Turbulent flow over a porous wall
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Can we model the presence of the permeable substrate without
solving for the flow through the porous medium? Can we find
effective boundary conditions at a virtual wall which

(1) can be derived rigorously and
(2) actually work (and not only in the laminar case)?!
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Accounting for transpiration at the fictitious wall is essential
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FIGURE 9. (Colour online) Comparison of the streamwise velocity component, u;, on the
sphere, computed with the macroscopic model (2.28) (¢), and extracted from the reference
DNS (a). The procedure used to pass from one approach to the other is detailed in the
text. () The microscopic cell, V, (in grey), with the microscopic distribution of the u,
iso-contours on a surface located slightly above R=1.
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Can we do more?

* Extend to higher order in €

* Account for near-wall inertia and make the simplified
procedure (with effective boundary conditions at the wall)
work for the case of turbulent flow

* Find a relation that permits to determine AU™ (roughness
function) and the slip velocity  [J} directly from
macroscopic upscaling coefficients
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Near-wall advection modeling

— An Oseen-like linearization was proposed to include the effects of near-interface advection in the
homogenization scheme (Bottaro A., J. Fluid Mech. (2019), vol. 877, P1)

— We define a spatially invariant velocity iid,j = (ﬁ¢, 0, O), representative of the near-wall velocity level.

_ _ , O, o 0n, Op 024,
— Governing equations of the microscale problem: —— =0, puy; — = —— + =
& O 0T, T3
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— The microscopic Reynolds number, defined as Re¢ = p = €Re Uy, is assumed to be of
order 1.
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Extended Beavers-Joseph-Saffman conditions with NO empirical coefficients



Possible drag reduction @

Porosity = 0.5 for all

e =0.05- 0.2
Re; = 190

Drag increase ®
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Req',

Dimensionless macroscopic coefficients

Substrate
(intersection) | A, . K K K
Ty 4.1 0.0440 0.0663 0.0021 0.0052 0.0018
TCo 15.2 0.0409 0.0591 0.0018 0.0042 0.0018
TCs 30.9 0.0368 0.0506 0.0014 0.0031 0.0018
TCy 50.0 0.0336 0.0445 0.0012 0.0023 0.0018
LC Any 0.0688 0.0451 0.0056 0.0022 0.0018
TMs 5.3 0.0562 0.1062 0.0037 0.0110 0.00012
T'M 18.2 0.0489 0.0888 0.0028 0.0082 0.00012
TMs 30.3 0.0421 0.0721 0.0019 0.0058 0.00012
T M 50.3 0.0372 0.0599 0.0014 0.0042 0.00012
LM Any 0.1130 0.0590 0.0121 0.0041 0.00012




Figure 8. From (i) to (iii), instantaneous distributions of U’, V/ and W’ at the porous—free-fluid interface
(Y =0) for case T Cyp. The fully resolved results (a) are compared with the homogenized ones (b).
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Figure 7: Distribution of the mean velocity (a) and behaviors of quantities of interest related
to turbulence statistics (b-f) over the porous substrate 7C(): predictions of the homogenized
simulation when the effective boundary conditions of the three velocity components are
imposed (green lines with filled circles) or when transpiration is neglected (blue lines) are
validated against results of the fine-grained simulation (red lines), while the dashed profiles
are related to the smooth, impermeable channel case.
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Previous work (Orlandi & Leonardi 2006, 2008) has shown that the
roughness function is related to the fluctuating vertical velocity at the
fictitious wall
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Figure 13: Values of the parameter D plotted against the r.m.s. of the turbulent fluctuations
in the wall-normal velocity at the plane ¥ = 0. In panel (a), results from the literature for
channels roughened with streamwise-elongated, spanwise-elongated, or three-dimensional
elements are shown: blank square, Cheng & Castro (2002): red circles. Leonardi er al.
(2003); purple triangles, Orlandi & Leonardi (2006); green squares, Burattini er al. (2008);
gray diamonds, Orlandi & Leonardi (2008): blank circles, Hao & Garcia-Mayoral (2024). In
panel (b), the results of Hao & Garcia-Mayoral (2024) for symmetric channels bounded by
either deep (red diamonds) or shallow (gray squares) porous substrates are plotted. together
with the values of the present homogenization-based simulations (light-blue triangles).
Solid lines refer to correlation (3.2), while the linear relationship by Orlandi & Leonardi
(2008) is plotted with dashed lines.



But ...

where do we get V.,,,. from???
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Extended Beavers-Joseph-Saffman conditions with NO empirical coefficients
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Final relation for O
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Figure 16. The roughness-function-related quantities D and ., plotted against the parameter ¥ for the
different porous patterns considered (same symbols as in figure 13, filled for D and empty for ). Correlations
(3.12) and (3.13) are plotted with solid lines.



Now we are in the position to make a priori
predictions ...



Rough wall
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Figure 15: Turbulent flow (Re; =~ 180) in a symmetric channel whose top/bottom
boundaries are roughened with cubes (in-line arrangement) of size-to-pitch ratio e/ = (.5,
with the spacing in wall units, {* = €Re ( pq). varied up to 50. Values of the macroscopic
coeflicients are plotted against * in panel (a). In panel (b), the behavior of the parameter 9
based on (3.11) is shown (blue curve), and is validated against the results by Hao & Garcia-
Mayoral (2024) obtained from full simulations (squares). The black dashed curve refers to
the predictions of (3.11) when ¥ is evaluated with the Stokes-based upscaled coeflicients,

neglecting near-wall inertia; they are Ax = A; ~ 0.0653 and 'K;ny ~ ‘Kf,;');f = 0.0083.
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Figure 16: Behavior of AU* with the increase in £*, for the turbulent flow over surfaces with
different shapes of riblets. The proposed correlation (blue solid lines) is validated against
relevant results from the literature (red symbols), while the black dashed lines represent the
simple linear dependence AU* = A} — A}. The literature results plotted are by (a—¢) Wong
et al. (2024) and (f) Bechert et al. (1997); the latter were reported originally in terms of

ACy

o, — and the corresponding values of AU* are obtained here employing the relation
sNmooln
AC
v f 0.5
AU" = X [(2Cf .nmmrh) # 1251
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Salient ideas

 Homogenization theory can include advection within a linearized (Oseen-
like) framework. The theory yields macroscopic upscaling coefficients

e Effective wall conditions appear to mimic very well the effect of the
surface/substrate

 The drag-reducing/increasing effect of a porous substrate or of wall
roughness AU can be reproduced simply by identifying the macroscopic
upscaling coefficients, and then computing the characteristic function \J/



Isosurfaces with A, criterion = 500

physical time period: AT* =1
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Blowing events Suction events
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physical time period: AT" = l -1




