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Abstract  A new boundary condition at a plane, 
fictitious wall, meant to simulate the presence of 
small-scale streamwise-aligned riblets is outlined 
and tested. The need for an approach which extends 
beyond the viscous regime stems from the high cost 
of numerically resolving microscopic flow details 
within micro-ribs, and from the desire to rapidly opti-
mize a variety of wall textures. A multiscale homog-
enization technique which accounts for advection is 
coupled to a synthetic vortex model which mimics the 
transverse flow in the near-wall region. The proposed 
wall model captures the non-monotonic behavior of 
the skin-friction drag over ribleted surfaces with the 
increase in �+ (the pitch distance measured in viscous 
units), including the performance degradation and the 
eventual drag increase beyond some �+ threshold.

Keywords  Riblets · Asymptotic homogenization · 
Navier slip · Surface transpiration

1  Introduction

Riblets are streamwise-aligned microscopic grooves 
designed on surfaces to reduce skin friction. These 
tiny structures mimic the natural design of dermal 
denticles in the skin of sharks, whose unique texture 
inspired the development of riblets for use in fluid 
dynamics [1]. The history of riblet research dates 
back several decades, when Walsh and collabora-
tors [2–4] documented early NASA experiments that 
indicated drag reductions on aircraft surfaces when 
riblets were applied, highlighting their potential for 
wide-scale use in commercial and military aviation. 
More recent studies [5] have shown that, once prop-
erly designed, riblets can reduce drag by up to 10%, 
making them a significant approach to pursue when 
fuel efficiency and speed are critical. In the aero-
nautical sector, riblets have been tested on aircraft 
fuselages, wings, and turbine blades. The ability to 
reduce drag can lead to substantial fuel savings over 
long flights, translating to lower operational costs 
and reduced environmental impact due to decreased 
carbon emissions. The reduction in fuel consumption 
is particularly crucial in the aviation industry, where 
even small improvements in aerodynamics can lead to 
massive cost savings.

In the maritime sector, riblets can be applied to 
the hulls of ships and submarines to reduce drag and 
enhance fuel efficiency. As in aeronautics, reduced 
drag in marine environments means that less energy 
is required to propel vessels through water, leading 
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to cost savings in fuel and higher speeds. The 1987 
America’s Cup yacht Stars & Stripes is perhaps the 
most famous example of the effectiveness of riblets 
in marine applications [6]; ongoing research in this 
field continues to explore their potential for commer-
cial shipping and naval vessels, including the possi-
ble application that consists in impregnating riblets or 
riblet-like microstructures with a lubricant liquid [7].

Riblets can be fabricated using various tech-
niques, including microfabrication, laser etching, 
and 3D printing [8], allowing engineers to create 
precise patterns that are tailored to specific applica-
tions. The scale of the riblets and the spacing 
between them must be carefully designed to match 
the size of the turbulent eddies that they are 
intended to control. Too large or too small riblets 
will fail to deliver the expected benefits, making the 
design process a critical aspect of their application. 
Probably, the most exhaustive set of experimental 
results for riblets is due to Bechert et al. [5]; differ-
ent types of riblets (sawtooth, scalloped, blade and 
trapezoidal riblets, adjustable slits and ribs) of dif-
ferent spanwise wavelengths were tested in the Ber-
lin zero-pressure gradient oil channel, measuring 
shear stress with both a high-accuracy balance and a 
Preston tube. The results were reported in terms of 
DR = Δ�w∕�w0

≈ ΔCf∕Cf0
 ( �w is the wall shear 

stress and Cf  is the skin friction coefficient, 

Cf =
2 𝜏w

𝜌û2
bulk

 , with ûbulk the outer/bulk speed and � the 

density of the fluid; subscript “0" denotes a smooth-
wall value) versus the spanwise spacing of the rib-
lets, �+ = � u�∕� ( u� is the friction velocity and � is 
the kinematic viscosity of the fluid), demonstrating 
the existence of a viscous regime for very closely 
spaced ribs with a linear reduction in skin friction, a 
subsequent peak in drag reduction, followed by an 
increase of the DR parameter which turns into a 
drag penalty for �+ exceeding a value of the order 
of 30. The viscous regime (for �+ less than 5 ÷ 10, 
depending on the geometry of the riblets) is well 
described by the Stokes-based theory from Luchini 
et  al. [9]. They proved that riblets offer a greater 
resistance to transverse flow than they do to the 
streamwise motion, and were able to characterize 
this different resistance quantitatively in terms of a 
longitudinal and a spanwise slip length, �x and �z 
respectively. Luchini el al. [9] argued also that, 

since the two slip lengths simply measure distances 
from the riblet tips (which represent but an arbitrary 
origin of the y axis), they hold no particular role in 
relation to the macroscopic flow. Any physically 
significant quantity cannot depend on the choice of 
the origin, whereas the same does not hold for the 
difference between the two slip lengths, 
Δ� = �x − �z . This was confirmed later by Luchini 
[10] and Jiménez [11], who were able to derive an 
expression for DR, i.e.

with ΔU+ the log-layer velocity difference (assumed 
positive when skin friction drag is reduced) and � von 
Kármán’s constant. The constant �0 depends on the 
riblets’ shape and periodicity; it was reported to be 
approximately equal to 0.66 by Jiménez [11], 0.785 
by Bechert et  al. [5] and 1 by Luchini [10]. In par-
ticular, Luchini argued that the equality ΔU+ = Δ�+ 
stems from the rigid upwards displacement of the ori-
gin of the mean turbulent flow profile, in the presence 
of riblets, for the increase in mean streamwise veloc-
ity to match the vertical displacement. This argument 
ceases to apply beyond the viscous regime, for �+ 
above a value of about ten.

The breakdown of the viscous regime, the pres-
ence of a peak in drag reduction for any given riblet 
shape and the subsequent deterioration in perfor-
mance with the increase of �+ , is less-well under-
stood, although the first half of Eq. (1), which stems 
directly from Prandtl’s skin friction law, is believed 
to maintain its validity for as long as the logarith-
mic region exists, i.e. as long as Townsend similar-
ity hypothesis holds. An enticing analysis on the 
effect of advection on the drag-reduction breakdown 
has been put forward by Goldstein and Tuan [12]. 
Through direct numerical simulations of turbulence 
next to a solid surface with scalloped riblets, they 
showed that, as the spanwise periodicity of the 
micro-structures increases, the ability of the ribs’ 
lateral walls to damp crossflow fluctuations is ham-
pered, favouring the formation of secondary stream-
wise vortices through and above the ribs, increased 
vertical mixing and drag. Similar secondary pairs 

(1)

Cf − Cf0

Cf0

= −
ΔU+

(2Cf0
)−1∕2 + (2 �)−1

= −
�0 Δ�

+

(2Cf0
)−1∕2 + (2 �)−1

,
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of counter-rotating vortices were identified later 
also by Endrikat [13]. These observations motivate 
the present study, which aims to model advection 
above the grooves with a homogenization approach 
inspired by that of Luchini et al. [9], with the inclu-
sion, however, of a zero-net-mass-flux transpiration 
boundary condition at a virtual surface positioned 
right above the riblets’ tips.

The particular upscaling technique employed here 
goes by the name of adjoint homogenization [14] and 
allows inclusion of advection, a crucial ingredient 
when the periodicity of the wall texture is sufficiently 
large. Several studies have appeared in the litera-
ture in recent years, aimed at modeling the effect of 
micro-patterned walls on the overlying flow [15–20]. 
All previous studies, except for the very recent one by 
Ahmed and Bottaro [21], do not account for advec-
tion, not even in an approximate manner. The purpose 
of this work is to provide a fresh look at the theory, 
extending the concept of slip lengths (and interface 
permeability coefficients) by accounting for near-wall 
streamwise vortex structures. A similar attempt has 
been made recently by Wong et al. [22]; similarities 
and differences will be discussed in the following.

2 � The upscaling approach

This section is dedicated to providing the details of 
the derivation of effective boundary conditions at 
the fictitious interface between a channel flow and a 
regularly microstructured wall. The multiple-scale, 
homogenization procedure builds upon the work by 
Bottaro & Naqvi [20], although it eventually differs 
in two respects: 

1.	 Since turbulence is the object of the investiga-
tion, the expansion parameter does not use the 
channel thickness as macroscopic length scale 
but a length proportional to the viscous wall unit, 
�∕u� , on the assumption that the turbulent motion 
outside of the roughness sublayer is independ-
ent of roughness’ shape and distribution. This 
hypothesis, which goes by the name of Townsend 
wall-similarity, loses validity when the roughness 
elements extend their effect into the outer layer, 
with consequent destruction of a significant por-
tion of the log-law region [11].

2.	 In the model developed the convective terms of 
the Navier–Stokes equations remain at leading 
order when the equations are expanded in terms 
of a small parameter � = �∕L , with � the micro-
scale; this permits consideration of near-wall 
advection, which is expected to play a significant 
role when the riblets’ periodicity, � , exceeds a 
value of about 10 viscous units. This upscaled 
model of wall irregularities differs from all those 
described in recent papers [14–22].

Section  2.1 of the paper starts with a discussion of 
the scales adopted, followed by normalization of the 
equations in the two domains considered, the inner, 
or near-wall, domain, and the outer, or bulk, domain. 
After identifying a small perturbation parameter, 
� , the expansion of the inner variables is performed 
and the inner-outer matching explained. The adjoint 
homogenization procedure [14] for the inner prob-
lem at leading order is outlined in Sect.  2.4, allow-
ing to close the inner-outer matching at the boundary 
of the two domains. The important issue of the tran-
spiration velocity at the fictitious boundary at Y = 0 
is then addressed (Sect. 2.5); even if such velocity is 
formally of smaller order compared to the wall-par-
allel components, it plays an important role in turbu-
lence near a rough wall, as demonstrated in a number 
of studies [23–25]. The most original contribution of 
the present paper is presented in Sect.  2.6, where it 
is assumed that the adjoint field develops on top of 
a streamwise-homogeneous mean flow plus a longi-
tudinal vortex, function of the cross-stream coordi-
nates, of periodicity equal to that of the riblets. Our 
synthetic vortex is meant to model the average vor-
tex computed for the  flow over riblets by Goldstein 
and Tuan [12], Endrikat [13], and Modesti et al. [26]. 
Slip and wall permeability coefficients are found for 
this new model and used in direct simulations of the 
turbulent flow over blade riblets. The results, reported 
in Sect.  3.2, show that the new model outperforms 
previous wall models in predicting the drag reduction 
curve, even for relatively large riblets’ spacings.

2.1 � Governing equations, domain decomposition and 
scaling arguments

Let us consider a wall corrugated by regularly 
arranged, streamwise-aligned solid protrusions, with 
given periodicity in the spanwise direction, x̂3 = ẑ . 
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The other dimensional spatial variables are x̂1 = x̂ 
and x̂2 = ŷ . The longitudinal velocity component 
is denoted by û1 = û , the wall-normal component 
is û2 = v̂ and the spanwise velocity component is 
û3 = ŵ . We consider the turbulent flow in a chan-
nel of thickness 2H (cf. Fig. 1), driven by a constant 
streamwise pressure gradient 𝜕p̂∕𝜕x̂1 which balances 
the resistance at the solid walls; the bulk speed in the 
channel is denoted by ûbulk and a friction velocity can 
be defined as u� =

√
�w∕� , with �w the total stress at 

the wall and � the fluid density. In a turbulent channel 
flow the velocity profile is expected to behave linearly 
for small values of ŷ , with the streamwise component 
of the form:

with � the dynamic viscosity of the fluid. The con-
stant in Eq. (2) is related to the position chosen for 
the ŷ = 0 plane whenever the solid surface is micro-
textured; for a smooth wall the constant vanishes on 
account of the no-slip condition.

(2)û = ŷ
𝜏w

𝜇
+ constant,

It is now necessary to identify the physical length 
scales of the problem, in order to decide whether and 
when separation of scales is tenable. The need to esti-
mate the order of magnitudes of the different terms is 
compelling in view, in particular, of the recent criti-
cism to the use of multiscale theory on the ground 
that separation of scales holds only for very narrowly 
spaced riblets [22].

The microscopic characteristic length, �̃  , of the 
problem can be estimated by the effect that the micro-
structured surface exerts on the overlying coherent 
structures; quasi-streamwise vortices penetrate below 
the rim of the riblets by a distance roughly equal to the 
transverse slip length. It is known that, for a variety of 
wall textures, such a length is much smaller than the 
periodicity of the patterns, � ; just for the purpose of set-
ting ideas let us assume that �̃ ∼

�

𝛼
 , with � a number 

approximately equal to 15 (we will come back to this 
number later). The macroscopic scale, denoted by L̃ , is 
representative of the vortex size, i.e. typically 15 to 20 
units of length in viscous units [27, 28]. To set ideas, 

Fig. 1   Sketch of the problem under consideration, not to scale. 
In the left image, the surface delimited by the black dashed 
lines represents the virtual boundary where macroscopic, 
effective conditions are enforced. The dashed red surface 
defines the characteristic length scale �g of the riblets, whose 
spanwise periodicity is � . The image on the right illustrates the 

representative elementary volume (REV), colored in blue, used 
to extract the coefficients of the effective boundary conditions, 
together with a sketch to explain the appearance of a wall-nor-
mal velocity component at ŷ∞ (red arrow) arising out of span-
wise gradients of ŵ (and/or streamwise gradients of û)
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the scale L̃ is thus of order � �

u�
 , with � as before. The 

ratio between these two scales is thus

with the plus superscript used to denote variables nor-
malized in wall units and h the height of the riblets 
(cf. Fig. 1); the ratio �∕h is at the most equal to two in 
the present work so that its product with �−2 is ordi-
narily smaller than 10−2 . The quantity h+ = h u�∕� 
in Eq. (3) is the roughness Reynolds number whose 
value separates the flow regimes conventionally 
defined as hydrodynamically smooth ( h+ ≲ 5 ), tran-
sitional ( 5 ≲ h+ ≲ 70 ) and fully rough ( h+ ≳ 70 ). 
If we remain in the regime sometimes called lower 
transitionally rough [29], with h+ roughly below 15, 
the ratio �̃∕L̃ is bounded from above by approxi-
mately 0.1, an acceptably low value for multiple scale 
theory to hold. Under the conditions just stated, the 
periodicity �+ of the riblets should be limited to about 
30 viscous units. An a posteriori verification, based 
on direct numerical simulations using model inter-
face conditions and comparisons with experiments 
and texture-resolving turbulent simulations, will be 
needed to confirm that separation of scales is tenable 
up to �+ ≈ 30.

Let us now estimate the magnitude of the velocity, 
near the patterned wall and at some distance from it, to 
assess comparatively viscous and advective terms in the 
microscopic Navier–Stokes equations. The outer veloc-
ity magnitude can be evaluated by Eq. (2) as being of 
order L̃

𝜏w

𝜇
= 𝛼u𝜏 . For shear stress to match at the outer 

boundary ŷ∞ of the representative elementary volume 

(cf. Fig.  1) the inner velocity scale must be equal to 

about �̃
L̃
𝛼 u𝜏 . The microscopic advective term ûj

𝜕ûi

𝜕x̂j
 is 

thus O(𝛼2
�̃ u2

𝜏

L̃
2
) , while the viscous term 𝜈 ∇̂2û is 

O(𝛼
𝜈u𝜏

L̃ �̃
) . Normalization of the Navier–Stokes equa-

tion yields a dimensionless number in front of the 
advective term which is given by

(3)�̃

L̃
∼

�
+

𝛼2
= 𝛼−2 �

h
h+,

(4)�−2

[
� u�

�

]2
=

[
1

�

(
�

h

)
h+

]2
.

The quantity above is sufficiently small only for 
values of h+ equal to a few viscous units of length, 
meaning that the conventional approach based on the 
Stokes approximation of the equations to derive slip 
lengths [9] ceases to be valid away from the hydrody-
namically smooth regime. When h+ reaches the value 
of 15 the dimensionless parameter in Eq. (4) is of 
order one; this means that, despite the fact that sepa-
ration of scales is tenable, the nonlinear term cannot 
be neglected any longer.

After this qualitative discussion on scales, needed 
for a preliminary evaluation of the limitations and 
validity of the proposed approach, we can proceed with 
the formal analysis, eliminating the empirical coef-
ficient � from the scaling parameters, but keeping in 
mind the estimated magnitude of the different terms in 
the equations. Indicating with t̂ the dimensional time 
variable, the mass and momentum conservation equa-
tions governing the flow of a viscous, incompressible, 
Newtonian fluid are:

Now, we denote the outer region with superscript 
“ O ", while for the near-wall, inner region the super-
script “ I  " is employed. The normalized variables in 
the two regions are the following:

Outer region O:

Inner region I:

with the microscopic velocity scale ûinner = u2
𝜏
�∕𝜈 . 

The normalization above leads to the following 
dimensionless systems in the two regions:

(5)
𝜕ûi

𝜕x̂i
= 0,

(
𝜕ûi

𝜕t̂
+ ûj

𝜕ûi

𝜕x̂j

)
= −

1

𝜌

𝜕p̂

𝜕x̂i
+ 𝜈

𝜕2ûi

𝜕x̂2
j

.

(6-a)

Xi =
x̂iu𝜏

𝜈
, PO =

p̂

𝜌u2
𝜏

, UO

i
=

û

u𝜏
, tO =

t̂u2
𝜏

𝜈
.

(6-b)

xi =
x̂i

�
, PI =

p̂�

𝜇 ûinner
, UI

i
=

û

ûinner
, tI =

t̂ ûinner

�
,

(7-a)

�UO

i

�Xi

= 0,
�UO

i

�t
+ UO

j

�UO

i

�Xj

= −
�PO

�Xi

+
�2UO

i

�X2

j

,

(7-b)

�UI

i

�xi
= 0, Reinner

(
�UI

i

�t
+ UI

j

�UI

i

�xj

)
= −

�PI

�xi
+

�2UI

i

�x2
j

.
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In the outer region of the flow all memory is lost of 
details of the microstructure, whereas variables in the 
inner region are assumed to depend on both � and L . 
The factor in front of the convective term in Eq. (7b) 
is the microscopic Reynolds number,

it coincides with the square of the gauge factor 
� = �∕L which can also take the form

with � = �∕H , Re� = u�H∕� the friction Reynolds 
number in the plane channel and �+ the riblets’ spac-
ing measured in viscous units. Inner velocity and 
pressure fields are now expanded in powers of � as

with ΦI(t, xi,Xi) which represents either PI or UI

i
 ; 

keeping in mind that these inner variables are func-
tion of both microscopic and macroscopic spatial 
coordinates, the chain rule �

�xi
→

�

�xi
+ �

�

�Xi

 must be 

adopted when expressing spatial derivatives.

2.2 � The microscopic model

In the model we treat the microscopic Reynolds number 
as an independent parameter, ignoring in Eq. (7b) the 
fact that Reinner can be written as the product of � times 
�
+ . This is similar in spirit to the procedure adopted 

when analyzing the linear stability of slowly spatially 
evolving flows, and a brief digression is in order. The 
Orr-Sommerfeld equation that describes the stability 
of, e.g., the Blasius boundary layer is the leading order 
result of a multiple-scale expansion in terms of a small 
parameter, ratio of the length scale of the wave to the 
scale of evolution of the base state [30–34]. This small 
parameter is related to the inverse of the Reynolds num-
ber which appears in the Orr-Sommerfeld equation, but 
such a relation is conveniently ignored. If it were not, 
the leading order system would consist in a differential 
equation of reduced order (the Rayleigh equation) not 
uniformly valid across the boundary layer, which would 
require a complex near-wall multi-deck treatment [35]. 
It is by now accepted that it is convenient and accurate 

(8-a)Reinner =
ûinner �

𝜈
;

(8-b)� = �Re� = �
+,

(9)ΦI = �(0) + � �(1) + �2 �(2) + ...,

to solve the Orr-Sommerfeld problem for bound-
ary layers, lifting to lower order what are, formally, 
higher order terms, to ascertain the modal stability of 
the weakly non-parallel base flow; this produces good 
results for growth rates and frequencies even without 
computing higher order corrections.

We operate with the same logic in the present, dif-
ferent, context; since it has been argued in Sect. 2.1 that 
convective terms are non-negligible when h+ and �+ 
exceed a few viscous units, we allow advective effects 
in the equations for the inner problem, which we write 
at leading order as follows:

Should we set the product ��+ to zero, we would 
recover the Stokes-like systems already solved by 
Bottaro and Naqvi [20]. Equations (10) define the 
microscopic problems to be solved numerically in the 
representative elementary volume (REV) of Fig.  1, 
subject to periodicity at the boundaries normal to the 
surface in y = 0 plus no-slip at the impermeable wall, 
situated in y = ywall . The conditions to be enforced 
at y → ∞ deserve careful inspection, since they will 
eventually yield the macroscopic effective conditions 
at the virtual wall in Y = 0.

2.3 � Inner‑outer matching

Continuity of the fields across the interface between the 
⋅
O and ⋅I regions is obtained by matching velocity and 
traction vectors at a dividing surface. If y∞ is the inner 
vertical coordinate of such a surface (cf. Fig.  1, right 
frame), the corresponding position in outer coordinates 
is Y∞ = � y∞ . In dimensionless form, after account-
ing for the normalization of inner and outer variables, 
matching means that:

(10)

�u
(0)

i

�xi
= 0,

��+

(
�u

(0)

i

�t
+ u

(0)

j

�u
(0)

i

�xj

)
+

�p(0)

�xi
−

�2u
(0)

i

�x2
j

= 0.

(11-a)⟨UI

i
⟩��y=y∞ =

1

�
UO

i
(t,X, Y∞, Z),

(11-b)

⟨−PI �i2 +
�UI

2

�xi
+

�UI

i

�y
⟩����y=y∞

= Si2(t,X, Y∞, Z),
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with �ij the Kronecker index and 

Si2 = � ⋅ e2 = −PO�i2 +
�UO

2

�Xi

+
�UO

i

�Y
 the outer trac-

tion vector, � being the stress tensor. The symbol ⟨⋅⟩ 
denotes surface averaging over x and z, across the 
microscopic REV, at any given y. Condition (11-a) 
can be further modified to eventually yield the macro-
scopic velocity at the virtual wall, by Taylor expand-
ing the outer variables around Y = 0 , i.e.

eventually leading to

The matching condition on the stress at leading order 
in � is

(12-a)

UO

i
(t,X, Y∞, Z) = UO

i
(t,X, 0,Z) + � y∞

�UO

i

�Y

||||Y=0
+ �2

y2
∞

2

�2UO

i

�Y2

||||Y=0 + ...,

(12-b)

UO

i
(t,X, 0,Z) = �

�
⟨u(0)

i
⟩��y=y∞ − y∞

�UO

i

�Y

����Y=0

�

+ �2

�
⟨u(1)

i
⟩��y=y∞ −

y2
∞

2

�2UO

i

�Y2

����Y=0

�
+ ....

The microscopic problem to be solved in the REV is 
thus formed by Eq. (10) with no-slip conditions at the 
wall, periodicity along x and z, plus condition (13a) 
at y∞ . The averaged Eq. (13a) cannot, however, be 
enforced as is; it can be relaxed, on the assumption 
that y∞ is sufficiently far from ywall for the order zero 
field to become invariant in x and z. In this case the 
boundary condition becomes:

2.4 � Adjoint homogenization

The adjoint homogenization procedure [14] relies 
on the introduction of an inner product between two 
functions a and b defined over the REV. Here we 
choose the following simple definition of the inner 
product:

We take the inner product of the continuity equation 
in (10) with the test vector p†

j
 and subtract this from 

the inner product of the test tensor u†
ji
 with the 

momentum equation, to obtain 

We impose that the test functions u†
ji
 and p†

j
 are solu-

tions of

(13-a)⟨−p(0) �i2 +
�u

(0)

2

�xi
+

�u
(0)

i

�y
⟩����y=y∞

= Si2
��Y=Y∞ .

(13-b)−p(0) �i2 +
�u

(0)

2

�xi
+

�u
(0)

i

�y

||||y=y∞
= Si2

||Y=Y∞ .

(14)∫
y∞

ywall

⟨ a b ⟩ dy.

(15)

0 = ∫
y∞

ywall

⟨ p†
j

�u
(0)

i

�xi
− u

†

ji

�
��+

�
�u

(0)

i

�t
+ u

(0)

k

�u
(0)

i

�xk

�
+

�p(0)

�xi
−

�2u
(0)

i

�x2
k

�
⟩ dy

= ∫
y∞

ywall

⟨
�u

†

ji

�xi
p(0) +

�
��+

�
�u

†

ji

�t
+ u

(0)

k

�u
†

ji

�xk

�
−

�p
†

j

�xi
+

�2u
†

ji

�x2
k

�
u
(0)

i
⟩ dy

−
d

dt ∫
y∞

ywall

⟨ u†
ji
u
(0)

i
⟩ dy + }}boundary termsε.

(16)

�u
†

ji

�xi
= 0, −��+

(
�u

†

ji

�t
+ u

(0)

k

�u
†

ji

�xk

)
= −

�p
†

j

�xi
+

�2u
†

ji

�x2
k

,
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with the normalizing constraint that the term 
∫ y∞
ywall

⟨ u†
ji
u
(0)

i
⟩ dy is time-invariant [36]. System (16), 

which depends on the direct velocity at leading order, 
u
(0)

k
 , permits, in principle, to retrieve an adjoint field 

(p†
j
, u

†

ji
) . The equations–despite looking similar to the 

Navier–Stokes equations—are well-posed only when 
integrated backwards in time [36]. The boundary con-
ditions for the adjoint problem must be chosen also 
by examining carefully the—so far unspecified—
“boundary terms" in (15), which arise from integra-
tion by parts. Like in the case of the direct field, we 
impose that the adjoint variables are periodic along x 
and z; furthermore, we set u†

ji
= 0 at y = ywall . Then, 

the “boundary terms" lead to the following condition 
at y∞:

At this point we set the outer boundary condition for 
the adjoint problem:

for the adjoint problem to be formally closed. Equa-
tion (17) yields the (x, z)−averaged value of the lead-
ing order microscopic velocity at y∞:

(17)

⟨ u(0)
i

�
−p†

j
�i2 +

�u
†

ji

�x2

�
⟩
������y∞

= ⟨ u†
ji

�
−p(0)�i2 +

�u
(0)

i

�x2
− ��+ u

(0)

i
u
(0)

2

�
⟩
������y∞

.

(18)−p†
j
�i2 +

�u
†

ji

�x2

||||||y∞
= �ji,

(19)

⟨ u(0)
j

⟩ ���y∞
= ⟨ u†

ji

�
−p(0)�i2 +

�u
(0)

i

�x2
− ��+ u

(0)

i
u
(0)

2

�
⟩
������y∞

.

The wall being impermeable, at each instant of time it 
is ⟨ u(0)

2
⟩ = 0 for any value of y; if, as argued before, 

the leading order fields are assumed to be invariant 
along x and z on horizontal REV planes sufficiently 
far from the wall, then it is the local wall-normal 
velocity, u(0)

2
 , which vanishes. This is consistent with 

Stokes-based calculations of the problem [14, 19, 20, 
37] which have shown that the first non-zero transpi-
ration term at the fictitious wall is u(1)

2
 . On this basis, 

the equation above can be re-written as

on account of (13-b). Since Si2||Y∞ is the only forcing 
term of the direct problem, we could have immedi-
ately posed the ansatz commonly employed in 
homogenization [38] that

with P0 an integration constant. Clearly, the result 
embodied by (20) is consistent with ansatz (21).

In the Stokes approximation ( Reinner = ��+ = 0 ), 
invariance of the riblet geometry along x allows to treat 
the problem as two-dimensional in the (y, z) plane, with 
Eq. (16) reducing to an uncoupled Stokes-Laplace pair 
[9]. Numerical solutions can be easily conducted in the 
creeping flow limit, using the freefem++ solver [39], 
with piecewise P2 continuous finite elements (except 
for p†

j
 which is discretized with continuous piecewise-

linear elements) on an unstructured grid composed by 
up to 200 000 triangular elements in the domain, with 
refinement near the solid boundary, to guarantee grid-
converged solutions. For uniqueness a condition must 
also be imposed on p†

j
 : in our case, the integral of p†

j
 on 

the domain is forced to vanish. When equilateral 

(20)

⟨ u(0)
j

⟩ ���y∞ =⟨ u†
ji
⟩���y∞

�
−p(0)�i2 +

�u
(0)

i

�x2
+

�u
(0)

2

�xi

�������y∞
=⟨ u†

ji
⟩���y∞ Si2

��Y∞ ,

(21)u
(0)

j
= u

†

ji
Si2

||Y∞ and p(0) = p
†

i
Si2

||Y∞ + P0,

Table 1   Non-zero auxiliary fields’ values at the upper boundary of the REV for equilateral triangular riblets in the Stokes approxi-
mation

The values of u†
11

 and u†
33

 are uniform at each y∞ indicated, differing from one spanwise position to any other one only in the sixth 
significant digit (after subtracting the corresponding value of y∞ to retrieve λx and λz); the numbers reported are obtained through 
z-averaging at each y = y∞

Reinner u
†

11

||y∞=4
u
†

11

||y∞=5
u
†

11

||y∞=6
u
†

11

||y∞=7
u
†

33

||y∞=4
u
†

33

||y∞=5
u
†

33

||y∞=6
u
†

33

||y∞=7

0 4.170660 5.170675 6.170678 7.170673 4.080549 5.080515 6.080529 7.080513
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triangular riblets infinitely elongated in x are consid-
ered, the numerical solution of the problem yields the 
results reported in Table 1 and displayed in Fig. 2. The 
fields of the dagger variables are also called auxiliary 
fields. The values reported are uniform over the surface 
in y∞ , i.e. ⟨u†

11
⟩��y∞ = u

†

11
��y∞ and ⟨u†

33
⟩��y∞ = u

†

33
��y∞ . All 

other values of u†
ji
 go to zero at the upper boundary of 

the domain, provided y∞ exceeds about 2.
With the above results, Eq. (20) reduces to:

when y∞ is sufficiently far from the tip of the ribs.

2.5 � The transpiration velocity

We now go back to Eq. (12-b), and write out explicitly 
the expressions up to O(�) of the macroscopic boundary 
conditions to be enforced at Y = 0:

(22-a)⟨ u(0)
1

⟩ ���y∞ = u
(0)

1

���y∞ = u
†

11

���y∞ S12
��Y∞ ,

(22-b)⟨ u(0)
2

⟩ ���y∞ = u
(0)

2
= 0,

(22-c)⟨ u(0)
3

⟩ ���y∞ = u
(0)

3

���y∞ = u
†

33

���y∞ S32
��Y∞ ,

The equations above for UO = UO

1
 and WO = UO

3
 can 

be further manipulated by Taylor expanding around 
Y = 0 all terms which contain Sij evaluated at 
Y = �y∞ . For example, we write 
S12

||Y=�y∞ = S12
||Y=0 + �y∞

(
�S12∕�Y

)||Y=0 + ... and 
so on. Furthermore, to leading order in � it is 
S12

||Y=0 = (�UO∕�Y)||Y=0 (and similarly for S32||Y=0 ), 
so that the slip conditions at the virtual wall become

(23-a)

UO

1
(t,X, 0,Z) = �

[
u
†

11
S12

||Y=�y∞ − y∞
�UO

1

�Y

||||Y=0

]
+O(�2),

(23-b)UO

2
(t,X, 0,Z) = O(�2),

(23-c)

UO

3
(t,X, 0,Z) = �

[
u
†

33
S32

||Y=�y∞ − y∞

�UO

3

�Y

||||Y=0

]
+O(�2).

(24-a)UO(t,X, 0,Z) = � �x
�UO

�Y

||||Y=0 +O(�2),

(24-b)WO(t,X, 0,Z) = � �z
�WO

�Y

||||Y=0 +O(�2),

Fig. 2   Some steady auxiliary fields for equilateral triangular riblets. From left to right, isocontours of u†
33

 , u†
23

 and u†
11
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with �x = u
†

11
|y∞ − y∞ and �z = u

†

33
|y∞ − y∞ . Inspec-

tion of Table 1 demonstrates that the two slip lengths, 
�x and �z , are independent of the choice of y∞ . In par-
ticular, in the Stokes case for equilateral triangular 
riblets we have �x = 0.1707 and �x = 0.0805.

The transpiration speed UO

2
= VO at Y = 0 

vanishes at leading order in terms of the expansion 
proposed because the real wall is impermeable, but 
it has been shown [14, 21] that neglecting vertical 
velocity fluctuations at the virtual wall can lead to 
serious errors in evaluating drag reduction/increase 
when modeling the presence of riblets which operate 
beyond the viscous regime. The significance of wall-
normal velocity fluctuations for turbulent flows over 
rough surfaces has been highlighted in particular by 
Orlandi and co-workers [23–25].

We start by estimating VO at Y∞ = �y∞ with 
reference to the sketch on the right frame of Fig.  1. 
Equations (11-a) and (21) can be written to leading 
order for the case at hand as:

with j and k equal to 1 and 3, and the 2 × 2 diagonal 
matrix C defined as

Expression (25) can be inserted into Eq. (21) to yield 
u
(0)

j
= �−1 u

†

ji
Cik U

O

k

|||Y∞ , with the index i which can 

also take only the values 1 and 3. As shown in 
reference [14], on account of continuity the order � 
microscopic y-velocity component at the upper edge 
of the REV is

with the index i, again, equal to 1 and 3. Integrating 
in z from 0 to 1 gives

(25)
�UO

j

�Y

||||||Y∞
=

Cjk

�
UO

k

|||Y∞ ,

(26)C =

⎛
⎜⎜⎜⎜⎝

1

u
†

11
��y∞

0

0
1

u
†

33
��y∞

⎞
⎟⎟⎟⎟⎠
.

(27)

u
(1)

2
||y∞ = v(1)||y∞ = −

�

�xi ∫
y∞

ywall

u
(1)

i
dy −

�

�Xi
∫

y∞

ywall

u
(0)

i
dy,

so that the macroscopic transpiration velocity at Y∞ is

with mik =

[
∫

y∞

ywall
∫

1

0

u
†

ij
dz dy

]
Cjk . In the present 

setting the matrix of components mik is diagonal, with

The effective condition (29) must now be transferred 
to Y = 0 ; this is easily accomplished by expanding VO 
around Y = 0 , i.e.

Expanding in a similar manner the term on right hand 
side of Eq. (29) it is obtained:

(28)

∫
1

0

v(1)||y∞ dz = −
�

�Xi
∫

y∞

ywall
∫

1

0

u
(0)

i
dz dy

= − �−1
[
∫

y∞

ywall
∫

1

0

u
†

ij
dz dy

]
Cjk

�UO

k

�Xi

||||Y∞
,

(29)
VO||Y∞ =�2 ∫

1

0

v(1)||y∞ dz +O(�3)

= − �mik

�UO

k

�Xi

||||Y∞
+O(�3).

(30)

m11 =
1

u
†

11
||y∞ ∫

y∞

ywall
∫

1

0

u
†

11
dz dy, m33

=
1

u
†

33
||y∞ ∫

y∞

ywall
∫

1

0

u
†

33
dz dy.

(31)

VO||Y∞ = VO||Y=0 + �y∞
�VO

�Y

||||Y=0
+ �2

y2
∞

2

�2VO

�Y2

||||Y=0 +O(�3) =

VO||Y=0 + �y∞

[
−
�UO

�X
−

�WO

�Z

]||||Y=0
+ �2

y2
∞

2

�

�Y

[
−
�UO

�X
−

�WO

�Z

]||||Y=0 +O(�3) =

VO||Y=0 − �y∞

{
�

�X

[
��x

�UO

�Y

]
+

�

�Z

[
��z

�WO

�Y

]}||||Y=0
− �2

y2
∞

2

[
�2UO

�Y�X
+

�2WO

�Y�Z

]||||Y=0 +O(�3).
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Putting together (31) and (32) it is finally found:

with K
itf
xy

= [m11(y∞ + �x) − y∞�x − y2
∞
∕2] and 

K
itf
zy

= [m33(y∞ + �z) − y∞�z − y2
∞
∕2] playing the 

role of interface permeability coefficients [14, 20]. 
Another form, more convenient for computational 
purposes, of (33) can be found by using (24-a) and 
(24-b), and this is:

(32)

VO||Y∞ = −�m11

[
�UO

�X
+ �y∞

�2UO

�Y�X

]||||Y=0
− �m33

[
�WO

�Z
+ �y∞

�2WO

�Y�Z

]||||Y=0 +O(�3) =

− �m11

{
�

�X

[
��x

�UO

�Y

]
+ �y∞

�2UO

�Y�X

}||||Y=0
− �m33

[
�

�Z

[
��z

�WO

�Y

]
+ �y∞

�2WO

�Y�Z

]||||Y=0 +O(�3).

(33)

VO(t,X, 0,Z) = − �2
[
K

itf
xy

�2UO

�Y�X
+K

itf
zy

�2WO

�Y�Z

]||||Y=0
+O(�3),

with n11 = K
itf
xy
∕�x and n33 = K

itf
zy
∕�z . It is important 

to stress the fact that n11 and n33 , just like the Navier 
slip coefficients �x and �z and the interface perme-
ability coefficients, are independent of the choice of 
y∞ of the REV. Boundary condition (34) at the effec-
tive surface in Y = 0 , together with (24-a) and (24-b), 
allow the model in (7-a) for the macroscopic varia-
bles (UO,VO,WO,PO) to be closed.

The coefficients of interest are reported in 
Table  2 for the few riblets’ shapes displayed in 
Fig. 3. The results are believed to be accurate up to 
the last significant digit reported. The parameter �g 
in the table is the square root of the groove cross-
section Ag sketched in Fig.  1; it is a purely geo-
metrical factor introduced by García-Mayoral and 
Jiménez [40] to capture both the influence of rib-
lets’ spacing and shape. In recent experimental and 
numerical works it has become customary to report 
drag reduction against �+

g
 , measured in viscous 

(34)

VO(t,X, 0,Z) = − � n11
�UO

�X

||||Y=0 − � n33
�WO

�Z

||||Y=0
+O(�3),

Fig. 3   Riblets’ shapes: 
square a, equilateral trian-
gle b, right triangle c, blade 
d, parabolic/scalloped e, 
cosine f, trapezoidal g 

Table 2   Effective 
coefficients for the riblets’ 
shapes in Fig. 3, in the 
Stokes limit

Riblets’ shape �x �z K
itf
xy

K
itf
zy

Δ� = �x − �z �g∕�

Square 0.0415 0.0179 0.0058 0.0004 0.0236 0.5000
Equilateral triangle 0.1707 0.0805 0.0282 0.0058 0.0901 0.7530
Right triangle 0.1397 0.0779 0.0168 0.0058 0.0618 0.5000
Blade 0.1915 0.0784 0.0379 0.0046 0.1131 0.7000
Parabolic/scalloped 0.1699 0.0804 0.0259 0.0060 0.0894 0.5773
Cosine 0.1141 0.0638 0.0140 0.0042 0.0503 0.4262
Trapezoidal 0.1912 0.0820 0.0348 0.0054 0.1091 0.6830
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units, since the data appear to collapse better onto 
a single curve for a variety of conventional riblet 
geometries, with clearly defined, open grooves fully 
exposed to the outer flow.

Two things must be noticed. The first is that �z , 
which defines the origin of the crossflow motion 
below the virtual plane, is significantly smaller than 
the pattern periodicity. The average value of �z for 
the seven cases examined is 0.0687, very close to 
�−1 , with � ≈ 15 , supporting the scaling arguments 
of Sect. 2.1.

Second, skin-friction drag reduction is known 
to behave linearly with the riblets’ periodic-
ity for �+ of only up to a few viscous units [5]. 
This so-called viscous regime holds over a range 
smaller by a factor of about 2, cf. last column 
of Table  2, when observed in terms of �+

g
 . In this 

regime, we recall that Luchini [10] has shown 
that the reduction in skin friction coefficient with 

respect to the smooth-wall value is proportional to 
Δ�+ = �+

x
− �+

z
 , according to Eq. (1), with �0 a con-

stant close to one.
From Table  2 it can be ascertained that, at least 

in the viscous range, thinner riblets perform better; 
the best drag reduction is achieved by blade riblets, 
among the shapes considered, in agreement with 
Bechert et al. [5]. To properly assess what goes on for 
�
+ beyond about 10, including values large enough 

for drag reduction to turn into drag increase [40], 
the effect of advection and transpiration through the 
grooves must be accounted for.

2.6 � A vortex model for advection

We now go back to Eq. (16) and approximate the 

advective term −��+

(
u
(0)

k

�u
†

ji

�xk

)
 , considering that 

direct numerical simulations of turbulence over 

Fig. 4   Synthetic near-wall vortices for blade riblets ( P = 160 ), displayed via velocity vectors of the (v+
V
,w+

V
) field and contours of 

the streamwise vorticity, �x
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riblets [13, 26, 41] have furnished indications of the 
flow structures that emerge in the proximity of indi-
vidual grooves. In particular, ensemble-averaged 
results of the secondary flow by Modesti et  al. [26] 
highlight the presence of a pair of counter-rotating 
vortices, symmetric about a vertical mid-line, with 
upwash above the riblet tip which increases in inten-
sity with the increase of the spanwise periodicity. For 
example, for the case of trapezoidal riblets of height 
h = �∕2 (like in our case), the largest upwash veloc-
ity, v+ in viscous units attains the value of about 0.04 
when �+ = 18 and 0.15 when �+ = 36 [26, 42]; as the 
spacing between neighboring riblets increases, the 
average downward secondary flow transports stream-
wise momentum into the groove more efficiently, 
yielding an increase in drag. However, even for 
�
+ = 63 , the vortices are not lodged inside the 

grooves and tend to linger on top of them, with each 
vortex in the pair centered slightly above the riblet 
tip. The numerical simulations by Goldstein and Tuan 
[12] for scalloped, short riblets indicate that the 
streamwise vortex pair exhibits a maximum vertical 
velocity around 0.03 when �+ = 23 and h+ = 8.7 , 
increasing to 0.12 when �+ reaches 62.8 (for h+ = 
8.9).

On the basis of the results above, we have decided 
to create a synthetic streamwise vortex pair, shown in 
Fig. 4 for the case of blade riblets, solution of a forced 
Stokes system with periodicity conditions at z = 0 
and 1, no-slip at the walls, and with a velocity which 
dies out rapidly outside of the roughness sublayer, i.e. 
for y+ ≳ �

+ . It has been found convenient to build the 
vortex, of velocity components (v+

V
,w+

V
) in the 

(y, z) = (x2, x3) plane, by forcing the equations for the 
“plus" variables with the u†

ji
 fields computed from Eq. 

(16) with � = 0 , i.e.:

with the indices i and j which take the values 2 and 3. 
The intensity of the vortex pair can be tuned by acting 
on the parameter P . Clearly, this leaves a degree of 
arbitrariness in the definition of the vortex, while at 
the same time providing the necessary flexibility to 
calibrate the background (v+

V
,w+

V
) field to try and 

match available results. We have found that values of 
P in a neighborhood of 160 yield secondary flows of 
size and upwash velocity in the range of those quoted 
by Goldstein and Tuan [12], Endrikat [13] and Mod-
esti et al. [26]. The vectors in Fig. 4 (left frame) high-
light the shape of the vortex pair for the largest perio-
dicity tested here ( �+ = 40.6 ) with a maximum 
vertical velocity equal to 0.11 (in plus units). The fig-
ure also displays isolines of the streamwise vorticity; 

the values of �x =
�v+

V

�z+
−

�w+
V

�y+
 at the vortex centers 

are equal to ±0.023.
If we now model the advective term in Eq. (16) by 

assuming that the u†
ji
 field develops on top of a stream-

wise-invariant mean field plus a synthetic vortex pair 
which depends on only y and z, then

on account of the velocity scaling in Eq. (6-b). The 
term has a negligible contribution for �+ equal to a 
few units (where the viscous approximation holds), 
but becomes significant for larger periodicity. Once 
the new u†

ji
 fields are computed, the slip and interface 

permeability coefficients are obtained exactly in the 
same manner as before, cf. Sect. 2.5. Some results are 

(35)

�v+
V

�x2
+

�w+
V

�x3
= 0, −

�p+
V

�x2
+

�2v+
V

�x2
i

= P

[
u
†

j3

�u
†

23

�xj

]
,

−
�p+

V

�x3
+

�2w+
V

�x2
i

= P

[
u
†

j3

�u
†

33

�xj

]
,

(36)−��+

(
u
(0)

k

�u
†

ji

�xk

)
= −�+

(
v+
V

�u
†

ji

�y
+ w+

V

�u
†

ji

�z

)
,

Table 3   Effective 
coefficients for blade riblets, 
Fig. 3d, with the model for 
advection ( P = 160)

�
+

�
+
g

max(v+
V
) |�x|vortex center �x �z K

itf
xy

K
itf
zy

Δ�

Stokes – – – 0.1915 0.0784 0.0379 0.0046 0.1131
17.7 12.4 0.11 0.052 0.1730 0.0766 0.0400 0.0076 0.0964
27.9 19.5 0.11 0.034 0.1473 0.0740 0.0468 0.0097 0.0733
40.6 28.4 0.11 0.023 0.1038 0.0690 0.0599 0.0126 0.0348
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proposed in Table 3 for the case of blade riblets. It is 
interesting to observe the rapid decrease of the 
streamwise slip coefficient, �x , with the increase of 
�
+ , and the slower decrease of �z . The drop in the 

value of Δ� with �+ is indicative of performance 
deterioration (cf. Eq. 1).

Figures  5 and 6 report some relevant auxiliary 
fields for blade riblets without and with the advection 
vortex model. Differences between the fields in the 

figures do not seem particularly significant, aside 
perhaps for the presence of two extra coherent regions 
above the ribs in the isocontours of u†

23
 , a signature 

of the presence of the vortex pair. Despite such mild 
qualitative differences, �x decreases significantly 
compared to the creeping flow approximation, while 
�z experiences a milder reduction (cf. Table  3). The 
trend of �x with respect to the Stokes’ value seems in 
contrast with the texture-resolving direct numerical 

Fig. 5   Some auxiliary fields in the Stokes limit, in the vicinity of blade riblets. From left to right, isocontours of u†
33

 , u†
23

 and u†
11

Fig. 6   Same as Fig. 5 for �+ = 27.9 using the advection model ( P = 160)
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simulations of turbulence over ribleted surfaces by 
Wong et  al. [22] (cf. their Fig.  7a), which display 
a mild increase of the distance of the virtual origin 
of the mean streamwise velocity component from 
the crests of the riblets, past �+

g
≈ 15 . This matter 

deserves further, future scrutiny.
As opposed to the case of the slip lengths, the 

interface permeability components increase signifi-
cantly with respect to the creeping flow case; Kitf

xy
 has 

grown by 58% (when comparing the Stokes’ value to 
that at �+ = 40.6 ) and Kitf

zy
 has more than doubled. 

The growth in the interface permeability coefficients 
is correlated to enhanced wall transpiration at the vir-
tual wall in Y = 0 . This effect can be quantified with 

the help of direct simulations of the turbulent motion 
over the modelled surface.

Before proceeding further, we come back to the 
very recent approach by Wong et al. [22], which bears 
some similarities to the present one. They have mod-
eled the near-wall flow by solving the Stokes equa-
tions in a spanwise-periodic domain encompass-
ing multiple riblets, forcing the motion at the upper 
y-boundary of their two-dimensional domain with 
cross-flow velocity components of prescribed wave-
length and amplitude, to mimic the effect of outer, 
smooth-wall-like turbulence. The model, dubbed 
viscous vortex model, was used in particular to pre-
dict the transverse slip length, and assess how it var-
ied as a consequence of near-wall upwash/downwash 
motion, for riblets of increasing periodicity. Upon 
assuming that the origin of the mean streamwise flow 
does not vanish, Wong and co-workers were able to 
estimate the roughness function, ΔU+ , and obtain 
an acceptable agreement with experimental results 
and texture-resolving direct simulations for a variety 
of riblets’ shapes, up to �+

g
≈ 10.7 , i.e. the position 

of maximum drag reduction. For the case of blade 
riblets, examined here, the model by Wong et  al. 
[22] works until �+ ≈ 15 (cf. their Fig. 17, frame k); 
beyond this values it predicts a monotonic decrease 
in drag, at least in the range of riblets’ pitch values 
considered. The failure of the model to capture the 
breakdown of the drag curve has been ascribed by the 
authors to the fact that the outer forcing field mimics 
smooth-wall-like turbulence and, as such, is unable 
to capture the rapid increase in near-wall Reynolds 
stress when �+

g
 exceeds 10.7.

3 � The macroscale problem

3.1 � Problem description and numerical setup

Large-scale numerical simulations are conducted 
using both the Stokes coefficients and the coefficients 
in Table 3 for the case of blade riblets, to model the 
presence of microgrooves using the effective condi-
tions (24-a), (24-b) and (34). They resemble those 
used by Gómez-de-Segura et  al. [43], except for a 
notable difference; the condition used in ref. [43] for 
the transpiration velocity is (using our notations)

Fig. 7   Drag reduction versus spacing for blade riblets. The 
grey symbols correspond to experimental data by Bechert 
et al. [5] for bulk Reynolds number, based on average channel 
velocity and half the channel height, in the range 4000–15000, 
while the black symbols are direct numerical simulation results 
by El-Samni et  al. [44] (at Rebulk = 2821, Re� = 180 ) which 
account for the microscopic geometry of the wall textures. The 
dot-dashed line (i) is the viscous, analytical solution given in 
Eq. (1) with �

0
= 1 . The dashed line (ii) corresponds to our 

results obtained by direct simulations using only the Stokes 
slip coefficients for the tangential velocity components, with-
out transpiration. The dotted line (iii) is obtained by using the 
Stokes slip coefficients plus transpiration at the fictitious wall, 
via Eq. (34); such a line almost coincides with results obtained 
using the model by Wong et  al. [22]. The shaded region 
encloses direct numerical simulation results which could be 
obtained by the present slip-transpiration-vortex model. The 
two boundaries of this region, drawn with solid lines (iv) and 
(v), pertain, respectively, to P = 140 and 180, with red sym-
bols corresponding to the simulations conducted
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and it coincides with Eq. (34) only for isotropic tex-
tures in the (x,  z)-plane, i.e. when �y = n11 = n33 . 
Clearly, this is not the case of riblets.

We study the turbulent flow in a channel delim-
ited from the top side by a smooth boundary and 
from the bottom side by a corrugated wall; this is 
similar to the case sketched in Fig. 1, yet the riblets 
considered here are thin blades of pitch � , height 
0.5� , and thickness 0.02� (cf. Fig. 3d). The dimen-
sions of the free-fluid region beyond the rims of the 
riblets (i.e. the computational domain of interest 
for the macroscopic simulations) are 
LX × LY × LZ = 2�H × 2H × �H , with H half the 
channel height. Given that the magnitude of the 
macroscopic pressure gradient driving the flow in 
the channel is M = |Δp̂∕LX| , a bulk stress 
�M = MH can be defined, and it can be proven 
from the momentum balance in the macroscopic 
domain that �M = (�F + �T)∕2 , where �F  and �T  are 
the total shear stresses at the fictitious boundary 
( ̂y = 0 ) and at the top, smooth wall ( ̂y = 2H ), 
respectively. Correspondingly, we define a shear 
velocity u�(M) =

√
�M∕� and a shear-velocity 

Reynolds number Re�(M) =
�u�(M)H

�
 with a fixed 

value of about 193 for all the simulations carried 
out. The riblet pitch is varied from one simulation 

to another such that different values of 

�
+
M

=
�u�(M)�

�
 are considered, in particular 

�
+
M

= (13.5, 17.7, 27.9, 40.6) . The shear stress at the 
corrugated wall, �w , (i.e. the drag evaluated per 
unit plan area for the bottom physical surface) can 
be retrieved theoretically by applying momentum 
balance over the whole domain (macroscopic plus 
microscopic), yielding 
�w ≈ (2�M − �T) + �M

�

2H
= �F + �M

�

2H
 , with the 

thickness of the thin blades neglected. To permit 
comparison with the reference data [44], the 
numerical results reported are normalized based on 
�w as given above. The pitch distance measured in 
viscous units, �+ , is found to differ by less than 5% 
from �+

M
 . In terms of the half-channel height, the 

(37)VO(t,X, 0,Z) = � �y
�VO

�Y

||||Y=0
periodicity of the riblets is equal to 
� = (0.070, 0.092, 0.144, 0.210)H.

Direct numerical simulations of the macroscale 
problem are run using the Simcenter STAR-CCM+ 
finite-volume-based software. The grid resolution 
and the numerical procedure are the same as in ref-
erences [21, 45]; in particular, the mesh is uniform 
in the streamwise and spanwise directions, while it 
is stretched gradually in the wall-normal direction 
departing from the upper and lower walls (thinnest 
layer) towards the centerline of the channel (thick-
est layer); the grid spacings in viscous units are 
h+
X
= 9.47, h+

Z
= 6.32, h+

Y
|min = 0.27, h+

Y
|max = 9.25   . 

In brief, the convective fluxes are discretized using 
a third-order scheme formulated as a linear blend 
between MUSCL third-order upwind and a third-
order central-differencing expression. A second-
order implicit scheme is employed for temporal dis-
cretization with 20 internal iterations performed at 
each time step. The time step is set to 0.001H∕u�(M) 
for the maximum convective Courant-Friedrichs-
Lewy (CFL) number to be maintained below 1. The 
averaging time, after the initial transient of the flow 
field in each simulation, is typically taken equal 
to 40H∕u�(M) . Finally, it is important to highlight 
that, despite the presence of local transpiration 
velocities, the surface-integrated value of VO at 
Y = 0 remains negligibly small, i.e. unlike the case 
of the porous interface treated by Ahmed and Bot-
taro [21], no correction is required here at the ficti-
tious wall to satisfy conservation of mass.

3.2 � Results and discussion

We first focus on the ability of the linear relation (1) 
and different homogenization-based models to predict 
the behavior of the skin-friction drag over blade rib-
lets, by validating the results obtained against the ref-
erence experimental/numerical results by Bechert 
et  al. [5] and El-Samni et  al. [44], as presented in 
Fig.  7. It is clear from the figure that Eq. (1) with 
�0 = 1 [10] provides inaccurate results even for van-
ishingly small riblets. Three different settings of the 
direct numerical simulations have been investigated, 
modifying the definition of the macroscopic velocity 
boundary conditions. The skin-friction coefficient is 

evaluated as Cf =
2𝜏w

𝜌 (ûbulk)
2
 , with ûbulk the temporally 

and spatially averaged velocity over the whole 
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channel (of total height equal to 2H + h ). Since the 
DNSs conducted are concerned with the average 
velocity in the free-fluid region only, a separate esti-
mation of the average velocity in the riblet layer ( ̂uR ) 
is needed for the evaluation of ûbulk . From a theoreti-
cal perspective, the value of ûR is expected to be 
smaller than ûslip (the velocity at the fictitious inter-
face) and larger than 0 (the velocity at the trough of 
the groove). An intermediate value of 
ûR ≈ 0.5 ûslip ≈ 0.5 𝜆+

x
u𝜏 is adopted as an approxima-

tion in the present work. The transpiration-free model 
with Stokes macroscopic coefficients (dashed line) 
represents the simplest form of the boundary condi-
tions, and its predictions appear to be valid only up to 
�
+ ≈ 10 . Incorporating the transpiration velocity (37) 

component permits a moderately wider validity range 
(up to �+ ≈ 15 , dotted line). When advection is taken 
into account in the evaluation of the upscaled coeffi-
cients, employing the present vortex model, we are 

able to capture the parabolic shape of DR as function 
of �+ . In this case, it is clear that the results 
increasingly depend on the vortex intensity as the 
riblets’ spacing grows, and thus the choice of the 
forcing parameter P (cf. Eq.  35) becomes critical. 
Since our aim is not that of optimizing the agreement 
with previous experiments and simulations, but to 
develop and test practical boundary conditions which 
might apply to riblet configurations beyond the 
viscous regime, we have simply chosen values of P 
which provide, for the streamwise vortex pair that sits 
above the rib, intensities in the expected range [12, 
13].

In Fig. 8, the results of our direct numerical simu-
lations (with vortex-model-based effective coeffi-
cients) for the distributions of the mean velocity U

+
 

and the Reynolds shear stress �R
XY

 in the free-fluid 
region next to the lower boundary are plotted and 

Fig. 8   Mean velocity (top row) and Reynolds stress as func-
tion of Y+ for three values of �+ . In each frame, the solid line 
reports the solution for the flow in a channel with two smooth 
walls, while blue and red dashed lines correspond to the results 

of the turbulent motion in a ribbed channel using, respectively, 
P = 140 and 180 in the model. The available data from El-
Samni et al. [44] are plotted with small circular symbols, after 
having matched the origin of the data in [44] to ours
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compared against those in reference [44]. When �+ 
is approximately equal to 17.7 and 27.9 the agree-
ment between the model results and the available 
texture-resolving data appears acceptable. Also, the 
model, with P set to 180, appears to accurately cap-
ture the logarithmic behavior of the mean velocity for 
�
+ = 40.6 , a value which is far beyond the viscous 

range. The same applies also to the peak value of the 
Reynolds shear stress. Conversely, the present ver-
sion of the model has a weakened ability to predict 
U

+
 and �R

XY
 at and in close vicinity of the corrugated 

surface with the increase of �+ . A possible reason for 
the poor agreement between our results and those by 
El Samni et al. [44] near the surface when �+ is large, 
could be related to the issue of our slip lengths (and 
Δ� ) decreasing with the increase of the riblets’ perio-
dicity (cf. Table 3 and related discussion in Sect. 2.6). 
Another possible explanation has been suggested to 
us by a referee, and is related to the resolution of the 
DNSs by El Samni et al. [44]. The referee pointed out 
to us that the number of grid points between neigh-
boring riblets in [44] ranges from 6 to 16 for the three 
values of � considered, and this might be marginally 
sufficient to resolve the dynamics of the fluid within 
adjacent corrugations.

4 � Concluding remarks

A new model, dubbed the slip-transpiration-vortex 
model, has been derived and tested for the flow in a 
channel with one wall patterned by blade riblets. The 
configuration with blades at the surface is probably 
the most difficult to simulate (in particular, with the 
growth of the pitch distance between blades) and pre-
vious attempts at modeling it have met with only par-
tial success.

The procedure adopted here is based on asymptotic 
homogenization, with the advective term in the 
equations (formally of higher order) maintained at 
leading order because of indications from a 
preliminary scale analysis. Such advective terms are 
linearized around a streamwise-invariant base state 
which, in the REV, takes the form of a stationary 
vortex pair, with upwash along the side walls of the 
blades. The intensity of the vortices can be tuned by 
acting on the free parameter P , but we have chosen 
here to employ the same range of intensities (and the 

same maximum upwash speed in the cross-section) 
for all ribs periodicities, to infer trends rather than to 
try and match available results.

The present model appears to be the most success-
ful to-date in predicting the parabolic shape of the 
drag curve with �+ , for the case of blade riblets; the 
key to its fortune lies in the fact that it retains advec-
tion, although in an approximate form, and it permits 
zero-net-mass-flux transpiration at the fictitious wall. 
On the negative side, it fails at capturing correctly the 
slip velocity or the near-wall Reynolds stress when �+ 
exceeds a value around 30. Such a threshold coincides 
with our expectations from the order of magnitude 
analysis of Sect. 2.1. Extending the model to higher 
order in the small parameter � could possibly improve 
matters, and our current efforts are in this direction.

The applications of this study are not just limited 
to longitudinally-extended micro-grooves, because 
the procedure described can be applied to different 
kinds of textured walls, including those with 
relatively large amplitudes, provided Townsend 
similarity is not broken. The concept of equivalent 
sand-grain roughness is still commonly employed to 
identify geometric surface properties, even if it is by 
now accepted that such a concept fails to completely 
characterise roughness in many cases. It has been 
recently stated by Kadivar et al. [46] that “there is a 
need for a universal roughness scale that can describe 
every type of roughness and be used in any rough-
flow regimes, including fully rough and transitionally 
rough regimes”. We believe that the length (Navier 
slip) and surface area (interface permeability) 
coefficients identified here may represent these 
universal scales capable to discriminate different 
types of irregular surfaces; further work is clearly 
needed to support this conjecture.

As we look to the future, riblets hold promise 
for continued innovation in a range of fields. 
Among the topics for which research activities 
are expected to pay a dividend, we cite sinusoidal 
or converging–diverging (herringbone) micro-
grooves. Also, bio-inspired designs can be pursued 
to further optimize riblet geometry and performance. 
Meanwhile, advancements in material science could 
lead to self-healing or adaptive riblet surfaces that 
adjust to different flow conditions in real-time, 
further enhancing their efficacy. With environmental 
concerns and fuel costs driving the need for efficiency 
across industries, riblet technology represents 
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a powerful tool for reducing energy losses and 
improving performance.
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