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Motivation

Figure: Wind tunnel smoke visualization of transition in a boundary layer
subjected to free stream turbulence (KTH, Stockholm).

Emmons (1951): Observation of turbulence spots → which
perturbation most easily bring the flow to turbulent transition?
Farrell (1988): Optimal single-wavenumber perturbations →
introduced to explain the occurrence of bypass transition.
Biau, Soueid & Bottaro (2008) : Direct numerical simulations
→ suboptimal disturbances are more efficient than optimal ones.
This work: Optimization of a spatially localized wave packet
→ not the traditional inflow-outflow problem, but a new attempt to
identify initial localized disturbances that yield convected turbulent
spots.
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Optimization of a localized wave packet

From single-wavenumber to multiple-wavenumber optimization:

Local optimization: optimization on a velocity profile by
direct-adjoint iterations of the Orr-Sommerfeld and Squire equations
(Corbett & Bottaro, 2000), the perturbation is characterized by a
single wave number in x and z:

q(x, y, z, t) = q̃(y, t)exp (i(βz + αx)) (1)

Global 2D optimization: optimization on top of a 2D velocity field
by a global eigenvalue model (Alizard & Robinet, 2007), the
perturbation is characterized by a single wave number in z:

q(x, y, z, t) = q̂(x, y, t)exp (iβz) (2)

Global three-dimensional optimization: optimization on top of a
2D velocity field by direct-adjoint iterations of the linearized
Navier–Stokes equations, the perturbation has no fixed wave number
→ optimal wave packet localized in the streamwise direction.
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Timestepping code

Non-dimensional incompressible Navier–Stokes equations:

ut + (u · 5)u = −5 p+
1
Re
52 u, (3)

5 · u = 0,

with u = (u, v, w)T the velocity vector, p the pressure and Re = U∞δ
∗

ν

’Fractional step’ method on a ’staggered ’ grid.
Centered second-order spatial discretization
Temporal discretization: Crank–Nicolson for the viscous terms,
third-order Runge-Kutta for non-linear ones.
Domain: 400× 20× 10 in terms of δ1, discretized on a
501× 150× 51 grid
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Power iterations for the optimization

Lagrange multipliers method

The Objective function is the kinetic energy integrated in the whole domain:

J = E (t) =
1

2

Z Lx

0

Z Ly

0

Z Z

−Z

`
u2 + v2 + w2´ dxdydz. (4)

Constraint: NS equations → First variation of the augmented fuctional set to
zero → adjoint equations plus compatibility and optimality conditions
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Global instability model
The instantaneous variables q = (u, v, p)T are considered as a superposition of
the base flow and of the perturbation q̃ = (ũ, ṽ, p̃)T .

Decomposition of the perturbation on a basis of N temporal modes:

q̃(x, y, z, t) =
∑N
k=1 κ

0
k q̂k(x, y) exp (−i(ωkt+ βz)) ,

where q̂k are the eigenvectors, ωk the eigenvalues, κ0
k their initial amplitude.

Substituting in the NS eq. and linearizing lead to the eigenvalue problem:

(A− iωkB) q̂k = 0, k = 1, . . . , N. (5)

discretized with a Chebyshev/Chebyshev spectral method employing N = 850
modes on a 270× 50 grid, and solved by a shift and invert Arnoldi algorithm.

Maximum energy gain at time t over all possible initial conditions u0

G (t) = max
u0 6=0

E (t)

E (0)
= ||F exp(−itΛ)F−1||22 (6)

where Λk,l = δk,lωk and F is the Cholesky factor of the energy matrix M of
components Mij =

R R
(û∗i ûj + v̂∗i v̂j + ŵ∗i ŵj) dxdy, i, j = 1, . . . , N
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Why should optimals (= right singular vectors) be relevant
at all ? They are not !

The propagator P of the initial condition q̃0 turns the initial state into a final
state q̃T .

Singular Value Decomposition:

P = LΣR∗,

with L and R unitary matrices, Σ diagonal matrix of singular values.

Suppose that the initial state could be expressed as a (hopefully) balanced
expansion of the right singular vectors:

q̃0 = Ra (7)

with a vector of coefficients,

then the output is a combination of left singular values:

q̃T = LΣR∗Ra = L [Σa] . (8)

Depending on the properties of the spectrum of singular values, the left
singular vector associated to the largest singular value may dominate the
dynamics at t = T .
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Linear Results
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Optimal energy gain

Optimal energy gain for Re = 610: G(tmax) = 736 at tmax = 247,
larger than the value found by a local approach at the same Re.
Convergence: the optimization method reaches in 20 iterations a
level of convergence of about e = 10−4, in 80 it converges up to
e = 10−5 (e = (E(n) − E(n−1))/E(n)).
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Optimal perturbation in the plane y-z

The optimal perturbation is characterized in the plane y − z by a pair of
counter-rotating vortex, like the local optimal with α = 0 (Farrell 1988).

Figure: Optimal perturbation at t = 0 and t = tmax for Re = 610. Vectors
represent the wall-normal and spanwise velocity components, shades of grey are
relative to the streamwise velocity.
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Optimal perturbation at t = 0

Local optimization: optimal perturbation for α = 0
Global optimization: optimal perturbation composed by
upstream-elongated packets, tilted upstream, modulated in the x
direction (α 6= 0)

Figure: Iso-surfaces of the streamwise component of the optimal perturbation
at t = 0.
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What does the optimal perturbation turn into?

Orr mechanism: tilts the perturbation in the mean flow direction.
Lift-up mechanism: amplifies the streamwise perturbation.
At optimal time: streaky structures alternated in the x direction.

Figure: Iso-surfaces of the streamwise component of the optimal perturbation
at t = tmax.
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The streamwise modulation
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Dependence on the streamwise domain length
Optimizations with streamwise domain lengths Lx = 400, 800, 1200

Gmax increases due to a
combined effect of the Orr
mechanism and of the
spatial non-parallel
amplification
Tmax increases linearly due
to base flow advection
(t ∝ Lx/U∞)

The optimal perturbations
plotted on the normalized
coordinates η = y

√
Re/x,

x̄ = xLx1/Lx present a
similar longitudinal extent,
inclination, and modulation.
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Streamwise characteristic wavenumber (dependence on Lx)

The most amplified wavenumber of the optimal perturbation, αc, is
computed by spatial Fourier transform for different target times and Lx.

The normalized modulation of the perturbation is approximately
invariant with respect to the value of Lx used in the optimization.
αc is rather high at small times and decreases with time towards an
asymptotic value.
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Dependence on Re

The optimal perturbation is computed at Re = 610, 300, 150.
At all Re the optimal perturbation is modulated in the x-direction.
The streamwise modulation of the perturbation in normalized
coordinates is found to vary

The characteristic wavenumber is found to increase approximately
with the square root of Re → the curves of αc normalized with

√
Re

collapse onto one for sufficiently large times
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Scaling law for αc
The scaling law for the characteristic streamwise wavenumber:

αc ∝
√
Re

Lx
(9)

provides the variation of the optimal x−modulation with the
independent parameters of the optimization, Lx and Re.
allows to recover the classical result on the optimal growth in a
parallel boundary layer, since αc → 0 for Lx →∞.

The origin of such a modulation is investigated: could it be
related to (a superposition of) local single-wavenumber optimals?

A three-dimensional perturbation is reconstructed as a superposition
of local optimals (α = 0) and suboptimals (α 6= 0) :

q(x, y, z) =

nX
j=1

κj q̄j(y) exp (iβz − iαjx) , (10)

where q̄j(y) is the result of the local optimization in Corbett &
Bottaro 2000 for a given α, at the energy κj .
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Local approximation and streamwise modulation
Local approximation

Superposition of
local optimals and
suboptimals at
different α → the
global optimal
perturbation is
qualitatively
recovered

The characteristic streamwise
wave number αc converges with
time to a value different from
zero → well predicted by the
superposition of local optimals
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The spanwise modulation and the
near-optimal perturbation
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Effect of the spanwise direction

Optimal energy gain for different spanwise domain lengths, Lz:

Global model→ β is fixed →
well defined peak for β = 0.6
Direct-adjoint→ Just the
minimum β is fixed,
βL = 2π/Lz → for low βL
(large Lz) the dynamics
matches the optimal one (more
than one wave appears at small
β)

The optimal perturbation is single-wavenumber and extended
in z, because the problem is homogeneous in z
A realistic perturbation is localized in the spanwise
direction and composed by a spectrum of β.
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The global near-optimal perturbation

We look for a near-optimal perturbation:
localized in the spanwise direction
composed by a spectrum of β
reaching a near-optimal value of G(t)

Thus, we follow the procedure below.

1 We build an artificially localized wave packet by multiplying the optimal
single-wavenumber perturbation times an envelope of the form exp(−z2)

2 We initialize the optimization with such artificial wave packet
3 We stop the iterations at e = 10−3, when the largest residual adjustments

of the solution occur in the spanwise direction
4 Since the problem is self-adjoint in z, the influence of the spanwise shape

of the perturbation on the energy gain is weak with respect to the
streamwise and wall-normal ones
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Near-optimal wavepacket

Figure: Streamwise near-optimal perturbation at t = 0, y = 1.

Thus, we obtain a near-optimal perturbation
localized in the spanwise direction
composed by a spectrum of β
reaching 99% of the value of G(tmax) !
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Non-Linear Results
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Transition energy levels (global vs local optimals)

Figure: Mean skin friction factor of the considered flow perturbed with global, local,
and sub-optimal disturbances, for from left to right E0 = 0.5, E0 = 2 and E0 = 10.

What perturbation is most effective in inducing transition?
Local optimal at α = 0: transition for E0 = 10.

Local suboptimal at α 6= 0: transition for E0 = 2 (Biau et al. 2008).

Global three-dimensional optimal: transition for E0 = 0.1.

The global optimal perturbation is the most effective in inducing
transition, followed by the suboptimal one.
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Transition induced by the near-optimal perturbation

Streamwise velocity contours at y = 1 and E0 = 0.5 at four times:
T = 160: saturation and presence of spanwise subharmonics.
T = 220: kinks at the front of the most amplified streak.
T = 250: spreading out of the turbulence to the confining streaks.
T = 330: presence of a turbulent spot
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Transition to a turbulent spot
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Streaks breakdown

Figure: Streamwise (a) and wall-normal (b) perturbation at T = 220. The solid and
dashed lines represent positive and negative spanwise velocities.

Quasi-sinuous or quasi-varicose oscillations of the streaks?

Both quasi-sinuous (C,D) and quasi-varicose (A,B) oscillations are
recovered, due to the staggered arrangement of the streaks
Four streaks (A,B,C,D) break down at the same time,
explaining the efficiency of the perturbations in provoking
transition.
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Vortical structures

Recently, Wu & Moin have given evidence of the presence of hairpin
vortices in transitional boundary-layer flows
We visualize the vortical structures by the Q-criterion
An hairpin vortex is identified in the interaction zone of the streaks
A,B,C,D, preceded upstream by a pair of quasi-streamwise vortices

Figure: Iso-surfaces of negative (blue) and positive (green) streamwise perturbations,
and Q-criterion surfaces (light blue).
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The hairpin vortices formation (1)

At t = 145, two quasi-streamwise vortices are present on the
flanks of the low-speed streak, increasing their size on the
wall-normal direction. An inclined shear layer is induced by the
front interaction of the low- and high-speed streaks

Figure: Iso-surfaces of the Q criterion and u, v, w vectors on the x− y plane at z = 0
at t = 145.
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The hairpin vortices formation (2)

At t = 165: non-linear effects allow the formation of a vortical
region at the edge of the inclined shear layer connecting the two
quasi-streamwise vortices, thus forming the head of the hairpin.

Figure: Iso-surfaces of the Q criterion and u, v, w vectors on the x− y plane at z = 0
at t = 165.
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The hairpin vortices formation (3)

At t = 180: the primary hairpin head is lifted from the wall, and a
second arch vortex appears upstream of the first along the inclined
zone of interaction of the low and high-speed streaks. A similar
dynamics is observed for turbulent boudary layers (Adrian 2007),

Figure: Iso-surfaces of the Q criterion and u, v, w vectors on the x− y plane at z = 0
at t = 180.
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The hairpin vortices formation (4)

At t = 190: the first
hairpin vortex increases in
size, breaking up into
smaller coherent patches
of vorticity, although
remnants of the original
structure are still visible.

Figure: Iso-surfaces of the Q criterion and u, v, w vectors
on the x− y plane at z = 0 at t = 190.

Such a transition scenario connects two opposite views of
transition, that grounded on transient growth and secondary
instability of the streaks (Schoppa & Hussain, 2002), and the
other based on vortex regeneration (Adrian 2007).
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Conclusions and perspectives

1 The global optimal perturbation is characterized non-zero
streamwise wavenumber.

2 It is more effective in inducing transition than a local suboptimal
or a local optimal one.

3 A near-optimal perturbation, localized also in the spanwise direction,
transitions in a turbulent spot.

4 Quasi-sinous and quasi-varicous streaks oscillations are
recovered due to the staggered arrangement of the streaks.

5 An hairpin vortex is identified in the interaction zones of such
streaks, induced by the front interaction of the low- and high-speed
streaks.

6 A viable path to transition is presented, connecting the
transition scenario based on transient growth (Schoppa &
Hussain 2002) and that based on vortex regeneration (Adrian
2007).
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