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Motivation

Motivation

Figure: Wind tunnel smoke visualization of transition in a boundary layer
subjected to free stream turbulence (KTH, Stockholm).

e Emmons (1951): Observation of turbulence spots — which
perturbation most easily bring the flow to turbulent transition?

o Farrell (1988): Optimal single-wavenumber perturbations —
introduced to explain the occurrence of bypass transition.

o Biau, Soueid & Bottaro (2008) : Direct numerical simulations
— suboptimal disturbances are more efficient than optimal ones.

o This work: Optimization of a spatially localized wave packet
— not the traditional inflow-outflow problem, but a new attempt to
identify initial localized disturbances that yield convected turbulent
spots.
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Motivation

Optimization of a localized wave packet

From single-wavenumber to multiple-wavenumber optimization:

@ Local optimization: optimization on a velocity profile by
direct-adjoint iterations of the Orr-Sommerfeld and Squire equations
(Corbett & Bottaro, 2000), the perturbation is characterized by a
single wave number in z and z:

a(z,y, z,t) = q(y, t)exp (i(Bz + ax)) (1)

@ Global 2D optimization: optimization on top of a 2D velocity field
by a global eigenvalue model (Alizard & Robinet, 2007), the
perturbation is characterized by a single wave number in z:

q(:c,y,z,t) = Q(x,y,t)exp (Zﬁz) (2)

o Global three-dimensional optimization: optimization on top of a
2D velocity field by direct-adjoint iterations of the linearized
Navier—Stokes equations, the perturbation has no fixed wave number
— optimal wave packet localized in the streamwise direction.
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Numerical tools and methods
o

Timestepping code

Non-dimensional incompressible Navier—Stokes equations:

1
Wt vu = —vpt vy (3)
vV-ua = 07
with u = (u,v,w)T the velocity vector, p the pressure and Re = @

@ 'Fractional step’ method on a 'staggered’ grid.

o Centered second-order spatial discretization

@ Temporal discretization: Crank—Nicolson for the viscous terms,
third-order Runge-Kutta for non-linear ones.

@ Domain: 400 x 20 x 10 in terms of d;, discretized on a
501 x 150 x 51 grid
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Numerical tools and methods
o

Power iterations for the optimization

ge multipliers me

The Objective function is the kinetic energy integrated in the whole domain:

Ly Ly rZ
J=E(t)= %/0 /0 /Z (u2 +0° + w2) dzdydz. (4)

Constraint: NS equations — First variation of the augmented fuctional set to
zero — adjoint equations plus compatibility and optimality conditions

t=0 > t=T
For the objective time T - Direct Equations o | Compatibility conditions
take an initial guess q - integrated from O to T 1 fromqto qu att=T

T

Iq‘o— q:;‘ I>e no convergence

Optimality conditions Adjoint Equations
from qT toq at t=0

integrated from T to O

Take a new objective time T ‘47 g~ q*' I<¢, convergence
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Numerical tools and methods

@00

Global instability model

The instantaneous variables q = (u,v,p)” are considered as a superposition of
the base flow and of the perturbation § = (@, ,5)”.

Decomposition of the perturbation on a basis of N temporal modes:

a(z,y, z,t) = SN k9 @k (x, y) exp (—i(wit + B82)),

where . are the eigenvectors, wy the eigenvalues, x9 their initial amplitude.

Substituting in the NS eq. and linearizing lead to the eigenvalue problem:
(A—ika)quO, /ﬂ:1,...,N. (5)

discretized with a Chebyshev/Chebyshev spectral method employing N = 850
modes on a 270 x 50 grid, and solved by a shift and invert Arnoldi algorithm.

Maximum energy gain at time ¢ over all possible initial conditions ug

_ E(t) _ . 12
G (t) = DA T0) ||F exp(—itA)F~ || (6)

where Ay, = 0k, ;wr and F is the Cholesky factor of the energy matrix M of
components M;; = [ [ (4}d; + 0;0; + wiw;) dzdy, 4,5 =1,...,N
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Numerical tools and methods
oeo

Why should optimals (= right singular vectors) be relevant

at all 7 They are not !

The propagator P of the initial condition qo turns the initial state into a final
state qr.

Singular Value Decomposition:

P = LER",

with L and R unitary matrices, 3 diagonal matrix of singular values.

Suppose that the initial state could be expressed as a (hopefully) balanced
expansion of the right singular vectors:

do = Ra (7)

with a vector of coefficients,

then the output is a combination of left singular values:

dr = LXR‘Ra=L[Za]. (8)

Depending on the properties of the spectrum of singular values, the left
singular vector associated to the largest singular value may dominate the
dynamics at t = T.
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al tools and methods

Linear Results
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Linear results

00000

Optimal energy gain

e Optimal energy gain for Re = 610: G(tnaz) = 736 at timae = 247,
larger than the value found by a local approach at the same Re.
@ Convergence: the optimization method reaches in 20 iterations a

level of convergence of about e = 10~%, in 80 it converges up to
e=10"% (e = (E™ — E(»-1))/E®™),
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Linear results
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Figure: Optimal perturbation at ¢ = 0 and ¢ = 4. for Re = 610. Vectors

represent the wall-normal and spanwise velocity components, shades of grey are

relative to the streamwise velocity.
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Linear results
[o]e] Jlele]

Optimal perturbation at t = 0

o Local optimization: optimal perturbation for o =0

o Global optimization: optimal perturbation composed by
upstream-elongated packets, tilted upstream, modulated in the x

direction (a # 0)

Figure: lso-surfaces of the streamwise component of the optimal perturbation
att =0.
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Linear results
[o]e]e] le]

What does the optimal perturbation turn into?

@ Orr mechanism: tilts the perturbation in the mean flow direction.
o Lift-up mechanism: amplifies the streamwise perturbation.

o At optimal time: streaky structures alternated in the x direction.

5 -5
60(50 v

Figure: Iso-surfaces of the streamwise component of the optimal perturbation
at t = tmas-
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Linear results
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The streamwise modulation
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Linear results
®00000

Dependence on the streamwise domain length

Optimizations with streamwise domain lengths L,

@ Gaz increases due to a
2000 :
—+— bt combined effect of the Orr
15001 —+— Lx=1200 mechanism and of the
= spatial non-parallel
@ 'oor amplification
500 @ T4z increases linearly due
to base flow advection
0 500 ¢ 1000 (t x L;/Us)
v
, : 10
The optimal perturbations Lx100

plotted on the normalized —— Lx=800
coordinates = y\/Re/z, =5l
T =uxL,, /L, present a

similar longitudinal extent,
inclination, and modulation. 0

0 100 200 300 400
j(_)7(in
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Linear results
O@0000

Streamwise characteristic wavenumber (dependence on L)

The most amplified wavenumber of the optimal perturbation, o, is
computed by spatial Fourier transform for different target times and L,.

0.6
- —=s—— Lx=400
_’,‘O al ——— Lx=800
= —e— Lx=1200
—
3
0.2+
O L L L 1 L L L 1 L L > L *
0 100 200 300 400

t Ly, /Ly

@ The normalized modulation of the perturbation is approximately
invariant with respect to the value of L, used in the optimization.

@ « is rather high at small times and decreases with time towards an
asymptotic value.
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Linear results
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Dependence on Re

@ The optimal perturbation is computed at Re = 610, 300, 150.
@ At all Re the optimal perturbation is modulated in the z-direction.

@ The streamwise modulation of the perturbation in normalized
coordinates is found to vary

10 0.015
~— Re=610 —=a—— Re=610
Re=300 o ——— Re=300
Re=150 © 0.01F —8— Re=150
5 S
& 3
0.005
O L 1 07 1 1 1 1 1 1
0 100 200 300 400 0 120 170 220 270 320 370 420

X-Xln t
The characteristic wavenumber is found to increase approximately

with the square root of Re — the curves of a, normalized with v/ Re
collapse onto one for sufficiently large times

Cherubini The optimal and near-optimal wavepacket in a boundary layer and its



Linear results
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Scaling law for a.

The scaling law for the characteristic streamwise wavenumber:

Qe X

@ provides the variation of the optimal z—modulation with the
independent parameters of the optimization, L, and Re.

@ allows to recover the classical result on the optimal growth in a
parallel boundary layer, since a. — 0 for L, — oo.

The origin of such a modulation is investigated: could it be
related to (a superposition of) local single-wavenumber optimals?

A three-dimensional perturbation is reconstructed as a superposition
of local optimals (oo = 0) and suboptimals (o # 0) :

a(e.v.2 zw ep(ifz—iom). (10

where g;(y) is the result of the local optimization in Corbett &
Bottaro 2000 for a given «, at the energy x;.
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Linear results
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Local approximation and streamwise modulation

Local approximation

Superposition of
local optimals and
suboptimals at
different o — the

global optimal
perturbation is
qualitatively
recovered
i
- . 03
The characteristic streamwise
. ——&—— Global
wave number «. converges with ozl e
time to a value different from s
zero — well predicted by the 0.1
superposition of local optimals
05 200 4?0 600 800
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Linear results
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The spanwise modulation and the
near-optimal perturbation
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Linear results

Effect of the spanwise direction

Optimal energy gain for different spanwise domain lengths, L.:

o Global model— g is fixed —

800 well defined peak for 3 = 0.6
600 o Direct-adjoint— Just the
= minimum [ is fixed,
55,400' Br = 2w /L, — for low Sy,

(large L,) the dynamics
——=— Model matches the optimal one (more
—e— DA
L e than one wave appears at small
0 02040608 1 121416

B. 5)

n

o

o
T

@ The optimal perturbation is single-wavenumber and extended
in z, because the problem is homogeneous in z

@ A realistic perturbation is localized in the spanwise
direction and composed by a spectrum of .
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Linear results

The global near-optimal perturbation

3 . 0
We look for a near-optimal perturbation: 10
. . . . . 10" Wave packet
@ localized in the spanwise direction . Single-wavenumber
10°
@ composed by a spectrum of 8 ®
@ reaching a near-optimal value of G(t) 10%)
Thus, we follow the procedure below. 10°b—zp g T2
it

@ We build an artificially localized wave packet by multiplying the optimal
single-wavenumber perturbation times an envelope of the form exp(—z2)

We initialize the optimization with such artificial wave packet

(2]

© We stop the iterations at e = 10™2, when the largest residual adjustments
of the solution occur in the spanwise direction

0

Since the problem is self-adjoint in z, the influence of the spanwise shape
of the perturbation on the energy gain is weak with respect to the
streamwise and wall-normal ones
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Linear results

Near-optimal wavepacket
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Figure: Streamwise near-optimal perturbation at t =0, y = 1.

Thus, we obtain a near-optimal perturbation 81
@ localized in the spanwise direction E.;s
@ composed by a spectrum of 8
e reaching 99% of the value of G(t,,4.) ! ok

Cherubini The optimal and near-optimal wavepacket in a boundary layer and its



Linear results

Non-Linear Results
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Non linear results
o

Transition energy levels (global vs local optimals)

0.006 E(0)=0.5 0.006 E(0)=2 0.006 E(0)=10
e Global Optimal : Global Optimal : Global Optimal
- . LocalOptimal |  fme--- Local Optimal - Local Optimal
—— - LocalSubopt. [ lesee Local Subopt. Local Subopt.
~——taminar___ \Iamau_\ r
Turbulent Turbulent Turbulent = N

1.

800 400 X 600 SOO 400 X 600 800 400y 600

Figure: Mean skin friction factor of the considered flow perturbed with global, local,
and sub-optimal disturbances, for from left to right £y = 0.5, Egp = 2 and Ey = 10.

What perturbation is most effective in inducing transition?

@ Local optimal at o = 0: transition for Ey = 10.
@ Local suboptimal at « # 0: transition for Ey = 2 (Biau et al. 2008).

@ Global three-dimensional optimal: transition for Eo = 0.1.

@ The global optimal perturbation is the most effective in inducing
transition, followed by the suboptimal one.
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Non linear results
00000000

Transition induced by the near-optimal perturbation

400 450 500 550 600 300 350 400 450 500 550
X X

Streamwise velocity contours at y = 1 and Ey = 0.5 at four times:

@ T = 160: saturation and presence of spanwise subharmonics.

@ T = 220: kinks at the front of the most amplified streak.

@ T = 250: spreading out of the turbulence to the confining streaks.
@ T = 330: presence of a turbulent spot
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Non linear results
0®@000000

Transition to a turbulent spot
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Non linear results
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Streaks breakdown

980 Re 1000 2% 980 Re 1000

e — 4B
| 10 | i 1.0E-01
Z 7.5E-02
O | 4.5E-02
N i N O 1.7E-02
0 3 x -1.0E-02
. - -4.0E-02
[ : B 10k -7.0E-02
108 — -1.0E-01

-20 T T

X 540 500 520 540
X

Figure: Streamwise (a) and wall-normal (b) perturbation at 7' = 220. The solid and
dashed lines represent positive and negative spanwise velocities.

Quasi-sinuous or quasi-varicose oscillations of the streaks?

@ Both quasi-sinuous (C,D) and quasi-varicose (A,B) oscillations are
recovered, due to the staggered arrangement of the streaks

e Four streaks (A,B,C,D) break down at the same time,
explaining the efficiency of the perturbations in provoking
transition.
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Non linear results
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Vortical structures

@ Recently, Wu & Moin have given evidence of the presence of hairpin
vortices in transitional boundary-layer flows

@ We visualize the vortical structures by the Q-criterion

@ An hairpin vortex is identified in the interaction zone of the streaks
A,B,C,D, preceded upstream by a pair of quasi-streamwise vortices

Figure: lso-surfaces of negative (blue) and positive (green) streamwise perturbations,
and Q-criterion surfaces (light blue).
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Non linear results
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The hairpin vortices formation (1)

o At t = 145, two quasi-streamwise vortices are present on the
flanks of the low-speed streak, increasing their size on the
wall-normal direction. An inclined shear layer is induced by the
front interaction of the low- and high-speed streaks

Figure: Iso-surfaces of the Q criterion and u, v, w vectors on the z — y plane at z = 0
at t = 145.
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Non linear results
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The hairpin vortices formation (2)

@ At ¢t = 165: non-linear effects allow the formation of a vortical
region at the edge of the inclined shear layer connecting the two
quasi-streamwise vortices, thus forming the head of the hairpin.

Figure: Iso-surfaces of the Q criterion and u, v, w vectors on the z — y plane at z = 0
at t = 165.
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Non linear results
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The hairpin vortices formation (3)

@ At ¢t = 180: the primary hairpin head is lifted from the wall, and a
second arch vortex appears upstream of the first along the inclined
zone of interaction of the low and high-speed streaks. A similar
dynamics is observed for turbulent boudary layers (Adrian 2007),

Figure: lso-surfaces of the Q criterion and w, v, w vectors on the z — y plane at 2 =0
at ¢t = 180.
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Non linear results
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The hairpin vortices formation (4)

o At ¢t =190: the first
hairpin vortex increases in 4
size, breaking up into
smaller coherent patches
of vorticity, although
remnants of the original -
structure are still visible. 10505 s X

545

Figure: lIso-surfaces of the Q criterion and u, v, w vectors
on the x — y plane at z = 0 at ¢t = 190.

Such a transition scenario connects two opposite views of
transition, that grounded on transient growth and secondary
instability of the streaks (Schoppa & Hussain, 2002), and the
other based on vortex regeneration (Adrian 2007).
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Conclusions

Conclusions and perspectives

© The global optimal perturbation is characterized non-zero
streamwise wavenumber.

@ It is more effective in inducing transition than a local suboptimal
or a local optimal one.

A near-optimal perturbation, localized also in the spanwise direction,
transitions in a turbulent spot.

o

@ Quasi-sinous and quasi-varicous streaks oscillations are
recovered due to the staggered arrangement of the streaks.

o

An hairpin vortex is identified in the interaction zones of such
streaks, induced by the front interaction of the low- and high-speed
streaks.

Q@ A viable path to transition is presented, connecting the
transition scenario based on transient growth (Schoppa &
Hussain 2002) and that based on vortex regeneration (Adrian
2007).
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