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Can we model the presence of the permeable substrate without
solving for the flow through the porous medium? Can we find
effective boundary conditions at a virtual wall which

(1) can be derived rigorously and 
(2) actually work (and not only in the laminar case)?!
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Accounting for transpiration at the fictitious wall is essential
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Can we do more?

• Extend to higher order in 𝜖
• Account for near-wall inertia and make the simplified

procedure (with effective boundary conditions at the wall) 
work for the case of turbulent flow

• Find a relation that permits to determine          (   (roughness
function) and the slip velocity directly from 
macroscopic upscaling coefficients

slip   



Homogenization
framework

Rapidly-varying properties
(related to surface heterogeneity)

Upscaled, homogeneous properties
(for effective boundary conditions)

Navier-slip coefficients,
intrinsic permeability,

interfacial permeability,
etc.
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Porous substrate
(excluded)

No-slip wall

Channel flow

Effective BCs
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Second-order, 
effect of interface permeabilities

Second-order, 
effect of medium permeability

Macroscopic effective boundary conditions 𝑆ଵଶ =
𝜕𝑈

𝜕𝑌
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𝝀𝒙,𝒛: Navier-slip coefficients

 𝓚𝒙𝒚,𝒛𝒚
𝒊𝒕𝒇 : Interface permeability coefficents

 𝓚𝒚𝒚: medium permeability



An Oseen-like linearization was proposed to include the effects of near-interface advection in the
homogenization scheme (Bottaro A., J. Fluid Mech. (2019), vol. 877, P1)

We define a spatially invariant velocity 𝒖ෝ𝝓,𝒋 = 𝒖ෝ𝝓, 𝟎, 𝟎 , representative of the near-wall velocity level.

Governing equations of the microscale problem:

The microscopic Reynolds number, defined as 𝑹𝒆𝝓 =
𝝆 𝒖ෝ𝝓 ℓ

𝝁
= 𝝐 𝑹𝒆𝝉 𝑼𝝓, is assumed to be of 

order 1. 

Near-wall advection modeling

The closure problems

+
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Extended Beavers-Joseph-Saffman conditions with NO empirical coefficients



Drag increase

Possible drag reduction

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 0.5 for all

𝜖 = 0.05 → 0.2

𝑅𝑒ఛ ≈ 190
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Model validation

𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑐𝑦𝑙. , 𝜃 = 0.5, 

𝜖 = 0.2, 𝑅𝑒ఛ ≈ 190

* Stokes’ model over-estimates drag increase 

* Oseen’s model perfectly predicts slip velocity

+

+









Previous work (Orlandi & Leonardi 2006, 2008) has shown that the 
roughness function is related to the fluctuating vertical velocity at the 
fictitious wall







But …

where do we get from??? 
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Extended Beavers-Joseph-Saffman conditions with NO empirical coefficients



uniquely related to macroscopic
upscaled coefficients, and easy to 
determine in either the 
approximations of Stokes or Oseen



Final relation for 







Now we are in the position to make a priori 
predictions …



Rough wall

 (𝒦௬௬= 0)



Riblets

 (𝒦௬௬= 0)



Salient ideas
• Homogenization theory can include advection within a linearized (Oseen-

like) framework. The theory yields macroscopic upscaling coefficients

• Effective wall conditions appear to mimic very well the effect of the 
surface/substrate

• The drag-reducing/increasing effect of a porous substrate or of wall
roughness can be reproduced simply by identifying the macroscopic
upscaling coefficients, and then computing the characteristic function



Isosurfaces with 𝜆ଶ 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 500
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