
International Journal of Multiphase Flow 110 (2019) 148–164 

Contents lists available at ScienceDirect 

International Journal of Multiphase Flow 

journal homepage: www.elsevier.com/locate/ijmulflow 

Modeling waves in fluids flowing over and through poroelastic media 

Giuseppe A. Zampogna 

a , ∗, Ugis L ̄acis b , Shervin Bagheri b , Alessandro Bottaro 

a 

a DICCA, Scuola Politecnica, Università di Genova, via Montallegro 1, Genova 16145, Italy 
b Linné Flow Centre, Department of Mechanics KTH, Stockholm SE-100 44, Sweden 

a r t i c l e i n f o 

Article history: 

Received 25 May 2018 

Revised 18 September 2018 

Accepted 19 September 2018 

Available online 21 September 2018 

Keywords: 

Homogenization 

Biot-Allard equations 

Poroelasticity 

Interface conditions 

a b s t r a c t 

Multiscale homogenization represents a powerful tool to treat certain fluid-structure interaction prob- 

lems involving porous, elastic, fibrous media. This is shown here for the case of the interaction between 

a Newtonian fluid and a poroelastic, microstructured material. Microscopic problems are set up to deter- 

mine effective tensorial properties (elasticity, permeability, porosity, bulk compliance of the solid skeleton) 

of the homogenized medium, both in the interior and at its boundary with the fluid domain, and an ex- 

tensive description is provided of such properties for varying porosity. The macroscopic equations which 

are derived by homogenization theory employ such effective properties thus permitting the computation 

of velocities and displacements within the poroelastic mixture for two representative configurations of 

standing and travelling waves. 
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1. Introduction 

Solid surfaces in nature and technological applications are never

perfectly smooth; most often, when a fluid flows above a surface,

it encounters a series of (more or less rigid) irregularities, around

which it has to move and with which it might interact, whose typ-

ical dimensions are often much smaller than those of the macro-

scopic flow structures present in the fluid domain. Biological sur-

faces represent an interesting example: they are covered by hair,

filaments, scales, feathers, leaves, needles, cilia, etc., which perform

a variety of functions. Even if such features are microscopic, their

collective effect is often macroscopic, and it is thus justified to try

and apply homogenization theory to such porous and compliant

media to properly represent their large-scale effects when they in-

teract with a fluid. 

If the layer which covers these surfaces is thick, homogenized

equations for the medium itself must be established and solved,

before the coupling with the fluid above can be attempted. Situa-

tions in which poroelastic media of large dimensions interact with

a fluid abound, ranging from the growth of tumor cells ( Penta and

Ambrosi, 2013 ) to the waving of canopies ( Nepf, 2012 ). Another

interesting poroelastic medium is that formed by the plumage of

birds; Sarradj et al. (2011) studied how the owl hides its acoustic

signature thanks to its feathers, composed by barbs, barbules and
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arbicels of varying dimensions ( Bachmann et al., 2008 ). The hi-

rarchical structure of feathers represents the main feature of ho-

ogenization: the typical pores (or the size of the solid inclusions)

f the medium must be much smaller than a characteristic dimen-

ion of the flow, for multiple scale theory to hold. Thus, micro-

copic equations can be set up and used to solve for the flow and

he structure at small scale in the poroelastic layer (PEL, in the

ollowing), yielding tensorial quantities such as effective elasticity

r permeability, and companion macroscopic simulations must be

onducted in both the fluid and the PEL. These simulations are

ased on a macroscopic model given by the homogenization it-

elf, which takes into account the couple solid-fluid as a single

ontinuum. This is the idea behind the first works in poroelastic-

ty, such as that by Terzaghi (1936) , where an effective stress ten-

or to quantify consolidation and fracture of soils has been in-

roduced. Later, Biot (1955) characterized a poroelastic medium

ia an effective elasticity tensor. These works were based on

euristic considerations. Among the early works which attempted

 formal mathematical derivation of Biot’s system, we cite the

orks of Auriault and Sanchez-Palencia (1977) and Burridge and

eller (1981) where the governing equations have been deduced

rom the pore-scale behavior of the coupled fluid-solid system via

n upscaling technique in the quasi-static case. Later, several con-

ributions of Mikeli ́c and collaborators ( Jäger et al., 2011; Mikeli ́c

nd Wheeler, 2012 , cf., for istance,) have been devoted to a math-

matical formal development of both the quasi-static and the dy-

amic Biot equations, via the use of homogenization and asymp-

otic expansions. 
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Macroscopic configuration of a poroelastic matrix and microscopic zoom over one microstructure inside a cubic representative elementary volume ˆ V (defined by the 

upscaling technique). L and l are the macroscopic and microscopic length scales; ˆ V s and ˆ V f are the regions, inside ˆ V , occupied by the solid and the fluid, respectively, and 

ˆ � is the fluid-structure interface within ˆ V . 
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Since the objective of the present paper is to propose a model

o analyze cases where there is an interaction between a free-fluid

egion and a PEL-region, the determination of the matching con-

itions between the two regions is fundamental. As pointed out

y Shavit (2009) , the coupling between a free-fluid region and a

orous – or a poroelastic – domain represents a delicate problem,

ne of the difficulties consisting in the fact that the two domains

re treated with different approaches (pointwise equations on the

ne side and averaged equations on the other), and a unified one-

quation theory is not yet universally accepted because of difficul-

ies in satisfying necessary length-scale constraints while volume-

veraging across the dividing surface. Theoretical studies involving

omogenization across interfacial regions, by matching asymptotic

xpansions, have however been pursued. In particular, Nevard and

eller (1997) have shown that if we consider an elastic microstruc-

ured material, whose properties change suddenly across an irreg-

lar interface located within the material itself, it is possible to

atch the asymptotic expansions valid on either side of the in-

erface to obtain a modified equation which holds in a thin in-

erfacial layer. Adopting the same philosophy, and supported by

he theoretical studies of Jäger and Mikeli ́c (1996) and Mikeli ́c and

äger (20 0 0) , L ̄acis and Bagheri (2016) and L ̄acis et al. (2017) have

ecently proposed – and validated in the Stokes flow limit – an

nterface condition based on homogenization, similar to that de-

eloped by Carraro et al. (2015) with different arguments. Such

ondition represents the generalization of that by Beavers and

oseph (1967) , developed to treat the interface between a free-fluid

egion and a rigid porous medium, without however the need for

d hoc parameters, since effective coefficients are available from

he solution of auxiliary, microscale problems. In the present paper,

his condition is used to handle the interface between a poroelastic

edium and a fluid domain ruled by the Navier-Stokes equations,

hen inertia in the free-fluid region is not negligible. 

The paper starts by describing microscopic and macroscopic

quations to treat fluid-structure interaction problems, when a

ree-fluid region is in contact with a fluid-saturated poroelastic

edium, developed on the basis of the previously cited papers

n upscaling techniques. The model equations rely on a multiple-

cale expansion, both for the interior of the PEL and for its inter-

ace with the fluid domain, �I . The microscopic problems arising

rom homogenization, once the scaling parameters are properly set,

re described in detail and solved for a range of porosities, when

he medium is composed by both fiber-like and sphere-like struc-

ures. The significance of the effective properties of the PEL is high-

ighted. Once they are known, such effective properties are used in

he solution of macroscopic problems characterized by the pres-

nce of waves, in the presence of flow inertia. 

. A multiscale mathematical model for poroelastic lattices 

A continuum model for the fluid-solid mixture denoted in Fig. 1

s ˆ V is described. In such a macroscopic domain, an elastic
T OT 
orous skeleton of density ρs is saturated by an incompressible

ewtonian fluid of density ρ f and viscosity μ; ˆ V T OT can be de-

omposed, at least far from its boundaries, in elementary cells over

hich the structure can be approximated as periodic, as sketched

n Fig. 1 . Although the elementary cell is fixed in time, ˆ t , its fluid

nd solid portions depend on time because of the deformation so

hat, in general, it follows that 

ˆ 
 ( ̂ x ) = 

ˆ V s ( ̂ x , ̂  t ) ∪ 

ˆ V f ( ̂ x , ̂  t ) , (1)

here the dependence on the centroid 

ˆ x of each cell is due to

he non homogeneous conditions enforced at the boundaries of

he macroscopic poroelastic region (the ˆ · denotes a dimensional

ariable); for ease of notation we will omit both of these depen-

encies. The equation for the solid motion in the unit cell must

e coupled with the equations for the fluid. Thus, we consider the

imensional equation for the structure, in the Lagrangian formula-

ion, i.e. 

s 
∂ 2 ˆ v i 
∂ ̂  t 2 

= 

∂ ̂  σi j 

∂ ̂  x j 
on 

ˆ V s , (2) 

here ˆ v i are the components of ˆ v , the solid displacement vector,

nd ˆ σi j are the components of the solid stress tensor. Under the

ssumption that the structure is elastic, for small strain the follow-

ng linear equations hold 

ˆ i j = 

ˆ C i jkl ̂  ε kl ( ̂ v ) = 

1 

2 

ˆ C i jkl 

(
∂ ̂  v k 
∂ ̂  x l 

+ 

∂ ̂  v l 
∂ ̂  x k 

)
, (3) 

ith 

ˆ C i jkl the fourth order stiffness or elasticity tensor, whose

omponents depend linearly on Young’s modulus of elasticity, E ,

nd on the Poisson ratio, νP , for a solid skeleton formed by an

sotropic material. In the remainder of the paper, C ijkl is the di-

ensionless counterpart of ˆ C i jkl , using E as scale. Also, we will fix

he value of the Poisson ratio at 0.33 so that in Voigt’s contracted

otation ( Voigt, 1889 ) the isotropic stiffness tensor of the material

orming the solid skeleton is 

 i jkl = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 . 48 0 . 73 0 . 73 0 0 0 

0 . 73 1 . 48 0 . 73 0 0 0 

0 . 73 0 . 73 1 . 48 0 0 0 

0 0 0 0 . 38 0 0 

0 0 0 0 0 . 38 0 

0 0 0 0 0 0 . 38 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (4) 

q. (2) must be coupled to the dimensional Navier-Stokes equa-

ions (NSE) which, in the Eulerian formulation can be written in

erms of the velocity field 

ˆ u and the pressure field ˆ p , as: 

f 

(
∂ ̂  u i 

∂ ̂  t 
+ 

ˆ u j 

∂ ̂  u i 

∂ ̂  x j 

)
= 

∂ ˆ �i j 

∂ ̂  x j 
on 

ˆ V f , (5) 

∂ ̂  u i 

∂ ̂  x 
= 0 on 

ˆ V f , (6) 

i 
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where ˆ �i j is the canonical fluid stress tensor 

ˆ �i j = − ˆ p δi j + 2 μ ˆ ε i j ( ̂  u ) , (7)

with ˆ ε the strain tensor for the fluid, formally defined like for the

structure. The boundary conditions on the solid-fluid interface ˆ �

within the poroelastic medium are the continuity of velocity and

traction vectors: 

ˆ u i = 

∂ ̂  v i 
∂ ̂  t 

and 

ˆ �i j n j = ˆ σi j n j , (8)

where n is the unit vector normal to boundary, pointing from the

solid to the fluid domain; moreover, we impose periodicity over all

boundaries of the microscopic reference volume ˆ V . 

At this point we invoke the separation of scales between L and l

(cf. Fig. 1 ), which allows to define the small parameter ε = l/L � 1

and to introduce two non-dimensional variables: the microscopic

fast variable, x = 

ˆ x /l, and the macroscopic slow variable, x ′ = εx

. The use of homogenization theory ( Hornung, 1996; Mei and Ver-

nescu, 2010 ) leads us to macroscopic governing equations via the

use of spatial averaging over ˆ V : 

〈·〉 = 

1 

| ̂  V | 
∫ 

ˆ V 

· d ̂  V . (9)

The macroscopic description at leading order of the anisotropic,

compressible skeleton’s displacement field v ( x ′ , t ) and of the fluid

pressure field p ( x ′ , t ), whose mathematical development is detailed

in Appendix A, is given by { 

(1 − θ ) ρs 

ρ f 
Ca ̈v i = 

∂ 
∂x ′ 

j 

[
C i jpq ε 

′ 
pq (v ) − α′ 

i j 
Ca p 

]
on V T OT , 

βCa ˙ p − ε2 Re L K i j 
∂ 2 p 

∂ x ′ 
j 
∂ x ′ 

i 

= −αlk 
∂ ̇ v l 
∂x ′ 

k 

on V T OT . 
(10)

These equations contain all the dominant terms; the presence of

an ε2 term is only related to the fact that they have been made

dimensionless by the same scales used in the free fluid region bor-

dering the PEL, namely the characteristic velocity within the free

fluid domain, Ū , the macroscopic length scale, L , the dynamic

pressure, ρ f Ū 

2 , and the time scale L/ ̄U . We have chosen these

scales only for numerical convenience, because of the subsequent

need to couple the PEL equations to those ruling the dynamics

in the free fluid region. The Reynolds number is Re L = ρ f Ū L/μ

and the Cauchy number is Ca = ρ f Ū 

2 /E . In (10) the porosity

θ = | V f | / | V | appears. The quantity (1 − θ ) ρs 
ρ f 

Ca plays the role

of the non-dimensional Biot’s density and differs from the classi-

cal one since, with the normalizations adopted in the present pa-

per, the time derivative of the fluid velocity is negligible to lead-

ing order. Some tensors which vary only over the macroscale are

present; they are the effective elasticity tensor , C i jkl , the effective

fluid volume fractions, αlk and α′ 
i j 
, the effective permeability tensor ,

K i j and the bulk compliance of the solid skeleton, β . All of these

tensors (aside from K i j ) depend on two further tensors, χ pq 
i 

and

ηi , which are defined on the periodic elementary volume V and

satisfy the systems: {
∂ 

∂x j 

{
C i jkl 

[
ε kl ( χ

pq ) + δkp δlq 

]}
= 0 on V s , {

C i jkl 

[
ε kl ( χ

pq ) + δkp δlq 

]}
n j = 0 on �, {

∂ 
∂x j 

[
C i jkl ε kl ( η) + δi j 

]
= 0 on V s , [

C i jkl ε kl ( η) + δi j 

]
n j = 0 on �. 

(11)

By using the dimensionless form of (9) , the effective elasticity ten-

sor is defined as: 

C i jpq = 〈 C i jkl ε kl ( χ
pq ) 〉 + 〈 C i jpq 〉 , (12)

where C ijkl is given by Eq. (4) . The first effective fluid volume frac-

tion of the anisotropic skeleton is 

αlk = θδlk −
1 

2 

〈 ∂χ pq 
i 

∂x 
〉 (δl p δkq + δlq δkp ) ; (13)
i 
his form of αlk generalizes the concept introduced for isotropic

edia by Skotheim and Mahadevan (2004) . The vector ηi is used

o define the second effective fluid volume fraction, i.e. 

′ 
i j = θδi j + 〈 C i jkl ε kl ( η) 〉 , (14)

lus the bulk compliance of the solid skeleton 

= 〈 ∂ηi 

∂x i 
〉 . (15)

t has been shown by Mei & Vernescu (2010) that the two vol-

me fractions coincide, i.e. αi j = α′ 
i j 

and this is verified in the

resent paper as a check of numerical consistency. As explained

y Showalter (2003) , the terms linked to αij and α′ 
i j 
, respectively

lk 

∂ ̇ v l 
∂x ′ 

k 

and 

∂ 

∂x ′ 
j 

α′ 
i j Ca p , represent the pore fluid content due to

he local volume change of the pores and the pressure stress of the

ore fluid on the structure. To close (10) the permeability tensor

 i j = 〈 K i j 〉 needs to be defined; it arises from the solution of a

tokes problem over the fluid domain V f : 

 

 

 

∂A j 
∂x i 

− ∂ 2 K i j 

∂ x k ∂ x k 
= δi j on V f , 

∂K i j 

∂x i 
= 0 on V f , 

K i j = 0 on �. 

(16)

nce (10) is solved, the fluid velocity over V TOT can be recovered

rom Darcy’s law: 

 u i 〉 − θ ˙ v i = −ε2 Re L K i j 

∂ p 

∂x ′ 
j 

(17)

or the effective velocity of the homogenized medium, 〈 u i 〉 − θ ˙ v i . 

It is important to keep in mind the difference between the

odel proposed in the present work and those available in

he literature to simulate the behaviour of poroelastic media.

o make comparisons, we refer to the work of Mikeli ́c and

heeler (2012) where the dynamic Biot-Allard and the quasi-static

iot models have been formally developed by multiple scale ex-

ansions. In the Biot-Allard equations, time integrals are present,

ccounting for a “memory effect” in the behaviour of the structure.

hese integrals derive from the fact that in the full dynamic sys-

em the equation corresponding to (A.20) contains also the time-

erivative of the fluid velocity, implying that the corresponding

icroscopic system (16) is time-dependent. In the derivation pre-

ented in Appendix A the convective term is absent at order ε
n the fluid momentum equation, because of the chosen scalings.

or this reason, the right-hand-side of our Eq. (17) does not con-

ain the time-convolution between the permeability and the pres-

ure gradient, but the simple product of them. Upon substitution

f the dynamic counterpart of Eq. (17) into Eq. (A.47) and (A.51) ,

he Biot-Allard model would result ( Mikeli ́c and Wheeler, 2012 ).

t should also be noted that the quasi-static Biot system does not

ake into account the acceleration term on the left-hand-side of

he first equation of system (10) . Thus, the present model is in-

ermediate between the Biot-Allard and the quasi-static Biot sys-

ems: it still allows a dynamic motion of the poroelastic medium,

ithout however exhibiting long-term memory effects. For ease of

otation, from this moment on, we refer to the system formed by

10) and (17) as the FPEL (Fluid-PoroELastic) model. It should be

tressed again that the FPEL equations, as given here, are made

imensionless, and later solved numerically, using the free fluid

cales, and this for immediate coupling at the interface with the

imensionless Navier-Stokes equations. 

.1. Focus on the macroscopic interface 

When a poroelastic material is in contact with a macroscopic

omain only filled by fluid, it is convenient to introduce a sharp
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Fig. 2. A pure fluid region and a composite region ( V NS and V PEL , respectively) in 

contact through the fluid-structure macroscopic interface �I . Information between 

the NS and FPEL solvers is exchanged using Eqs. (18) –(19) . 
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nterface between these two domains, which we denote as �I (de-

ned in Fig. 2 ). In order to solve for the displacement of the

oroelastic material and for the pore pressure we need essentially

wo boundary conditions, one for each equation from system (10) .

or the elasticity equation we use the stress continuity condition,

hich has been shown to work well for Stokes flows ( L ̄acis et al.,

017 ): 

T i j n j 

∣∣
�I 

= �i j n j , (18) 

here �ij is the stress tensor of the free fluid, and T ij is the stress

ensor of the mixture in the interior domain (cf. Eq. (A.43) in

ppendix A ). Same condition has been also proposed previously

y Gopinath et al. (2011) . For the pore pressure equation we use a

irichlet condition on the pore-pressure value. There is no agree-

ent in the literature on whether the pressure should be the same

s in free fluid ( L ̄acis and Bagheri, 2016 ) or there should be a jump

n pressure ( Carraro et al., 2013 ). In the current work, we select the

ressure continuity condition: 

p − = p, (19) 

here p is the free fluid pressure and p − is the pore

ressure directly below the interface. It has been shown by

 ̄acis et al. (2017) that pressure continuity works well for given ge-

metries in poroelastic set-ups. One can also expect pressure con-

inuity for symmetry reasons ( Carraro et al., 2013 ). 

To close the formulation, one also needs boundary conditions

or the free fluid. For the standard Navier-Stokes equations it is

ufficient to provide velocity boundary conditions. The generalized

eavers & Joseph boundary condition ( L ̄acis et al., 2017 ) for poroe-

astic materials reads, in non-dimensional form 

〈 u i 〉 | �I 
= 

˙ v i − ε2 Re L K̄ i j 

∂ p 

∂x ′ 
j 

+ εL̄ i jk 

(
∂u j 

∂x ′ 
k 

+ 

∂u k 

∂x ′ 
j 

)
, (20) 

here the bars above the unknown tensors denotes that they are

btained using volume averages above the interface in an elon-

ated interface cell ( L ̄acis et al., 2017 ) near the boundary between

he poroelastic medium and the free fluid (see later Figs. 10 and

1 ). Eq. (20) represents the extended version of the Navier’s slip

ondition. The coefficients arising in the velocity boundary condi-

ions are then found as 

¯
 i j = 

1 

V 

∫ 
V I 

˜ K i j dV , (21) 

¯
 i jk = 

1 

V 

∫ 
V I 

L i jk dV , (22) 

here V I is the averaging volume in the interface cell. 

A simpler form of the interface condition above was found

emi-empirically by Beavers and Joseph (1967) , and later formally

ustified by Saffman (1971) and Jäger and Mikeli ́c (1996, 20 0 0,

009) on the basis of matched asymptotic expansions. Extensions

f the condition have been proposed by Jones (1973) and Nield and

ejan (2013) for curved interfaces, by expressing the slip velocity
t the dividing surface in terms of the rate of strain. The one pro-

osed here is, to the knowledge of the authors, the most general

ersion of the condition by Beavers & Joseph, and is applicable to

ny interface between a fluid region and a homogeneous poroelas-

ic medium with an arbitrary microscopic structure, provided the

ffective solid displacement is sufficiently small for the interface

I to non display appreciable nonlinear deformations. 

We refer to L ̄acis et al. (2017) for the development of (20) ,

hich is used for the first time here in the case of unsteady in-

eractions between a free-fluid region and a poroelastic region. For

he sake of completeness, the interface cell problems are outlined

n Appendix B . A set of conditions similar to 18 –(20) has been

sed by Buka ̌c et al. (2015) and Badia et al. (2009) to study the

uid flow across an interface with a poroelastic medium; whereas

hey imposed effective parameters at the interface by using order

f magnitude estimates, we will extract them from the numerical

olution of microscopic, auxiliary problems. 

. Microscopic problems 

In this section the solutions of the microscopic problems

11) and (16) for the internal region of the poroelastic medium,

nd of problems ( B.1 –B.3 ) for the interfacial region are presented.

ith the scales chosen to normalize the microscopic equations the

roblems for the solid and fluid phases are decoupled to leading

rder at the pore-scale level. We have focussed on two kinds of

icroscopic structures, shown in Fig. 3 : both are cubic symmet-

ic structures, the former is built starting from an isotropic geome-

ry, composed by spheres linked by transversal cylindrical bars (de-

oted as “spheres” in the following) and the latter is built starting

rom a transversely isotropic geometry, composed by a main ver-

ical cylinder aligned along x 3 and traversed by two slender cylin-

ers with axes parallel to x 1 and x 2 (denoted as “cylinders”). The

atio between the radius r c of the connecting cylinders and that

f the sphere or of the vertical cylinder, r , is here fixed for each

orosity ( r c /r = 0 . 4 ). The limit value of porosity is constrained by

he fact that the connected network needs to be permeable in all

irections, i.e. the fluid in V f must be able to flow throughout the

rid; this is realized by porosities in the interval (0.04,1) for the

ase of “spheres” and (0.3,1) for “cylinders”. The need of consid-

ring fully permeable porous media (i.e. connected fluid regions)

as its solid counterpart in the need of using connected skeletons:

f this were not the case, there would be no elastic response to a

eformation along the direction in which the structure is discon-

ected ( Hoffmann et al., 2004 ). 

The general form of the (symmetric) effective stiffness tensor in

oigt’s notation for the microscopic structures examined, is 

 i jkl = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

C 1111 C 1122 C 1133 0 0 0 

C 1122 C 1111 C 1133 0 0 0 

C 1133 C 1133 C 3333 0 0 0 

0 0 0 C 2323 0 0 

0 0 0 0 C 1313 0 

0 0 0 0 0 C 1212 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

ith C 2323 = C 1313 and C 1212 � = 

1 
2 (C 1111 − C 1122 ) as a consequence

f the lateral connecting cylindrical rods. There are thus, at the

ost, six independent elements. In the “spheres” case the inde-

endent terms reduce to three, since C 3333 = C 1111 , C 1122 = C 1133 ,

nd C 1212 = C 1313 = C 2323 . This is the case of the simplest possible

nisotropic structure, that with cubic symmetry. In the “cylinders”

ase all six coefficients must be solved for. The transverse isotropy

n this case is broken by the presence of the C 1212 term, which is

ndependent of C 1111 and C 1122 ; the reason is that not all planes

hrough the axis of symmetry x 3 of the main cylinder are planes

f symmetry of the whole structure. 
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Fig. 3. The two different microscopic structures analyzed in the present work, shown here in the limit case of very small and very large porosities. 

Fig. 4. Magnitude of the independent components of χ in the case of “spheres” for θ = 0 . 8 . 
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3.1. Solution of the interior problem 

A detailed parametric study is presented here for the interior

microscopic problem 

1 for both the cases of “spheres” and “cylin-

ders”, when r c /r = 0 . 4 . Results for other radii ratios are presented

by Zampogna and Bottaro (2017) . 

Attention is initially focussed on problems (11) . The magnitude

of the independent entries of the microscopic field χ are repre-

sented in Fig. 4 for a set of parameters used later. Since only

the components of the average over V s of the Jacobian of χ and

η, J ( χ ij ) kl , J ( η) kl , i, j, k, l = 1 , 2 , 3 , are present in the macroscopic

equations, we need to look at these elements carefully. In the

case of “spheres” the non-zero components of J ( χij ) kl and J ( η) kl are

listed in the following equations, highlighting their symmetries be-

cause of the isotropy of the material and the (cubic) symmetry of

the microscopic structure: 

J ( χ11 ) 11 = J ( χ22 ) 22 = J ( χ33 ) 33 , 

J ( χll ) kk = J ( χ11 ) 22 , l, k = 1 , 2 , 3 , l � = k, 

J ( χlk ) lk = J ( χlk ) kl = J ( χ12 ) 12 , l, k = 1 , 2 , 3 , l � = k, 

J ( η) 11 = J ( η) 22 = J ( η) 33 . (23)

The values of the four independent coefficients are represented in

Fig. 5 for porosities ranging in the interval (0.04, 0.97). Combining

Eq. (23) with (12) we obtain that C i jkl is defined by three inde-

pendent elements. The sudden slope discontinuity which appears

in all the curves in Figs. 5 and 6 close to 1 − θ = 0 . 6 is due to a

change in the topology of the main central sphere in the unit cell:

for θ < 0.4 the presence of the cylinders to connect the microscopic

structure is not needed anymore and V s can be simply realized via

the intersection between a unitary cube and a sphere centered in

it. Fig. 6 demonstrates how the skeleton behaves following a de-

formation: the elastic response (i.e. the intensity of the bulk and

shear moduli) becomes smaller when the porosity increases, i.e.

when the central sphere is smaller (or when the main cylinders are

slender). Moreover, it is important to note that even if we are eval-
1 The solution of the interior problem has been carried out using OpenFoam , with 

a solver already described by Zampogna and Bottaro (2017) . The numerical conver- 

gence of the results has been verified using three different mesh sizes with up to 

8 × 10 6 cells per unit volume. Some results have been independently verified by a 

solver based on FreeFem++ ( Hecht, 2012 ).  
ating a cubic symmetric structure on a cubic elementary cell, the

nformation about the isotropy of the initial geometry, the sphere,

s maintained: the relation C 1212 = C 1313 = C 2323 holds, which, in

eneral, is not true for cubic symmetric structures. Even if αij and
′ 
i j 

are defined in a completely different way, they assume the

ame numerical value, since for generic microscopic structures it

s 

 ε ii ( χ
pq ) 〉 = −〈 C pqlk ε lk ( η) 〉 p = q = 1 , 2 , 3 . (24)

t should also be noted that the quantities shown in Eq. (24) are

f the same order of the porosity itself, especially for intermediate

alues of θ , so that the effective fluid volume fraction, αii = α′ 
ii 
, 

isplays changes with respect to the porosity because of compress-

bility effects. If the compressibility of the material decreases (i.e.

P approaches 0.5), η and χ decrease and the difference between

and α becomes smaller. Focusing on the definitions of α and α′ 
n Eqs. ( 13,14 ), we observe that α varies with the porosity because

f internal deformations of the structures; such internal deforma-

ions are due to external forcing on �, whose dependence on θ is

easured by α′ (cf. Eq. (A.37) ). This interpretation of the effective

uid volume fractions confirms that the variations with respect to

are the same for α and α′ , as stated in (24) . 

In the “cylinders” case, the magnitude of the independent com-

onents of the microscopic field χ are represented in Fig. 7 for a

xed porosity. In this case, since the initial microscopic structure

s transversely isotropic, there are ten independent coefficients of

he Jacobians of χ and η, listed below and represented in Fig. 8 for

arying values of θ : 

J ( χ11 ) 11 = J ( χ22 ) 22 , 

J ( χ11 ) 22 = J ( χ22 ) 11 , 

J ( χ11 ) 33 = J ( χ22 ) 33 , 

J ( χ33 ) 11 = J ( χ33 ) 22 , 

J( χ33 ) 33 , 

J ( χlk ) kl = J ( χlk ) lk = J ( χ12 ) 12 , l, k = 1 , 2 , l � = k, 

J ( χl3 ) l3 = J ( χ3 l ) l3 = J ( χ13 ) 13 , l = 1 , 2 , 

J ( χ3 l ) 3 l = J ( χl3 ) 3 l = J ( χ13 ) 31 , l = 1 , 2 , 

J ( η) 11 = J ( η) 22 , 

J( η) 33 . (25)
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Fig. 5. Absolute values of the four independent parameters identified by Eqs. (23) as function of the solid fraction for the “spherical” microscopic structure. 

Fig. 6. Components of the effective elasticity tensor C i jkl (left) and effective fluid volume fractions αij and α′ 
i j 

(right) in the case of “spheres”. 

Fig. 7. Magnitude of the independent components of χ in the case of “cylinders” for θ = 0 . 8 . 

Fig. 8. “Cylindrical” microscopic structure: absolute values of ten independent parameters identified by Eqs. (25) as function of the solid fraction. 
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Fig. 9. Non-zero entries of C i jkl (left), αij and α′ 
i j 

(right) for different porosities in the case of “cylinders”. 

Fig. 10. Solutions of interface problems for the coefficients of the Darcy term. The interface is located exactly at the tip of the last solid structure (green, transparent 

plane). Porosity θ = 0 . 8 and radius ratio r c /r = 0 . 4 . “Sphere” (left) and “cylinder” (right) microscale geometries. The plots are cut after the second microstructure below the 

interface although the full solution domain consists of five microstructures. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 11. Solutions of interface problems for the coefficients of the Navier-slip term, for “spheres” (left) and “cylinders” (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Effective tensor components arising from the interface problem. Both ge- 

ometries are considered. 

K̄ 11 K̄ 33 L̄ 113 

“Spheres” Interface 1 . 01 · 10 −2 1 . 71 · 10 −2 1 . 08 · 10 −1 

Interior 1 . 79 · 10 −2 1 . 72 · 10 −2 –

“Cylinders” Interface 1 . 31 · 10 −2 2 . 51 · 10 −2 8 . 79 · 10 −2 

Interior 1 . 33 · 10 −2 2 . 50 · 10 −2 –

f  

v  

s

 

m  

r  

b  

t  

p  

l  

t  

u  
The components of the effective stiffness tensor are represented in

Fig. 9 . The considerations valid for the case of “spheres”, about the

behavior of the elastic response of the structure, hold also in the

“cylinders” case. In particular, the information about the transverse

isotropy of the starting geometry, the main vertical cylinder, are

conserved in the shear modulus, i.e. C 1313 = C 2323 � = C 1212 . Also in

the case of “cylinders” αii and α′ 
ii 

are equal to within numerical

accuracy, as it should be, and this represents a further check on

the reliability of the numerics. 

Comparing the effective elasticity tensor , for both the structures

analyzed, in the limit for V f which approaches zero, the compo-

nents of the microscopic tensor C ijkl are recovered; furthermore, αij 

and α′ 
i j 

tend to θδij . This fact can be easily proven by observing

that, for V f = 0 , � disappears and problems (11) become homoge-

neous, so that χ and η are equal to zero. 

3.2. Solution of the interface problem 

As for the interior problem, we consider two different geome-

tries for the interface problem 

2 , “spheres” and “cylinders”, but we

focus on a single value of the porosity, θ = 0 . 8 , to be later used in

all macroscopic simulations. All non-zero components determined
2 The solution of the interface problem has been computed using a FreeFem++ 

solver (https://github.com/UgisL/flowMSE). 

a  

u  

i  

F  
rom the simulation as volume averages above the interface and

olume averages in the periodic unit cell below the interface are

ummarized in Table 1 . 

In the current work, since we focus on a two-dimensional

acroscopic problem, only the components ˜ K 11 , ˜ K 33 and L 113 are

equired. The underlying fields for ˜ K 11 are shown in Fig. 10 for

oth geometries. There we can see that, in both cases, the solu-

ion rapidly approaches the periodic interior solution. The interface

ermeability is obtained as a volume average above the interface

ocation (green plane). For comparison purposes, we give in the

able also the interior macroscopic values of the coefficients, eval-

ated at the second microstructure below the interface as volume

verage over the representative volume element. Such internal val-

es are identical to those obtained with the procedure described

n Section 3.1 . Similarly, the underlying fields for L 113 are shown in

ig. 11 for both geometries. There we see that, for both geometries,
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Fig. 12. Central image: mean horizontal component of the effective velocity field in the poroelastic domain as function of time. The insets represent the horizontal velocity 

profile in the fluid domain at x ′ 1 = 1 (midline through the domain), sampled at the instants of the periodic cycle indicated in the central image. Except for a thin layer 

immediately above the interface, x ′ 3 = 0 , to this scale the present solution is almost indistinguishable from Womersley’s exact solution. 
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he field rapidly dissipates within the interior, practically reaching

 zero value already at the level of the second microstructure. 

. Macroscopic applications 

In this section we solve for two different configurations of the

ow to show the applicability of the FPEL model to real physical

ases. In the first example the relations between the characteris-

ic scales of the fluid and of the structure’s motion, which are at

he basis of our homogenization approach, are strictly taken into

ccount (cf. Appendix A); in the latter, these scaling relations are

eakened to allow us to compare qualitatively the numerical so-

ution of the PEL model with experiments on canopy flows taken

rom the literature. 

.1. Standing waves 

Macroscopic solutions are obtained with a domain-

ecomposition-based solver, described in Zampogna and Bot-

aro (2017) , whose fundamental idea is to solve iteratively the

avier-Stokes equations within the V NS and the FPEL equations

ithin the V PEL regions, defined in Fig. 2 . A two-way coupling

etween the two regions is performed thanks to the interface

onditions, imposed at �I , which is the intersection between the

wo domains: Eqs. (18) and (19) are used to go from the NS to the

EL domain and Eq. (20) is used in the opposite sense. A validation

f the FPEL model for some steady configurations is provided in

ampogna and Bottaro (2017) . Here, we aim to understand the

ime-dependent behavior of the model, and solve an unsteady

onfiguration of the flow, without any further assumption, except

or the fact that the unknowns do not depend on the transverse

irection, x . 
2 
The configuration chosen allows to evaluate the horizontal and

ertical components of the velocity in V NS and V PEL . In particu-

ar, within V NS , a vertical velocity which in the absence of the

oroelastic medium would be zero, develops. A channel, of non-

imensional size 2 × 2, is filled in the upper half by a fluid, and

n the lower half by a saturated poroelastic medium with spher-

cal inclusions and porosity equal to 0.8. The motion of the fluid

s due to an oscillating pressure gradient which has the dimen-

ionless form: ∂ 1 p(t) = α cos (ωt) . In dimensional terms the box

imensions are taken to be 1 m × 1 m . The fluid contained within it

s an aqueous solution of glycerol at about 98% ( ρ f = 1250 kg/m 

3 ,

ν = 8 × 10 −4 m 

2 /s, cf. Segur and Obestan, 1951 ) and, for Re L =
f Ū L/μ = 100 , the characteristic speed Ū in the pure fluid do-

ain is 0.08 m / s . This yields a pressure scale which is of order P ∼
f Ū 

2 = 8 Pa both in the fluid and in the poroelastic region, with a

onsequent displacement scale of the pores of order P L/E = 27 μm

for materials with very low Young’s modulus, E = 3 × 10 5 Pa, 

uch as sylicon-based polymers ( ρs = 16 Kg/m 

3 ). There is thus

 factor of about 10 5 between the scale of the displacement of

he pores and the wavelength of the standing wave which is cre-

ted in the channel. The velocity within the poroelastic medium

cales as U ∼ ε2 PL / μ and, if ε = 2 . 14 × 10 −2 , it has a value of or-

er 0.0037 m / s which is about twenty times smaller than the veloc-

ty in the pure fluid region. This is clearly related to the Reynolds

umber and to ε = l/L, since it is U ∼ ε2 Re L ̄U (cf. Appendix A);

ote also that Re ∼ ε3 (Re L ) 
2 so that the value of the microscopic

eynolds number is of order 0.1, close to the limit of applicability

f the theory. The effect of ε on the amplitude of the displacement

ill be examined later on. The Cauchy number which ensues from

he parameters chosen is Ca = ρ f Ū 

2 /E = 2 . 7 × 10 −5 . 
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Fig. 13. Contours of the vertical component of the effective velocity field in the whole domain. The periodic cycle is sampled at 8 instants within a period of oscillations. 

The fluid-structure interface �I is positioned at rest at x ′ 3 = 0 . The colors refers to the pure fluid region, V NS , while the grayscale indicates the contours of 〈 u 3 〉 − θ ˙ v 3 in the 

V PEL The thick solid lines represent the vertical displacement of the macroscopic interface �I , ( Ca / 2) −1 v 3 , for the respective snapshots. 
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The central image of Fig. 12 shows the horizontal velocity av-

eraged throughout the PEL, as function of time. The dimensionless

mean velocity attains values of order 10 −2 , consistent with the

scalings just discussed. In the same figure, eight instants during

the periodic cycle are provided for the profile of the horizontal ve-

locity in the free fluid region, sampled at x ′ 1 = 1 . At the horizontal

interface �I , positioned at x ′ 
3 

= 0 , a weak slip flow arises. The ver-
ical velocity which ensues from the presence of the PEL is drawn

n Fig. 13 , in both the PEL region and in the free fluid domain;

uch a component is smaller than its horizontal counterpart and is

egligible in the PEL. This is borne out by equation (17) since the

mposed pressure gradient acts along x 1 . Fig. 13 also displays the

tanding oscillation of the interface, with the vertical displacement

ivided by Ca /2 for the oscillation to be visible in the scale of the
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Fig. 14. Mean horizontal fluid velocity at the interface as function of time: comparison between the result of the present work (solid line) and that computed with the 

simplified condition by Zampogna and Bottaro (2017) (dashed line). 

Fig. 15. Top frame: mean horizontal displacement of the interface in time. Bottom frame: maximum and minimum values of the vertical displacement of the interface in 

time for the same configuration. 
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gure. In physical dimensions the maximum displacement is very

mall (consistent with the scalings of the previous paragraph), but

he waveform is clear and numerically well resolved. 

When the horizontal velocity is averaged over only the inter-

ace, a temporal oscillation such as that shown in Fig. 14 appears;

fter one period the solution has already attained a limit-cycle be-

avior. Here, the effect of the homogenized boundary condition

an be appreciated, since the solid line (current solution) displays

he solution obtained by employing Eq. (20) , while the dashed line

s obtained by treating the interface with the simplified condition

 ̄L 113 = 0 ) used by Zampogna and Bottaro (2017) . With the new

ondition the interface velocity is about 50% larger than with the

implified condition, stressing the importance of an appropriate

reatment of the fluid-PEL boundary, with account of both an in-

erfacial permeability, K̄ i j , and a tensorial Navier slip length, L̄ i jk 

 

From the point of view of the solid motion, an analysis of the

ehavior of the skeleton is provided in Fig. 15 . The value of the

orizontal displacement averaged over the interface is plotted ver-

us time in the top frame. Since the vertical displacement has zero

ean, we have chosen to represent the time variation of its maxi-

um and minimum values instead, in the bottom frame of the fig-

re. The dimensionless amplitudes are very small (cf. vertical axes

f the figure), conforming to the scales and the normalization cho-

en. Since the interface �I moves with the pressure gradient which

orces the macroscopic flow, its displacement can be written as 

 1 = A (x ′ 1 ) cos (ωt + φ1 ) and v 3 = B (x ′ 1 ) cos (ωt + φ2 ) at x ′ 3 = 0 

(26) 
here A and B are amplitudes and φ1 , φ2 are a priori unknown

hases. 

It is clear from Appendix A that ε is strictly related to Re L and

a in order for the homogenization hypotheses to be satisfied. Go-

ng beyond the scaling expressed by Eq. (A.6) , we have varied ε
nd Ca to examine qualitatively the response of the structure to

ariations of these two parameters. Fig. 16 shows that the am-

litude becomes smaller as ε increases. This fact means that the

maller is the characteristic size of the microscopic structure, for

iven macroscopic scales, the larger is its elastic deformation to

n external forcing. Alternatively, an increase of Ca is equivalent

o a decrease of Young’s modulus E and this provokes a sizeable

eformation of the elastic skeleton. This intuitive behaviour can be

hown by analyzing the interface conditions expressed by (18) , im-

osed at �I , which are used to transfer information from the fluid

egion to the PEL. In dimensionless terms they read 

 1313 ε 13 (v ) = 

Ca 

εRe L 
ε 13 (u | F ) 

nd 

 3311 ε 11 (v ) + C 3333 ε 33 (v )−α33 Ca p| H =−Ca p| F + 

Ca 

εRe 
ε 33 (u | F ) , 

(27) 

ith the solid strain at the interface �I which is thus inversely

roportional to ε and directly proportional to Ca. In conclusion, the

eformation of the structure with ε and Ca displays a trend which

grees with expectations based on physical arguments. 
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Fig. 16. Maximum, along x ′ 1 and for x ′ 3 = 0 , of the displacement amplitudes, defined in Eq. (26) . For each ε two different values of Ca are shown. 

Fig. 17. Computational domain together with the boundary conditions employed. The interface between the PEL domain and the free fluid region is positioned at x 3 = 0 . 194 . 

The arrows represents the displacement field at a certain temporal instant. Image not to scale. 
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3 See “Editor Highlight” on the paper by Zampogna et al. (2016) , http://agupubs. 
4.2. Travelling waves 

Alongside the low-Re configuration just shown, a different case,

characterized by complex phenomena associated to turbulence, is

tested. This case, which stretches the limits of applicability of the

model equations, concerns vegetated aquatic flows, common in na-

ture and studied extensively in the past (e.g. Raupach and Shaw,

1982; De Langre, 2008; Ghisalberti and Nepf, 2009; Nepf, 2012 ).

A key point of the cited works consists in modelling the pres-

ence of the vegetation and its effect on the fluid flows. A very

common choice is to model the drag exerted by the canopy on

the fluid in the context of the mixing layer analogy ( Raupach and

Finnigan, 1996 ), introducing a fictitious drag coefficient in the

vegetated region. Papke and Battiato (2013) and Battiato and

Rubol (2014) have shown that a sufficiently dense canopy can be

approximated as a rigid homogeneous porous medium and mod-

elled by a generalized Darcy’s law, proposing a new strategy to an-

alyze these kinds of environmental flows. In this section we try to

make a further step forward by considering the canopy as a porous

and deformable (as opposed to rigid) medium, using the contin-

uum model, similarly to Hsieh and Shiu (2006) ; we note, however,

that the latter authors did not have knowledge of the effective co-

efficients of the model equations. The FPEL equations are here used

for a range of parameters beyond those which have led to the scal-

ings presented in Appendix A. In particular, vegetated flows have

typically large porosities and display significant fluid inertial ef-

o

ect. We proceed nonetheless, with the limitations well in mind

ut strong of the positive feedback which a similar approach (in

he simpler, rigid limit) has received 

3 . 

The experimental setup developed by Ghisalberti and

epf (2002) , meant to reproduce the behavior of oceanic seagrass

eadows, is considered. Artificial seagrass, with characteristics

imilar to the real one (blades made from a polyethylene film

ith ρs = 920 kg/m 

3 and Young’s modulus E = 3 . 0 × 10 8 Pa ), is

laced at the bottom of a flume and a unidirectional water flow is

enerated by gravity over and through the blades. The dimensions

f each blade are: thickness t = 10 −4 m, width w = 3 × 10 −3 m 

nd height h = 0 . 127 m ; the mean spacing between successive

lades is 0.023 m , yielding a porosity which exceeds 0.99. The

ydraulic diameter of the blades can be computed to be equal to

 . 94 × 10 −4 ; for the geometrical arrangement of cylindrical inclu-

ions considered here a porosity equal to that of the experimental

et up is realized when l = 8 . 6 × 10 −4 m . 

Several experimental configurations have been tested by

hisalberti and Nepf and, for certain parameters of the flow, the

nset of monami waves has been observed. In such cases the am-

litude of the wave and the vortex mechanics have been evalu-

ted. We focus on case B in Ghisalberti and Nepf (2002) for which

e L = ρ f Ū L/μ ∼ 3 . 6 × 10 4 , with Ū = 5 . 66 × 10 −2 m/s the water
nlinelibrary.wiley.com/hub/article/10.1002/2016WR018915/editor-highlight/ 

http://agupubs.onlinelibrary.wiley.com/hub/article/10.1002/2016WR018915/editor-highlight/
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Fig. 18. Horizontal and vertical components of the displacement vector (first two frames) and vector representation of the effective velocity (third frame) at the same 

temporal instant of Fig. 17 . Clockwise and counterclockwise vortices, centered at the interface between canopy and free fluid region, are sketched in red and blue to guide 

the eye. Figures not to scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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elocity above the vegetated layer. The measured dimensional pe-

iod of the monami is 224 s for a wavelength of 2 L = 1 . 31 m (giv-

ng a phase speed slightly smaller than Ū ). With these data we

ave ε = l/L = 1 . 32 × 10 −3 and the velocity through the canopy is

 = 6 . 53 × 10 −3 m/s, yielding a microscopic Reynolds number of

rder one, so that the theory - as developed here - is formally not

pplicable. 

It is however interesting to see whether a complex motion, such

s a monami wave, shows up in the displacement field of the

oroelastic medium and how the disturbance through the canopy

an propagate. For our purposes it is not necessary to consider the

acroscopic fluid-structure interaction problem, described previ-

usly by the introduction of conditions (18), (19) and (20) and we

hus simulate only the poroelastic domain. The PEL model is solved

ver a rectangular elongated computational box of 7.2 m × 0.127 m ,

orresponding to the whole vegetated region in the recirculating

ume of Ghisalberti and Nepf (2002) . The flow field is assumed

o undergo the observed monami effect, and this is borne by the

onditions imposed at the upper boundary of the computational

ox. The complete set of boundary conditions used in the compu-

ational configuration are summarized in Fig. 17 together with a

napshot in time of the displacement field; they are: 

• a Neumann inlet-outlet condition for the displacement of the

homogeneous structure at the vertical boundaries of the do-

main 

∂v 1 
∂x ′ 

1 

= 

∂v 3 
∂x ′ 

1 

= 0 ; (28) 

• a Neumann inlet-outlet condition for the horizontal fluid veloc-

ity at the vertical boundaries of the domain; in terms of pres-

sure, this means 

∂ 2 p 

∂ x ′ 2 1 

= 0 ; (29) 

• a Dirichlet condition to force to zero the displacement at the

bottom of the flume, 
v 1 = v 3 = 0 ; (30) p  
• a Neumann condition for the normal stresses at �I 

∂ 2 v 1 
∂ x ′ 2 3 

= 

∂ 2 v 3 
∂ x ′ 2 3 

= 0 ; (31) 

• the horizontal and vertical velocities are travelling waves and

this can be achieved by imposing the following conditions for

the pressure at �I : 

p = −α cos (kx ′ 1 − ωt) (32) 

and 

K 33 
∂ 2 p 

∂ x ′ 2 3 

− K 11 k 
2 p = 

θ

ε2 Re L 
( 
∂ ̇ v 1 
∂ x ′ 1 

+ 

∂ ̇ v 3 
∂ x ′ 3 

) . (33)

Eq. (33) is necessary to satisfy continuity at �I and can be de-

uced by substituting Eq. (32) into Eq. (17) and taking the diver-

ence. The parameters k and ω are known from the experiments

nd, in dimensionless form, are k = π and ω = 2 . 02 . The am-

litude α = 10 is chosen in order for the velocity to be of the

rder of that measured within the canopy. The remaining impor-

ant parameter which has to be set is the Cauchy number, which

s Ca = ρ f Ū 

2 /E = 1 . 07 × 10 −8 . 

We already know from Hoffmann et al. (2004) that the mi-

roscopic inclusions must be connected along all directions for a

ollective movement of the PEL to arise. We thus consider linked

tructures, as done in the previous section, with r c /r = 0 . 4 , de-

pite the absence in the real physical problem of such connec-

ions. To use a structure as close as possible to that of the ex-

eriments, we take the values for the effective tensors valid for

he case of linked cylinders, with porosity θ = 0 . 99 . The corre-

ponding values of C i jkl and αij are available from Fig. 9 , while

 11 = 0 . 15 and K 33 = 0 . 18 ( Zampogna and Bottaro, 2016 ). Trav-

lling vortical structures arise in both velocity and displacement

elds. Fig. 17 shows that the periodicity of the vortices 2 π/k = 2 ,

imposed as a pressure condition at �I , is maintained by the dis-

lacement field, which is perfectly synchronized with the motion

f the fluid (compare Fig. 17 and the third frame of Fig. 18 ). The

ow vortices, as observed by Ghisalberti and Nepf (2002) , are ap-

roximately elliptical in cross-section and expand in the whole
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V PEL . A snapshot of the displacement field within the whole PEL

is displayed in the top two frames of Fig. 18 . 

In the experiments, the maximum deflection of the canopy is

about 10% of its height, while our poroelastic medium shows a

maximum horizontal displacement which is about half, for the

same structural stiffness. This is probably related to the parame-

ters of the experiments, to the different solid skeletons present in

the two configurations (blades versus connected cylinders) and to

the use of a theory based on linear elastic equations. Future work

should address the issue of large deformations by the use of non-

linear poroelasticity since, as recently shown by Minn et al. (2016) ,

the errors committed using a theory based on linear poroelastic-

ity in phenomena where the kinematics of the solid skeleton is

affected by nonlinearities can be very significant. For the time be-

ing we must thus satisfy ourselves with the qualitative agreement

observed. 

5. Concluding remarks 

The present work describes a model to study the interactions

between a fluid and a poroelastic layer, in the linear elasticity limit.

The paper completes the work by L ̄acis et al. (2017) , where the

Stokes limit was treated and validated, by addressing macroscopic

configurations for which inertia in the free-fluid region is not neg-

ligible. The equations posed here are based on two nested points

of view: a microscopic and a macroscopic one. From the coupling

of these two points of view significial physical quantities arise: the

effective elasticity tensor C i jkl and the permeability tensor K i j . Oth-

ers quantities found, the effective fluid volume fraction, αij and the

bulk compliance of the solid skeleton, β , describe mainly the varia-

tion of porosity due to the deformation of the microscopic skeleton

and its compressibility. 

The detailed parametric study performed for the microscale

problems points to a behavior coherent with fundamentals princi-

ples of solid mechanics. The symmetries of the effective elasticity

tensor are respected on the basis of the classification of the type

of material chosen and on the shape of the skeleton ( Cowin, 2013 ).

The values of C i jkl for non-porous ( θ = 0 ) materials are recov-

ered. Since the only restrictions required for the type of material

and for its shape are weak compressibility and connectivity of the

skeleton in each direction, the model could be used, in the limit of

small deformations, for a reasonably wide range of materials. 

This work is but a first step in the development of a complete

theory capable to address the macroscopic interactions between a

fluid region and a poroelastic medium saturated by a fluid. The

main achievement has been that of providing a complete char-

acterization of the microscopic tensors needed for the successive

macroscopic study. Two large-scale configurations have been con-

sidered and have provided a first test of the theory under par-

ticularly straining conditions, considering that the analysis carried

out leads to equations which are formally valid only for micro-

scopic Reynolds numbers of order ε or smaller. The applications

examined – though interesting in their own right – permit to test

the equations without representing yet a validation of the model.

Hopefully, this work will stimulate future experimental activities

with poroelastic materials under conditions for which the hypothe-

ses of the present theory are satisfied. This should not be too dif-

ficult, even at large Reynolds numbers, provided the poroelastic

medium is characterized by a microscale l sufficiently small. 

Appendix A. Development of the interior model 

We describe here the mathematical foundations of the contin-

uum model formed by Eqs. (10) and (17) supplied with the mi-

croscopic problems (11) and (16) . The homogenization technique

is applied to (2), (5) and (6) , with Eq. (8) as microscopic interface
ondition between the two phases. The approach follows that out-

ined by Mei and Vernescu (2010) for the case of quasi-static poroe-

asticity. 

1. Scaling relations 

First of all, we need to understand the order (in ε) of each

erm in the dimensional governing equations. If U , V and T S are

he fluid velocity, solid displacement and solid time scales, respec-

ively, from Eq. (8) it is: 

 ∼ V 
T S 

. (A.1)

e use Young’s modulus of elasticity, E , to scale the elastic tensor

nd denote by P the pressure scale. If we assume that macroscopic

olid stresses in the poroelastic medium are balanced by fluid pres-

ure (cf. Mei and Vernescu, 2010 ), we have 

 

P l 2 

μL 2 
T S ∼ P, (A.2)

rovided that macroscopic pressure forces are equilibrated by mi-

roscopic viscous dissipation i.e. 

P 

L 
∼ μU 

l 2 
. (A.3)

hus, the solid time scale can be chosen as 

 S = ε−2 μ

E 
. (A.4)

urthermore, from (2) we define T S so that 

ρs 

T 2 
S 

= 

E 

L 2 
, (A.5)

rovided that solid inertia is of comparable magnitude as the solid

tress over the macroscale. Combining Eqs. (A .4) and (A .5) we ob-

ain: 

−2 = 

ρs El 2 

μ2 
. (A.6)

elation (A.3) implies that the fluid velocity scale can be written

s 

 = ε
P l 

μ
. (A.7)

sing this last equation together with Eqs. (A.1) and (A.4) we can

efine the solid displacement scale: 

 = ε
P L 2 

El 
= 

P L 

E 
. (A.8)

We are now ready to introduce the relations between the di-

ensional and dimensionless variables (the latter without hat); in

rinciple, two adimensional times can be introduced, one for the

uid, t f = U ̂

 t /l, and one for the solid, with t s = ε2 E ̂ t /μ . Further-

ore: 

ˆ 
 = lx , ˆ p = P p, ˆ u = ε

P l 

μ
u , ˆ v = 

P L 

E 
v . (A.9)

ubstituting these definitions in the momentum equation for the

uid phase we have: 

Re 

(
∂u i 

∂t f 
+ u j 

∂u i 

∂x j 

)
= − ∂ p 

∂x i 
+ 2 ε

∂ε i j (u ) 

∂x j 
, (A.10)

here Re = (ρ f Ul) /μ . Applying the same procedure to the equa-

ion for the solid we obtain: 

2 ∂ 
2 v i 

∂t 2 s 

= 

∂σi j 

∂x j 
on V s . (A.11)
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he boundary condition on the normal stresses becomes: 

p n i + 2 ε ε i j (u ) n j = 

[ 
1 

ε
C i jkl ε kl (v ) 

] 
n j on �. (A.12)

he continuity equation for the fluid (6) , the boundary condition

8) and V -periodicity remain unchanged. 

2. Multiple scales analysis 

At this point we can perform a multiple scale expansion recall-

ng the fast and slow variables, x and x ′ = εx , respectively, and

he expansions 

f = f (0) + ε f (1) + ε2 f (2) + . . . where f = { u i , v i , p, �i j , σi j } . 
(A.13) 

oreover, we note that the strain tensor (for either the solid or the

uid) becomes 

 i j + εε ′ i j (A.14) 

here 

 i j (w ) = 

1 

2 

(
∂w i 

∂x j 
+ 

∂w j 

∂x i 

)
(A.15) 

nd 

 

′ 
i j (w ) = 

1 

2 

(
∂w i 

∂x ′ 
j 

+ 

∂w j 

∂x ′ 
i 

)
. (A.16)

3. Small Reynolds number 

Using Eqs. (A.13) and (A.14) , and assuming that the microscale

eynolds number, Re, is O(ε) , we obtain at orders 0 and 1 in ε
he following system for the fluid: 

∂u 

(0) 
i 

∂x i 
= 0 , (A.17) 

∂u 

(1) 
i 

∂x i 
+ 

∂u 

(0) 
i 

∂x ′ 
i 

= 0 , (A.18)

 = −∂ p (0) 

∂x i 
, (A.19) 

 = 

∂�(0) 
i j 

∂x ′ 
j 

+ 

∂�(1) 
i j 

∂x j 
= −∂ p (1) 

∂x i 
− ∂ p (0) 

∂x ′ 
i 

+ 

∂ 2 u 

(0) 
i 

∂ x j ∂ x j 
, (A.20)

n V f , and for the solid at order 0, 1 and 2: 

∂σ (0) 
i j 

∂x j 
= 0 , (A.21) 

 = 

∂σ (1) 
i j 

∂x j 
+ 

∂σ (0) 
i j 

∂x ′ 
j 

, (A.22) 

∂ 2 v (0) 
i 

∂t 2 s 

= 

∂σ (2) 
i j 

∂x j 
+ 

∂σ (1) 
i j 

∂x ′ 
j 

, (A.23) 

n V s , plus the boundary conditions on �: 

 

(0) 
i 

= 

∂v (0) 
i 

∂t s 
, (A.24) 

 

(1) 
i 

= 

∂v (1) 
i 

∂t s 
, (A.25) 

(0) 
i j 

n j = 0 , (A.26) 
(1) 
i j 

n j = �(0) 
i j 

n j = −p (0) n i , (A.27)

(2) 
i j 

n j = �(1) 
i j 

n j . (A.28) 

t is useful to specify the form of the tensors σ and � at the two

eading powers in ε: 

(0) 
i j 

= C i jkl (ε kl (v (0) )) , (A.29)

(1) 
i j 

= C i jkl (ε kl (v (1) )) + C i jkl (ε 
′ 
kl (v (0) )) , (A.30)

(0) 
i j 

= −p (0) δi j , (A.31) 

(1) 
i j 

= −p (1) δi j + 2 ε i j (u 

(0) ) . (A.32)

e now observe that, from Eq. (A.19) , the pressure at leading order

s independent of the microscale, i.e. p (0) = p (0) ( x ′ , t f ) ; the system

ormed by (A.21) and (A.26) implies that 

(0) 
i j 

= 0 ∀ i, j i.e. C i jkl (ε kl (v (0) )) = 0 ∀ i, j, (A.33)

nd from this we have 

 kl (v (0) ) = 0 ∀ k, l (A.34)

hich implies that also the solid displacement at leading order is

ot a function of the microscale, i.e. v (0) = v (0) ( x ′ , t s ) . 

4. The effective elasticity tensor 

Coupling the O(ε) solid momentum Eq. (A.22) with the bound-

ry condition (A.27) we obtain a system which, using (A.30) and

A.33) , can be rewritten in the following way: 

∂ 

∂x j 

{
C i jkl 

[
ε kl (v (1) ) + ε ′ kl (v (0) ) 

]}
= 0 on V s , (A.35) 

C i jkl 

[
ε kl (v (1) ) + ε ′ kl (v (0) ) 

]}
n j = −p (0) n i on �, (A.36)

lus V -periodicity. Since the system above is a linear differential

quation for v (1) forced by v (0) and p (0) , we formally express v (1) in

erms of v (0) and p (0) : 

 i 
(1) (x , x 

′ , t s ) = χ pq 
i 

(x ) ε ′ pq (v (0) )(x 

′ , t s ) − ηi (x ) p (0) (x 

′ , t s ) on V s , 

(A.37) 

here χ is a third order tensor and η a vector. The fluid pres-

ure at the leading order p (0) can be formally expressed as a func-

ion of t s , related to t f on account of t f = ε−2 
ρ f 

ρs 

Ca 

Re 
t s . Substituting

A.37) into (A.35) and (A.36) we have: 

∂ 

∂x j 

{
C i jkl 

[
ε kl ( χ

pq ) ε ′ pq (v (0) ) 
]

− C i jkl 

[
ε kl ( η) p (0) 

]
+ 

+ C i jkl 

[
ε ′ kl (v (0) ) 

]}
= 0 on V s , (A.38) 

C i jkl 

[
ε kl ( χ

pq ) ε ′ pq (v (0) ) 
]

− C i jkl 

[
ε kl ( η) p (0) 

]
+ 

+ C i jkl 

[
ε ′ kl (v (0) ) 

]}
n j = −p (0) n i on �. (A.39) 

 solution of this system can be found by solving the two systems

n (11) . The averaging operator in Eq. (9) can be written in adimen-

ional form as 

 f p 〉 = 

1 

| V | 
∫ 

V p 

f p dV, (A.40)

here the function f p is defined on V p and the subscript p means

ither the fluid ( f ) or the solid ( s ) phase. From this moment on
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we will not distinguish between the solid or fluid phase averaging

unless the distinction is ambiguous. Our target is to deduce a set

of equations to determine the solution up to order ε. In order to

do this we can take the solid-phase average to express the solid

stress: 

〈 σ (1) 
i j 

〉 = 

= 〈 C i jkl ε kl (v (1) ) 〉 + 〈 C i jkl 〉 ε ′ kl (v (0) ) = 

= 

[〈 C i jkl ε kl ( χ
pq ) 〉 + 〈 C i jkl 〉 δkp δlq 

]
ε ′ pq (v (0) ) 

−〈 C i jkl ε kl ( η) 〉 p (0) = 

= C i jpq ε 
′ 
pq (v (0) ) − 〈 C i jkl ε kl ( η) 〉 p (0) , (A.41)

where C i jpq is given in (12) . 

A5. Momentum balance for the composite 

Eq. (A.41) is the macroscale Hooke’s law in the solid phase

forced by the fluid pressure. To deduce the momentum equation

for the composite we can define a new tensor 

T i j = 

{
�i j on V f 

ε−1 σi j on V s . 
(A.42)

where σ is divided by ε because we take into account the scal-

ing relation (A.12) between σ and �. It is useful at this point, to

compute the average of T (0) 
i j 

, i.e. 〈 T (0) 
i j 

〉 = 

∫ 
V T 

(0) 
i j 

dV/ | V | : 

〈 T (0) 
i j 

〉 = 〈 σ (1) 
i j 

〉 + 〈 �(0) 
i j 

〉 = 〈 σ (1) 
i j 

〉 − θ p (0) δi j = 

= 

[〈 C i jkl ε kl ( χ
pq ) 〉 + 〈 C i jkl 〉 δkp δlq 

]
ε ′ pq (v (0) ) 

−(〈 C i jkl ε kl ( η) 〉 + θδi j ) p 
(0) = 

= C i jpq ε 
′ 
pq (v (0) ) − α′ 

i j p 
(0) , (A.43)

where α′ 
i j 

is defined by 

α′ 
i j = θδi j + 〈 C i jkl ε kl ( η) 〉 . (A.44)

Adding the averages of (A.20) and (A.23) we get 

〈 ∂ 
2 v (0) 

i 

∂t 2 s 

〉 = 〈 ∂T (0) 
i j 

∂x ′ 
j 

〉 + 〈 ∂�(1) 
i j 

∂x j 
〉 + 〈 ∂σ (2) 

i j 

∂x j 
〉 . (A.45)

Observing that we can exchange integral and derivative only if the

integration domain and variables do not depend on the differenti-

ation variable, we obtain 

(1 − θ ) 
∂ 2 v (0) 

i 

∂t 2 s 

= 

∂〈 T (0) 
i j 

〉 
∂x ′ 

j 

+ 

1 

| V | 
∫ 

V f 

∂�(1) 
i j 

∂x j 
d V + 

1 

| V | 
∫ 

V s 

∂σ (2) 
i j 

∂x j 
d V, 

which, using Gauss theorem, becomes 

(1 − θ ) 
∂ 2 v (0) 

i 

∂t 2 s 

= 

∂〈 T (0) 
i j 

〉 
∂x ′ 

j 

+ 

1 

| V | 
∫ 
�

(
σ (2) 

i j 
− �(1) 

i j 

)
n j d�. (A.46)

The last integral in the equation above is zero by the boundary

condition (A.28) , so that the average momentum balance of the

composite can be rewritten as 

(1 − θ ) 
∂ 2 v (0) 

i 

∂t 2 s 

= 

∂ 

∂x ′ 
j 

[
C i jpq ε 

′ 
pq (v (0) ) − α′ 

i j p 
(0) 

]
. (A.47)

The solution of Eq. (A.47) can be addressed after that of the equa-

tions for χ and η which yield C i jkl . 
6. Continuity equation for the composite 

Another equation is deduced using the continuity equation for

he fluid at order ε. Let us take the fluid-phase average of (A.18) :

 

∂u 

(0) 
i 

∂x ′ 
i 

〉 = − 1 

| V | 
∫ 

V f 

∂u 

(1) 
i 

∂x i 
dV. (A.48)

s before we can exchange derivative and integral; using Gauss

heorem, we obtain that the equation above is equivalent to 

∂〈 u 

(0) 
i 

〉 
∂x ′ 

i 

= 

1 

| V | 
∫ 
�

u 

(1) 
i 

n i d� = 

1 

| V | 
∫ 
�

∂v (1) 
i 

∂t s 
n i d�

= 

1 

| V | 
∫ 

V s 

∂ 

∂x i 

∂v (1) 
i 

∂t s 
dV = 〈 ∂ 

∂x i 

∂v (1) 
i 

∂t s 
〉 , (A.49)

y the boundary condition (A.25) . Eq. (A.37) tells us that 

 

∂ 

∂x i 

∂v (1) 
i 

∂t s 
〉 = 〈 ∂ 

∂x i 

∂ 

∂t s 

[
χ pq 

i 
(x ) ε ′ pq (v (0) )(x 

′ , t s ) −ηi (x ) p (0) (x 

′ , t s ) 
]〉 

= 〈 ∂ 
∂x i 

χ pq 
i 

(x ) ε ′ pq 

(
∂v (0) 

∂t s 

)
(x 

′ , t s ) 〉 

−〈 ∂ 
∂x i 

ηi (x ) 
∂ p (0) 

∂t s 
(x 

′ , t s ) 〉 = 

= 〈 ∂χ pq 
i 

∂x i 
〉 ε ′ pq 

(
∂v (0) 

∂t s 

)
− 〈 ∂ηi 

∂x i 
〉 ∂ p (0) 

∂t s 
. (A.50)

he only time variable present is relative to the solid, i.e. t s = ̂

 t /T S , 

ith T S = 

ρS l 
2 

μ . Substituting the equation above in (A.49) we obtain

 relation between the solid stress and the pressure: 

∂〈 u 

(0) 
i 

〉 
∂x ′ 

i 

= 〈 ∂χ pq 
i 

∂x i 
〉 ε ′ pq 

(
∂v (0) 

∂t s 

)
− 〈 ∂ηi 

∂x i 
〉 ∂ p (0) 

∂t s 
. (A.51)

lso this equation can be solved, once we know χ and η. 

7. Momentum equation for the effective flow 

In order to obtain a momentum equation for the fluid phase we

onsider the problem formed by (A .17), (A .20) , the boundary con-

ition (A.24) plus periodicity over V . This problem can be viewed

s a Stokes problem for u 

(0) and p (1) forced by the gradient of p (0) 

nd by ∂v (0) 
j 

/ ∂t s , quantities defined only over the macroscale x ′ ,
o that the most general solution takes the form: 

 

(0) 
i 

= −K i j 

∂ p (0) 

∂x ′ 
j 

+ H i j 

∂v (0) 
j 

∂t s 
and p (1) = −A j 

∂ p (0) 

∂x ′ 
j 

+ B j 

∂v (0) 
j 

∂t s 
. 

(A.52)

ubstituting into Eqs. (A.17) , (A.20) and (A.24) we obtain 

∂H i j 

∂x i 

∂v (0) 
j 

∂t s 
= 

∂K i j 

∂x i 

∂ p (0) 

∂x j 
, (A.53)

∂B j 

∂x i 
− ∂ 2 H i j 

∂ x k ∂ x k 

)
∂v (0) 

j 

∂t s 
= 

(
∂A j 

∂x i 
− δi j −

∂K i j 

∂ x k ∂ x k 

)
∂ p (0) 

∂x ′ 
j 

, (A.54)

nd 

H i j − δi j 

)∂v (0) 
j 

∂t s 
= K i j 

∂ p (0) 

∂x ′ 
j 

on �. (A.55)

 solution of this problem can be found imposing that left- and

ight-hand-sides of Eqs. (A.53) and (A.54) vanish, yielding two dif-

erent problems which must be solved in the unit cell over V f : 

∂A j 

∂x 
− ∂K i j 

∂ x ∂ x 
= δi j , 

∂K i j 

∂x 
= 0 , K i j = 0 on �, (A.56)
i k k i 
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nd 

∂B j 

∂x i 
− ∂H i j 

∂ x k ∂ x k 
= 0 , 

∂H i j 

∂x i 
= 0 , H i j = δi j on �. (A.57)

n order to guarantee unicity of the solution, since only the gradi-

nts of A j and B j appear in (A.56) and (A.57) , we impose 〈 A j 〉 = 0

and 〈 B j 〉 = 0 . The solution of (A.57) is simply H i j = δi j ; the vol-

me average of K ij and H ij , denoted, respectively, as K i j and H i j 

re: 

 i j = 〈 K i j 〉 and H i j = 〈 H i j 〉 = θδi j . (A.58)

inally, the volume average of Eq. (A.52) for the fluid phase is 

 u 

(0) 
i 

〉 − θ
∂v (0) 

i 

∂t s 
= −K i j 

∂ p (0) 

∂x ′ 
j 

, (A.59)

 p (1) 〉 = −A j 

∂ p (0) 

∂x ′ 
j 

+ B j 

∂v (0) 
j 

∂t s 
. (A.60)

q. (A.59) is Darcy’s law for the unknown 〈 u (0) 
i 

〉 − θ∂v (0) 
i 

/ ∂t s , 

hich is the average velocity of the fluid relative to the solid. 

8. Adimensionalizing the equations with fluid-related scales 

Re-normalizing length and displacement with respect to L , pres-

ure with respect to ρ f Ū 

2 , time with respect to L/ ̄U , where Ū is

he macroscopic velocity scale in the free-fluid region, we obtain

hree fundamentals equations, i.e. 

-the first equation of system (10) ; 

-the following equation 

∂〈 u 

(0) 
i 

〉 
∂x ′ 

i 

= 〈 ∂χ pq 
i 

∂x i 
〉 ε ′ pq ( ̇ v 

(0) ) − 〈 ∂ηi 

∂x i 
〉 Ca ˙ p (0) ; (A.61)

- Eq. (17) ; 

 dot over a variable denotes differentiation with respect to the

nly dimensionless time variable present. Substituting (17) into

A.61) and using the definition (13) , we obtain the second equa-

ion of system (10) . 

ppendix B. The interface conditions 

In order to find the effective interface coefficients defined in

21) and (22) , microscopic problems must be solved within the

nterface cell introduced in Section 3.2 . The main idea to deduce

hese problems, which is explained in L ̄acis and Bagheri (2016) and

n L ̄acis et al. (2017) for both rigid and elastic porous media, is to

erform a multiple scale expansion of the physical quantities above

denoted with ·+ ) and below ( ·− ) the macroscopic interface �I 

nd match the two solutions. The coefficients and the respective

roblems derived using this procedure are given below. The mi-

roscopic permeability tensor ˜ K 

±
i j 

and the vector A 

±
j 

solve 

∂A 

+ 
j 

∂x i 
−

∂ ̃  K 

+ 
i j 

∂ x k ∂ x k 
= 0 , 

∂ ̃  K 

+ 
i j 

∂x i 
= 0 , (B.1) 

∂A 

−
j 

∂x i 
−

∂ ̃  K 

−
i j 

∂ x k ∂ x k 
= δi j , 

∂ ̃  K 

−
i j 

∂x i 
= 0 , 

˜ K 

−
i j 

= 

˜ K 

+ 
i j 

on �I ( 

−A 

−
k 
δi j + 

∂ ̃  K 

−
ik 

∂x j 
+ 

∂ ̃  K 

−
jk 

∂x i 

) 

n j = 

( 

−A 

+ 
k 
δi j + 

∂ ̃  K 

+ 
ik 

∂x j 
+ 

∂ ̃  K 

+ 
jk 

∂x i 

) 

n j on �I , 

(B.2) 
here, in contrast to the previous problem, instead of surface forc-

ng on the boundaries of the solid material, now we have volume

orcing in the whole fluid volume within the microscopic cell at

he interface. Finally, the interface problem for the slip tensor L ±
i jk 

nd the tensor P ±
i j 

is 

∂P + 
jk 

∂x i 
−

∂L + 
i jk 

∂ x n ∂ x n 
= 0 , 

∂L + 
i jk 

∂x i 
= 0 , (B.3) 

∂P −
jk 

∂x i 
−

∂L −
i jk 

∂ x n ∂ x n 
= 0 , 

∂L −
i jk 

∂x i 
= 0 , 

L −
i jk 

= L + 
i jk 

on �I (
−P −

kl 
δi j + 

∂L −
ikl 

∂x j 
+ 

∂L −
jkl 

∂x i 

)
n j = 

(
−P + 

kl 
δi j + 

∂L + 
ikl 

∂x j 
+ 

∂L + 
jkl 

∂x i 

)
n j 

+ δik n l on �I , (B.4) 

here we have again a surface forcing, which this time is located

t the interface between the poroelastic medium and the free fluid,

xpressed as a stress jump between these two different domains.

nce these quantities are calculated, they are rendered macro-

copic via Eqs. (21) and (22) and are used in the macroscopic in-

erface condition (20) . 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ijmultiphaseflow.2018.

9.006 
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