce very large responses. The other side of the coin is that RF-based control of
humming is likely to require no large variation of sL, hence no exceedingly lare amount
of power supply to the RF antenna.
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It could be objected that the proof of (15.1) in the Appendix on RF-�ame coupling
relies on the assumption of a �at, laminar �ame. (More to the point, the validity of
the proof for turbulent �ame is subject to some additional conditions concerning RF and
turbulence, which are justi�ed below). In contrast, �ames in GT combustors are both
non-�at and turbulent. However, this lack of self-consistency is de�nitely not relevant.
In fact, the speed of propagation of RF waves, namely the speed of light of vacuum c,
is so large that we may safely assume the RF wave to reach the di�erent parts of the
�ame simultaneously. This fact provides also our discussion of the impact of turbulence
on RF-�ame interaction below with a physical basis. Intuitively, photons are so fast that
turbulent whirls seem to them like standing still. In particular, the scaling (15.1) and
its consequences are perfectly reasonable for turbulent �ames too. In fact, the micro-
scopic phenomena -like electron-photon interactions, electron-neutral collisions and the
like- which rule RF absorption occur on a much shorter time-scale (say, 10−10 s) than the
typical time-scale τK of Kolmogorov cells in turbulent �uids (τK ≈ 10−5 s, as shown in
the Appendix on the �ame speed).

Moreover, we expect the exact �ame position to a�ect �ame-RF wave coupling only
weakly, in the weak �eld limit at least. In this limit, in fact, RF automatically couples

only to the region of thickness
δL
Ze

quoted above, maintaining that coupling as the �ame

front oscillates during the humming 3. Of course, in case of RF standing waves this con-
clusion holds provided that the �ame is not located near minima of the RF electric �eld.

In particular, as far as the free electrons are concerned, a primary ionisation mecha-
nism in combustion with hydrocarbons is the associative chemionisation

CH +O → CHO+ + e

in collisions of CH radicals and oxygen atoms, with subsequent conversion of CHO+

ions into more stable H3O
+ ions [148] [149]. Electrons are lost primarily in two-body

dissociative recombination with H3O
+ ions, and -to a lesser degree- in attachment accom-

panied by formation of negative ions. Quantitative discussion requires dedicated, detailed
kinetic treatment, because these reactions are not well described by the approximation of
local thermodynamical equilibrium 4. Luckily, the mass fractions of the chemical species
involved in the reactions which are responsible for σ are � 1, so that we can still apply
the results based on Le Châtelier's principle to the �ame which interacts with RF.

3Admittedly, additional coupling may occur in the downstream region due to the presence of residual
ions, but this appears to be much less than in the �ame front [149].

4For example, the associative chemionisation quoted in the text is exothermal -see e.g. equation (1) of
Ref. [154]. Should LTE rule it, Le Châtelier's principle would make RF heating to suppress production
of free electrons, in contrast to what happens in the microwave oven quoted above.
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We discuss this kinetic treatment in the Appendix dedicated to the electrical conduc-
tivity of the �ame. It has been performed by Prof. Colonna and co-workers at Consiglio
Nazionale delle Ricerche in the framework of a collaboration with Ansaldo Energia, start-
ing from data provided by the latter concerning real Ansaldo combustors (full credits are
listed in the Appendix).

Finally, typical linear size of a 3 GHz antenna is ≈ 10 cm, i.e. the linear size of a
ceramic tile in the inner wall of a combustion chamber of a GT combustor. Conceivably,
therefore, there is plenty of choices for suitable antenna protection from the heat �ux com-
ing from the combustion chamber 5. Good electromagnetic coupling does not imply good
thermal coupling. This is why the GHz range is so attractive: lower and higher frequencies
may lead to dimensions � 10 cm (not compatible with the lay-out of a GT combustor) and
to exceedingly large power density at the antenna respectively. Engineering of �ame-RF
coupling may take advantage of the decade-old expertise in plasma RF heating in hostile
environments -see e.g. [155]. Even small antennas may inject considerable amount of RF
power, as the RF power density at the antenna may reach 25 MW · m−2 at RF wave
frequency νRF = 3.7 GHz [156].

Admittedly, however, nobody has tried to control humming with the help of RF -yet.
Indeed, we have still to answer to two questions:

• Why should RF control humming?

• How much power is required at the RF antenna?

The analogies between RF and NRPP discussed above suggest that if we are able to
provide an answer to the �rst question then we are also able to understand why NRPP
stabilise humming. The fact that NRPP act on humming in agreement with Le Châtelier's
principle suggests that we may take advantage of the results of our discussion of humming
thermodynamics, including suitably selected versions of Rayleigh's criterion. Accordingly,
we are going to utilize the latter criterion in order to provide a quantitative answer to the
second question, which is crucial to possible applications on real GT combustors.

15.4 Why should RF control humming?

First of all, there are many similarities between NRPP -which do hinder humming- and
RF:

• Just like NRPP, RF induces Ohmic heating of the �ame -as shown in the Appendix
dedicated to RF-�ame coupling.

• RF wave period (≈ ns) is similar to NRPP period.

5For instance, the tile itself may be helpful. A scaling similar to (15.1) ensures that the tile, whose
electrical conductivity is negligible, absorbs no RF power. Moreover, no parasitic arc occurs between the
RF antenna and the metallic components of the combustor, in the weak �eld limit at least. Finally, it
has been demonstrated that electric �elds can be transmitted through ceramic CC walls using capacitive
coupling [142].
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• Both pulsed RF and NRPP rely on commercially available, pulsed power technology.

• Both pulsed RF and NRPP lead to extension of lean combustion limit in methane-air
mixtures [157].

Perhaps, the most tantalizing clue about the relevance of pulsed RF to humming is the fact
that, quite unexpectedly, pulsed RF has shown the ability to generate a strong, audible
sound generated from the �ame region [152]. The sound follows the frequency associated
with the repetition rate of the RF source and increases in intensity with power level of the
incident radiation. Reasonably, if RF generates sound at the �ame, it may also control it.

Indeed, many experiments unambiguously show that RF increases the laminar �ame
speed sL signi�cantly (by 70% and even more, in some cases) in lean, premixed, air-
hydrocarbon, �at, laminar �ames [148] [149] [150] [153] even if no humming occurs. Simi-
lar results have been obtained in Bunsen laminar �ames [151] and turbulent �ames [152].
This is not surprising as as sT increases with increasing sL and sL is a well-known, in-
creasing function of the �ame temperature on the burnt gas side [2]; the RF wave heats
the �ame, hence raises sL. However, RF-induced growth of sL has been reported even in
absence of �ame heating; this is possibly due to RF-induced changes in chemical kinetics
[151]. Here we refer to no detailed mechanism of RF-induced growth of sL, and take it as
an experimental fact. We refer to Fig. 15.13 and to Fig. 15.14.

for the measurements taken in the experimental lay-out photographed in Fig. 15.15.

In these experiments, the RF frequency was 2.45 GHz and the �ame diameter and thick-
ness were 1.7 cm and 0.4 cm respectively. Further operational conditions are listed in
Fig. 15.16.

Not surprisingly, RF optics plays a crucial role -see Fig. 15.17.

For given in�ow, raising the �ame velocity is equivalent to shifting the �ame towards
the inlet, thus modifying the geometry of the combustion process, in analogy to what we
have seen in the NRPP case (Fig. 15.8): see Fig. 15.18 and Fig. 15.19.

An independent con�rmation is provided in [151], where the �ame geometry is di�er-
ent (Bunsen conical, not �at): see Fig. 15.20 and Fig. 15.21.

Remarkably, a good e�ciency in the RF absorption is a less stringent constraint than
intuitively expected. In fact, it turns out [152] that with the addition of 1.2 kW of CW
2.45 GHz microwave power, �ame speed enhancements of over 30 % can be achieved in a
�ame that only absorbs roughly 15 W of the microwave power - see Fig. 15.22.

These experimental facts allow us to write:

dsL
dPa

> 0 (15.2)
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Figure 15.13: From Ref. [148].

The scaling (15.1) ensures that the RF leaves the upstream �uid outside the �ame
(where σ = 0) una�ected. Then, RF acts just like the other approachs to humming sta-
bilisation described above: it raises the �ame velocity while leaving the upstream �ow
una�ected. Now, it is shown in the Appendix on the �ame velocity that any physical
process which raises the �ame velocity while leaving the upstream �ow una�ected tends
to stabilise humming. This result holds both in laminar �ames and in turbulent �ames.
Then, we are tempted to conclude that RF can stabilize humming both in laminar and
turbulent �ames.

All the same, the research into laminar �ame enhancement allows no easy generalisa-
tion transition into studies of turbulent �ame enhancement because the turbulent �ames
release much greater power (turbulence raises �ame velocity) and have a high degree of
spatial and temporal complexity. Reasonably, the larger the heat release, the larger the
RF power required. Experiments [152] show that the same continuous-wave (CW) RF
source e�ectively utilised for laminar �ames a�ects turbulent �ames only weakly (for given
�ows, etc.) as the turbulent heat release is much larger than the laminar one. This result
is displayed in Fig. 15.23, where the impact on a turbulent �ame of a RF source which has
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Figure 15.14: From Ref. [148].

previously led to a 35 % growth of �ame velocity in a laminar �ame appears to negligible.

However, the authors of Ref. [152] report also that pulsed RF may do the job e�ectively
on turbulent �ame, as the peak RF power at each pulse is order-of-magnitude larger than
the averaged RF power. (At large RF power, moreover, the shorter the RF pulse the
less likely the triggering of undesired parasitic discharges). In the following we display
the results obtained with a 3 GHz source. This device is designed to generate 1µs pulse
width at 1000 Hz repetition rates , producing 25 watts of average power and 25 kW of
peak power. The air-methane �ame is lean (φ ≈ 0.7−0.8) and the heat release is about 2
kW (the inlet mass �ow is 50 standard litres per minute). Considering a �ame thickness
of approximately 0.5 mm and �ame speeds less than 1 m · s−1, a reasonable characteristic
time for reactants to pass through the preheat and reaction zone is about one millisecond.
It was therefore expected that the separation between the pulses needs to be less than
the �ame passage time to have any potential coupling of energy into the �ame front.
By monitoring the microwave re�ected power from the �ame load and varying the pulse
repetition rate of the RF source (a magnetron) a characteristic time of the interaction
can be approximated -see Fig. 15.24.
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Figure 15.15: From Ref. [148].

It is apparent that the coupling is increasingly enhanced until 300 Hz when it levels o�
before rising again around 800 Hz, when the separation between pulses is less than 1.25
ms. The latter conclusion can be independently checked with the help of a laminar �ame.
A series of images -see Fig. 15.25- of the laminar �ame enhancement at several repetition
rates depicts the signi�cant e�ect of this rate on the �ame propagation speed. RF-induced
displacement of a turbulent �ame (Re = 3500, heat release ten times greater than in the
laminar case) is displayed in Fig. 15.26 below. As a rule of thumb, experiments show
that an average RF power of 25 W (and a peak RF power of 25 kW, each pulse 1µs
long) is needed to generate the 35 % �ame speed enhancements in a lean laminar air-
methane �ame similar to that found with 1.4 kW of CW RF power. Ten-fold increase in
�ame velocity due to turbulence corresponds to an average RF power at the antenna in
the kW range for a turbulent air-methane �ame with 50 liters/min. inlet mass �ow and
Φ = 0.81.i.e. Wc ≈ 2 kW.

Not surprisingly, this conclusion is in agreement with Le Châtelier's principle: if we
describe the �ame as a region of space where both exothermal reactions (i.e. combus-
tion) and endothermic reactions occur, then RF acts as a small heating due to the external
world (which switches the antenna on). Here the words small is justi�ed as far as we limit
ourselves to the case Pa << Q - see the Appendix on RF-�ame coupling. Le Châtelier's
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Figure 15.16: From Ref. [148].

principle ensures that such heating pushes the system towards the endothermic reactions
and hinders combustion, which is the ultimate energy source of humming.

Remarkably, a crucial point in our discussion is that RF leaves the upstream �ow
una�ected. As anticipated, RF is just one of the possible strategies aiming at humming
stabilisation which are based on controlled growth of �ame velocity at given upstream
�ow, some of which have been discussed in the Chapter about Le Châtelier's principle.
We could say that as the external world tries to heat the �ame, the latter tries to counter-
act this disturbance by shrinking the volume where RF power can be absorbed, i.e. the
hot region where σ is large. But since this region coincides with the region where com-
bustion occurs 6, the �ame unavoidably shrinks also the region where combustion occurs.
Since combustion feeds humming, the outcome of RF bombardment is the stabilisation
of humming. Mathematically, the reduction in �ame volume leads to a reduction of the
domain of integration of the destabilising term in Rayleigh's criterion, whose �nal value
gets therefore reduced 7. Similar arguments hold if we decide to invoke Myers' corollary,

6As discussed in detail in the Appendix on the electrical conductivity of the �ame, σ -which the
absorbed RF power depends upon according to (15.1)- depends on the free electrons provided by chemical
reactions in the reaction zone, where recombination is less likely due to the large values of T .

7We have discussed the evolution in time of the �ame surface area elements in the Appendix on the
�ame velocity. RF acts in constrast with active approaches to humming control which are based on
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Figure 15.17: From Ref. [148].

rather than Rayleigh's criterion.

Basically, there is nothing special about RF. Simply speaking, an advantage of RF is
just that the antenna operates with no mechanical wearing at all, lies safely far from
the �ame and can be protected against erosion. Another advantage is that RF allows
transmission of power towards the �ame, and the absorption of this power inside the �ame
relies on free eelectrons which are already available here (and are possibly multiplied as
a consequence of the absorption itself). In contrast, arcs (lke e.g. NRPP) are likely to
require power just to create an electrically conducting channel across the region between
the electrodes and the �ame in order to allow power transmission from the former to
the latter. Our discussion invokes no detailed description of RF-�ame interaction; it
relies rather on (15.2). As such, it applies also to NRPP stabilisation experiments. (For
example, NRPP stabilises turbulent �ames [101], in analogy with what has been shown for
RF above). This is not surprising, as its foundation is of thermodynamical nature, hence

mechanical actuatore. Such approaches aim rather at controlling humming through modi�cation of the
relative phases in the Rayleigh index. As shown below, RF leaves such phases una�ected.
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Figure 15.18: From Ref. [148].

independent from the microscopic physics. Should we e.g. investigate the e�ect of wall
cooling at given upstream �ow, we could identify Pa with the density of heat supplied per
unit time by the wall to the �ame: Pa would therefore be a negative quantity, in contrast
with the RF case where it is positive. We know that wall cooling decreases the �ame
velocity, hence (15.2) still holds; indeed, wall cooling triggers humming, in agreement
with the experimental results quoted above [29].

15.5 How much power is required at the RF antenna?

15.5.1 Myers' corollary, again

We have shown that RF may stabilize humming. Up to now, however, this is just a
vague possibility. Practical application requires that the power Want supplied to the RF
antenna never exceeds a tiny fraction of the rated heat release Wc of the combustor. For
a 1m3-sized, Wc = 50MW combustor a conservative requirement is that Want does not
exceed 100 kW 8. The smallness of RF heating of the �ame is therefore perfectly justi�ed,
as Pa << Q. Luckily, it is possible to show -see the Appendix on RF-�ame coupling- that

8A 10-cm-sided square antenna still manages such power at surface power density < 25MW ·m−2,
but cooling could be a problem at larger values of Want in the lay-out of real combustors.
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Figure 15.19: From Ref. [148].

this case falls well within the weak �eld limit, and parasitic arcs are therefore less likely
to occur.

We want to estimate Want in the following. To this purpose, we invoke Myers' corol-
lary. Just like Rayleigh's criterion, indeed, the derivation of Myers' corollary from �rst
principles depends on no detailed model of �ame heating, so that RF does not weaken
its validity. Rayleigh's criterion provides information on the stability of an unperturbed,
steady state with zero mean �ow against small perturbations. After time-averaging, My-
ers' corollary provides information on the stability of an unperturbed, oscillating state
against perturbations, while requiring neither zero mean �ow nor small perturbations.
A a system �ame+�uid+combustor in humming is an example of such oscillating state.
Information provided by Myers' corollary and by Rayleigh's criterion are formally iden-
tical, provided that Rayleigh's index is suitably rede�ned. Finally, Rayleigh's criterion
is connected with Le Châtelier's principle of thermodynamics. This principle leads to
further necessary criteria of stability of the unperturbed, steady state which are basically
equivalent to Rayleigh's criterion. We have also shown that the same criteria apply also
to the stability of oscillating unperturbed state, after suitable time-averaging. Then, we
are allowed both to invoke Myers' corollary in order to gain information about humming,
and to expect that such information is in agreement with Le Châtelier's principle. This
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Figure 15.20: From Ref. [151].

is the topic of this Section.

In our approach, we start from a system �ame+�uid+combustor which oscillates at
a given humming amplitude, and look for the value of Want which may reduce/zero this
amplitude. This approach di�ers from the conventional one, which analyzes stability of
a system initially in steady state against small perturbations. In contrast with our ap-
proach, indeed, the conventional approach has two disadvantages.

Firstly, the conventional approach postulates that a system with no humming is in
steady state. In contrast, our approach deals with the system in humming as the unper-
turbed state, and postulates nothing on the humming-free combustor. Indeed, the well-
known resiliency of humming against any attempt to suppress it once triggered agrees
well with the description of humming as a limit cycle with a �nite basin of attraction.
Correspondingly, a �nite amount of RF power is required in order to drive the system
away from this basin. Myers' corollary does the job in a model-independent way below.

Secondly, if the unperturbed state is a steady state then the humming amplitude coin-
cides with the amplitude of the perturbation. Proper description of the latter amplitude
(and of the value of RF power required to zero it) requires a detailed nonlinear model,



15.5. HOW MUCH POWER IS REQUIRED AT THE RF ANTENNA? 249

Figure 15.21: From Ref. [151].

as linear models provide no information on perturbation amplitides. In contrast, the
main advantage of our thermodynamic discussion is that its results depend on no detailed
model, even if nonlinear.

15.5.2 Preliminary steps

RF absorption and non-zero Mach number

Since we want to investigate the impact of RF on Myers' corollary, we are going to in-
voke the results of the Appendix on RF-wave electromagnetic coupling. Admittedly, the
arguments in this Appendix ignore any impact of non-zero Mach number - i.e. of non-
vanishing v0. Moreover, they neglect turbulence. We are going to generalise them to
turbulent �ames with v0 6= 0 in the following.

As for the impact of v0 on RF-wave electromagnetic coupling, convection rules �ame
cooling in Ansaldo combustors. In order to see any heating, we have to apply RF power
in short bursts, the duration τRF of each burst being shorter than the residence time τres
of the �ow across the �ame:
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Figure 15.22: From Ref. [152].

τRF ≤ τres

Now, let us compute the value τL of τres for laminar �ames; we shall compute the value τT
of τres for turbulent �ames in the following. Since di�usion carries heat from the reaction

zone of thickness
δL
Ze

where RF is absorbed and the rest of the �ame (with thickness

≈ δL), the relevant residence time is

τres = τL ≈
δL
|v0|

The corresponding value

τres = τT ≈
δT
|v0|

for turbulent �ames is value is signi�cantly larger than τL, as the mean turbulent �ame
brush thickness δT is always larger than the laminar �ame thickness -see Sec. 4.3 of [4].

For example, according to equation (8) of Ref. [112] we have δT ≈ Da−
3
4 · lT where Da,

lT =
ReTν

u′
, ReT , ν and u′ are the Damkoehler number on the length scale lt, a typical
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Figure 15.23: From Ref. [152]. The wording High Q in the �gure caption means negligible
RF power losses.

length for turbulence, the turbulent Reynolds' number -see equation (4.5) of [4]- the kine-
matic viscosity and the typical amplitude of turbulent velocity �uctuations respectively.
In particular, Da is the ratio of τL and the typical time of chemical reactions, and is
supposed to go to ∞ for in�nitely fast chemistry. For turbulent �ames equation (4.50)

of [4] gives Da ≈ l2T s
2
L

ν2ReT
. For typical values ν = 10−5m

2

s
, ReT = 103, u′ ≈ |v0| for

well-developed turbulence with |v0| ≈ some
m

s
and sL ≈ 0.2

m

s
-see Fig. 2.5 of [4]- we

have lt ≈ some mm and Da ≈ 10, so that δT ≈ some mm, i.e. about ten times larger than
δL ≈ 10−4 m. Accordingly, for turbulent �ames we require τRF < τT ≈ some 10−4 s.

RF absorption and turbulence

The impact of turbulence on RF absorption Generally speaking, turbulent com-
bustion results from the two-way interaction of chemistry and turbulence. When a �ame
interacts with a turbulent �ow, turbulence is modi�ed by combustion because of the
strong �ow accelerations through the �ame front induced by heat release, and because
of the large changes in kinematic viscosity ν associated with temperature changes. On
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Figure 15.24: From Ref. [152].

the other hand, turbulence alters the �ame structure, which may enhance the chemical
reaction but also, in extreme cases, completely inhibit it, leading to �ame quenching. It
is therefore worthwhile to ask if turbulence a�ects RF absorption, and conversely, if RF
absorption a�ects turbulence. Should the answer to both such questions be negative, we
would be allowed to assess the impact of RF on humming stability with the help of the
results of our Appendix on RF-�ame coupling, which have been derived for laminar �ames.

As for the impact of turbulence on RF absorption, we want to check if the absorption
of RF power in the �ame is slower than the transport of heat across the �ame. Should
it be so, heat transport would cool the �ame before the RF heats it, and RF would have
negligible impact on the thermodynamics of the �ame. Turbulence signi�cantly raises
heat di�usion with respect to the laminar �ame. While the molecular di�usion coe�-
cient ∝ ν utilised in the description of the laminar case still describes di�usion at the
Kolmogorov scale, a larger di�usion coe�cient ∝ ν · ReT acts when turbulence occurs 9

-see the Appendix on the �ame velocity. The latter coe�cient is to be compared with the

di�usion coe�cient
c2ε0
σ

which rules electromagnetic energy transfer in electric conductors

9For the purpose of the present, qualitative discussion we neglect the di�erence between the di�usion
coe�cient of heat and the di�usion coe�cient of particles.
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Figure 15.25: From Ref. [152].

[158], where ε0 = 8.85 · 10−12F ·m−1 and c = 3 · 108m

s
is the speed of light in vacuum. A

necessary condition for turbulence to leave RF absorption una�ected is

c2ε0
σνReT

> 1 (15.3)

which means that turbulence-enhanced di�usion is too slow to a�ect RF absorption. For

typical values ν = 10−5m
2

s
, ReT = 103 (see the Appendix on the �ame velocity), (15.3)

implies σ < 108Ω−1m−1, a requirement safely met in practice.

Finally, we have seen that chemical kinetics a�ect σ. In particular, once RF is switched
o� the electric �eld of the RF wave starts accelerating the electrons already present in
the �ame; in turn, the electrons trigger further ionisation, and the �nal outcome is a
value of σ which depends on the applied electric �eld, on the chemical composition etc.

What is relevant here is that this �nal outcome is achieved in a �nite time τσ ≡
σ

|dσ
dt
|

which depends on the detailed chemical kinetics. For negligible impact of turbulence,
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Figure 15.26: From Ref. [152].

we require that this time is shorter than the fastest time-scale of turbulence, namely the
reciprocal τK of the stretch of the eddies with linear size equal to the Kolmogorov length.
Should this condition be violated, it would be conceivable that the smallest turbulent ed-
dies drag the ions of some chemical species (e.g. CHO) involved in the electron build-up
ruling the evolution of σ away from the reaction zone. Typically, τK ≈ 30µs -see the
Appendix on the �ame velocity. However, the results of chemical kinetics discussed in
the Appendix on the electrical conductivity show that τσ << τK but for the colder �ames.

The impact of RF absorption on turbulence As for the impact of RF absorption

on turbulence, an obvious requirement is that the energy density
ε0E

2
RF

2
of the RF wave

with electric �eld ERF exceeds the energy density ρ
(u′)2

2
of turbulent eddies nowhere,

where u′ is a typical amplitude of turbulent �uctuations of velocity -see Appendix on
the �ame velocity. For typical values u′ ≈ some m · s−1 and ρ ≈ 4.5 · Kg ·m−3 we ob-

tain ERF < 2 · 106 V

m
, a requirement slightly stronger than the requirement of weak �eld

ERF < Ethr ≈ 107 V

m
-see Appendix on the RF-�ame interaction.
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Another requirement is that the amount Pa of RF absorbed per unit volume exceeds
the power ρεturb dissipated in turbulent eddies per unit volume nowhere, where εturb is
the mechanical power dissipated in turbulent eddies per unit mass. For typical values

ρ ≈ 4.5 ·Kg ·m−3 and εturb ≈
u′4

ReTν
≈ 104W ·Kg−1 we have ρεturb ≈ 5 · 104 W

m3
-see Ap-

pendix on the �ame velocity. Equations (41), (49) and (51) lead therefore to the following
constraint on σ and ERF :

[
σE2

RF

ρεturb

]
<

[
4Ze

Ξ

] [
c

ωRF δL

]
(15.4)

for negligible re�ection on the �ame, where we have introduced the wrinkling factor Ξ ≡
sT
sL

> 1 [4], we have de�ned ωRF ≡ 2πνRF , and bracketed quantities are dimensionless.

Typically

[
4Ze

Ξ

]
≈ O (1) and

[
c

ωRF δL

]
≈ 5 · 102, so that σE2

RF < 2 · 107 W

m3
.

15.5.3 RF power required at the antenna

Myers' corollary with and without RF

Our strategy is to compare what happens to Myers' corollary -in the form (6.35)- when
the system is in humming in the two cases Pa = 0 and Pa > 0.

To this purpose, we start from (6.35). When humming occurs at a period τ at a
constant maximum amplitude period after period, everything in the system combustor +
�uid + �ame gets modulated by some periodic function of time with the same period.
As usual by now, we write a (x, t) = a0 (x, t) + εa1 (x, t) for the generic physical quantity
a with 〈a1〉 = 0, i.e. 〈a〉 = a0, and we allow a0 to depend on time. The perturbation
a1 is only useful to check the stability of the (possibly oscillating) unperturbed state a0.
Moreover, we allow ε ≈ 1. Finally, we assume (6.1) for simplicity, and recall that Ds and
DQ∗ are [22] the dominant contributions to D. It follows that:

〈D〉
2

= −〈m1s1〉 · ∇〈T 〉+ 〈m〉 · 〈s1∇T1〉+ 〈T1

(
Q

T

)
1

〉 = 〈T1

(
Q

T

)
1

〉+O
(
ε2M

)
(15.5)

where we have taken into account that equation (6.41) and the de�nitions ofm, ofW and
of the Mach number M give |v0| ≈ O (M), |v1| ≈ |εv0| ≈ O (εM), Q0 ∝ |v0| ≈ O (M),
|m0| ∝ O (M), |m1| ∝ O (εM) and W ∝ O (ε2M). Following Ref. [77], we observe that
the relationship 10 (

Q

T

)
1

=
Q1

T
+Q0

(
1

T

)
1

− ε〈Q1

(
1

T

)
1

〉

10It follows from the identity



256 CHAPTER 15. THE CONTROL OF HUMMING

(which holds exactly, i.e. at all powers of ε) leads to:

〈T1

(
Q

T

)
1

〉 = 〈Q1T1

T
〉+Q0〈T1

(
1

T

)
1

〉 = 〈Q1T1

T
〉+O

(
ε2M

)
after multiplication of all terms by T1 and time-averaging (with < T1 >= 0). Equation

(6.4) gives
T1

T
=
p1

p
− ρ1

ρ
. Heating induces expansion, then we expect 〈Q1ρ1

ρ
〉 ≤ 0. It

follows that 〈T1

(
Q

T

)
1

〉 ≥ 〈Q1p1

p
〉. Finally, (6.35) and (15.5) give:

∫
Vb

dx〈Q1p1

p
〉 ≤ O

(
ε2M

)
(15.6)

Let us denote with a∗ and aM the maximum value attained by the generic quantity
a (x, t) in the �ame and everywhere across the system on a period τ respectively. Constant
maximum amplitude of humming means |a∗| < ∞, |aM | < ∞ at all times. Finally, com-
bustion occurs at the �ame only. Then, (15.6) leads to the following chain of inequalities:

O
(
ε2M

)
≥
∫
Vb

dx〈Q1p1

p
〉 ≥

∫
Vb
dx〈Q1p1〉
pM

=

∫
Vf
dx〈Q1p1〉
pM

=

=
kRaVf∗Q1∗p1∗

pM
≥ kRaQ1

pM
· (V p1)f

(15.7)

where kRa is a constant, dimensionless quantity encompassing all phase factors, geo-
metrical factors etc. Its exact value depends on the detailed structure of the perturbation
a1, and is not relevant in the following. Note that (V p1)f is the product of a volume and
a perturbation of pressure, and is computed in the �ame. It is therefore equal to:

(V p1)f = Hf1 − Tf0Sf1 (15.8)

where Hf , Tf and Sf are the enthalpy, the temperature and the entropy of the �ame
respectively. For mathematical simplicity, we discuss here no gradient of Tf across the

ε (ab)1 = ε2a1b1 − ε2〈a1b1〉+ εb1a0 + εa1b0

This identity holds for two generic quantities a = a0 + εa1, b = b0 + εb1 with < a1 >= 0, < b1 >= 0. We

take a = Q and b =
1

T
in the text, then regroup all terms ∝ Q1 and divide by ε > 0.
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�ame; we may e.g. invoke (14.1).

As for Hf , we invoke caloric perfection for simplicity, i.e. all chemical species in the
�ame are perfect gases with the same constant value cp of speci�c heat per unit mass.

Then, we write Hf1 = ΣN
i=1Hi1, Hi1 = (Vf0ρi0) cpTf1 and ρi =

pi
rTf

, where Hi1 is the

contribution of the i-th chemical species to Hf (i = 1, ...N) and ρi is the mass density
of the chemical species, so that Vfρi is the contribution of the i-th species to the �ame
mass. Finally, equations (6.4), (6.7) and Dalton's law of partial pressures p = ΣN

i=1pi gives:

Hf1 =
γp0Vf0Tf1

(γ − 1)Tf0

(15.9)

As for Tf0Sf1, as usual by now we neglect viscosity and radiation (which raise and
lower Tf0Sf1 respectively). Accordingly, we may identify Ph with the combustion power
density Q, so that Wc =

∫
Vf
dxQ and Pa << Ph becomes Pa << Q. Generally speaking,

two cases are possible.

If we apply no RF, i.e. Pa = 0, then Tf0Sf1 is due to combustion only and we may
write Tf0Sf1|Pa=0 = (VfτresQ)1. In fact, the unperturbed �ow crosses the �ame with
volume Vf in a time τres and delivers a power density Q through combustion; the related
amount of heat is VfτresQ, and the perturbation is (VfτresQ)1. Since a1 is only useful to
check stability of a0, we may select a1 at will; we choose it in such a way that the �ame
geometry remains una�ected, and we may write Tf0Sf1|Pa=0 = Vf0τresQ1. Finally, we take
advantage of the fact that heat release due to combustion is a function of temperature, and

limit ourselves to small perturbations (0 < ε << 1), so that Q1 =
dQ

dTf
·Tf1. It follows that:

Tf0Sf1|Pa=0 = Vf0τres
dQ

dTf
· Tf1 (15.10)

Backwards substitution of (15.9) and (15.10) in (15.8) and (15.7) leads to:

O (M) ≥
[

γp0

(γ − 1) pM
− τres
pM

dQ

d lnTf

]
(15.11)

after division of all terms by

(
kRaVf0

Tf0

)
(Tf1Q1) ∝ O (ε2) where we have taken into ac-

count that O (ε2) =
O (ε2M)

O (M)
; we have also written Tf0

dQ

dTf
= Tf0

Q1

Tf1

≈ Tf
Q1

Tf1

(as ε << 1)

= Tf
dQ

dTf
=

dQ

d lnTf
. Everything in (15.11) is in dimensionless form; all square-bracketed
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quantities are dimensionless in this Section. Physically, (15.11) is just a particular case
of (6.35), i.e. a necessary condition for stability to be satis�ed at all times (as a matter
of principle, all quantities but pM and γ may depend on time). Violation of (15.11) is
therefore a su�cient condition for instability.

Now, let us add to p0 a pressure oscillation with period τ and with amplitude ∆p, i.e.
let us replace p0 with p0 + ∆p. Detailed physics underlying this pressure growth is not
relevant here. According to (15.9), Hf1 becomes equal to:

Hf1 =
γ (p0 + ∆p)Vf0Tf1

(γ − 1)Tf0

(15.12)

If uncompensated, therefore, ∆p may lead to violation of (15.11), hence to loss of
stability. We have shown that RF is stabilising. Let us compute how much RF is required
by stabilisation.

If we apply RF, i.e. Pa > 0, we may repeat step-by-step the proof of (15.11). Re-
markably, RF leaves the L.H.S. of (15.11) formally una�ected. In fact, it leaves kRa
unchanged, as it leaves all relative phases among �uctuating quantities una�ected -see
Appendix on RF-�ame interaction 11. RF leaves also M una�ected, as it gets absorbed
at the �ame only, leaving therefore the upstream �ow una�ected. (As for pM , it is just
an upper bound, and we are free to take for it the same value regardless of Pa). As
for the R.H.S. of (15.11), RF adds the quantity (VfτRFPa)1 = Vf0τRFPa1 to Tf0Sf1 (in
analogy to what happens with combustion), and replaces therefore (15.10) as a whole with

Tf0Sf1|Pa>0 = Vf0τres
dQ

dTf
· Tf1 + Vf0τRF

dPa
dTf
· Tf1 (15.13)

Backwards substitution of (15.12) and (15.13) in (15.8) and (15.7) shows that addition
of RF replaces (15.11) with:

O (M) ≥
[
γ (p0 + ∆p)

(γ − 1) pM
− τres
pM

dQ

d lnTf
− τRF
pM

dPa
d lnTf

]
(15.14)

This is a link between ∆p and the density of absorbed RF power required for stabilisation.
Again, all quantities but pM and γ may depend on time. As a conservative estimate, we
maximise the R.H.S. and minimise the L.H.S. by taking p0 = pM andM → 0 respectively.

11This is in constrast with active approaches to humming control which are based on mechanical
actuators. Such approaches aim precisely at controlling humming through modi�cation of the relative
phases in the Rayleigh index.
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Physically, our choice on the R.H.S. corresponds to the selection of the time when unper-
turbed pressure achieves its maximum value. As for the L.H.S., for given upstream �ow
small values of M correspond to large values of cs, hence of Tu; we have already shown
that large values of Tu correspond to more unstable con�gurations, where stabilisation is
more di�cult. (Alternatively, we could say that vanishing L.H.S. corresponds to vanishing
stabilising term in Myers' corollary, e.g. vanishing net �ux of acoustic power propagating
away from the system). Then (15.14) reduces to:

[
γ

(γ − 1)

] [
1 +

∆p

p0

]
=

[
τres
p0

dQ

d lnTf
+
τRF
p0

dPa
d lnTf

]
(15.15)

RF in laminar �ames

Let us apply (15.15) to �at, laminar �ames (more realistic, turbulent �ames are discussed
below). To this purpose, we take τres = τL and invoke the results of the Appendix on
RF-�ame interaction. Moreover, we write Wc =

∫
Vf
dxQ ≈ Q ·Vf . Analogously, we de�ne

the corresponding quantity for RF, i.e. the total RF power

WRF ≡
∫
Vf

dxPa ≈ Pa · Vf

absorbed at the �ame. With the same spirit, we approximate the expression (10.1) for

Wc as Wc = AfHLHV ρuYfuelsL with Af =
Vf
δL
, δL = τres|v0|, |v0| = sL and ρu =

p0

rTu
in

agreement with equation (6.4). Finally, substitution of all these relationships in (15.15)
allows us to write:

[
γrTu

(γ − 1)HLHV Yfuel

] [
1 +

∆p

p0

]
=

[
d ln sL
d lnTf

+
τRF
τL

WRF

Wc

d lnWRF

d lnTf

]
(15.16)

after multiplication of both sides by
p0sLAf
Wc

=
rTu

HLHV Yfuel
12. According to equation

(15.16), WRF increases with increasing ∆p, just as expected. Of course, zero RF power
stabilises zero pressure oscillation, i.e. ∆p = 0 corresponds to WRF = 0 and (15.16) leads
to:

12When deriving (15.16) we have implicitly assumed
d lnWc

d lnTf
=
d ln sL
d lnTf

as d lnTf =
dTf
Tf

=
T1f
Tf

and

T1f is the perturbation. Per se, both Yfuel and ρu =
p0
rTu

are independent from T1f .
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[
WRF

Wc

]
=

[
∆p

p0

] [
τL
τRF

] [
γrTu

(γ − 1)HLHV Yfuel

]
[
d lnWRF

d lnTf

] (15.17)

Equation (15.17) provides us with the amount WRF of RF power which should be
absorbed by a laminar �ame in order to suppress a perturbation which brings the max-
imum pressure in the system from p0 to p0 + ∆p. Not surprisingly, the required WRF is
an increasing function of both the combustion heat release Wc and of the normalised per-

turbation amplitude
∆p

p0

, and increases with decreasing τRF (as shown above, τRF ≤ τL).

It is also larger for large upstream temperature and low fuel content, as expected given
the fact that leaner combustion of hotter air-fuel mixtures systems are more prone to
humming. Above all, the denominator on the R.H.S. of (15.17) shows that the more
strongly the absorbed RF power increases with increasing �ame temperature, the easier
the stabilisation. This result recalls the above quoted, positive feedback occurring in a
lighted match inside a microwave oven: the larger the absorbed power by the match,
the higher the heating of the latter, the larger its electrical conductivity, the larger the
absorbed power in the match, and so on. This feedback raises the �ame capability in
absorbing RF, thus facilitating stabilisation. In particular, equation (50) gives

[
d lnWRF

d lnTf

]
=

[
d lnσ

d lnTf

]
(15.18)

provided that re�ection of impinging RF waves away from the �ame is negligible, as usual
in most cases, i.e. that the re�ection coe�cient Rf is � 1 -see Appendix on the RF-�ame

interaction. Here σ is the spatial average of σ on the reaction zone of thickness
δL
Ze

. Fi-

nally, we stress the point that equations (15.17) - (15.18) contain no more information on
�ame geometry. Then, their validity is scarcely a�ected by the oversimpli�ed, unrealistic
slab geometry of our �ame.

Further information is required in order to compute the amount Want of RF power
at the antenna which is required in order to feed the �ame with the WRF prescribed by
(15.17). We provide such information in the Appendix on RF-�ame interaction with the
help of a much simpli�ed treatment of RF optics. Together, equations (15.17), (15.18),
(50), (52) and the de�nition of WRF give for a laminar �ame:

[
Want

Wc

]
=

[
∆p

p0

] [
c3

ν3
RFVf

] [
τL
τRF

] [
γrTu

(γ − 1)HLHV Yfuel

]
[
d lnσ

d lnTf

] [
σ · δL

ε0 · c · Ze

]
[qRF ] [1−Rf ]

(15.19)
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where νRF and qRF are the RF wave frequency and the RF quality factor. The latter is a
dimensionless quantity, usually � 1, which takes into account RF losses at the walls, and
the like -see Fig. 15.27.

Figure 15.27: From Ref. [148]. Electric �eld patterns developed within a resonant cavity
embedding a �ame -see Fig. 15.12- when Want is held constant and the value of qRF is
increased. The magnitude of the electric �eld increases with increasing qRF , i.e. decreasing
losses at the walls.

The R.H.S. of (15.19) decreases with increasing σ (through the factor
σδL

ε0 · c · Ze
), in-

creasing number of RF photons
Vfν

3
RF

c3
available within the �ame volume, decreasing RF

re�ection away from the �ame (i.e. decreasing Rf ) and optimising the RF cavity (i.e.
increasing qRF ).
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Finally, user-controlled quantities like Tu and Yfuel replace all information on the �ame
speed in (15.19). This fact suggests easy generalisation to turbulent �ames.

RF in turbulent �ames

We have seen that turbulence and the microscopic physical processes leading to RF ab-
sorption are likely to leave each other una�ected. However, turbulence induces wrinkling
of the �ame surface. We show in the Appendix on RF-�ame interaction that turbulence-
induced �ame wrinkling raises the probability of photon capture inside the �ame by the
wrinkling factor Ξ -see Fig. 15.28.

Figure 15.28: Flame wrinkling by turbulence - from Ref. [4]. The wrinkling factor is equal
to the ratio of the area of a turbulent �ame and the area of a laminar �ame.

Accordingly, we may repeat the proof of equation (15.19) with the proviso that equa-
tion (51) and τT replace equation (50) and τL respectively, so that τRF ≤ τT and (15.19)
gets replaced by:
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[
Want

Wc

]
=

[
∆p

p0

] [
c3

ν3
RFVf

] [
τT
τRF

] [
γrTu

(γ − 1)HLHV Yfuel

]
[
d lnσ

d lnTf

] [
σ · δL

ε0 · c · Ze

]
[qRF ] [1−Rf ] [Ξ]

(15.20)

The electrical conductivity σ of the �ame is the only quantity not yet discussed in
(15.20). Further discussion require detailed computation of σ.

For the sake of completeness, here we are going to write an approximate expression for
the small re�ection coe�cient with the help of the results of the Appendix on RF-�ame
coupling:

Rf ≈
1

4

(
c

2πνRF

)2(
σ

2ε0c

)2

(15.21)

15.6 Numerical predictions

Here we invoke equations (15.20) - (15.21) in order to compute
Want

Wc

in Ansaldo com-

bustors a�ected by humming with relative amplitude
∆p

p0

. To this purpose, we need two

things.

• we need the values of σ for Ansaldo-relevant �ames. This is the topic of the Appendix
on the electrical conductivity. (For historical reasons, σ is given in units C · cm−1 ·
s−1 · V −1; in order to obtain the value of σ in the correct SI unit S ·m−1 all results
should be multiplied by 100.).

• we have to drop the unphysical assumption of uniform Tf underlying the proof of
(15.20). The temperature Tf of the �ame depends on the position x inside the �ame:
Tu ≤ Tf ≤ Td.

As for σ, it depends quite strongly on both Tf and the progress variable χ, i.e. the
fraction of fuel which has been burnt when the fuel-air mixture has reached the position
x inside the �ame (0 ≤ χ ≤ 1). Physically, in fact, σ increases with increasing density ne
of free electrons. In turn, ne increases with increasing temperature, which corresponds to
increasing probability of ionisation of a neutral atom or molecule. Moreover, the larger
χ (x), the larger the number of combustion reactions which have occurred when the fuel-air
mixture has reached the position x, the larger the number of electron-producing chemical
reactions which have occurred, the larger ne. Moreover, σ depends more weakly on pres-
sure. In the weak �eld limit, the dependence of σ on the applied �eld is also weak.
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The Appendix on the electrical conductivity provide us with analytical expressions,
which act as �t of the numerical output of the kinetic model which computes σ as a func-
tion of all the quantities quoted above for realistic Ansaldo �ames; the relevant chemical
composition has been provided by Ansaldo as an input. Such analytical expressions deal
with Tf and χ as with independent variables. In real �ames, however, balance equations
link temperature and progress variable -see e.g. equations (2.35) and (5.37) of [4]. Typ-
ically, the smaller Td − Tf (x), the smaller 1 − χ (x), i.e. the larger the fraction of burnt
fuel the higher Tf , in agreement with physical intuition. As a result, σ depends on x

through its dependence on T (x) - or, equivalently, on χ (x). Rigorous computation of
σ requires therefore detailed knowledge of T (x), which in turn requires solution of the
balance equations in the �ame. For example, in a simple model of a laminar �ame we
should solve equation (2.43) of [4].

As for the unphysical assumption of uniform Tf , the strong dependence of σ on T
and χ allows dramatic simpli�cation. Such simpli�cation allows us to get rid also of the
need for a detailed knowledge of T (x). Usually, σ undergoes a change of many orders of
magnitude as Tf → Td and χ → 1. This means that RF absorption is focussed on the
narrow reaction zone. We make therefore a small error if we take χ = 1 in the follow-
ing, while keeping Tf as an independent variable, with the physical meaning of typical
temperature of the reaction zone ≈ Td. Accordingly, we are still allowed to make use of
equation (15.20), provided that we replace σ with σ (Tf , χ = 1):

σ → σ (Tf , χ = 1)

Conservatively, and for the sake of self-consistency, we replace also Vf in (15.20) with

Vr ≡ Af ·
δL
Ze

:

Vf → Vr

This means that we consider the reaction zone, involved in RF absorption, as a region

with area Af and with thickness
δL
Ze

. Finally, we are free to take

τRF = τT

in order to prevent convection to spoil the stabilising e�ect of RF while minimising
Want.
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With this proviso, we make use of the analytical �t (72) with the coe�cients listed in
the tables 3-14 in order to computeWant for three Ansaldo-relevant cases: AE94, ARI100a
and ARI100b -see 2. Here AE94 refers to a combustor of the GT of the same name; the
latter is a commercial product, successfully sold worldwide, and Wc ≈ tens of MW in the
combustor -see Fig. 15.29 and Fig. 1.6.

Figure 15.29: AE94 GT (version 3a).

In contrast, ARI100a and ARI100b refer to two di�erent modes of operation of the same
small prototype ARI100 -see Fig. 15.30- with Wc ≈ tens of kW [159].

Fig. 15.31 displays σ vs. temperature χ = 1 for ARI100a, ARI100b and AE94. In all
cases σ increases of many orders of magnitude with temperature.

Fig. 15.32 displays

(
Want

Wc

)
·
(

∆p

p0

)−1

vs. Tf for ARI100a, ARI100b and AE94. The

larger the former quantity, the larger the required amount Want of RF power required
in order to stabilise humming with a given amplitude ∆p in a combustor at given rated
pressure p0 and heat release Wc. In all cases the larger σ the smaller Want, as expected.

Fig. 15.33 displays the predicted amount of powerWant (in kW) required at the RF an-
tenna in order to stabilise humming with amplitude ∆p (in mbar) for ARI100a, ARI100b
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Figure 15.30: ARI100 (single can).

and AE94. It has been taken into account that Wc = HLHV · Yfuel · total mass �ow =
20 kW, 100 kW and 54 MW for ARI100a, ARI100b and AE94 respectively, in the con-
�gurations described by Tab. 2. Moreover, we have taken νRF = 3.7 GHz, a reasonable
value for commercially available RF sources, and qRF = 104, a relatively low value which
takes into account the fact that the combustor is a far-from-optimised cavity from an elec-
tromagnetic point of view. Remarkably, we obtain the same results even at quite lower
values of qRF , provided that we choose a slightly larger value of νRF (say, qRF = 103 with
νRF = 8 GHz). Conservatively, we have also taken Ze = 10, Ξ = 10 and δL = 10−4m for
all combustors, so that RF absorption occurs in a 10-µm-thick region in all cases. As far
as we are concerned in an order-of-magnitude estimate 13, we take Af = 1m2 and γ = 1.4
for all cases. Finally, we have taken Tf = 1960 K and Tf = 1850 K for ARI100 and AE94
respectively, in agreement with the temperature maps of the two combustors as provided
by CFD -see Fig. 15.35 and Fig. 15.34.

Fig. 15.34 displays the temperature distribution inside AE94 combustor, as provided
by CFD. It shows that the choice of the value Tf = 1850 K is reasonable when evaluating
Want for this combustor.

13The slab geometry assumed in the Appendix on RF-�ame electromagnetic coupling for simplicity
allows no higher precision
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Figure 15.31: Electrical conductivity (S/m) vs. temperature (K) @ χ = 1 for ARI100a
(XXXXX), ARI100b (+++++) and AE94 (OOOOO).

Fig. 15.35 displays the temperature distribution inside ARI100, as provided by CFD.
It shows that the choice of the value Tf = 1960 K is reasonable when evaluating Want.

In spite of the fact that the heat release Wc due to combustion is about 300 times
larger in AE94 than in ARI100, the RF power Want required for stabilisation of humming
at a given amplitude is only one order of magnitude larger. This result con�rms the ben-

e�cial role of σ and of
dσ

dT
, as expected. Moreover, Want << Wc in all cases; this con�rms

the applicability of the discussion in the Appendix on RF-�ame electromagnetic inter-
action. Furthermore, out treatment of RF optics is de�nitely oversimpli�ed and unduly
pessimistic: suitable design of RF antenna in realistic, far-from-slab combustor geometry
allows focussing of RF power on the �ame and improvement of overall e�ciency. Finally,
our results are meaningful only if the re�ection coe�cient Rf is � 1 (RF wave would be
otherwise re�ected away from the �ame, to no avail as far as humming is concerned).
Fig. 15.36 displays log10 (Rf ) vs. T @ χ = 1 for ARI100a, ARI100b and AE94. The
maximum value achieved by Rf in all cases is 2.8 · 10−2 in AE94 at T = 2255 K. Thus,
the condition Rf � 1 is satis�ed in all cases.
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Figure 15.32:

(
Want

Wc

)
·
(

∆p

p0

)−1

(dimensionless) vs. Tf (K) for ARI100a (XXXXX),

ARI100b (+++++) and AE94 (OOOOO).

The relatively low value of Want for AE94, even at relatively large values of ∆p, seems
encouraging. It is shown in the Appendix on the electrical conductivity that the electric
�eld satis�es the weak �eld approximation even near the RF antenna for such values of
Want. RF-assisted humming stabilisation is the topic of the Ansaldo patent n. AEN00495
-see Fig. 15.37.
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Figure 15.33: Want (kW) vs. humming amplitude ∆p (mbar) for ARI100a (XXXXX),
ARI100b (+++++) and AE94 (OOOOO). Reference values for all combustors are Ze =
10, Ξ = 10, δL = 10−4 m, Af = 1 m2, γ = 1.4, νRF = 3.7 GHz and qRF = 104. (Same
results are obtained for νRF = 8 GHz and qRF = 103). As for ARI100, p0 = 4.3 bar and
Tf = 1960 K. As for AE94, p0 = 17.7 bar and Tf = 1850 K. Finally, Wc = 20 kW, 100
kW and 54 MW for ARI100a, ARI100b and AE94 respectively.

- tempch.png

Figure 15.34: Distribution of temperature inside AE94 combustor.
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- temp.png

Figure 15.35: Distribution of temperature inside ARI100a combustor.
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Figure 15.36: log10 (Rf ) vs. T @ χ = 1 for ARI100a (XXXXX), ARI100b (+++++) and
AE94 (OOOOO).
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Figure 15.37: Lay-out of RF-based stabilising system (from the Ansaldo Energia patent
n. AEN00495). Combustion occurs in a combustion chamber (20) embedded in a plenum
(21). The latter feeds the former with air, which comes from an air intake (3). The
inner wall of the combustion chamber is coated with ceramic tiles (24). Fuel enters the
system through (22). A RF power source (15) feeds a RF antenna (16) through a RF
transmission line (17). The C-shaped �gure inside the combustion chamber stands for the
�ame. Ceramic tiles shield the antenna from the hostile environment of the combustion
chamber.
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Chapter 16

Dynamics of humming

Coupling of combustion and acoustics may lead to destructive pressure oscillations (hum-
ming) in lean, premixed, subsonic, swirl-stabilised combustors of heavy-duty gas turbines
for power production (GT ). Humming a�ects combustors operating at low fuel mass frac-
tion and high heat release, regardless of the �ame robustness against undesired occurences
of gross instabilities like �ashback, lift-o� etc. Today, humming is still an issue of major
concern to GT manufacturers even after decades of dedicated R & D, as it curtails pre-
cisely the performances of the most commercially attractive, i.e. high-load, low-pollution
GT. Being able to predict humming would improve a manufacturer's competitiveness by
making it possible to design intrinsically humming-free combustors from scratch.

Usually, manufacturers tackle the di�cult problem of describing the turbulent �uid
environment inside a GT combustor with the help of CFD. Unfortunately, the di�erent
orders of magnitude of acoustic and convective time-scales in subsonic combustion make
it impossible to perform a full CFD treatment of humming now and -very likely- in a
foreseeable future. Even if e�ective energy transfer between the �ame (where combustion
occurs) and the �uid (which sound propagates across) impies that the humming period
is never too far from an acoustic eigenfrequency of the combustor, so that the humming
spectrum is well peaked in the frequency domain, the answer to the crucial question is
humming going to start or not in my combustor? is still out of reach.

Today's standard approach (modal analysis) aims at computing the growth rate of
humming amplitude, which is supposed to depend exponentially on time. The growth
rate is the imaginary part of a complex frequency, whose real part is connected to the
humming period quoted above. Each frequency corresponds to a particular mode of oscil-
lation -around an unperturbed state which does not depend on time- of the system made
of the �ame and the �uid embedding it inside the combustor, and the generic pressure
perturbation is supposed to be a superposition of such modes. Humming occurs whenever
the growth rate of at least one mode turns out to be positive, causing unlimited growth of
the mode amplitude. In particular, those (low order) models which take into account just
a small number of modes o�er the advantage of reduced computing time. Generally speak-
ing, the computation of growth rates relies on a linear wave (Helmholtz' ) equation in the
frequency domain for assigned boundary conditions. The latter include either standard
Dirichlet-Neumann boundary conditions or, more generally, assigned linear relationships
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(acoustic impedances) between perturbations of velocity and pressure at the boundaries.
Throughout the �uid, a linearised Euler equation connects such perturbations to each
other. The velocity of sound depends on temperature, and the dependence of tempera-
ture on position is provided in input e.g. by CFD. Suitable jump conditions at the �ame
allows further partition of the system into simple modules, connected to each other in
acoustic networks by the conservation equations of mass, momentum and energy. Indeed,
low order acoustic networks are a popular application of modal analysis in manufacturers'
everyday practice.

In modal analysis, the �ame is represented by the �ame transfer function (FTF ), i.e.
a complex-value function of frequency which provides us with the perturbation of heat
release at the �ame for given perturbations of velocity and pressure. (More sophisticated
de�nitions are also available). FTF allows reduction of the system of linearised Helmholtz
and Euler's equations to a homogeneous system; it allows also reduction of the compu-
tation of complex frequencies to the corresponding eigenvalue problem. Thus, once all
acoustic impedances are known the whole problem of humming prediction reduces basi-
cally to the problem of �nding the correct FTF for a given combustor [59].

Apart from very particular cases, however, the search for FTF is no trivial matter.
Most models available in the literature are either the generalisation of simple analytical
formulas with just one or two free parameters like the popular n− τ model, or postulate
oversimpli�ed, -and de�nitely unrealistic for GT use- shapes of the unperturbed �ame.
In the former case, �rst-principle computations of the free parameters rely once more
on CFD, and are therefore a�ected by all drawbacks of the latter. Last but not least,
unavoidable numerical uncertainties may cause the estimate of the growth rate sign to
blur for combustors on the verge of humming where this growth rate almost vanishes. As
an alternative, people obtain the values of these free parameters from comparison with
observations on existing burners, and enter such values in some modal analysis algorithm.
This approach is successful as far as we are looking for a spectrum of possible humming
periods, and also for interpolation among available data. Yet, the original goal of hum-
ming prediction from scratch remains out of reach.

It is reasonable to wonder if we can get information about the occurrence of hum-
ming without previous knowledge of a FTF. The answer is a�rmative, and is given by
Rayleigh's criterion of thermo-acoustics, where thermoacustics investigates the interac-
tions of sound and heat. Rayleigh's criterion, its generalisation, and its equivalent formu-
lations are the topic of the present discussion. Rayleigh's criterion is a suitably time- and
volume-averaged energy balance of an acoustic perturbation when the absolute value of
its growth rate is much smaller than the absolute value of its frequency [4] [31] [32] [34]
[33]. Rayleigh's criterion follows straightforwardly from the balance equations of mass,
energy and momentum, as well as from the �rst principle of thermodynamics, and invokes
no FTF.

Rayleigh's criterion involves a destabilising term and a stabilising term, both terms
being integrals on space of time-correlations of perturbations of heat release, velocity etc.
Humming is triggered (damped) when the growth rate is positive (negative), and in turn,
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the growth rate is positive (negative) when the destabilising term is larger (smaller) than
the stabilising term. The destabilising and the stabilising terms are equal if and only if the
humming amplitude is constant; in particular, if this constant vanishes then no humming
occurs at all - which is precisely what manufacturers long for.

Physically, the stabilising term is the net �ux of acoustic energy across the boundary
of the combustor which contains the �uid and the �ame: if the propagation of sound car-
ries away from the system a positive amount of energy per unit time, then it lowers the
overall amount of energy inside the combustor, hence it tends to stabilise. Conservatively,
this term is often assumed to vanish altogether by some authors.

As for the destabilising term, it is the integral on the combustor volume of the so-called
Rayleigh index D. The explicit expression of D depends on whether perturbations of en-
tropy are allowed to or not to keep up with the perturbations of pressure. The case where
no perturbations of entropy are allowed is called isentropic, and leads to more simple
mathematical expressions [34]. However, it allows no proper discussion of heat conduc-
tion, which is properly taken into account only if entropy perturbations are allowed [32]
[33]. In the isentropic case, which applies e.g. to the human voice, D is proportional to the
time-correlation of perturbations of pressure and heat release; D > 0 (and may therefore
raise the value of the destabilising term, possibly leading to the occurrence of humming)
whenever the perturbations of pressure and heat release are in phase. This result has a
simple thermodynamic meaning: the e�ciency in transforming heat into mechanical work
(here, the energy of sound) is maximum when heat is supplied to the �uid at the moment
of maximum compression of the latter, in analogy to what happens in GT Brayton cycle.
Remarkably, it is the phasing of the heat exchange which is relevant, not the detailed
mechanism which rules heat transport and production.

Lord Rayleigh put forth this argument of thermodynamic nature when discussing
the spontanenous occurrence of sound in suitably heated systems, at the very origin of
thermo-acoustics in the XIX century. It is precisely this connection with thermodynamics
which allows Rayleigh's criterion to hold regardless of any microscopic model of the �ame
response to acoustic disturbances, i.e. of FTF. Moreover, Rayleigh's argument shows the
relevance of relative phases between perturbations of di�erent physical quantities, and
this result is the rationale of many modern (active control) strategies aiming at humming
control.

If entropy perturbations are allowed, it turns out that D is the sum of two terms.
The �rst term is proportional to the time-correlation of perturbations of temperature and
heat release (and reduces to the isentropic case when the perturbations of entropy vanish):
Carnot cycle replaces Brayton cycle in the arguments above. The new term is proportional
to the time-correlation of the perturbations of entropy and of the component of velocity
along the non-vanishing gradient of unperturbed entropy (if any exists). Remarkably, it
can be shown that this term discourages modes whose propagation tends to raise entropy
in regions of the system where entropy is already large in the unperturbed state. This
is in agreement with Le Châtelier's principle of thermodynamics, which requires that an
external interaction which disturbs the equilibrium brings about processes in the body
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which tend to reduce the e�ects of this interaction. Again, thermodynamics is at stake
when it comes to Rayleigh's criterion - a point to be recalled later.

A further, often overlooked consequence of Rayleigh's criterion is that the shape of
the �ame a�ects humming. This is far from surprising, as the same shape plays a decisive
role when it comes e.g. to Darrieus-Landau instability. As for humming, it is possible to
show that D is strongly peaked at the �ame in both isentropic and non-isentropic case.
Accordingly, the destabilising term reduces to an integral on the �ame, and is therefore
a�ected by �ame shape. Admittedly, such information are just implicit, but now we may
reasonably wonder if there are �ames whose shape make them less prone to humming
than other �ames.

In turn, this question leads to another question. Even if no humming occurs, stability
of a premixed �ame against gross instabilities like �ashback, lift-o� etc. puts a constraint
on the �ame shape: the component of the velocity of the unburnt gases impinging on the
�ame which is perpendicular to the �ame must be equal to the �ame velocity -see e.g.
equation (13.21) for laminar �ames, and its generalisation to turbulent �ames. Given the
impinging �ow on a �ame free from gross instabilities, therefore, all information on �ame
shape (even the implicit, additional constraint provided by Rayleigh's criterion against
humming) involve also the �ame velocity. All the way around, we may wonder if acting
on the �ame velocity a�ects stability against humming.

In spite of its general validity, unfortunately, and even if it correctly stresses the rel-
evance of relative phases of di�erent physical quantites to humming, Rayleigh's criterion
is currently utilised in post-processing CFD results, rather than in humming prediction.
The reason is that - for all its generality - Rayleigh's criterion provides just a link between
perturbations of di�erent physical quantities. Then, it allows humming prediction only
once these perturbations have been computed.

Generally speaking, modal analysis is somehow complementary to Rayleigh's criterion:
in contrast with the latter, the former allows humming prediction -and not just stability
check a posteriori - but requires knowledge of the FTF. Unfortunately, both modal analy-
sis ad Rayleigh's criterion rely on a number of simplifying assumptions. The latter include
caloric perfection, linearity, the fact that the unperturbed state does not depend on time,
and zero mean �ow. Particle di�usion is also neglected, which is equivalent to assume
that the Lewis number at the �ame is not to small so that thermo-di�usion instability
is suppressed. Most discussions include also a further assumption, namely that the body
forces -like gravity- are negligible. Even if popular, it is not strictly necessary.

Caloric perfection is the more harmless assumption. It means that all chemical species
inside the combustor are described as perfect gases with the same value of speci�c heat
at constant pressure and the same value of speci�c heat at constant volume.

Linearity of both equations and boundary conditions is a matter of mathematical sim-
plicity, as it allows utilisation of well-known linear algebra when dealing with the eigen-
value problem quoted above. It seems justi�ed as the amplitude of pressure oscillations
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is smaller than the unperturbed pressure by orders of magnitude when humming occurs
in GT. However, the same is not true when it comes to perturbations of velocity, espe-
cially near the centre of recirculation zones, which are usually present in swirl-stabilised
combustion but are seldom taken into account in humming research. The price to be paid
is that linear models provide us with no information about the actual value of humming
amplitude. For example, it is perfectly possible that a linear theory predicts that a given
mode starts growing, and then its amplitude saturates nonlinearly to a barely detectable,
harmless level. Even without full CFD treatment, nonlinearity may be taken into account
e.g. by introducing a dependence of FTF on the amplitude of the perturbation -in this
case we speak of �ame distribution function (FDF ) [80]. Then, suitable coupling between
di�erent modes allows computation in the frequency domain. Moreover, once the non-
linearity is known at the �ame and (possibly) in the boundary conditions, and starting
from the conservation equations of mass, momentum and energy, Galerkin methods al-
low to write a system of nonlinear, ordinary di�erential equations in the time domain,
the unknown quantities being the time-dependent coe�cients of the Galerkin expansion.
Standard results of nonlinear dynamical systems allow description of the bifurcations and
of the basins of attraction of the combustor. The onset of humming is described either
as a bifurcation leading from a steady state to a limit cycle, or as the transition from an
humming-free but chaotic behaviour to a periodic orbit [81]. As far as humming is identi-
�ed with an attractor with a basin of attraction of �nite measure and the system remains
inside this basin of attraction, humming suppression remains impossible, a concept which
�ts the well-known resilience of humming against any attempt to suppress it. In contrast
to linear approaches, moreover, nonlinear analysis allows prediction of amplitudes. Ulti-
mately, however, it too relies on the detailed description of the response of the �ame to
perturbations, and the search for FDF is a�ected by the same drawbacks of the search
for FTF.

As for the assumption that the unperturbed state does not depend on time, it allows
to identify the value of an unperturbed quantity (say, pressure) as the time-average of
this quantity on many humming periods, the time-averaged perturbation being zero(this
is the reason of the wording mean �ow above). This assumption has been recently ques-
tioned by some researchers who put forth the idea that the humming-free state of a real
GT combustor, far from being steady, is rather an orbit of a chaotic system [78]. Indeed,
it has been shown that the very concept of steady-state unperturbed �ow is incompati-
ble with Galileian invariance, a fundamental requirement all meaningful solutions of the
(Galileian-invariant) equations of motion have to satisfy [65]. But even if we stick to
conventional wisdom and assume humming to be the time-dependent perturbation of a
steady state, we recall that humming is a (far too stable) oscillating perturbation. If the
unperturbed state does not depend on time, then the above quoted linearity assumption
implies that the amplitude of the oscillations of all quantities involved in humming is
small -which is de�nitely true for pressure, but not for velocity. In contrast, should we
allow the unperturbed state to oscillate on its own on a time-scale much longer than
the typical time-scale of the perturbation (in order to retain all essential physics of the
unperturbed state after time-averaging on a time much longer than such time-scale), we
could indentify the humming and its resiliency against suppression with the unperturbed
state and its stability respectively -regardless of the actual amplitude of the oscillation.
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But we are getting ourselves into real trouble when we assume that the mean, un-
perturbed �ow vanishes, i.e. that the �uid without humming is at rest. Again, this as-
sumption seems justi�ed because the Mach number is much lower than 1 in subsonic GT
combustion, so that Doppler corrections to the humming period are negligible. However,
even if no humming occurs no �ame may ever exist at a �xed location in the laboratory
frame of reference without a �ow supporting and stabilising the �ame against e.g. �ash-
back.

Moreover, if no unperturbed �ow exists then the heat release of the unperturbed �ame
also vanishes, and the oscillating perturbation of heat release which the FTF is concerned
with keeps on heating and cooling periodically the �ame - an utterly unphysical result.

Finally, if the unperturbed �uid is not at rest - no matter how small its Mach number
is - then an entirely new family of (convective) waves, related to perturbations of entropy
and vorticity, may propagate across the �uid. In contrast to acoustic waves, which propa-
gate at the speed of sound, convective waves propagate at the velocity of the unperturbed
�ow. Acoustic waves only may store energy and carry it across a �uid at rest. In contrast,
both acoustic and convective waves may store energy and carry it across a moving �uid.

This clear di�erence in physics has far-reaching consequences. In both cases, for in-
stance, if no dissipation occurs then total energy is conserved. In a �uid at rest, total
energy coincides with the energy of the acoustic perturbation, which is therefore un-
ambiguously de�ned if no dissipation occurs (zero growth rate of all modes) and allows
derivation of Rayleigh's criterion from �rst principles if dissipation is weak (relatively
small growth rates). In a moving �uid, total energy is the sum of the perturbation en-
ergy and of the energy of the unperturbed �uid. Even if no dissipation occurs, therefore,
energy exchange between the unperturbed �uid and the perturbation is possible, and no
unambiguous de�nition of a conserved energy of the perturbation on its own is possible.
Even more so, the same is true when dissipation occurs. Every attempt to generalise the
de�nition of energy of the perturbation -as well as the corresponding energy balance, i.e.
Rayleigh's criterion- from the well-known case of zero mean �ow to the realistic case of
non zero mean �ow (relevant to �ames free of �ashback) is therefore doomed to failure [66].

Non-zero mean �ow a�ects also modal analysis. Even if the latter predicts stability
(i.e. the growth rates of all modes are negative), perturbations may occur which undergo
transient, non-exponential growth before decaying exponentially on the long term. Physi-
cally, the motion of the unperturbed �uid may feed the perturbation even if the stabilising
term overcomes the destabilising one in Rayleigh's criterion, which does not take into ac-
count the motion of the unperturbed �uid. Mathematically, even if the FTF includes the
e�ect of non-zero mean �ow, Helmholtz' equation describes propagation of a perturbation
across an unperturbed �uid at rest. Even if all modes described by Helmholtz' equation
depend exponentially on time, therefore, it is false that all perturbations of a moving
�uid are linear superpositions of such modes - the problem is said to be non-normal -
and transient, non-exponential growth becomes possible [51]. Such growth may be large
enough to trigger possibly dangerous nonlinearities. From a GT manufacturer's point of
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view, this means that catastrophic humming may occur even if modal analysis predicts
stability. Finally, energy exchange between the unperturbed �uid and the perturbation
may occur through interaction between acoustic and convective waves; in turn, this inter-
action may occur either at the �ame or at the boundaries. Accordingly, modal analysis
and Rayleigh's criterion may provide us with reliable humming prediction if either partic-
ular boundary conditions or particular geometries occur, which prevent coupling between
acoustic and convective waves. This includes e.g. the problems of perfectly re�ecting
walls [19], uncon�ned �ames [21] and azimuthal propagation of sound waves [20].

Should we be able to get rid of the unphysical assumptions underlying Rayleigh's cri-
terion while retaining its independence from detailed modeling of �ame like FTF or FDF,
we would obtain more reliable information about humming prediction. Indeed, a formal
generalisation of Rayleigh's criterion exists, namely Myers' corollary, which grants our
wish [22] [76] [77]. Myers' corollary is a relationship (formally similar to an energy bal-
ance) between quantities which are bilinear in the amplitude of the perturbation of many
di�erent physical quantities. It follows from the balance equations and from the �rst prin-
ciple of thermodynamics, and - above all - it relies on none of the unphysical assumptions
underlying Rayleigh's criterion (the only assumption of negligible body forces is retained).
If these assumptions are satis�ed then Myers' corollary reduces to Rayleigh's criterion,
as expected. Myers' corollary requires no caloric perfection, and takes into account the
e�ect of heat and particle di�usion of many reacting chemical species. Myers' corollary
does not require perturbations to be small, hence it applies to fully nonlinear descriptions
as well - indeed, it has been utilised in benchmarking CFD codes. In spite of its similarity
to Rayleigh's criterion, Myers' corollary is no energy balance, and invokes no de�nition
of energy of the perturbation. Above all, Myers' corollary allows the unperturbed state to
depend on time, and allows the mean �ow to di�er from zero. In a nutshell, Myers' corol-
lary allows description of oscillations of arbitrary amplitude in agreement with Galileian
invariance, and includes non-normality and non-linearity in a natural way.

Unfortunately, and not surprisingly given the general validity of Myers' corollary, the
structure of the various terms which appear in it is extremely cumbersome. Moreover, no
term seems to be negligible when humming occurs, according to CFD simulations, and
no simpli�cation is therefore possible when applying to GT. Accurate evaluation of each
term requires full CFD computation, once again. Nevertheless Myers' corollary still leads
to a relevant result.

If we identify stability of a (possibly oscillating) unperturbed state with the lack of
divergence of the amplitude of a perturbation, where the latter is suppose to evolve on a
time-scale which is much shorter than the evolution time-scale of the unperturbed �ow,
then the necessary condition for stability -equation (6.36)- is the same for both steady
and unsteady unperturbed �ow, namely the equality between a destabilising term and a
stabilising term. (For a steady unperturbed �ow the typical evolution time-scale of the
unperturbed �ow is in�nite). Both terms are time-averages of integrals over space, the
time-average being computed on a time-scale much longer than the evolution time-scale
of the perturbation and much shorter than the evolution time-scale of the unperturbed
state. The common value of the destabilising and the stabilising term vanishes as the
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perturbation amplitude relaxes to zero. Many phenomena, including combustion, a�ect
the destabilising term. The latter is still an integral of a suitably generalised Rayleigh
index D. For small Mach number, the stabilising term is basically the �ux of acoustic
energy across the boundaries, with corrections due to the unperturbed �ow. If the as-
sumptions underlying Rayleigh's criterion are satis�ed, then the necessary condition of
stability reduces to the corresponding condition as obtained from Rayleigh's criterion.

When asking dynamics for information about humming prediction, it turns out that
a list of relevant issues should include not just the role of proper phasing of heat ex-
change and entropy �uctuations, as expected from Rayleigh's criterion, but also the role
of the �ame shape and �ame velocity, a necessary condition for stability (understood as
lack of divergent perturbation amplitude) which is common to both steady and unsteady
unperturbed states, and -last but not least- the connection with thermodynamics. In
particular, the latter would ensure that the most desirable feature of Rayleigh's criterion,
the independence from the detailed �ame model, remains valid even beyond the all too
restricted domain of validity of Raylegh's criterion itself.



Chapter 17

Thermodynamics of humming

Myers' corollary and its particular case, Rayleigh's criterion, follow from both the balance
equations of mass, momentum and energy and the �rst principle of thermodynamics. The
latter is cast in local form, i.e. it is applied to a small mass element of the �uid. Im-
plicitly, therefore, whoever invokes Myers' corollary or Rayleigh's criterion assumes that
local thermodynamic equilibrium (LTE ) holds everywhere at all times inside the �uid,
which means that all thermodynamical quantities (pressure, temperature, internal energy
etc.) can be de�ned and are connected to each other by the same familiar relationships
which hold at thermodynamical equilibrium [94]. Should a particular chemical species not
satisfy LTE, then its description would require dedicated kinetic treatment. Admittedly,
some chemical species involved in premixed combustion (like e.g. those responsible either
for pollution or for the electrical conductivity of the �ame) violate LTE. However, their
mass fraction is usually no larger than few millionths, and their presence leaves therefore
the validity of our results above una�ected.

Together with the �rst principle, LTE implies also validity of the (usually overskipped)
second principle of thermodynamics inside the small mass element. A familiar consequence
of second principle is Le Châtelier's principle [84]. We have already hinted at the role
played by Le Châtelier's principle when discussing the contribution of entropy �uctua-
tions to Rayleigh's criterion. Furthermore, the fact that the second principle holds inside
a small mass element all along the evolution of the latter in time puts a constraint on
this evolution, the so called general evolution criterion (GEC ) [115]. The latter takes the
form of an inequality involving total time derivatives of thermodynamic quantities inside
the small mass element. To understand the relevance of GEC and Le Châtelier's principle
to humming, three remarks are useful.

First of all, GEC involves total time derivatives which express the rate of change of
quantity in a small �uid element as seen from an observer at rest with respect to the �uid
elemet itself. Consequently, we expect GEC-based results to satisfy the requirement of
Galileian ivariance.

Secondly, since GEC deals with time derivatives of physical quantities including en-
tropy, then we expect it to apply to relaxation processes, i.e. to spontaneous, irreversible
evolution of the system towards some stable con�guration. If there is no exchange of mat-
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ter and energy with the external world, then relaxation leads to global thermodynamic
equilibrium of the system as a whole (and not just to LTE). If such exchange occurs
-as it is obviously the case with GT combustors- then well-ordered patterns (dissipative
structures) may arise from relaxation. Humming is an example of time-ordered dissi-
pative structure. Rijke's tube [24], Sondhauss' tube [23], Taconis' oscillations [27] and
Eddington's model of Cepheid stars [122] provide us with further examples of dissipative
structures in thermo-acoustics, even beyond the domain of combustion. In all these ex-
amples, irreversible heat exchange triggers a time-ordered pressure oscillation in a �uid.
The role of heat exchange has been already put in evidence when discussing Rayleigh's
criterion.

Finally, in contrast to GEC (which applies to a small mass element) Myers' corollary
and Rayleigh's criterion apply to the combustor as a whole. Together, however, GEC,
Reynolds' transport theorem, Le Châtelier's principle and two reasonable assumptions
(namely, no net source of matter inside the volume of the system and negligible particle
di�usion) lead to three inequalities involving various terms of the balance of the total en-
tropy of the �uid inside the system (e.g., a combustor). No matter what the microscopic
physics is like, LTE makes the system to satisfy these three inequalities simultaneously
at all times [116].

As for small perturbations of a steady state with zero mean �ow of a �uid enjoying
caloric perfection, it is possible to show that satisfying Rayleigh's criterion (or the equiva-
lent Eddington's condition when radiation rules energy transport) is a su�cient condition
for satisfying one of the inequalities quoted above, and -as a consequence- also the other
two inequalities as the three LTE-related inequalities hold together. These latter two
inequalities lead to two necessary conditions for stability of the unperturbed steady state.
Both conditions are cast in form of variational principles. These principles involve both
the amount of entropy produced within the system and the amount of entropy produced
by transport processes inside the system and across its boundaries; the former and the
latter are e.g. ruled by combustion and convection respectively in GT. As far as LTE rules
relaxation, a stable, steady state and its perturbations satisfy the two variational prin-
ciples and the necessary condition derived from Rayleigh's criterion respectively. Thus,
rather than applying Rayleigh's criterion to check a posteriori the stability of a given
solution of the equations of motion (full CFD, FTF-assisted Helmholtz' equation, etc.),
we may solve for a solution (if any exists) of the variational principles which satis�es the
constraints provided by the balance equations of mass, momentum and energy. This way,
rather than looking for possible causes of humming by changing e.g. the FTF and then
check the stability of the results, we look straightforwardly for the humming-free �ames
made possible by a given upstream �ow.

In strict analogy to what happens when discussing Myers' corollary, generalisation to
unsteady unperturbed state requires just replacement of a steady unperturbed state with
a suitably time-averaged state, the time-average being taken on a time-scale much longer
than the time-scale of the perturbation. The variational principles which describe stable
steady state are particular cases of more general selection rules, according to which the
system selects the con�guration which satis�es a given extremum property among many
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con�gurations.

The actual extremum property of relevance depends on the particular problem, ac-
cording to which the variational principles reduce to minimisation or maximisation of this
and that quantity. As for a thin �ame in thermal contact with a wall, for example, it is
minimization of the heat �ow pouring out of the heat source which facilitates selection
of a humming-free, steady state as the stable state, in contrast with a humming-a�ected,
oscillating state. Experiments with �ames either attached to a suitably cooled burner rim
[29] or to �ameholders made of materials with di�erent thermal conductivity [30] con-
�rm this conclusion. (For steady-state �ames whose linear size is not much larger than
the quenching distance, in contrast, the large temperature gradients make the variational
principles to reduce to maximisation of entropy produced by irreversible heat transport,
in agreement with the result of [121]). Outside combustion, the esperiments of [28] on
thermo-acoustic stacks in thermal contact with a working �uid lead to the same result;
moreover, we have shown the equivalence between the thermodynamic foundations of
Rayleigh's criterion we have dscussed and Eddington's results on spontaneous oscillatons
of Cepheid stars [122]. Finally, humming in a perfect, subsonic gas corresponds to a con-
�guration which maximises the emitted acoustic power, in agreement with a hypothesis
about thermo-acoustics in rockets, put forward in the Sixties [95].

The minimization of heat �ow hinted at above recalls Rijke's observation that sound
production is suppressed (enhanced) whenewer we hinder (facilitate) the heat �ow pour-
ing out of the heat source by shortening (extending) the time available to heat exchange
with the surrounding �uid. In particular, if the heat source is the combustion occurring
in a �ame which propagates across a �uid at rest while in thermal contact with a wall,
then lowering the time available for the heat exchange between the �ame and the wall
is equivalent to raise the �ame velocity -the relative velocity of the �ame and the �uid-
while leaving the upstream �uid una�ected. (Here we speak of laminar �ame velocity
sL, for reasons which will become clear below; turbulent �ame velocity is an increasing
function of the laminar one. Admittedly, moreover, the time available to heat exchange
increases with increasing �ame thickness. But the latter is either a decreasing function
of sL or depends on it only weakly, in laminar [2] and turbulent �ames [112] respectively.
Accordingly, we keep on focussing our attention on sL.). Galileian invariance ensures that
the �uid speed far from the �ame is not relevant, hence our conclusion concerning the
�ame velocity holds also for a �ame at rest in a moving �uid. This discussion suggests
that raising sL -all other things being equal- stabilises humming.

This conclusion agrees with a number of well-known facts. Firstly, sL is a monotoni-
cally decreasing function of the heat losses due to conduction towards the wall [98]: hence,
raising sL (again, all other things being equal) is equivalent to reducing such losses, as dis-
cussed above. Secondly, it is well-known that leaner �ames -where the value of sL is lower
than the value of sL in stoichiometric combustion- are more prone to humming. Thirdly,
addition of a small percentage of hydrogen to a air-methane �ame has the twofold e�ect
of raising sL [107] and to stabilise humming [106].

The bene�cial e�ect of raising sL on humming stabilisation is another topic where
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thermodynamics agrees with dynamics. As for thermodynamics, if we describe the �ame
as a system where both exothermic reactions (combustion) and endothermic reactions
act simultaneously, then Le Châtelier's principle ensures that any attempt to enhance
exothermic reactions inside the �ame triggers counter-reaction through enhancement of
endothermic reactions, at the expense of humming-supporting combustion. In the par-
ticular model of one-step, in�nitely fast reaction combustion [4], for example, sL is an
increasing function of the reaction rate; if we try to raise (lower) sL then the �ame re-
acts in order to lower (raise) the reaction rate of those combustion reactions which feeds
humming with energy. As shown above, in order to raise sL while leaving other things
like the upstream �ow, the heat release etc. una�ected, we may decide either to raise
the relative abundance of fuel (in lean combustion) at the price of increased pollution, or
to add some hydrogen (in the case of air-methane combustion). Similarly, Joule heating
of �ames with the help of an electric arc stabilise humming [103]. In contrast, when the
external world enhances endothermic reactions then further humming is excited. Indeed,
it is a matter of manufacturer's everyday experience that the larger (lower) the environ-
mental humidity the larger (lower)the humming amplitude in GT: in fact, the higher the
water mass fraction in the unburnt mixture the larger the amount of water vaporised per
second at the �ame in an endothermic vaporisation process. Experimentally, the larger
the amount of steam added to the unburnt gases the lower sL for both air-methane [107]
and air-natural gas [108] combustion. Remarkably, turbulence -e.g. in GT- leaves this
argument una�ected, as far as Damkoehler number is large at least: this is why we have
focussed our attention on sL.

As for dynamics, every physical mechanism leading to reduction of the destabilising
term is going to stabilise humming, as such term is proportional to the acoustic power
irradiated away from the system (duly corrected for �nite values of Mach number). But
D is localised at the �ame too, and its volume integral on the combustor volume reduces
to the volume integral on the �ame volume; for thin �ames, the latter integral reduces
further to a surface integral on the �ame area Af . Fluctuations of Af (usually overlooked
with no further justi�cation) and of heat release are in phase with each other, as the heat
release is proportional to Af at all times. Fluctuations of Af contribute therefore to the
destabilising term in Myers' corollary (or Rayleigh criterion) just like the �uctuations of
heat release. It turns out that raising sL at given upstream �ow lowers the contribution
of the �uctuations and is therefore stabilising -for concave �ames at least (like most GT
�ames). In fact, for such �ames it is possible to show that raising sL at given upstream
�ow acts upon the �ame stretch in such a way that the slope of Af (t) gets �attened. Now,
when humming occurs with a given period τ , Af too oscillates with the same period. In
this case, the steeper (�atter) the slope of Af (t) the larger (smaller) the maximum ampli-
tude of �ame area oscillations, the larger (smaller) their contribution to the destabilising
term, the larger (smaller) the humming amplitude. (Intuitively, but not rigorously, we
note that fuel mass balance in lean combustion forces any growth of �ame velocity at given
impinging �ow to correspond to a reduction of Af , hence of the domain of integration of
the destabilising term, thus limiting the amplitude of humming). Remarkably, turbulence
leaves this argument una�ected as far as τ >> all turbulent time-scales, provided that
we replace the �ame stretch with its average on turbulent wrinkling.
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By now, dynamics and thermodynamics are in full agreement. Inclusion of �ame area
oscillations in the computation of the destabilising term of Myer's corollary leads to a
prescription for humming onset, i.e. lowering of �ame velocity at given upstream �ow - in
agreement with Le Châtelier's principle. Rayleigh's criterion is a particular case of Myers'
corollary, and is also one of the necessary conditions for the stability of an unperturbed
steady state provided by LTE - which in turn are particular cases of the corresponding
selection rules. If oscillations of Af are neglected altogether and we are in the isentropic
case of Rayleigh's criterion, then humming is sustained by suitable relative phasing of
the oscillations of heat relase and pressure, in agreement with what thermodynamics tells
us on the e�ciency of a Brayton cycle. To date, humming-related research has focussed
precisely on such phasing. If oscillations of Af are neglected altogether and we are not
in the isentropic case of Rayleigh's criterion, then humming is sustained by suitable rel-
ative phasing of the oscillations of heat relase and temperature, in agreement with what
thermodynamics tells us on the e�ciency of a Carnot cycle. Even so, however, modes
are discouraged whose propagation tends to raise entropy in regions of the system where
entropy is already large in the unperturbed state - again in agreement with Châtelier's
principle. The agreement of the results provided by Rayleigh' criterion and Myers' corol-
lary with thermodynamics con�rms their independence from detailed microscopic models
of combustion and turbulence.
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Chapter 18

Applications

18.1 Absence of humming

We have shown that Myers' corollary leads to a necessary condition for stability. This
criterion involves a destabilising term, which reduces to an integral on the �ame, and
is therefore a�ected by �ame shape. In stabilised �ames, moreover, the �ame velocity
is equal to the normal component of the upstream velocity impinging on the �ame -see
(13.21). Accordingly, stability links the shape of humming-free �ames, the �ame velocity
and the upstream �ow. This fact provides the physical ground for the search of a neces-
sary condition for stability which involves �ame shape explicitly, and non just explicitly
like in Myers' corollary and Rayleigh's criterion.

To this purpose, we limit ourselves to in�nitely fast, irreversible, one-step, subsonic,
premixed combustion occurring in a thin �ame, and neglect both viscosity, radiation,
particle di�usion and heat conduction. The assumption of thin �ame allows us to neglect
the gradient of all physical quantity along the �ame [6]. Since we focus our attention on
the �ame shape, we take the temperature pro�le inside the �ame as �xed. Then, the vari-
ational principles which -according to thermodynamics- provide a necessary condition for
stability equivalent to Rayleigh's criterion- reduce just to constrained minimisation of the
heat release due to combustion, the constraints being given by the relevant conservation
equations for mass, momentum and energy in steady state. Thus, the vaiational problem
takes the simpi�ed form (13.13), which involves both the upstream �ow and the shape of
the �ame, as expected.

Dramatic simpli�cation follows from the further assumption of axisymmetric, swirl-
stabilised, highly elongated �ames. Analysis of (13.21) and (13.13) shows that no stable
�ame exists if the swirl number is too low. Otherwise, two possible stable con�gurations
exist, open and close, corresponding to a larger and a smaller opening angle with respect
to the direction of the axis of symmetry respectively. Given the swirl number, the �ame
switches from the open to the close con�guration (commutation) when the heat release
related to the close con�guration becomes larger than the heat release related to the open
confugiuration, i.e. when the heat release overcomes a threshold a result in agreement with
[15] and with manufacturers' experience. It turns out that the latter threshold increases
with increasing swirl number and with increasing relative fuel abundance -in agreement
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with the results of [18] and [16] respectively. In the subsonic limit, the pressure jump
across the �ame is small; however, rigorous treatment of the momentum balance across a
curved �ame [6] shows that it depends on the �ame curvature, and is therefore di�erent
for the open and close �ame. It follows that this pressure jump undergoes a discontinuous
drop when commutation occurs, and this drop can be measured. The computed values
of both the opening angles and of the drop agree with the results of [15]. Finally, after
commutation has occurred, if we lower the heat release then the �ame switches back from
the close con�guration to the open con�guration (anticommutation) as the heat release
becomes lower than a threshold. Generally speaking, however, hysteresis occur, i.e. the
anticommutation threshold is lower than the commutation threshold. Both anticommu-
tation and hysteresis are commonly observed in manufacturers' experience.

As a �nal benchmark, we apply (13.21) and (13.13) to �ames with small curvature
- a case which is not relevant to GT, but which includes well-known examples as the
conical-shaped, Bunsen premixed �ames. It is shown that the Euler-Lagrange equation
of the variational problem reduces to the steady-state version of Kuramoto-Sivashinsky
equation, which describes saturation of thermo-di�usion instability in �ames with negligi-
ble curvature. Solutions of Kuramoto-Sivashinsky equation include Bunsen �ames, which
appear therefore to be stable, as expected.

18.2 Onset of humming

18.2.1 A threshold

We have dealt with humming-free systems so far. When it comes to the onset of humming,
a selection rule (namely, minimisation of time-averaged amount of entropy produced per
unit time by combustion) decides if the system remains in steady state or starts oscillat-
ing. With no further computation, it turns out that this very fact leads to the following
conclusions:

• the onset of humming occurs when the heat release overcomes a threshold, ≈ tens
of MW in GT combustors;

• the humming amplitude goes from zero below threshold to a non-zero value above
threshold, with a discontinuity at the threshold. This agrees with the results of [51];

• raising sL at given upstream �ow raises the threshold, i.e. delays the onset of
humming (in agreement with our previous discussion).

18.2.2 A quality factor

When discussing the impact of �ame velocity on Myers' corollary, it turns out that a
necessary condition exists for the absence of humming - the inequality (14.6). The latter
implies that a suitably de�ned, dimensionless quality factor is lower than 1, where the
quality factor involves both the total curvature of the �ame, the �ame velocity and the
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period of humming. Basically, this quality factor plays the role of a Strouhal number, the
typical length in the latter being the reciprocal of the �ame curvature.

It turns out that the quality factor increases (i.e., humming onset becomes easier)
with increasing temperature of the unburnt gases (which corresponds to a growth of
�ame velocity while not leaving all other things, including the heat release, unchanged),
with decreasing pressure and with decreasing sL(again, all other things being unchanged).

18.3 Stabilisation of humming

Once humming has started, Myers' corollary and Rayleigh's criterion suggest possible
humming stabiisation by acting either on the stabilising term or on the detsabilising term.
In the former (passive approach) case, the exchange of acoustic energy with the external
world is modi�ed, either by drilling suitable damping holes or by applying additional
devicee to the combustor chamber like Helmholtz' resonators; as for their dimensions,
however e�ective solutions of this kind do not �t always the lay-out of existing combus-
tors. In the latter (active approach) case, we may either try to lower D by changing
the relative phase of the release and pressure (or temperature) or to raise sL at given
upstream �ow. In contrast with the passive approach, the active approach may require
utilisation of an external power supply. Acting on phases relies usually on mechanical
modulation of fuel injection. Under ideal conditions, modulation is performed in order to
have the corresponding system variable �uctuate precisely in counter-phase with the �uc-
tuations constituting the combustion instability, thus damping them. In turn, however,
this requires a feedback control, and this feedback control is challenging in GT because
the sensors and actuators have to withstand very harsh environments for very long time
(years of operation). Acting on sL is precisely what is routinely done by raising the fuel
content, but at the expense of raising pollution.

(An even simpler way, of course, is just to strenghten the walls of the combustor with
suitably applied mechanical supports. But this obvious solution requires the non-trivial
knowledge of where the antinodes, i.e. the pressure peaks, of the mode which is respon-
sible for humming are located, a far-from-trivial task in GT as many di�erent modes can
be unpredictably excited. Moreover, the overall dimension itself of such supports may
be a relevant issue for the lay-out of GT combustors. As a matter of principle, it is also
possible to damp sound with ba�es inside the combustor, but again at the expense of
heavy modi�cations of the lay-out).

Now, experiments [148] [149] [150] [151] [152] [153] unambiguously show that bombard-
ment of the �ame with electromagnetic waves with frequency in the GHz range -referred
to as RF here- raises sL while leaving the upstream �ow una�ected. Admittedly, no one
has yet tried to stabilise humming with the help of RF. However, we are right to believe
that such stabilisation is possible and is also a promising alternative.

Physically, the �ame is a weakly ionised plasma, where a tiny fraction of free electrons
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is always present. As far as the frequency νRF of an applied electric �eld is smaller than
the typical collision frequency ν of electrons with neutrals (≈ tens of GHz in GT �ames),
i.e. if an electron undergoes at least one collision while it oscillates under the e�ect of
the applied electric �eld, and the energy of the electron accelerated by the electric �eld
can be transmitted to the other particles in the �ame. This is a far-reaching fact, and its
consequences include Joule heating of the �ame, production of further (secondary) free
electrons which can carry electric current, growth of the electrical conductivity σ of the
�ame, new chemical reactions etc.

As far as νRF < ν, intuitively, things should not di�er too much from the νRF = 0
(DC ) case. Experiments [142] show that DC �elds broaden the �ammability limit and re-
duce CO emissions. As for the GHz range, we may refer to nanosecond repetitively pulsed
plasma discharges (NRPP). NRPP stabilise a lean premixed propane-air �ame at atmo-
spheric pressure under lean conditions where it would not exist without plasma [101]; a
similar result holds for laminar, premixed, lean methane-air �ame [102]. Moreover, when
humming occurs in a swirl-stabilized combustor at atmospheric pressure fueled with nat-
ural gas at an equivalence ratio of 0.66 and 43 kW heat release, suitably tuned NRPP
with 315 W time-averaged electric power consumption induce a ten-fold decrease of pres-
sure oscillation amplitude [103]. The fact that both NRPP and RF act with the help to
the same physical quantity (an applied electromagnetic �eld) and in the same frequency
range, together with the observed stabilising properties of NRPP, suggest that RF too
may stabilise. Perhaps, the most tantalizing clue about the relevance of RF to humming
is the fact that, quite unexpectedly, pulsed RF has shown the ability to generate a strong,
audible sound generated from the �ame region [152]. The sound follows the frequency
associated with the repetition rate of the RF source and increases in intensity with power
level of the incident radiation. Reasonably, if RF generates sound at the �ame, it may
also control it. (In contrast, if νRF > ν then electrons oscillations are basically collision-
less, and the �ame remains una�ected. This is why nobody expects e.g. visible light to
stabilise humming). Indeed, it is also likely that RF is more e�cient than NRPP when
it comes to stabilise humming.

First of all, as far as RF power is much less than the heat release due to combustion, the
energy balance of the �ame is a�ected only weakly. All the same, even small modi�cations
of �ame velocity may have a signi�cant impact on humming, as the relative amplitude
of humming-related perturbations of pressure in GT is often small with respect to the
unperturbed pressure. Moreover, it turns out that the absorption of RF power depends
on σ. The latter quantity is zero outside the �ame, and undergoes an extremely large
growth, by many orders of magnitude, as the RF starts being absorbed within the �ame
and starts therefore producing more and more secondary electrons, in a positive feedback.
This result recalls the positive feedback occurring in a lighted match inside a microwave
oven: the larger the absorbed power by the match, the higher the heating of the latter,
the larger its electrical conductivity, the larger the absorbed power in the match, and so
on. This feedback raises the �ame capability in absorbing RF, i.e. reduces the required
power supply to the RF source (the antenna) for given RF power absorbed at the �ame,
then facilitating stabilisation. Moreover, and in contrast with what happens with DC and
NRPP, RF power crosses the space between the antenna and the �ame without being
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absorbed as σ = 0 outside the �ame, and RF absorption occurs in the �ame only no
matter how the �ame motion is like (it will be always extemely slower than RF photons).
Furthermore, suitably pulsed RF power - with pulses no longer than 0.1 ms - prevents
excessive cooling due to convection, which would otherwise impede RF absorption inside
the �ame. Finally, and again in contrast with DC and NRPP, the antenna for a GHz RF
wave has a linear size ≈ 10 cm; as such, it may be located behind one of the ceramic tiles
of a GT wall, which are transparent to RF photons but protect from heat. Unlike DC
and NRPP, therefore, RF requires no electrodes near the �ame.

We have investigated the e�ect of RF on humming with the help of Myers' criterion.
The derivation of Myers' corollary from �rst principles depends on no detailed model of
�ame heating, so that RF does not weaken its validity. The investigation is made of many
steps.

When assessing the feasibility of RF-assisted humming control, σ plays a key role.
The chemical species involved in the physical processes underlying σ violate LTE, and
computation of σ requires therefore dedicated kinetic treatment. Computations have
been performed by Prof. G. Colonna, A. Laricchiuta, L. D. Pietanza and A. D'Angola
of Consiglio Nazionale delle Ricerche 1 in the framework of a collaboration with Ansaldo
Energia, starting from data relevant to real GT combustors.

Once σ is known, a simpli�ed description of RF optics (in slab-like geometry) links the
amount of RF power which is absorbed at the �ame and the corresponding power supply
to the antenna. This description is linear, and linearity puts an upper threshold on the
maximum amplitude of RF electric �eld. In particular, no electric arc should be triggered
(weak �eld approximation). We neglect also the impact of RF absorption on turbulence
and -all the way around- the impact of turbulence on RF absorption. The former as-
sumption requires that the absorption of RF in the �ame is faster than the transport of
heat across the �ame,m and that the characteristic ramp-up time of σ is shorter than the
fastest time-scale of turbulence, i.e. the reciprocal of the stretch of the turbulent eddies
with linear size equal to Kolmogorov length. The latter assumption requires that both
RF energy density and RF absorbed power are no larger than the energy density and the
dissipated power density in turbulent eddies. Indeed, the RF electric �elds corresponding
to the values RF absorbed power computed below seem to satisfy all these requirements,
so that our discussion is self-consistent at least.

In order to compute the amount of RF power absorbed at the �ame which is required
for stabilisation of humming with given amplitude, we compare Myers' corollary with and
without RF and require that the new term due to RF compensates the term due to �nite
amplitude of pressure oscillations. Given the latter, equations (15.20)-(15.21) provide a
conservative estimate for the required power supply at the antenna. Fig. 15.33 displays
the results for three GT combustors. For AE94, e.g., which works at 17.7 bar with 54
MW heat release, we predict a 105 kW power supply to a 3.7 GHz RF antenna to stabilise
100 mbar humming. RF-assisted stabilisation of humming has been patented.

1The full address is CNR-IMIP, via Amendola 122D, Bari, Italy
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18.4 Future work

Hopefully, the present investigation on multifaceted Rayleigh's criterion, its generalisa-
tion -Myers' corollary- and their connection with thermodynamics conveys the richness
of information in the older literature that still can have signi�cant value and implications
for present day research. It also helps to remind us that our depth of understanding is
much less than we would generally like to conceive.

Many items need further investigation. A far-from-complete list includes:

• The impact of the attachment point on commutation. We have discussed commu-
tation and anticommutation for just one location of the attachment point of the
�ame, for the sake of mathematical simplicity. However, the attachment point may
change, and di�erent con�gurations become possible.

• The role of the distribution of sL on commutation. For the sake of mathematical
simplicity, we have neglected the gradient of �ame velocity along the �ame: �rstly,
we assumed it to be uniform, then we have focussed our attention on the �ame area
near the attachment point in order to take into account the relevant role of the
auxiliary pilot �ame. Of course, more re�ned treatment is required.

• Computation of the quality factor in GT combustors with and without humming.
If, as we expect, it is larger in humming-a�ected combustors, then too large values
of this quality factor may alert designers since the early phases of the design of a
new GT combustor.

• It is worthwhile to ask if this quality factor may act on humming-relevant exper-
iments just like Reynolds' number acts on turbulence-related experiments, i.e. as
a dimensionless similarity factor which allows both comparison between di�erent
experiments and search for possible scaling laws.

• Improvement in RF optics. Here we made use of a slab-like geometry, which is useful
just for order-of-magnitude estimates. Our treatment of power losses in the com-
bustor walls was also oversimpli�ed. Detailed description of RF optics is required
for more realistic assessment of RF feasibility.

• Detailed description of RF source lay-out and power supply is required in order to
assess feasibility of experiments on RF-assisted stabilisation of humming.
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Energy balance of a perturbation in the

zero Mach case

Once terms ≈ O(M), O(ε3) are neglected, straightforward algebra gives
ρ

2

d|v|2

dt
≈ ρ

2

∂|v|2

∂t
and ∇ · (pv) = ∇ · (p0v1) +∇ · (p1v1). Moreover, equation (6.10) reduces to

∂p1

∂t
= (γ − 1)Q1 − γp0∇ · v1 (1)

so that

1

2ρc2
s

dp2

dt
≈ 1

2ρ0c2
s0

∂p2
1

∂t
+
rQ1

cp
−∇ · (p0v1)

We are left with the discussion of the term ∝ ds2

dt
on the L.H.S. of equation (6.12). To

this purpose, we recall that s = s0 + s1 and
∂s0

∂t
= 0, so that

ds0

dt
= v1 · ∇s0

and

ds1

dt
=
ds

dt
− ds0

dt
= r(Q/p)1 − v1 · ∇s0

In agreement with the M � 1 assumption, we neglect the contribution of
p1

p0

to equation

(6.6). In fact, this contribution scales as M because p0 ≈ c2
s0 and the linearised version

of equation (6.2) (see (6.20) below) makes p1 to be linear in v1. As a consequence, we write
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s1 =
cpT1

T0

and

ds1

dt
= r

Q1

p0

− v1 · ∇s0

It follows that

sQ1

cp
=
s0Q1

cp
+
s1Q1

cp
=
s0Q1

cp
+
T1Q1

T0

and that

ds

dt
=
rQ1

p0

because
ds

dt
≈ O(ε). Finally, we invoke the identity

ds2

dt
=
ds2

0

dt
+
ds2

1

dt
+ 2

ds0s1

dt

and obtain:

p

2rcp

ds2

dt
=

p0

2rcp

∂s2

∂t
+
s0Q1

cp
+

p0

rcp
s1v1 · ∇s0

These relationships make equation (6.12) to reduce to (6.14).



Auxiliary relationships concerning

Rayleigh's criterion

We recall that da =
da

dt
dt for the generic quantity a. Since 〈a1〉 = 0, the only non-zero

contributions to 〈d
(∫

dx
P

T

)
〉 will be of second-order. Let us compute such contributions.

Reynolds' transport theorem (for u = v) and Gauss' theorem of divergence allow us
to write:

0 ≤ 〈
(∫

dx
P

T

)
1

〉 = 〈dt d
dt

∫
dx
P

T
〉 = 〈dt

∫
dx

∂

∂t

(
P

T

)
〉+ 〈dt

∫
da · vP

T
〉

Substitution of both the de�nition of P = ρ
du

dt
+ pρ

d

dt

(
1

ρ

)
and of the assumption

(6.13) leads to:

−〈
∫
dxdt

∂

∂t

(
P

T

)
〉 ≤ 〈

∫
da · v1

T

[
ρdu+ pρd

(
1

ρ

)]
〉 (2)

Further progress requires �nding a lower (upper) bound for the L.H.S. (R.H.S.) of (2).
To this purpose, we observe that stability of the unperturbed state requires that the per-
turbation amplitude never diverges, i.e., it remains upper-bounded everywhere across the
system at all times. Then, a (x, t) ≤ AM (t) everywhere for the generic quantity a , where
AM (t) ≤ Amax for arbitrary t. Analogous arguments hold for the lower bound Amin (
a (x, t) ≥ Am (t) ≥ Amin ). We are e.g. free to take Amin = −Amax. Accordingly, stability
of the unperturbed state imply that for a generic a (x, t) two positive constant quantities
Amax, Amin and two functions of time AM (t) and Am (t) exist such that the following
inequality holds:

Amax ≥ AM (t) ≥ a (x, t) ≥ Am (t) ≥ Amin
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Finally, we invoke the de�nition of
d

dt
and write dt

∂

∂t

(
P

T

)
= dt

d

dt

(
P

T

)
|v=0 where

dt
d

dt

(
P

T

)
|v=0 = d

(
P

T

)
|v=0 =

dP |v=0

T
+ Pd

(
1

T

)
|v=0 + (dP ) |v=0d

(
1

T

)
|v=0

The relationships listed above allow us to �nd a lower bound for the L.H.S. of (2) with
the help of the following chain of inequalities:

− 〈
∫
dxdt

∂

∂t

(
P

T

)
〉 ≥ − 1

Tmin

∫
dx〈(dP ) |v=0〉 − Pmax

∫
dx〈d

(
1

T

)
v=0

〉+

−
∫
dx〈(dP ) |v=0d

(
1

T

)
v=0

〉 = −
∫
dx〈(dP ) |v=0d

(
1

T

)
v=0

〉 =

=

∫
dx〈(P )1(v=0)

(
−1

T

)
1

〉 =

∫
dx〈
(
ρT

ds

dt
− ρTv · ∇s

)
1

T1

T 2
0

〉 =

=

∫
dx〈(Ph −∇ · q− ρTv · ∇s)1

T1

T 2
0

〉 =

∫
dx〈(Ph1 −∇ · q1)T1

T 2
0

− ρ0T1v1 · ∇s0

T0

〉 =

=

∫
dx〈(Ph1 −∇ · q1)T1

T 2
0

− p0s1v1 · ∇s0

rcpT0

〉 ≥ 1

T0 max

∫
dx〈D〉+

∫
dx〈(∇ · q1)

(
1

T

)
1

〉

(3)

Here we have invoked the vanishing of the time-average of �rst-order perturbations, we
have invoked the de�nition of P , we have invoked (6.4), (6.6), (6.17) and (6.13) and we

have neglected the contribution of
p1

p0

to (6.6) in agreement with the M � 1 assumption,

so that s1 = cp
T1

T0

.

Now, let us look for an upper bound on the R.H.S. of (2). In order to select the
perturbation of interest, we take advantage of the smallness of P1. According to P0 = 0

and to P = ρT
ds

dt
P1 ≈ 0 is satis�ed whenever ds ≈ 0. Since the perturbation is almost

adiabatic and we are dealing with a mixture of perfect gases, we make a small mass error

if we assume that relationships
p

ργ
= c5 hold together with (6.4) with c5 constant quantity,

and that (6.5) is sligthly corrected as follows:

ρu =
(1 + c6) p

γ − 1



319

where |c6| << 1 expresses the deviation from purely adiabatic behaviour. To the
author's knowledge, the impact of this deviation on the evolution of our soundlike per-
turbation in the zero Mach limit has been explicitly stressed for the �rst time in [33],
where some preliminary remarks of [31] have been developed. Basically, c6 represents
the di�erence bewteen the values of E as computed according to equations (6.15) and

(6.18). It follows that d

(
1

T

)
= −Gdp and

ρ

T
du +

pρ

T
d

(
1

ρ

)
= Fdp where F ≡ c6Gp0

γ − 1

and G ≡ r

c
1
γ

5

(
1− 1

γ

)
p

1− 2γ

γ
0 > 0. We have seen that near a stable state a quantity

Fmax exists such that F ≤ Fmax, then substitution in the R.H.S. of (2) with the notation
p1 = dp together with equation (6.16) give

〈
∫
da · v1

T

[
ρdu+ pρd

(
1

ρ

)]
〉 ≤ Fmax

∫
da · 〈W〉 (4)

Together, (2), (3) and (4) give (12.5).

Finally, we stress the point that the fact that |c6| << 1 allows us to choose Fmax in
such a way that (12.5) reduces to (6.34) and (6.35) if the operator ≤ reduces to < and to
= respectively.
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On the impact of �ame velocity on

humming

Here we start from equation (6.36). We are going to refer to a particular expression for
the Rayleigh's index D nowhere in the following; depending on the selected expressions
for D and for W, we may refer either to Rayleigh's criterion or to Myers' corollary.

The R.H.S. of (6.36) is non-negative as far as we supply the system with no net acous-
tic power (i.e., we ring no external bell, siren and the like. Now, both equation (6.36) and
the inequality

∫
Vf
dxD ≤ |

∫
Vf
dxD| ≤

∫
Vf
dx|D| lead to the following inequality:

〈
∫
Vf

dx|D|〉 ≥ 〈
∫
Vf

dxD〉 =

∫
Ab

da · 〈W〉 ≥ 0

This inequality ensures that if we are able to reduce the positive-de�nite quantity
〈
∫
Vf
dx|D|〉 then we are able to reduce the destabilising L.H.S. of equation (6.36), hence

to stabilise humming. We are going to show that this is precisely the e�ect of raising the
�ame velocity (Rijke's rapidity of the air current [24]) at given upstream �ow v.

To this purpose, we limit ourselves to thin �ames, which are described as a 2-dimensional
�ame surface G (x, t) = 0 in the 3-dimensional space. Since the surface is 2-dimensional
we are free to denote each point on it with a couple of coordinates (x1, x2). Since the
Rayleigh index is peaked at the �ame (just like the combustion power density and the
entropy jump) we may write |D| = Dfδ (G) with δ denoting Dirac's delta and Df > 0.
The relationship

∫
Vf

dx|D| =
∫
Af

|J |−1dx1dx2Df

follows therefore from (6.22), where J is the Jacobian of the coordinate transformation
(x, y, z) → (x1, x2, G) and |J |−1dx1dx2 is the area element. In turn, the surface integral∫
Af
|J |−1dx1dx2Df is equal to limN→∞

∑q=N
q=1 Df∆Aq by de�nition, where ∆Aq > 0 is the

�ame area element centered at the point (x1, x2) = (x1q, x2q) on the �ame. (Here and in
the following we drop the dependence of each term on x1q, x2q and t for simplicity). In
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summary, we write:

∫
Vf

dx|D| = lim
N→∞

q=N∑
q=1

Df∆Aq (5)

For further analysis, we focus our attention on laminar �ames for the moment. The
�ame velocity is sL. Turbulent �ames will be dealt with in the following. The �ame
area oscillates when humming occurs, and the same obviously occurs to each �ame area
element ∆Aq. The relevant equation of motion 2 reads [4]:

κst ≡
1

∆Aq

d∆Aq
dt

=
d ln ∆Aq

dt
= (δij − ninj)

∂vi
∂xj

+ sd
∂ni
∂xi

(6)

where i, j = 1, 2, 3, summation on repeated indices is assumed, both the stretch κst and
the unit surface vector n perpendicular to the �ame and pointing towards the unburnt
gases depend on both on x1q, x2q and t, and we denote the Kronecker's delta with δij.
Following Chapter 5 of [4], we de�ne the displacement speed sd in such a way that v+sdn
is the velocity of the point x1q, x2q on the �ame surface in the laboratory system of refer-
ence; it is also possible to show that

dsd
dsL

> 0 (7)

and depends weakly on κst in most cases where no �ame quenching occurs under the
assumptions of single-step chemistry and high activation energy - see Sec. 2.7.3 of [4].

(Usually
dsd
dsL
≈ 1). Finally, the relationship

∇ · n ≡ ∂ni
∂xi

= −Ktot (8)

links the �ame shape and the total curvature Ktot of the �ame, i.e. the sum of the recip-
rocals of the principal curvature radii of the �ame. Equations (6) and (8) give:

∆Aq = ∆Aq (t = 0) · exp

[∫ t

0

dt′ (δij − ninj)
∂vi
∂xj

]
· exp

[
−
∫ t

0

dt′sdKtot

]
(9)

2In the formalism of Sec. 2.6 of [4] the quantities ∆Aq and κst are referred to as A and κ respectively.
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Equations (5) and (9) give:

〈
∫
Vf

dx|D|〉 = 〈 lim
N→∞

q=N∑
q=1

Df∆Aq (t = 0) exp

[∫ t

0

dt′ (δij − ninj)
∂vi
∂xj

]
exp

[
−
∫ t

0

dt′sdKtot

]
〉

(10)

after time-averaging all quantities. In turn, derivation of both sides of (10) on sL at �xed
v implies:

(
∂

∂sL

)
v=const.

〈
∫
Vf

dx|D|〉 = 〈 lim
N→∞

q=N∑
q=1

Df∆Aq

[
−
∫ t

0

dt′Ktot
dsd
dsL

]
〉 (11)

All terms on the R.H.S. of (11) are positive de�nite but the last one in square brackets.

According to (5), (7), (9) and (11),

(
∂

∂sL

)
v=const.

〈
∫
Vf
dx|D|〉 < 0 -i.e., a small increase of

sL at �xed v is stabilising- if and only if 〈〈
∫ t

0
dt′Ktot

dsd
dsL
〉f〉 > 0, where we have de�ned the

average 〈a〉f ≡

∫
Af
|J |−1dx1dx2Dfa∫

Af
|J |−1dx1dx2Df

of the generic quantity a taken on the �ame surface

and weighted by the Rayleigh index. A simpler, su�cient condition is that the �ame is

globally concave (〈Ktot〉f > 0) at all times, where we have taken into account that
dsd
dsL
≈ 1.

So far, we have discussed laminar �ames. When it comes to turbulent �ames, a vast
range of length scales and time scales (down to the Kolmogorov length scale ηk) is rele-
vant. Locally and instantaneously, the combustion process may undergo quenching and
re-ignition again ad again and the very concept of �ame surface may be meaningful in
a statistical sense only. Depending on the particular case of interest, the sign of both
the �ame stretch and the total curvature may change in space and time. In particular,
in the laminar case the �ame is like a smooth surface in the neighbourhood of the point
(x1q, x2q) within the �ame surface element ∆Aq, the �ame thickness being very small.

In contrast, turbulence leads to many convolutions of the �ame front near (x1q, x2q);
correspondingly, in the neighbourhood of this point the available �ame surface area per
unit volume may be much larger than ∆Aq. Locally, it is possible to introduce in the
neighbourhood of (x1q, x2q) the average 〈a〉s of the generic quantity a along the �ame
surface. As for the rigorous de�nition of this turbulent �ame surface average -which, in
spite of its misleading name, is still a function of (x1q, x2q)- see both equation (5.79) and
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note (xvi) in Sec. 5.3.6 of [4]. Physically, the main advantage of this approach is to sep-
arate turbulence-combustion interactions (ruled by the available �ame surface area per
unit volume) from the chemistry and the thermodynamics of combustion, incorporated
in the average �ame speed.

Since we are interested in the impact of the �ame speed on humming, the obvious
question if it is possible to generalise our results (9), (10) and (11) to the turbulent �ame
by replacing the relevant quantities κst, etc. with their turbulent �ame surface averages
〈κst〉s and the like.

The answer is likely to be a�rmative, provided e.g. that we are able to show that
the period τ of humming oscillations which we are concerned with (≈ 10−2s) is much
longer than the characteristic time-scales of turbulence. There is a continuous range of
such time-scales. In the case of homogeneous and isotropic turbulence, equations (4.5),

(4.7), (4.9) and (4.11) of [4] ensure that the lower bound τK =

√
ν

εturb
on this range

is the reciprocal of the stretch of the eddies with linear size ηK ; the upper bound is

τK ·
√
ReT where ν, εturb =

(u′)4

ReT · ν
, ReT =

u′lT
ν

> 1 and u′ are the kinematic viscos-

ity, the mechanical power dissipated per unit mass in turbulent eddies, the turbulent
Reynolds number and the integral length, i.e. the typical amplitude of turbulent velocity

�uctuations on the length-scale lT = Re

3

4
T ηK respectively. Physically, νReT = u′lT acts

as a turbulent di�usion coe�cient, larger than the molecolar di�usion coe�cient ∝ ν.

For typical values ν = 10−5m
2

s
, ReT = 103 and u′ ≈ |v0| ≈ some

m

s
we have indeed

τ ≈ 10−2s > τK ·
√
ReT ≈ 10−3s > τK ≈ 3 · 10−5s.

Admittedly, this is just an order-of-estimate analysis. Firstly, turbulence is far from
homogeneous e.g. near the walls. Secondly, ReT lies in the range 102 < ReT < 2 · 103

in many combustors -see Sec. 4.2 of [4]. Finally, the very de�nition of u′ is far from
unambiguous near a premixed turbulent �ame - see Secs. 4.2 and 5.2.1 of [4]. However,
the requirement τ > τK ·

√
ReT is likely to be too restrictive. In fact, our discussion on

the thermodynamical meaning of the impact of sL (and of the corresponding turbulent
quantity sT , which is an increasing function of sL) on humming makes it unlikely that
turbulence a�ects such impact, as the time-scale of the inter-particle collisions (≈ 10−10s)
which ensure the validity of LTE is much shorter than τK . We are going to refer to this
separation of time-scale in the following. Of course, when investigating the impact of the
perturbation of Rijke's rapidity of the air current we have to apply a perturbation to the
turbulent �ame velocity sT here.

In particular, equations (5.31) and (5.78) of [4] provides us implicitly with a de�nition
of 〈κst〉s which is just the straightforward generalisation of (6):
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〈κst〉s =
d ln 〈∆Aq〉s

dt
=

〈
(δij − ninj)

∂vi
∂xj

〉
s

+

〈
sd
∂ni
∂xi

〉
s

(12)

where the separation of time-scales quoted above allows us to exchange the quanti-

ties
da

dt
and 〈a〉s for the generic quantity a. Here sd is still an increasing function of

sL; in the following, we take advantage of the fact that sT is a monotonically increas-
ing -hence invertible- function of sL, so that sd is an increasing function of sT , with
dsd
dsT

=
dsd
dsL

dsL
dsT

> 0. We may repeat the proof of (11) step-by-step and write:

(
∂

∂sT

)
v=const.

〈
∫
Vf

dx|D|〉 = 〈 lim
N→∞

q=N∑
q=1

Df∆Aq

[
−
∫ t

0

dt′
〈
Ktot

dsd
dsL

dsL
dsT

〉
s

]
〉 (13)

Finally, we show that (13) leads to an appoximate necessary condition for the absence
of humming, namely the inequality (14.6). To start with, we compute the perturbation
of 〈
∫
Vf
dx|D|〉 in a combustor a�ected by humming with period τ due to a tiny increase

δsT > 0 of sT . Such small perturbations leave τ una�ected and -if small enough- cannot
suppress humming. For the sake of simplicity, we choose a δsT localised at a given point
(x1q, x2q) on the �ame surface. According to (13), Df gets multiplied by a factor

1−
〈∫ t

0

dt′
〈
Ktot

dsd
dsL

dsL
dsT

δsT

〉
s

〉
f

> 0

This factor is positive whenever humming occurs, as Df > 0 both before and after the
application of δsT > 0. Our result holds to �rst-order, and is therefore valid provided
that δsT is not too large and is not applied for too long time. Finally, we expect to grasp
all essential physics in a combustor a�ected by humming with period τ by taking δsT 6= 0
in the time interval 0 ≤ t ≤ τ only. A longer time interval would lead to exceedingly large

values of

〈∫ t
0
dt′
〈
Ktot

dsd
dsL

dsL
dsT

δsT

〉
s

〉
f

; a shorter one would prevent us from taking into

account the relevant physics. Accordingly, we write

0 < 1−
〈∫ t

0

dt′
〈
Ktot

dsd
dsL

dsL
dsT

δsT

〉
s

〉
f

≈ 1− τ
〈〈

Ktot
dsd
dsL

dsL
dsT

δsT

〉
s

〉
f

whenever humming occurs. Approximately, therefore, a su�cient condition for the

occurrence of humming is 1 − τ

〈〈
Ktot

dsd
dsL

dsL
dsT

sT

〉
s

〉
f

> 0 as sT > δsT > 0, and the
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violation of this inequality, i.e. (14.6), is a necessary condition for the absence of humming.

In (14.6)

〈
Ktot

dsd
dsL

dsL
dsT

sT

〉
s

does not depend on time, so that no time-averaging occurs.



Auxiliary relationships concerning

stable �ames

First of all, we write down explicitly the remaining 9 Euler-Lagrange equations. To this
purpose, let us introduce an auxiliary vector �eld Θ (x) such that Ph = ∇ ·Θ. Then, the

Lagrange multiplier ν in L multiplies the divergence of the vector
γpv

γ − 1
+
ρv |v|2

2
−Θ.

Now, we take advantage of the well-known property of a variational problem like (13.8):
no Euler-Lagrange equation changes if we replace L with L′ = L+∇ · a with a arbitrary

vector. We choose a = −∇ ·

[
ν

(
γpv

γ − 1
+
ρv |v|2

2
−Θ

)]
so that the new Lagrangian

density L′ is:

L′ ≡ kYairYfuel
T

+ µ∇ · (ρv) + ζ (v · ∇Yair + AkYairYfuel) +

+ ϑ (v · ∇Yfuel +BkYairYfuel) + ξ · (ρv · ∇v+∇p) +

+

[
Θ− γpv

γ − 1
− ρv |v|2

2

]
· ∇ν + λ (kYairYfuel − P ∗)

With this form of the Lagrangian density, the Euler-Lagrange equation for ν is still eqau-
tion (13.6), while all other 15 Euler-Lagrange equations contain ν just in additive terms
∝ ∇ν. It is enough to set

ν = ν0 (14)

with ν0 = const. and all these terms vanish, so that ν appears elsewhere no more. Other
Euler-Lagrange equations are:

kYair
T

+ ζAkYair + ϑBkYair + λkYair −∇ · (ϑv) = 0 (15)
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kYfuel
T

+ ζAkYfuel + ϑBkYfuel + λkYfuel −∇ · (ζv) = 0 (16)

∇ · ξ = 0 (17)

ξ · (v · ∇)v− v · ∇µ = 0 (18)

YairYfuel

[
− k

T 2
+
dk

dT

(
1

T
+ ζA+ ϑB + λ

)]
= 0 (19)

ζ∇Yair + ϑ∇Yfuel + ρ [ξ ∧∇ ∧ v+ ξ (∇ · v)−∇ ∧ (ξ ∧ v)−∇µ] = 0 (20)

Together, equations (14), (15), (16), (17), (18), (19) and (20) are the looked-for 9 remain-
ing equations. Equation (14) is decoupled from the other equations, and will therefore
invoked no more in the following 3. Equation (19) is solved by λ = Λ−1− T−1− ζA− ϑB
where Λ ≡ −d (ln k) /d (1/T ). Physically, the �ow is incompressible (M � 1 ) everywhere
outside the �ame; combustion heating induces expansion on the �ame. Mathematically,
we write ζ = ζ0 where ζ0 is uniform across the system so that (16) reduces to:

∇ · v =
P ∗

ζ0ΛYair
(6= 0 at the �ame only) (21)

Now, let us look for the solution of (17) in the form

ξ = βcv−∇φ (22)

(βc constant scalar quantity, φ scalar �eld). Physically, ∇φ and ξ are ∝ the irrotational
and the rotational part of v respectively. Together, equation (21) and the condition of

3Further investigation requires utilisation of the following identities a ∧ (∇∧ b) = (∇b) ·a−a (∇ · b),
∇ (a · b) = a ∧ (∇∧ b) + b ∧ (∇∧ a) + (a · ∇) b + (b · ∇)a , ∇ ∧ (a ∧ b) = a (∇ · b) − b (∇ · a) +
(b · ∇)a − (a · ∇) b and ∇∧∇a = 0 for arbitrary vectors a and b and scalar a.
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negligible ∇‖a for the generic quantity a make φ to satisfy Poisson's equation of the elec-
trostatic potential created by an electric conductor charged with uniform charged density
∝ ζ−1

0 Λ−1Y −1
air P

∗. Equations (13.5), (18), (20), (22) and the smallness of pressure gradi-
ents in the subsonic limit [4] correspond therefore to:

∇φ = const. n (at the �ame surface) (23)

µ =
βc |v|2

2
(24)

2 (v · ∇) (∇φ) = +∇ (v · ∇φ)− ρ−1ζ0∇Yair − ρ−1ϑ∇Yfuel (25)

Now, equations (13.2), (13.3), (13.4), (13.9) and (15) ensure that ∇ρ ‖ ∇Yair ‖ ∇Yfuel ‖
∇ϑ ‖ n. It follows that the R.H.S. of (25) is curl-free. Moreover, both Tu and α = α (Tu)
are uniform behind the �ame for negligible ∇‖a. (Now, equation (15) is decoupled from
other equations, and will therefore invoked no more in the following). Then, it follows
from (23) and (25) that

∇∧ [(v · ∇)∇φ] = 0 (26)

The identity
∫
dx∇ ∧ b =

∫
da ∧ b holds for arbitrary b, where da = n da. Moreover, if

we perform a surface integration on the boundary surface of the �ame volume, then the
result is basically a sum of the contributions of the downstream and the upstream side,
because the �ame is thin. After volume integration on the �ame volume, equation (26)
gives therefore equation (13.10). In fact, we take b = (v · ∇)∇φ, invoke equation (23)
and obtain:

0 =

∫
da n ∧ (v · ∇)n =

∫
d

da n ∧ (vd · ∇)n+

∫
u

da n ∧ (vu · ∇)n =

= −
∫
u

da n ∧
(
v⊥|du · ∇

)
n = −α

∫
u

da (vu · n)n ∧ (n · ∇)n =

= α

∫
u

da (vu · n)n ∧ (n ∧∇ ∧ n) = −α
∫
u

da (vu · n) (∇∧ n)‖

(27)

In the proof of the last chain of relationships we have done three things:
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• we have denoted by
∫
u
da and

∫
d
da the surface integration on the upstream side and

the downstream side of the �ame respectively -see Fig. 1;

• we have invoked both the identity n · n = 1 and the fact that ∇‖α is negligible;

• we have taken advantage of the fact that

[∫
d

da +

∫
u

da

]
n ∧ (vd · ∇)n = 0

because the integrand is a pseudo-vector 4; thus, for a thin �ame the contribution of
any surface element da to the integral on the downstream side of the �ame has equal
absolute value and opposite sign of the corresponding contribution to the integral on
the upstream side because they can be obtained from each other through re�ection
across a median surface between the two sides, and pseudo-vectors change sign under
such re�ection.

4We recall that n · vu and n · vd have opposite sign, even if both vu and vd are directed downstream.
Accordingly, the direction of n is overturned when going from the downstream side to the upstream side.
However, n appears twice, so that this overturning has no e�ect. It is the ∧ which makes the integrand
to be a pseudo-vector, even if vd is a true vector.
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Figure 1: Nomenclature of quantities relative to a thin �ame. See text for details. The
unit vector n is displayed on one side only.



332 AUXILIARY RELATIONSHIPS CONCERNING STABLE FLAMES



Auxiliary relationships concerning

axisymmetric �ames

Here we refer to Fig. 13.8. First of all, we write down a simpli�ed version of equation
(13.19) for the upstream �ow which supports our �ame with non-negligible curvature.
Basically, the idea is that highly elongated �ames are supported by highly elongated up-
stream �ows. This idea is suggested by equation (13.21), which ensures that the angle
between the upstream velocity and the normal to the �ame is ≈ constant for negligible
∇‖sL.

We start with the non-linear term
1

2

d (F 2)

dψ
. Since our �ame is elongated along the

axis of symmetry of the combustor, we make a small error if we write Aψ = rz with area
di�erential d2x = rdz. As for the azimuthal �ow, this implies ϕ =

∫
Fdz, or, equivalently,

F =
dϕ

dz
.

It follows from the de�nition of h that F =
ϕ

h
; then, the non-linear term in (13.19)

becomes
1

2

d (F 2)

dψ
= F

dF

dψ
=

ϕ

h2

dϕ

dψ
=

2πϕq

h2
=

4π2κq (ψ − ψ0)

h2
=

(
Sw
h

)2

(2π) (ψ − ψ0)

where ϕ = 2π
∫ ψ
ψ0
qdψ = 2πκ (ψ − ψ0) and we have done the following things:

• we have de�ned the dimensionless quantities Sw ≡
√

2πκq (ψ0) , κ = κ (ψ) ≡
1

ψ − ψ0

∫ ψ
ψ0
qdψ ≈ κ (ψb);

• we have invoked the de�nition of q (ψ)

• and we have assumed q (ψ) ≈ q (ψb), i.e. q ≈ const. The latter approximation is
justi�ed in the text.

Note that Sw increases with increasing swirl number SN because of its dependence on q.

Now, equation (13.14) ensures that v depends explicitly only on the components of
the gradient of ψ. We can therefore take ψb = 0 with no loss of generality. Remarkably,
regardless of the actual value ψb of ψ at the boundary (which includes the symmetry axis
of the combustor at r = 0) the inequality ψ0 > ψ corresponds to a increasing ψ with

increasing r from r = 0 up to the location of ψ = ψ0. In this case vz = +
1

r

∂ψ

∂r
> 0 in
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this region, i.e the upstream �ow is actually impinging from behind on the �ame near the
symmetry axis of the combustor, which makes sense; we take therefore ψ0 > 0 for ψ = 0.
Finally, since the region near the boundary occupies the largest part of the upstream
region of the combustor, we make a small error if we approximate

1

2

d (F 2)

dψ
≈ −

(
Sw
h

)2

(2πψ0)

As for the other terms in equation (13.19), we recall that

vr = −1

r

∂ψ

∂z

and

vz = +
1

r

∂ψ

∂r

It follows that

∂2ψ

∂r2
=

∂

∂r

∂ψ

∂r
=

∂

∂r
(rvz) = vz + r

∂vz
∂r

As for the upstream �ow, we make a small error if we write r
∂vz
∂r
≈ vz, so that

∂2ψ

∂r2
≈ 2vz

Moreover, we have

∂2ψ

∂z2
=

∂

∂z
(−rvr) = −r∂vr

∂z

and
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−1

r

∂ψ

∂r
= −vz

The above relationships allow us to rewrite equation (13.19) as follows:

vz − r
∂vr
∂z

=

(
Sw
h

)2

(2πψ0) (28)

Further simpli�cation is possible. In fact, we may write β ≈ π

2
− η, f ′ = tan η and

1

tan β
≈ f ′ =

dz

dr
as G = const. at the �ame, and

dz

dr
≈ z

r
as the �ame is elongated 5,

so that tan β ≈ r

z
. But the upstream �ow has an axial length ≈ h, hence

vz
vr
≈ h

r
, or,

equivalently:

vr ≈
z

h
vz tan β (29)

In turn, this leads to:
∂vr
∂z
≈ vz

h
tan β as we may safely neglect

∂vz
∂z

in an elongated

upstream �ow where vz ≈ uniform. Substitution in (28) gives:

(
1− r

h
tan β

)
vz =

(
Sw
h

)2

(2πψ0) (30)

Similar arguments lead to a simpli�ed version of equation (13.22) for elongated �ames.

Again, we have
∂ψ

∂r
= rvz and

∂ψ

∂z
= −rvr with vr ≈

z

h
vz tan β, z = f at the �ame with

G = 0 and f ′ =
1

tan β
, hence f ′

∂ψ

∂z
= −rfvz

h
and equation (13.22) reduces to:

vz

(
1− f

h

)
= sL

√
1 +

1

(tan β)2 (31)

5Admittedly, this relationship requires f (r = 0) = 0; however, this requirement is going to leave our
�nal result una�ected, as the latter does not depend on r. Basically, our discussion applies to �ames
whose length in the axial direction is much longer than their typical radial distance from the symmetry
axis of the combustor. This �ts well our starting assumption of elongated �ames. Note that axisymmetry
allows us to assume f ′ > 0 here, hence tanβ > 0.



336 AUXILIARY RELATIONSHIPS CONCERNING AXISYMMETRIC FLAMES

Together, equations (30) and (31) give:

Γ (tan β)

(
1− f

h

)
1− r

h
tan β

=

√
1 + (tan β)2 (32)

But vr ≈
z

h
vz tan β and

vz
vr
≈ h

r
, hence

r

h
tan β ≈ z

h
tan2 β is of order ≈ O (tan2 β) << 1

as | tan β| << 1. In the same limit we write also
√

1 + (tan β)2 ≈ 1 +
(tan β)2

2
.

Moreover, z = f as G = 0 at the �ame, so that
f

h
=
z

h
at the numerator of the L.H.S.

of equation (32). We justify below the scaling
z

h
= tan β. Thus, (32) reduces to:

Γ (tan β) (1− tan β) = 1 +
(tan β)2

2

which leads to equation (13.26).

As for the justi�cation of the scaling
z

h
= tan β, equation (13.21) with n = (sin η,− cos η) ≈

(cos β,− sin β) and the scaling (29) make this scaling
z

h
= tan β to be equivalent to

sL ≈ vz sin β − vr cos β = vz (tan β)
1− h−1 · z · tan β√

1 + (tan β)2
= vz (tan β) +O

(
tan2 β

)

This agrees with the idea of an elongated upstream �ow. Indeed, the relationships
r

h
tan β ≈ z

h
(tan β)2 and

vz
vr
≈ h

r
make the scaling

z

h
= tan β to be equivalent to

vr
vz
≈ tan2 β (33)

i.e., the upstream �ow is more elongated than the �ame (whose inclination with respect

to the axis of symmetry of the combustor is
r

z
≈ 1

f ′
≈ tan β). This �ts physical intuition

as, no matter how large its elongation, the upstream �ow actually impinges upon the
upstream side of the �ame according to equation (13.21).



Some useful results of variational

calculus

Generally speaking [127], the search for an unconstrained extremum (minimum or maxi-
mum) of the quantity

∫
V

dxL

(
qi,

∂qi
∂xj

,
∂2qi
∂x2

j

, · · ·
)

where the Lagrangian density L depends on the i = 1, · · ·D Lagrangian coordinates
qi (xj) and where the Lagrangian coordinates depend on the j = 1, 2, 3 components of
x and satisfy a given set of boundary conditions on the boundary of a given domain V
requires that the Lagrangian coordinates solve the system of D Euler-Lagrange equations

∂L

∂qi
−

3∑
j=1

∂

∂xj

∂L

∂

(
∂qi
∂xj

) +
3∑
j=1

∂2

∂x2
j

∂L

∂

(
∂2qi
∂x2

j

) − · · · = 0

Remarkably, addition of the divergence of a vector �eld to the Lagrangian leaves the
Euler-Lagrange equations una�ected. In the particular case of a 1D problem (j = 1) this
means that two Lagrangians which di�er by a total derivative lead to the same Euler-
Lagrange equations, i.e. describe the same physics.

The search described above is an example of variational principle, and the related
branch of mathematics is referred to as variational calculus. Usually, the variational prin-
ciple discussed above is denoted with the notation δ

∫
V
dxL = 0.

If, furthermore, the extremum is constrained by a number r = 1, · · ·B of constraints

Rr

(
qi,

∂qi
∂xj

, · · ·
)

= 0 then the necessary condition for the existence of an extremum is

the same of the uncontrained case, provided that we replace L with L +
∑B

r=1 Υr (x)Rr

where we have introduced B additional degrees of freedom Υr (x), the so-called Lagrange
multipliers. Now, the resulting system of Euler-Lagrange equations is made of D + B
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equations and has to be solved in both the qi (x)'s and the Υr (x)'s.

In most problems, it is tacitly assumed that the variational principle refers to a min-
imum. It is usually overlooked that the Euler-Lagrange equations are just the necessary
condition for an extremum.

In the particular case L = L (r, q, q′) -where the prime denotes derivation on r and the
latter quantity is de�ned in a range rA ≤ r ≤ rB- a su�cient condition for

∫ rB

rA

drL = min

is that two conditions are simultaneously satis�ed (see pages 366, 367 and 371 of [127]):

• ∂2L

∂q′2
> 0 everywhere in the range rA ≤ r ≤ rB (Legendre's condition);

• A solution u = u (r) of the equation

[
∂2L

∂q2
−
(
∂2L

∂q∂q′

)′]
u−

(
u′
∂2L

∂q′2

)′
= 0

exists and vanishes nowhere in the range rA ≤ r ≤ rB (Jacobi's condition);

In particular, if
∂L

∂q
= 0 and Legendre's condition is satis�ed then Jacobi's condition is

satisifed too as the general expression for u is

u = cA

∫ r dr

∂2L

∂q′2

+ cB

with integration constant quantities cA and cB; we may always ensure u > 0 every-
where rA ≤ r ≤ rB with the help of a suitable choice of cA and cB.

Finally, if the operator < replaces > in Legendre' condition then we have the su�cient
condition for

∫ rB
rA
drL = max



Auxiliary relationships concerning

�ames with negligible curvature

First of all, let us start with the proof of (13.49). Relationships (13.15), (13.17) and
(13.21) lead to:

∫ rB

rA

dr

[
1

2

(
|f ′|2

)′ r

(1 + (f ′)2)3/2
+

4π2θ

sL
r
√

1 + f ′2
]

= max. (34)

where we have taken into account that da = 2πrdl, dl =
√

1 + f ′2dr, f ′f ′′ =
1

2
(|f ′|2)

′
and

(∇∧ n)‖ = −(0, Kf ′, 0). The quantity
4π2θ

sL
acts as Lagrange multiplier, and is uniform

all along the �ame. We may rewrite each term in (34) as follows:

1

2

(
|f ′|2

)′ r

(1 + (f ′)2)3/2
=

1√
1 +$

r

2

y′

(1 + y)3/2

4π2θ

sL
r
√

1 + f ′2 =
1√

1 +$
ιr
√

1 + y

where the de�nition of F makes the quantity y = y (r) ≡ (|f ′|2)−$
1 +$

to satisfy the iden-

tity (F ′)2 = y . Accordingly, after multiplication of both sides by the positive quantity√
1 +$ equation (34) gives:

∫ rB

rA

dr

[
r (|F ′|2)

′

2 (1 + |F ′|2)3/2
+ rι

√
1 + |F ′|2

]
= max. (35)

Further simpli�cation is possibile. In fact, |K| ≈ 0 implies |F ′| << 1, and Taylor
expansion in powers of |F ′| in (35) leads to:
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∫ rB

rA

lRdr = max. ; lR ≡
r (|F ′|2)

′

2

(
1− 3

2
|F ′|2

)
+ rι

(
1 +

1

2
|F ′|2

)
(36)

Finally, straightforward algebra shows that

lR = −LR
2

+

[
r|F ′|2

2
+
r2ι

2
− 3r|F ′|4

8

]′

so that (36) reduces to (13.49) as the total derivative provides no contribution to the
variational problem.

As for the proof of equation (13.50), we observe that the derivatives of F do not vanish
identically for �ames with negligible curvature. Then, the Euler-Lagrange equation of the
variational principle (13.49) leads to the following relationship

F ′′ =
F ′ι

1− rι− 9

2
(F ′)2

(37)

Equation (37) allows to us possible extrema of
∫ rB
rA
drLR; stable �ames correspond to

minima of this quantity. We invoke both Legendre and Jacobi's su�cient conditions for

a minimum from our Appendix on variational calculus. Since
∂LR
∂F

= 0, both conditions

are automatically satis�ed and
∫ rB
rA
drLR is actually a minimum provided that

∂2LR
∂F ′2

> 0

everywhere, i.e. 1 − rι > 9 (F ′)2

2
everywhere. In the (F ′)2 << 1 limit which holds for

�ames with negligible curvature we obtain

|rι| << 1 everywhere (38)

as a su�cient condition for the solution of (37) to describe a stable �ame with negligible
curvature. Not surprisingly, (38) is satis�ed whenever sL is not too small. Both (38)
and the (F ′)2 << 1 scaling allow Taylor expansion of the R.H.S. of (37) in powers of

rι+
9

2
(F ′)2. Neglecting higher-order terms, we obtain:

F ′′

ι
− F ′ − 9

2
(F ′)

2 − 81

4
(F ′)

5
= 0 (39)



341

It is possible to rewrite (39) in a more convenient form taking advantage from the fact
that -up to now- we have not yet chosen any particular value for the additional constant
F (rA) in the de�nition of F . Now, we limit ourselves to take a large, positive value for
F (rA), so that F > 0 everywhere and we are allowed to introduce the logarithm g ≡ lnF .
After lengthy algebraic manipulation, and neglecting terms ≈ O (F iii, F iv), equation (39)
reduces to:

[
g′′ + (g′)

2
] [

1− 81

2
F (g′)

3
ι

]
−ς
[
1 +

9

2
F 2 (g′)

2

]
+υgiv− 81

8
F ′F 3ι

[
g′′ + (g′)

2
]2

= 0 (40)

where we have introduced the quantities υ ≡ 27

8
ςF 4 and ς ≡ ιF ′

F
. For large enough values

of F (rA) we can both raise |F | and lower |F ′|, and we may therefore safely neglect both ς ′
and υ′. Since F is large, terms ≈ O (F 2) are much smaller than terms ≈ O (F 4). Finally,
F has the dimension of a length; then, the scaling (38) makes it reasonable to take also
|ιF | << 1 Thus, equation (40) leads to (13.50).
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RF-�ame electromagnetic coupling

Here we discuss the electromagnetic interaction of a RF wave with a �ame. For simplicity,
we limit ourselves to a slab geometry, and assume the RF wave to impinge normally onto
a �at, laminar �ame.

Let a RF wave at frequency νRF ≈ GHz propagate in the x direction perpendicular to
the �ame front and impinge on the �ame with electric �eld ERF exp (ikRF · x− iωRF t),
where ωRF ≡ 2πνRF , kRF = kRFx and kRF = <{kRF}+ i={kRF}. Its power density is

Pi =
ε0ωRFE

2
RF

4
(41)

i.e. Pi scales as the square of the maximum electric �eld. Noteworthy, the assumption
of perpendicular incidence in slab geometry is due to mathematical simplicity only. The
price to be paid is that we drop all details related to RF optics. Remarkably, optimisation
of the latter may raise Pi considerably, given the RF power at the antenna. Correspond-
ingly, we expective our discussion to be quite a conservative one.

We make use of the fact that the �ame is a weakly ionized plasma [143] with free elec-

tron density ne � the density nn of neutral particles (atoms and molecules; nn ≈
ρNAv

mair

for

lean combustion, where NAv = 6.023·1023 is the Avogadro number andmair = 28·10−3 Kg
plays the role of air molar mass). RF waves crossing the �ame are weakly absorbed. Elec-
trons are the lightest free charged particles in the �ame. As such, they are well accelerated
by RF �elds and absorb RF energy. The absorption rate depends on both ne and the elec-

trical conductivity σ =
nee

2

meν
through the electron plasma frequency ωp ≡ e

√
ne
ε0me

and the

electron collision frequency ν = nnσcollvave, where me = 9.11 · 10−31Kg, e = 1.6 · 10−19C,
ε0 = 8.85 · 10−12F · m−1, σcoll and vave are the electron mass, the elementary electric
charge, the electric permittivity of vacuum, the total electron-neutral cross section and
the averaged electron velocity respectively. No electric breakdown occurs -i.e., the weak
�eld approximation is correct- provided that ERF does not exceed a threshold value Ethr,

where
Ethr
nn
≈ 1.1 · 10−19V ·m2 [148]. We anticipate here the following inequalities:
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ν >

√
eERFkRF

me

(42)

ν > ωRF , ωp (43)

Self-consistency of (42) and (43) is discussed below. Inequality (42) implies that the
wave-plasma interaction is linear. Then, according to the result of Chapter 2 of Ref. [160]
the dispersion relation for electromagnetic waves reads:

(
kRF c

ωRF

)2

= 1−
ω2
p

ωRF (ωRF + iν)
(44)

Here c = 3 ·108m

s
is the speed of light in vacuum. Linearity implies also that propagation

leaves ωRF una�ected. Relationships (43) and (44) imply:

<{kRF} ≈
ωRF
c

(45)

={kRF} ≈
σ

2ε0c
(46)

According to (45), <{kRF} has the same value in the �ame and in the vacuum, i.e. the
�ame leaves the value of λRF ≡

2π

<{kRF}
=

2πc

ωRF
una�ected, and the phase speed (i.e., the

velocity of propagation of the RF wave front) across the �ame of the RF wave across the
�ame is c with excellent approximation, i.e. it is extremely larger than all other velocities
(cs, |v| discussed so far. It follows that, as far as RF photons are involved, the �ow in the
�ame and near the �ame appears frozen, no matter how complicated its detailed structure.

RF power absorption in the �ame induces �ame heating: the RF electric �eld accel-
erates the electrons, which collide with neutrals and other particles inside the �ame. The
absorbed RF power density

Pa = Pi − Pr − Pt
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adds therefore to the heat release density Ph, where Pr and Pt are the power density of
the re�ected and the transmitted RF wave respectively. For normal incidence, equation
(86.9) of Ref. [158] gives:

Pr = RfPi ; Rf =
(nflame − 1)2 + κ2

flame

(nflame + 1)2 + κ2
flame

;

nflame =
c<{kRF}
ωRF

; κflame =
c={kRF}
ωRF

;

Equation (45) gives nflame ≈ 1; relationships (43), (46) and the de�nitions of σ and ωp

give κflame << 1, hence Rf ≈
κ2
flame

4
<< 1. After re�ection, a power density (1−Rf )Pi

is available for transmission across the �ame. Generally speaking, the electric �eld of a
RF wave transmitted across a layer of thickness d0 and uniform electric conductivity σ
is damped by a factor exp (−d0={kRF}), hence Pt = exp (−2d0={kRF}) (1−Rf )Pi (the
factor 2 is due to the fact that the power is quadratic in the electric �eld) and:

[
Pa
Pi

]
=

[
1− exp

[
−σd0

ε0c

]]
[1−Rf ] ≈

[
σd0

ε0c

]
[1−Rf ] (47)

where we have assumed
σd0

ε0c
<< 1, i.e. Pa << Pi . (Here and in the following, bracketed

quantites are dimensionless). Inside a �ame, this assumption seems to be reasonable 6.

If we drop the assumption of uniform σ across d0, then we may generalise equation
(47) as follows. The electric �eld of a RF wave transmitted across a layer of thickness
∆x << d0 (where ∆x is so small that we may safely assume σ to be uniform across it)
is damped by a factor exp (−∆x · ={kRF}) where we may still invoke (46). Thus, the

electric �eld gets damped by a factor exp

[
− σd0

2ε0c

]
after crossing a layer of thickness d0,

where σ ≡ 1

d0

∫ d0
0
σdx is the spatial average of σ on d0 and 0 ≤ x ≤ d0. As far as we

neglect the lack of uniformity of the small re�ection coe�cient Rf << 1, equation (47) is
easily generalised to:

[
Pa
Pi

]
=

[
1− exp

[
−σd0

ε0c

]]
[1−Rf ] ≈

[
σd0

ε0c

]
[1−Rf ] (48)

6For instance, both inequalities Pa << Pi and Rf << 1 agree with the fact that �re-�ghters do make
use of radios when �ghting �re.
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In particular, RF absorption may occur where chemical reactions make free electrons
available. We identify therefore the RF absorption zone with the reaction zone inside the
�ame, so that in a laminar �ame we may write:

d0 ≈
δL
Ze

(49)

and we may safely assume that RF leaves Ze una�ected as far as Pa << Ph. Equations
(48) and (49) give:

[
Pa
Pi

]
=

[
1− exp

[
− σδL
ε0cZe

]]
[1−Rf ] ≈

[
σ · δL

ε0 · c · Ze

]
[1−Rf ] (50)

Generalisation of (49) and substitution in (48) in order to describe RF interaction
with turbulent �ames is possible, provided that we show that turbulence leaves the basic
mechanism of RF-�ame interaction una�ected. For this proof, we refer to the chapter on
the RF power required at the RF antenna, in the text. In the following, we limit our-
selves to invoke Damkoehler's discussion of the di�erences between turbulent and laminar
�ames, which leads to equation (5.4) of [4].

Damkoehler explains the well-established experimental result sT > sL (i.e. Ξ > 1) by
a simple phenomenological model assuming that each point of the �ame surface moves
locally at the laminar �ame velocity sL, so that equation (10.1) and its generalisations to
turbulent �ames still apply and the amount of fuel consumed by combustion per unit time
remains proportional to the �ame area in both laminar and turbulent �ames. In contrast
with the laminar case, however, turbulence induces wrinkling of the �ame surface, thus
raising the �ame area by a factor Ξ > 1 and the fuel consumption. Accordingly, if we
want to keep the �ame stationary (in the mean at least) then we have to raise the amount
of fuel supplied to the �ame per unit time by the same factor Ξ. This is equivalent to say
that sT = Ξ · sL > sL.

Exactly the same argument applies to RF. In fact, RF absorption occurs where com-
bustion occurs, i.e. in a thin reaction zone inside the �ame. Just as for combustion, the
larger the �ame area, the larger the overall volume occupied by this thin reaction zone (all

other things being equal), the larger the fraction

[
Pa
Pi

]
of RF power which gets actually

absorbed by the �ame. To put it in other words, the larger the turbulent wrinkling, the
larger both the �ame velocity and the total cross section of photon capture inside the

�ame, hence Pa ∝ �ame velocity. Accordingly, turbulence raises

[
Pa
Pi

]
by a factor Ξ, so

that we may replace (50) with:
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[
Pa
Pi

]
=

[
σ · δL · Ξ
ε0 · c · Ze

]
[1−Rf ] (51)

Finally, as a rule-of-thumb (50) and (51) lead to the scaling Pa ∝ σδL for laminar
and turbulent �ames respectively, all other things being equal 7. Since the gases outside
the �ame carry no electric current, σ = 0 outside the �ame, then Pa = 0 too outside the
�ame. Admittedly, σ and δL are an increasing and a decreasing function of T respectively.
However, δL changes with T much less than σ for all values of T of practical interest -to
convince oneself, it is enough to compare equation (8.30) of [2] with the results of the
Appendix on the electrical conductivity of the �ame. Accordingly, we may safely consider
Pa as an increasing function of σ and of T , and the scaling (15.1) follows.

Remarkably, the scaling (15.1) is the same scaling which rules electromagnetic brak-
ing: a change of electromagnetic �eld induces Faraday currents in a conductor, which get
dissipated though Ohmic heating -and, as a consequence, the �ame gets heated by the
external world. Just as in brakes, σ plays a crucial role: no braking occurs in insulators.
And -again in analogy with brakes- the low-frequency approximation (43) is of paramount
relevance: light waves (whose ωRF violates (43)- cross the �ame unabsorbed.

Typical orders of magnitude for our RF are ν ≈ 40 GHz, ωRF ≈ 1010 rad

s
, ωp ≈ 109 rad

s
,

Ethr ≈ 107V · m−1 and λRF ≈ 0.1 m. Accordingly, both (42) and (43) are satis�ed in
the weak �eld limit. Here we have assumed a �ame temperature ≈ 1500K, so that

vave =

√
kBT

me

≈ 105m

s
. Moreover we have taken σcoll = πR2

air with Rair typical radius

for a neutral in air; this is equivalent to neglect all collisions but elastic electron-neutral

collisions, which is reasonable because ne � nn =
p

kBT
and p ≈ 20 atm in a typical com-

bustor, so that nn ≈ 1026m−3, ρ = 4.5Kg ·m−3 and Ethr ≈ 107V ·m−1. Finally, we have
taken Rair ≈ 10−10m as a reasonable value for the order of magnitude of the radius of a
neutral. This is a quite conservative choice indeed: larger, more realistic values of Rair

lead to even larger values of ν.

In turn, according to equation (41) the weak �eld limit holds if Pi << 1012W ·m−3 in
the GHz range. This allows to provide a qualitative estimate on the maximum value of
the RF power at the antennaWant allowed by the weak �eld limit, i.e. by the requirement
that there is no arc.

To this purpose, we recall that the combustor embedds the �ame at all time, and that
an optimum combustor-cavity electromagnetic coupling reuires that the linear size Lant
of the antenna is Lant ≈ λRF . It happens that -as for the order-of-magnitude at least-
λRF ≈ 0.1m ≈ the typical linear distance between the �ame and the wall in front of it.
Thus, a very rough approximation allows us to describe the �ame-antenna system as a
resonant cavity of linear size λRF and volume VRF = λ3

RF , where an antenna supplies

7We show in the text that RF leaves turbulence-related quantities like Ξ una�ected.
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a power Want. This power must compensate the power losses Wloss, i.e. Want = Wloss.

In turn, Wloss, ωRF and the total RF energy in the resonant cavity URF =
VRF ε0E

2
RF

4

are linked by a dimensionless, geometry-dependent quality factor qRF ≡
ωRFURF
Wloss

of the

resonant cavity. Together, the above relationships, equation (45), equation (41) and the
de�nitions of ωRF and of λRF lead to:

Pi =
qRFν

3
RFWant

c3
(52)

Then, the weak �eld limit requires Want <
109

qRF
W. Since the combustor is by no

means an optimized electromagnetic resonant cavity, qRF achieves no particularly large
value (say, qRF ≤ 104) and the weak �eld limit is satis�ed for all values ofWant of practical
interest (i.e., not larger than ≈ 105 W). In this case, moreover, RF heating is always much

weaker than combustion heating. As for the electric �eld ≈
√

2Want

ε0ωRFVRF
at the antenna,

it is ≈ 3 · 104 V

m
for Want = 105 W, ωRF = 2 · πνRF , νRF = 3 GHz and VRF = λ3

RF with

λRF =
c

νRF
= 10 cm.

Finally, we may further identify Ph with the combustion power density Q for negligible
viscous heating, so that Wc =

∫
Vf
dxQ and Pa << Ph becomes Pa << Q. Then, a

consequence of (15.1) is that perturbations T1 of T correspond to �uctuations Pa1 of Pa
which are always in phase with T1. If, furthermore, Q1 too is in phase with T1, Pa1 is also
in phase with Q1. Generally speaking, if Pa << Q then the impact of RF on the relative
phases of T1 and �uctuations of other quantities -like e.g. pressure- is negligible.



The electrical conductivity

Credits and generalities We have anticipated that the chemical reactions ruling σ are
not well described by LTE. Such reactions are not dealt with by commercially available
software packages like e.g. CHEMKIN, and require therefore dedicated kinetic treatment.
The present Appendix describes this treatment.

Computations have been performed by Prof. G. Colonna, A. Laricchiuta, L. D.
Pietanza and A. D'Angola of Consiglio Nazionale delle Ricerche 8 in the framework of
a collaboration with Ansaldo Energia. Here we limit ourselves to discuss some relevant
physics. Results are to be found in the following Section.

Since free electrons are by far the lightest electrically charged particles in a �ame, they
rule its conduction of electric current, and σ depends crucially on them. An applied elec-
tric �eld may induce ionisation, thus making a small number of free electrons available.
Such electrons are accelerated by the same �eld and hit neutrals (atoms and molecules).
Collisions make further electrons available, and so on. The electrical conductivity is an
increasing function of the density of free electrons and a decresing function of their cross
section with neutrals.

The commonly used kinetic models in plasma-assisted combustion consider the am-
plitude of the applied �eld high enough so that the electron density is controlled by the
electron induced ionization [161]. Due to the short discharge time, the rate coe�cients of
processes induced by electron impact are calculated at �xed composition, in the so-called
cold plasma approximation, and only depend on the reduced electric �eld [102] 9.

When a short electric pulse with high power density is applied to the gas mixture, the
temperature increases initially of few degrees [162] [163] [164]. More important contribu-
tion comes from the radicals, such as atoms and ions, that in this kind of discharges are
produced in relatively large quantities, initiating the oxidation chain. Another important
aspect is the role of excited states, and in particular vibrationally excited molecules [165]
[166] [167] and electronically excited states of oxygen [168] [169] [170] [171] [172], whose
main e�ect is to reduce the activation energy.

8The full address is CNR-IMIP, via Amendola 122D, Bari, Italy
9Here by the wording reduced electric �eld we mean the ratio between the electric �eld and the particle

density of neutrals. Historically, the reduced electric �eld is measured in Townsend (1 Td = 10−21
V

m2
.

The reduced electric �eld is usually referred to as E/N .
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Vibrationally and electronically excited states also signi�cantly a�ect the free elec-
tron kinetics. In a cold gas, inelastic collisions dominate and as a consequence, part of
the energy supplied by the electric �eld is transferred to the excitation of heavy parti-
cles. Superelastic collisions may transfer energy from excited states to electrons resulting
in peculiar structures in the electron energy distribution function (EEDF) [173] [174] [175].

To take into account the mutual interaction between electrons and internal states the
self-consistent model [176] [177] [178] should be considered, coupling the kinetics of ex-
cited states with a Boltzmann equation for the EEDF [179]. The main di�culty of this
approach is the lack of data for elementary processes, i.e. cross sections and rate coe�-
cients, involving the whole spectrum of the internal states.

Di�erent scaling laws have been used to extend available reduced set of electron-impact
cross sections to the complete vibrational spectrum [180] [181]. Recently, new cross sec-
tions have been calculated to cover the whole vibrational spectrum of di�erent diatomic
species[182] [183]. The results obtained with di�erent data sets [184] have been compared
showing the relevance of using accurate cross sections in discharge modeling and that the
self-consistent approach is necessary also to model nanosecond atmospheric discharges.

It should be pointed out that free electrons are also produced by chemical processes
in the �ame, making necessary to construct an adequate kinetic scheme when the applied
�eld is not very high. One application of this discharge condition is precisely the control
of humming by DC electric discharge [141]. Similar problem can be found in electrical
measurements in �ames [154].

We are going to present the model for the estimation of the electrical conductivity of
the air-methane mixture, from the unburnt gas to complete combustion. The model uses
a chemical kinetic code coupled self-consistently with a Boltzmann solver for free electron
kinetics [179]. In this way it is possible to calculate σ as the combustion process evolves,
relating the relevant quantities to a progress variable χ. Here by the wording progress
variable we mean the molar fraction of fuel which has been burnt when the fuel-air mix-
ture has reached a position x inside the �ame.

We have applied the model in order to calculate σ as a function of pressure, temper-
ature and applied electric �eld. The combustion model is based on the database GRI-
Mech 3.0 [185], which is one of the most used combustion model for methane/air mixture,
completed with electron induced processes and ion kinetics. Input data are taken from
Ansaldo, and refer to �ames in commercial products. Finally, analytical �ts are provided.
The latter allow fast computation of σ in Ansaldo �ames.
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Kinetic model Here we discuss the kinetic model used to calculate the electrical con-
ductivity of an air/methane �ame. The model consists in 351 reactions for 53 neutral
species, 7 ions and electrons. The kinetic scheme combines methane oxidation mecha-
nisms in the database GRI-Mech 3.0 [185] with a series of chemi-ionization, ion-molecule,
and dissociative-recombination reactions.

GRI-Mech 3.0 rates are expressed either as constant or by a single or double Arrhenius

Kf (T ) = ATm exp (−Ea/RT ) (53)

The rate coe�cients Kb of reverse reactions are related to the forward rate constant
through the equilibrium constants Keq by

Kb = Kf/Keq (54)

The model includes the following ionic species (H3O
+, HCO+, O−, O−2 , C3H

+
3 , CH

+
3 ,

C2H3O
+) plus free electrons. For chemionization and electron molecule reactions, the ki-

netic data have been taken from references [186] [187]. The major chemionization reaction
is:

CH + O→ HCO+ + e− (55)

whose rate, as suggested by [188], is raised by 10% respect to the data reported in [186]
to yield a better agreement with experimental data at fuel lean condition. Moreover, as
suggested by [186], the reaction of electronically excited CH (CH∗(A2∆)) with oxygen
atoms:

CH∗(A2∆) + O→ HCO+ + e− (56)

is 2000 times faster than the same reaction with ground-state (eq. 55). As a consequence,
reaction (56) may also be an important source ions in the �ame and cannot be neglected.
Moreover, beside the process (56), a simpli�ed kinetic model for the CH∗ has been con-
sidered by including also the kinetic processes listed in Tab. 1.
The HCO+ ion is not the dominant ion in hydrocarbon �ames since it is quickly consumed
by H2O to produce H3O

+ via [186]:

HCO+ + H2O→ H3O
+ + CO (57)
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Table 1: Chemistry reactions involving the �rst excited electronic level of the CH
(CH∗(A2∆)), the corresponding rate coe�cients are in the form K = ATB exp (−Ea/RT )
.

CH∗ A B Ea
reactions (cm-mole-s) (cal/mole)
C2 + OH ⇀↽ CH∗ + CO 3.39e−12 0.0 0.0
C2H + O ⇀↽ CH∗ + CO 6.2e12 0.0 0.0
CH∗ → CH 1.85e6 0.0 0.0
CH∗ + N2 ⇀↽ CH +N2 3.03e2 3.4 −381.0
CH∗ + O2 ⇀↽ CH +O2 2.48e6 2.1 −1720.0
CH∗ + H2O⇀↽ CH +H2O 5.30e2 0.0 0.0
CH∗ + H2 ⇀↽ CH +H2 1.47e14 0.0 1361.0
CH∗ + CO2 ⇀↽ CH +CO2 2.41e−1 4.3 −1694.0
CH∗ + CO ⇀↽ CH +CO 2.44e12 0.5 0.0
CH∗ + CH4 ⇀↽ CH +CH4 1.73e13 0.0 167.0

The H3O
+ ion can form other �ame ions by a series of ion-molecule reactions or it can

undergo dissociative recombination [186]:

H3O
+ + e− → H2O + H (58)

whose rate has been �xed to 1.30 1018 cm3/mole/s, as suggested by [188], to �t experimen-
tal electron number density distribution at stoichiometric condition. Another dissociative
recombination channel included into the model is [186]:

CH+
3 + e− → CH2 + H (59)

Other processes involving ions are [186]:

H3O
+ + C2H2 → C2H3O

+ + H2 (60)

HCO+ + CH2 → CH+
3 + CO (61)

H3O
+ + CH2 → CH+

3 + H2O (62)

CH+
3 + C2H2 → C3H

+
3 + H2 (63)

C3H
+
3 + H2O→ C2H3O

+ + CH2 (64)
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CH+
3 + CO2 → C2H3O

+ + O (65)

Finally the following two collision detachment reactions, with the corresponding rate co-
e�cients, are added to take into account of the equilibrium of O−2 [189]

O−2 + N2 → e− + O2 + N2 (66)

O−2 + O2 → e− + O2 + O2 (67)

K = 6.6 1010T 0.5 exp(−Ea/R0T ) cm3/mole/s
Ea = 9920.0 cal/mole

(68)

K = 9.4 1012T 0.5 exp(−Ea/R0T ) cm3/mole/s
Ea = 11113.0 cal/mole

(69)

The kinetic processes described in above have been included into the numerical code de-
scribed in [190] [179] [191] [173]. The code calculates simultaneously and self-consistently
global plasma properties such as composition and electrical conductivity, and internal
distribution of diatomic species and electron energy distribution function. The code
solves the equations describing heavy particle and electron kinetics under the e�ect of
electromagnetic �elds [179]. In the present paper we have considered an homogeneous
plasma [191] [173]. The kinetic model is also coupled with a steady �ow solver in quasi-
1D geometries solving Euler equation [192] and applied to the description of shock waves,
expansions through nozzle and in general to 1D reactive �uxes.

The heavy particle kinetics consists in solving the master equations considering sepa-
rately species in each internal state, in such a way it is possible to calculate internal energy
distributions. This approach is called State-to-State (StS) and require complete sets of
rate coe�cients and electron impact cross sections. Commonly, StS approach is applied to
vibrational and electronic states of diatomic molecules, to account for non-equilibrium vi-
brational distributions, while rotational levels are usually considered in equilibrium with
the gas temperature. The StS kinetics has also been applied to atoms, including the
transport of photons to calculate radiative properties [176] [178] [193] [194]. However
this approach can hardly be extended to polyatomic molecules being the number of in-
ternal levels too large [195]. Alternatively, thermal non-equilibrium can be solved in the
Multi-Temperature (MT) assuming that each internal degree of freedom is described by a
Boltzmann distribution at a given temperature.

To calculate the rate coe�cients of electron induced processes, the electron Boltzmann
equation is solved. Calculating the electron energy distribution function (EEDF), the
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Figure 2: Kinetic model. Postprocessing of output quantities (free electron population and
impact rates) give σ.

rate coe�cients are calculated integrating the relative cross section over the EEDF. This
expect is particularly interesting in the presence of excited states, where the superelastic
collisions, transferring energy from internal states to electrons, produce long plateaux in
the EEDF increasing the rates of endothermic electron induced processes [174] [175] [184]
[196] [197]. The Boltzmann equation is solved self-consistently with the master equations
for heavy particles, i.e. exchanging information at each time step, because the Boltzmann
equation takes as input the gas composition and internal distributions, while the master
equations need the rates of electron impact processes. From the EEDF it is possible
to calculate some macroscopic properties of the electron gas [198] such as the di�usion
coe�cient, electron mobility and electrical conductivity. See Fig. 2.
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Electron cross sections

Generalities A large number of processes are promoted in electron-molecule colli-
sions, the elastic collisions always representing the channel characterized by the higher
probability. However also inelastic channels, including vibrational and electronic exci-
tations, and high-threshold dissociation and ionization are relevant to the microscopic
dynamics.

The rate coe�cients for electron-impact induced processes in non-equilibrium plasmas
are calculated by integration of corresponding cross sections on the actual electron energy
distribution function (EEDF), obtained by the solution of the Boltzmann equation for free
electrons, shaped by the collisional dynamics under the action of the external electric �eld.

The dynamic information for electron-molecule collisions has been retrieved in the
literature, combining knowledge obtained by experiments and theoretical approaches, the
references for di�erent processes being reported in the following, grouping chemical species
by family.

To date, the database is incomplete due to the large number of chemical species in
the �ame and where unavailable the e�ective elastic (momentum transfer) cross section,
representing the minimal information, has been assumed equal to that for species having
similar molecular structure.

It should be stressed that this is usually the case of minority species, giving a small
contribution to the �ame properties, and weakly a�ecting the accuracy in the estimation
of the electrical conductivity.
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CH4, radicals and short-chain hydrocarbons A wide literature exists on the
methane family, also for the relevance in the modeling of fusion devices, and the dynamic
information for CHy and CH+

y (with 1 ≤ y ≤ 4) has been recently collected in the report
[199] and also available through the LXcat database [200].

The CH4 ionization actually can proceed through di�erent fragmentation paths, sketched
as

e+ CH4 →



2e+ CH+
4

2e+ CH+
3 + H

2e+ CH+
2 + H2

2e+ CH+ + H2 + H
2e+ C+ + 2H2

2e+ H+
2 + CH2

2e+ H+ + CH3

(70)

For these processes results in [201] have been considered, where the absolute value for
partial cross sections of di�erent channels, determined by time-of-�ight experiments, have
been reported.

In Ref. [202] electron-methylidyne elastic collisions have been studied theoretically,
combining the Schwinger variational iterative method and the distorted-wave approxima-
tion, using a complex optical potential.

For the CH ionization, theoretical BEB (Binary-Encounter-Bethe model) cross section
of Ref. [203] has been considered. Moreover for the CH species also inelastic excitations
to electronic states (a4Σ, A2Σ, B2Σ, C2Σ) have been considered [204].

For short-chain alcanes CxHy, with di�erent carbon hybridizations, the information,
more fragmentary, has been reviewed in Ref. [205].

For the ethine (C2H2) momentum transfer has been theoretically investigated in Ref.
[206] adopting a local, non-empirical potential for electron-exchange, while the ionization
considering di�erent fragmentation channels has been experimentally investigated with a
pulsed electron beam in Ref. [207], obtaining absolute cross sections from threshold to
rather high electron-impact energies.

The momentum transfer and non-dissociative ionization cross sections for electron im-
pact on C2H4, C2H6 and C3H8 molecules have been considered in Refs.[208] and [209].

As for the radicals C2H1||3||5 and C3H7 the momentum transfer cross sections have
been set equal to those for the corresponding parent molecules.

As for the reactions taken into account, see Fig. 3 and Fig. 4.
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Figure 3: Reactions involving electrons, C, CH2, CH3 and CH4.

H2O family In the case of water molecule a quite comprehensive review of data
for electron-impact induced processes is available [210], including the momentum trans-
fer, the dissociation following all the di�erent fragmentation channels, the dissociative
attachment, leading to the formation of negative ions (OH− and O−), and both non-
dissociative and dissociative ionizations also considering the further ionizations.

As for the hydroxyl radical, momentum transfer [211] and non-dissociative ionization
[212] have been considered. The electron elastic scattering from H2O2 and HO2 has been
modeled with the elastic cross section for H2O.

As for the reactions taken into account, see Fig. 5.
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Figure 4: Reactions involving electrons and other hydrocarbons.

NH3 family The ammonia momentum transfer cross section [200] and the ioniza-
tion channels, experimentally investigated with a crossed-beam apparatus [213], have been
included in the kinetic scheme. The cross sections for di�erent electron-impact induced
processes in NH species have been calculated [214]. For NH2 the missing cross section for
the elastic channel has been modeled with that for NH3, while for the ionization theoret-
ical data in [215] have been considered.

As for the reactions taken into account, see Fig. 6.
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Figure 5: Reactions involving electrons and the H2O family.

CO2 & CO For electron-CO2 processes reference is made to the compilation of rec-
ommended cross sections in Ref. [216].

The carbon monoxide elastic electron scattering cross section from the LXcat database
[200] has been used, with the relevant dissociation channel, experimentally measured in
[217], and with the ionization cross section from [209].
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Figure 6: Reactions involving electrons and the NH3 family.

As for the reactions taken into account, see Fig. 7.



361

Figure 7: Reactions involving electrons, CO2 and CO.

NO2 & N2O The NO2 momentum transfer cross section with inelastic electronic ex-
citations have been calculated in [218]. The dissociative ionization channels have been in-
vestigated in [219] within a semi-empirical formulation well-comparing with experiments.

For N2O the momentum transfer cross section is available in the LXcat database [200]
and the experimental partial ionization cross sections of di�erent fragmentation paths,
obtained with a fast-neutral-beam technique, are available in [220].

As for the reactions taken into account, see Fig. 8.
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Figure 8: Reactions involving electrons, NO2 and N2O.

NCO, HCN, CN and related species Cross section data for electron-impact in-
duced elastic and inelastic channels in NCO molecule have been calculated in [221].

For the momentum transfer cross section of HCN, experimental values are available
for energies below 50eV [222], while in the intermediate and high energy range theoretical
data have been derived in [223]. In this system also the dissociative electron attachment
channel leading to the formation of CN− ion is of particular relevance; the corresponding
cross section is experimentally determined in [224]. The ionization of HCN, as well as
for CN, have been estimated by complex potential ionization contribution method in [225].

For the species H2CN, HCN2, HCNO, HNCO, HOCN the elastic momentum transfer
cross section has been assumed equal to that of NCO or HCN, while for the CN molecule
the elastic cross section of CO has been used.
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As for the reactions taken into account, see Fig. 9.

Figure 9: Reactions involving electrons, NCO, HCN, CN and related species.
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CH2O, CH3OH and related species The momentum transfer for methanol has
been obtained merging the integrated experimental di�erential cross section in the energy
range 1-100 eV [226] with higher-energy (200-1000 eV) values found in [227]. The absolute
partial cross section values for each fragmentation path

e+ CH3OH→


2e+ CHnO

+ + (4− n)H
2e+ CH+

n + . . . or HnO
+ + . . .

2e+ H+ + CH3O
(71)

have been experimentally detected by a time-of-�ight mass spectrometer in [228].

For e+CH2O again the momentum transfer cross section has been reconstructed com-
bining the low-energy (0.01-21 eV) calculations [229] with theoretical results [230] at higher
energies. For the ionization the cross section in [231] has been considered.

For the species CH2CHO, CH2OH, CH3CHO, CH3CO, CHO, HCCO, CH2CO dynam-
ical data for electron induced processes are not available, therefore only the momentum
transfer process is accounted and the corresponding cross sections are assumed equal to
those of the specie CH3OH or CH2O.

To complete the discussion of this class of processes, also the electron-electron colli-
sions, relevant to the e�ciency of the EEDF thermalization, and the collisions of electrons
with ionic species are to be considered, these processes being described in the model by
Coulomb cross sections.

As for the reactions taken into account, see Fig. 10.
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Figure 10: Reactions involving electrons, CH2O, CH3OH and related species.

How σ depends on pressure, temperature and applied �eld The model has
been used to calculate the electrical conductivity (σ) of methane/air mixture during com-
bustion, at di�erent values of temperature, pressure and applied electric �eld. Initial
composition are those reported in the Section on Ansaldo combustors (Tab. 2) at the
column AE94.

For historical reasons, σ is given in units C · cm−1 · s−1 · V −1; in order to obtain the
value of σ in the correct SI unit S ·m−1 all results should be multiplied by 100.

The �rst case study is characterized by E=0 Td, the pressure P = 1 Bar or P = 10 Bar
and temperature between 500 K e 3000 K. The electrical conductivity time evolution, in
this �rst study case, is reported in Fig. 11. As it can be seen, the electrical conductivity is
negligible for T ≤ 1500 K and rapidly increases with the temperature due to the increase
of the exothermic reaction velocity with the temperature.
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Another important aspect is the presence of the peak during σ time evolution. This
behavior can be explained by taking into account that σ ∝ Neµe and the principal factor
is the electron density. Combustion produces electrons, which can be partially lost as the
end of the process is approached.

Time is no convenient variable to be chosen, in order to build up a model for σ. We
need a more meaningful variable connected to time and σ. We have picked out the CH4

molar fraction. Fig. 12 shows the electrical conductivity as a function of the percentage of
CH4 molar fraction (∆CH4(%)) consumed during the combustion in the same conditions of
Fig. 11. Results show a good correlation between σ and ∆CH4(%), even if there is a slight
correlation loss after the maximum has been achieved (right �gure side). These results
suggest to use a function dependent on pressure, temperature and CH4 lost molar fraction.

Let us consider the impact of the oscillating electric �eld on σ. Fig. 13 displays σ as
a function of time, for T = 2000 K and two pressure values P = 1 Bar e P = 10 Bar, in
absence of electric �eld (E=0) and by applying di�erent electric �elds. It can be noted
that there is an active contribution of the electric �eld over the conductivity and this
e�ect is pronounced at lower pressure.

At the beginning, the electric �eld reduces the electron density, since, by increasing the
electron energy, the dissociative attachment process is activated (O2+e⇀↽ O−+O). When
the steady condition is achieved, the conductivity follows the applied electric �eld period:
the peaks correspond to zero electric �eld, while the minima to electric �led maxima. By
increasing the electric �eld frequency, the peak number is reduced, while the oscillation
amplitude is proportional to the amplitude of the electric �eld. At very high �eld fre-
quencies, oscillations are no more observed since sample points are not enough dense. All
the electric �elds are considered under the breakdown threshold, which is approximately

E/N ≈ 30 Td [188] [148] [149]. This condition is satis�ed e.g. by an electric �eld 3 ·104 V

m
,

like the electric �eld at the antenna estimated above.

Previous results have shown that by using weak electric �eld, without exceeding the
breakdown threshold, the �eld e�ect is small. To understand the e�ect of electric �eld
frequency over electrical conductivity, Fig. 14 represents the EEDF and the electron den-
sity at time step t = 10−4 and P = 10 Bar and T = 2000 K in the case of zero electric
�eld (E=0) and at di�erent electric �eld frequencies. The EEDF is weakly in�uenced by
the frequency unless for νRF = 108 Hz.

Slightly more evident is the e�ect of electric �eld frequency over electron density. Elec-
tron density decreases by increasing the frequency with a maximum change of 10%. It
can be noted that the �eld frequency acts in a opposite way on the EEDF and on the
electron density, leading to a balance. Moreover, the electron density does not decrease
in a substantially way at the end of combustion process. This happens since electron are
not lost with volume processes since electron density is too low to have a relevant velocity.
Electron loss is general due to the interaction with the walls, but this process is not taken
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into account and depends on the combustion chamber geometry.

Fig. 15 shows the electric conductivity as a function of temperature at �xed pressure
(P = 1 Bar, P = 10 Bar and P = 18 Bar) and for di�erent residual CH4 molar fractions.
Fig. 16, instead, shows the electric conductivity as a function of temperature at �xed
residual CH4 molar fractions (χCH4= 0.0 and 0.011) for di�erent pressures.
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Analytical expressions for ne and σ in Ansaldo combustors Here we present the
analytic expressions of ne and σ vs. T and χ in the �ame at �xed pressure and in di�erent
conditions. Three Ansaldo combustors are taken into account, namely AE94, ARI100a
and ARI100b. As for the chemical composition of the gaseous mixture at the inlet and
their operational conditions, we refer to Tab. 2.

We invoke the following expression:

f
(
χ̂, T̂

)
=

Nχ∑
i=0

NT∑
j=0

αijχ̂
iT̂ j (72)

where f = ln (ne), ln (σ) is the natural logarithm of density or electrical conductivity.
(In this Section we refer to ne as to density, as a shortcut). The analytical expression are
given for two di�erent pressure values:

pA = 1 bar (73)

pC = 17.7 bar

in the following temperature and molar fraction intervals:

T = [855.45, 2200]K (74)

χ = [0, 1]

where

χ = 1− χ(t)

χ(t0)
(75)

and χ(t0) is the initial methane molar fraction.

The variables T̂ e χ̂ to be used in eq. 72 are scaled and centered as the following
expressions:

T̂ =
T − T̄
σT

(76)

χ̂ =
χ− χ̄
σχ
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with χ̄, T̄ , σχ, σT average values and standard deviations.

The set of �tted coe�cients for αij is reported in the following tables (3-14). Relative
error is < 10%.

Fig. 17 and 18 display a comparison between the analytical expressions and the results
of the kinetic model for the reactor AE94 at pressure pA.
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Table 2: Composition and operative conditions for di�erent ANSALDO reactors.
Reactors

Specie AE94 ARI100a ARI100b
O2 1.83 10−1 1.95 10−1 1.80 10−1

H2 2.98 10−7 3.24 10−7 2.02 10−5

H 9.39 10−9 1.80 10−8 3.14 10−6

O 7.39 10−7 9.29 10−7 2.82 10−5

OH 3.00 10−5 2.19 10−5 1.42 10−4

H2O 1.75 10−2 6.52 10−3 1.81 10−2

HO2 1.94 10−7 6.67 10−8 3.06 10−6

H2O2 1.46 10−8 3.30 10−9 6.84 10−8

C 1.03 10−21 7.43 10−23 1.95 10−14

CH 6.55 10−16 1.01 10−17 3.83 10−11

CH2 2.41 10−12 1.90 10−14 2.94 10−8

CH2(S) 2.20 10−13 1.81 10−15 3.07 10−9

CH3 1.18 10−9 5.14 10−12 3.41 10−6

CH4 3.74 10−2 3.61 10−2 4.57 10−2

CO 1.55 10−6 6.32 10−7 3.34 10−4

CO2 8.73 10−3 3.27 10−3 8.77 10−3

HCO 1.87 10−12 1.14 10−14 2.24 10−8

CH2O 1.12 10−9 3.66 10−12 2.62 10−6

CH2OH 4.97 10−13 2.50 10−15 4.15 10−9

CH3O 5.28 10−13 1.88 10−15 2.93 10−9

CH3OH 4.93 10−10 7.59 10−13 4.81 10−7

C2H 5.73 10−15 1.36 10−16 1.01 10−12

C2H2 1.21 10−10 1.35 10−12 4.95 10−9

C2H3 1.06 10−13 1.07 10−15 2.33 10−10

C2H4 6.55 10−11 4.01 10−13 3.96 10−8

C2H5 1.04 10−13 2.51 10−16 1.68 10−9

C2H6 3.12 10−12 6.24 10−15 1.19 10−8

HCCO 2.38 10−13 4.95 10−15 3.67 10−10

CH2CO 8.08 10−11 7.89 10−13 3.14 10−8

continued on next page . . .

Tables and �gures
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. . . continued from previous page
Reactors

Specie AE94 ARI100a ARI100b
HCCOH 4.00 10−9 4.12 10−11 8.62 10−10

N 5.79 10−14 1.14 10−13 2.06 10−12

NH 3.39 10−14 2.38 10−14 1.77 10−11

NH2 9.84 10−13 9.70 10−14 2.67 10−11

NH3 1.23 10−11 6.73 10−13 5.04 10−11

NNH 3.26 10−13 1.57 10−13 2.48 10−11

NO 5.28 10−7 1.09 10−6 1.33 10−6

NO2 4.66 10−9 4.33 10−9 1.08 10−8

N2O 9.45 10−8 2.11 10−8 3.76 10−7

HNO 1.11 10−12 1.85 10−12 4.83 10−11

CN 3.21 10−16 3.70 10−17 1.57 10−13

HCN 7.43 10−12 4.26 10−13 8.44 10−10

H2CN 3.62 10−18 9.02 10−20 1.25 10−14

HCNN 1.55 10−17 5.08 10−20 2.73 10−13

HCNO 7.22 10−10 1.05 10−10 1.42 10−9

HOCN 6.30 10−11 2.72 10−12 5.87 10−11

HNCO 9.13 10−11 8.96 10−12 3.42 10−9

NCO 4.59 10−13 8.07 10−14 9.18 10−11

N2 7.54 10−1 7.59 10−1 7.46 10−1

C3H7 1.09 10−17 1.10 10−19 9.89 10−14

C3H8 1.97 10−15 1.56 10−17 4.78 10−12

CH2CHO 3.42 10−14 1.80 10−16 8.33 10−11

CH3CHO 6.74 10−13 1.18 10−14 4.84 10−9

continued on next page . . .
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. . . continued from previous page

Missing specie in GRIMECH3.0

Reactors
Specie AE94 ARI100a ARI100b
C2 0.0 0.0 0.0
N+ 0.0 0.0 0.0
O+

2 0.0 0.0 0.0
O+ 0.0 0.0 0.0
H3O

+ 0.0 0.0 0.0
HCO+ 0.0 0.0 0.0
O− 0.0 0.0 0.0
O−2 0.0 0.0 0.0
C3H

+
3 0.0 0.0 0.0

C3H3O
+ 0.0 0.0 0.0

CH+
3 0.0 0.0 0.0

C2H3O
+ 0.0 0.0 0.0

N+
2 10−15 10−15 10−15

El 10−15 10−15 10−15

Operative conditions at the reactor entrance

T [K] 882.55 856.07 975.11
P [Bar] 17.7 4.30 4.30
ṁ [kg/s] 28.2 2.03 10−2 1.21 10−1
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Table 3: αij coe�cients for calculating the density in the reactor AE94 by means of eq. 72

at pressure pA with χ̂ = 0.5001, T̂ = 1705, σχ = 0.3038, σT = 300.7.
i=0 i=1 i=2 i=3

j=0 16.98 3.583 -0.2292 0.4993
j=1 3.675 0.4123 -0.8537 -
j=2 -0.6004 -0.4642 - -
j=3 -0.0229 - - -

Table 4: αij coe�cients for calculating electrical conductivity in the reactor AE94 by

means of eq. 72 at pressure pA with χ̂ = 0.5001, T̂ = 1705, σχ = 0.3038, σT = 300.7.
i=0 i=1 i=2 i=3

j=0 -16.99 3.526 -0.2159 0.4933
j=1 3.807 0.4145 -0.8503 -
j=2 -0.6139 -0.4648 - -
j=3 -0.02131 - - -

Table 5: αij coe�cients for calculating the density in the reactor AE94 by means of eq. 72

at pressure pC with χ̂ = 0.499, T̂ = 1705, σχ = 0.3031, σT = 300.7.
i=0 i=1 i=2 i=3

j=0 16.71 2.721 -0.2026 0.2715
j=1 4.926 1.317 -0.4925 -
j=2 0.1076 -0.4859 - -
j=3 -0.4761 - - -

Table 6: αij coe�cients for calculating electrical conductivity in the reactor AE94 by

means of eq. 72 at pressure pC with χ̂ = 0.499, T̂ = 1705, σχ = 0.3031, σT = 300.7.
i=0 i=1 i=2 i=3

j=0 -18.02 3.487 -0.1642 0.418
j=1 4.328 0.8982 -0.6677 -
j=2 -0.5365 -0.7205 - -
j=3 -0.1354 - - -
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Table 7: αij coe�cients for calculating the density in the reactor ARI100a by means of

eq. 72 at pressure pA with χ̂ = 0.5001, T̂ = 1705, σχ = 0.3038, σT = 300.7.
i=0 i=1 i=2 i=3

j=0 16.94 3.463 -0.2749 0.4984
j=1 3.483 0.4244 -0.8048 -
j=2 -0.6021 -0.4318 - -
j=3 0.006091 - - -

Table 8: αij coe�cients for calculating electrical conductivity in the reactor ARI100a by

means of eq. 72 at pressure pA with χ̂ = 0.4986, T̂ = 1705, σχ = 0.3029, σT = 300.7.
i=0 i=1 i=2 i=3

j=0 -17 3.406 -0.2606 0.4922
j=1 3.613 0.4264 -0.801 -
j=2 -0.6152 -0.4326 - -
j=3 0.007697 - - -
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Table 9: αij coe�cients for calculating the density in the reactor ARI100a by means of

eq. 72 at pressure pC with χ̂ = 0.4989, T̂ = 1705, σχ = 0.3031, σT = 300.7.
i=0 i=1 i=2 i=3

j=0 16.68 2.634 -0.2236 0.2709
j=1 4.867 1.304 -0.485 -
j=2 0.09674 -0.4572 - -
j=3 -0.4747 - - -

Table 10: αij coe�cients for calculating electrical conductivity in the reactor ARI100a by

means of eq. 72 at pressure pC with χ̂ = 0.4989, T̂ = 1705, σχ = 0.3031, σT = 300.7.
i=0 i=1 i=2 i=3

j=0 -20.14 2.573 -0.2114 0.265
j=1 4.994 1.306 -0.4808 -
j=2 0.08434 -0.4573 - -
j=3 -0.4727 - - -

Table 11: αij coe�cients for calculating the density in the reactor ARI100b by means of

eq. 72 at pressure pA with χ̂ = 0.5001, T̂ = 1705, σχ = 0.3038, σT = 300.7.
i=0 i=1 i=2 i=3

j=0 16.93 3.63 -0.1207 0.5464
j=1 3.835 0.4008 -0.8895 -
j=2 -0.5551 -0.4833 - -
j=3 -0.05881 - - -

Table 12: αij coe�cients for calculating electrical conductivity in the reactor ARI100b by

means of eq. 72 at pressure pA with χ̂ = 0.5001, T̂ = 1705, σχ = 0.3038, σT = 300.7.
i=0 i=1 i=2 i=3

j=0 -17.06 3.57 -0.1001 0.5324
j=1 3.971 0.4051 -0.8881 -
j=2 -0.5687 -0.4834 - -
j=3 -0.05721 - - -
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Table 13: αij coe�cients for calculating the density in the reactor ARI100b by means of

eq. 72 at pressure pC with χ̂ = 0.4986, T̂ = 1705, σχ = 0.3029, σT = 300.7.
i=0 i=1 i=2 i=3

j=0 16.77 2.803 -0.1464 0.2971
j=1 4.92 1.324 -0.4879 -
j=2 0.1094 -0.5209 - -
j=3 -0.4587 - - -

Table 14: αij coe�cients for calculating electrical conductivity in the reactor ARI100b by

means of eq. 72 at pressure pC with χ̂ = 0.4986, T̂ = 1705, σχ = 0.3029, σT = 300.7.
i=0 i=1 i=2 i=3

j=0 -20.09 2.736 -0.1286 0.2844
j=1 5.052 1.328 -0.4861 -
j=2 0.09627 -0.5202 - -
j=3 -0.4565 - - -

Figure 11: Time evolution of the electrical conductivity at di�erent temperature values
[500-3000] K and pressure (P = 1 Bar and P = 10 Bar) with electric �eld E=0 Td.
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Figure 12: Electric conductivity as a function of the percentage of CH4 molar fraction loss
for di�erent pressures (P = 1 Bar e P = 10 Bar) and for di�erent temperature values.

Figure 13: Electric conductivity as a function of time for di�erent electric �eld frequencies
and amplitude in the case for T = 2000 K and for two di�erent pressure values P = 1
Bar and P = 10 Bar.
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Figure 14: EEDF and electron density at t = 10−4 s as a function of time for di�erent
values of electric �eld frequencies (νRF ) and for E = 104 V/m for P = 10 Bar and
T = 2000 K.
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Figure 15: Electric conductivity as a function of temperature at di�erent pressures (P = 1
Bar, P = 10 Bar and P = 18 Bar) for two di�erent values of residual CH4 molar fractions.
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Figure 16: Electric conductivity as a function of temperature at �xed values of residual
CH4 molar fractions (χCH4= 0.0 and 0.011) and for di�erent pressure values (P = 1 Bar,
P = 10 Bar e P = 18 Bar).
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Figure 17: Natural logarithm of density (points) and corresponding analytical values (sur-
face) at pressure pA in the reactor AE94.
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Figure 18: Natural logarithm of the electrical conductivity (points) in the �ame and cor-
responding analytical values (surface) at pressure pA in the reactor AE94.


