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Recent studies have suggested that in some cases transition can be triggered by some purely nonlinear
mechanisms. Here we aim at verifying such an hypothesis, looking for a localized perturbation able to lead a
boundary-layer flow to a chaotic state, following a nonlinear route. Nonlinear optimal localized perturbations
have been computed by means of an energy optimization which includes the nonlinear terms of the Navier-
Stokes equations. Such perturbations lie on the turbulent side of the laminar-turbulent boundary, whereas, for
the same value of the initial energy, their linear counterparts do not. The evolution of these perturbations
toward a turbulent flow involves the presence of streamwise-inclined vortices at short times and of hairpin
structures prior to breakdown.
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Over 20 years have passed from the first linear transient
growth analysis for a Poiseuille or a Couette flow �1�. Since
then, with the development of the global-mode theory �2�
and of efficient optimization techniques �3� and thanks to the
remarkable increase in computing power, a scenario of tran-
sient disturbance amplification has been outlined. Typically,
one searches for the most effective path to transition by de-
termining the shape of an initial �small� disturbance which
yields the maximum energy amplification at a given target
time. For the case of boundary-layer flows at low Reynolds
number of interest here, the result, obtained in a parallel flow
setting, is that linear optimal perturbations consist of pairs of
counter-rotating streamwise vortices, capable to elicit
streamwise streaks by the lift-up effect �4�. On the basis of
such linear results, some authors �5� have argued that the
non-normality of the linearized operator is the primary cause
of the onset of transition, whereas nonlinearities mostly pre-
vent the viscous decay of the optimally growing distur-
bances. Nonetheless, later work �6� has demonstrated that the
linear mechanism which yields streamwise-homogeneous
streaks cannot trigger transition in the absence of nonlinear
interactions. Recently, it has been shown �7� that, for a non-
parallel Blasius boundary-layer base flow at low Reynolds
number, localized optimal perturbations computed by a lin-
ear global approach are streamwise modulated. Moreover,
they induce transition more effectively than streamwise-
independent initial disturbances via a mechanism including
the formation of hairpin vortices. Evidence for the prepon-
derance of hairpin-shaped structures in transitional
boundary-layer flows abounds �e.g., �8��, proving that non-
linear mechanisms are crucial in the transition scenario. For
this reason, several authors �9–17� have tried to follow a
different route to discover the basic mechanisms of flow
transition by using purely nonlinear analyses. Focus has been
in particular onto exact nonlinear solutions of the Navier-
Stokes equations, likely to be visited with some regularity by
a flow in the course of its chaotic phase-space trajectory.

Among such nonlinear states, one should distinguish those
sitting on the edge hypersurface �13�, the first states to be
approached by the flow during transition. Recently, some
studies have been carried out aimed at finding special initial
disturbances which cause the disturbed velocity field to ap-
proach such coherent structures �the lower-branch solution in
a pipe flow in �15� and the edge-state in a plane Couette flow
in �16��. In these studies, special perturbations are built by a
linear combination of a limited number of “basic modes,”
whose coefficients are determined by an optimization proce-
dure. Here, a more general technique to find global optimal
perturbations which induce transition efficiently is intro-
duced. For this purpose, avoiding any a priori constraint on
the shape of the perturbation, we use a global approach ex-
tending the linear transient growth analysis of Cherubini et
al. �7� to the nonlinear framework for the case of a boundary-
layer flow. In particular, the three following issues are ad-
dressed: �i� prove the existence of a nonlinear amplification
mechanism of the disturbances which is more effective with
respect to the linear one and capable to lead the flow to
turbulence for lower values of the perturbation amplitude;
�ii� investigate the structure of the perturbations capable of
inducing such an optimal amplification and their nonlinear
evolution; �iii� set the basis to establish a link between the
nonlinear optimal and the laminar-turbulent boundary in
phase space. It is noteworthy that the present analysis refers
to a spatially inhomogeneous, open base flow, namely, the
Blasius boundary-layer flow, U�x ,y�. For such a flow, no
exact coherent solution nor the structure of the laminar-
turbulent boundary has been determined yet.

In order to address the issues above, we seek for the ve-
locity perturbation u at t=0, having a given initial energy E0,
which can induce at a target time T the highest perturbation
energy E�T�= �u�T� ·u�T��, where the symbol � � indicates
integration over the considered three-dimensional domain.
This optimal perturbation is computed by means of a
Lagrange multiplier optimization, which consists in finding
extrema of the augmented functional*s.cherubini@gmail.com
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In Eq. �1�, the Navier-Stokes equations in a perturbative for-
mulation have been imposed as constraint; �u† , p†� are the
Lagrange multipliers, e.g., the adjoint variables. The Rey-
nolds number is defined as Re=U��� /�, where �, ��, and U�

are the kinematic viscosity, the inflow boundary-layer dis-
placement thickness, and the free stream velocity, respec-
tively. The three-dimensional perturbation vanishes at bot-
tom and upper-boundary points, whereas periodicity is
imposed in the spanwise homogeneous direction. Since the
flow is not periodic in the streamwise direction, a zero per-
turbation condition is imposed at inflow and outflow; this
allows a x-localized initial disturbance field u�0�. In order to
avoid the propagation of spurious oscillations inside the
computational domain, the zero perturbation condition at the
inflow and outflow is enforced by means of two fringe re-
gions, external to the optimization domain, which allow the
perturbation to vanish smoothly. The inflow points of the
optimization domain are placed at xin=200 with respect to
the leading edge of the plate. Integrating by parts and setting
to zero the first variation in L with respect to �u , p� leads to
the adjoint equations plus the compatibility condition. The
adjoint equations are linked to the direct ones by the pres-
ence of direct variables in the advection terms; thus, the
whole direct-variable field needs to be stored at each time
step, requiring a remarkable storage capacity. The optimiza-
tion procedure for a chosen target time T can be summarized
as follows:

�1� An initial guess is taken for the initial condition, u�0�,
with an associated initial energy E0.

�2� The direct problem is integrated up to t=T.
�3� The adjoint variables, u†�T�, are provided by the com-

patibility condition 2u�T� /E�0�−u†�T�=0.
�4� The adjoint problem is integrated backward in time

from t=T to t=0.
�5� At t=0, the initial direct state is updated in the direc-

tion of the conjugate gradient, where the gradient of L with
respect to u�0� is �L /�u�0�=−2u�0���u�T� ·u�T��
−�E0� / �u�0� ·u�0��+ �u†�0��.

�6� The objective function E�T� is evaluated: if its varia-
tion between two successive iterations is smaller than a cho-
sen threshold e the loop is stopped, otherwise the procedure
is restarted from step �2�.

A similar procedure has been used very recently for the
case of the parallel flow in a pipe �17�. The direct and adjoint
equations are integrated by a second-order-accurate frac-
tional step method using a staggered grid �18�. A second-
order-accurate centered space discretization is used. An op-
timization domain having Lx=200, Ly =20, and Lz=10.5 has
been chosen, x, y, and z being the streamwise, the wall-
normal and the spanwise directions, respectively. After a
grid-convergence analysis, a mesh made up by 901�150

�61 points—stretched in the wall-normal direction so that
the thickness of the first cell close to the wall is equal to
0.1—is selected. The optimizations for initial energy E0
=0.01 and T�75 have been iterated up to a threshold value
e=10−8, which corresponds to a velocity field converged
within machine accuracy. It has been verified that, for a
larger convergence threshold e=10−6, the value of E�T� var-
ies only by 0.5%, and the shape of the optimal perturbation
does not show noticeable differences so that the optimiza-
tions for higher times and energies �which are more costly�
have been iterated up to a threshold value e=10−6. Nonlinear
optimizations have been performed at Re=610 for two dif-
ferent initial energies, E0=0.1 and E0=0.01. Figure 1 pro-
vides the energy gain �solid line� and its increment e
= �E�T�n−E�T�n−1� /E�T�n �dashed line� versus the number of
iterations, n, for T=75 and E0=0.01. The initial guess is the
perturbation obtained by a linear global optimization at the
same target time. The procedure converges toward the non-
linear optimal in n=250 iterations going through two “saddle
points” �at n�35 and n�85; easily distinguishable because
e increases sharply�. The length and slope of the plateau and
the variation in the velocity field between two successive
steps being within machine accuracy at convergence, there is
a strong indication that the optimization procedure has in-
deed identified the global nonlinear optimal initial state. The
circles in Fig. 2 show the values of the optimal energy gain
computed for E0=0.01 at five target times, whereas the
squares show the results of the corresponding linear optimi-
zation. Up to T=50, the nonlinear energy gain and the shape
of the perturbation change but slightly with respect to the
linear ones. On the other hand, for larger values of the target
time, a strong increase in the energy gain is observed in the
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FIG. 1. Energy gain �solid line� and its increment �dashed line�
versus the number of iterations for E0=0.01 and T=75. The initial
guess is the linear global optimal perturbation.
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FIG. 2. Optimal energy gain for a target time T: linear case
�squares�; nonlinear case for the initial energy E0=0.1 �triangles�
and E0=0.01 �circles�. The solid and dashed lines are the energy
gain curves obtained by a DNS initialized with the linear optimal
perturbation �dashed line� and with the nonlinear one �solid line�,
both computed for T=75, assigning initial energy E0=0.01. The
inset shows a detail of the curves.
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nonlinear case, reaching a value which is more than six times
the linear one for T=125. For a larger initial energy, E0
=0.1, a remarkable increase in the energy gain is observed
for T=50 and T=75 as shown by the triangles in Fig. 2. This
proves the effectiveness of nonlinear effects in inducing a
large amplification with respect to configurations character-
ized by purely linear mechanisms.

Similarly to the energy gain value, also the shape of the
optimal perturbations shows large differences with respect to
the linear case. Figures 3 and 4 provide the streamwise and
spanwise component of the linear and nonlinear optimal per-
turbations, respectively, at t=0 and t=T, for the target time
T=75. The linear optimal shows a sinusoidal variation in the
spanwise direction; the perturbation is characterized at T=0
by streamwise vortices and at t=T by streamwise streaks,
both modulated in the streamwise direction �7� �although it
has been shown in �19� that for larger Reynolds numbers the
optimal is a Tollmien-Schlichting wave packet�. The nonlin-
ear optimal solution is remarkably different, displaying a
short-scale x modulation, a smaller streamwise extent, and a
different spanwise periodicity. It is also important to observe
that, for the case under consideration, the nonlinear optimal
perturbation does not show noticeable differences when dou-
bling the streamwise length of the optimization domain, un-
like the linear case in which the optimal perturbation and
energy gain are highly dependent on the streamwise domain
length. It has been observed that, for different target times
�75�T�125 and E0=0.01� and domain lengths �large

enough for the perturbation not to reach the outflow at the
target time�, the optimal perturbation is always placed close
to the inflow of the domain.

In the first frame �t=0� of Fig. 4, one can observe the
presence of two series of streamwise-alternated elongated
patches of the spanwise component of the perturbation �gray
and black surfaces�, placed at the two flanks of a low-
momentum flow region �light gray surfaces�. It is also worth
pointing out that, unlike the linear case in which the stream-
wise component of the initial optimal perturbation is very
small, in the nonlinear case the component of the initial ve-
locity perturbation having the highest absolute value is the
streamwise one �umax

− =−0.018 and umax
+ =0.011�, which is

comparable to the spanwise one �wmax
− =−0.0163 and wmax

+

=0.0163� and rather larger than the wall-normal component
�vmax

− =−0.0068 and vmax
+ =0.0059�. Moreover, the regions

where the streamwise component of the velocity disturbance
is negative are associated with zones of positive wall-normal
component, which is not the case for linear optimal pertur-
bations. This means that the amplification of the perturbation
is not only due to the lift-up effect, but is strongly affected by
nonlinear interactions. In fact, at t=T=75 �see the second
frame of Fig. 4�, the classical streamwise-elongated streaks
are not recovered, but one can observe the presence of a �
structure which strongly recalls the bulge in the streamwise
fluctuation recently described in direct numerical simulations
�DNSs� of transition induced by traveling turbulence patches
�8�. Such � structures are here observed in the wall-normal
and streamwise components of the velocity perturbation,
whereas the spanwise component shows a sinuous shape
along x. Similar shape and behavior have been found for the
optimal perturbation at higher target times for the same ini-
tial energy. For this reason, and due to the very large com-
putational cost of the procedure, the optimizations have been
performed up to T=125. Thus, the validity of the present
results is limited to initial localized perturbations which can
grow in relatively short times, i.e., those most effective in
inducing transition. Finally, also for the cases at T	50 and
E0=0.1, similar structures have been found, although they
are more spread out in the spanwise and streamwise direc-
tion.

In order to ascertain that the nonlinear optimal distur-
bances lie on the turbulent side of the laminar-turbulent
boundary of the phase space, several DNS initialized by the
optimal perturbations have been performed. Figure 2 pro-
vides the curves of the energy gain obtained by the DNS
initialized with the nonlinear optimal for T=75 and E0
=0.01 �solid line� and with the linear optimal computed for
the same target time and with the same initial energy �dashed
line�. One can observe that the linear optimal perturbation
relaminarizes after about 200 time units, whereas the nonlin-
ear one leads the flow to transition. Figure 5 shows the
streamwise distribution of the spanwise-averaged skin-
friction coefficient Cf at different times. The laminar and
turbulent distributions of Cf are also reported for compari-
son. One can observe that, in the core of the propagating
wave packet, for T
200, Cf reaches values which are typi-
cal of turbulent flows. It is noteworthy that, at each time
instant, a smooth-varying region is observed, recalling the
calm region typical of the trailing edge of turbulent spots.
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FIG. 3. �Color online� Isosurfaces of the velocity components of
the perturbation obtained by the linear optimization for the target
time T=75, for an initial energy E0=0.01. Light gray �green� indi-
cates the streamwise component �u=−0.00015 at t=0 and u=−0.1
at t=75�; gray �blue� and black �red� indicate negative and positive
spanwise components, respectively �w= �0.004 at t=0 and w
= �0.01 at t=75�. Axes are not in the same scale.
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FIG. 4. �Color online� Isosurfaces of the velocity components of
the perturbation obtained by the nonlinear optimization for the tar-
get time T=75, for an initial energy E0=0.01. Light gray �green�
indicates the streamwise component �u=−0.01 at t=0 and u=−0.1
at t=75�; gray �blue� and black �red� indicate negative and positive
spanwise components, respectively �w= �0.007 at t=0 and w
= �0.05 at t=75�. Axes are not in the same scale.
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One can conclude that, for such rather low value of the initial
energy, the nonlinear optimal perturbation computed lies in
the basin of attraction of the turbulent flow, whereas the lin-
ear one is in the basin the attraction of the laminar fixed
point. Therefore, the addition of the nonlinear terms to the
optimization procedure has brought the optimal perturbation
from one side to the other of the laminar-turbulent boundary
in phase space, for the same initial energy. Incidentally, it is
worth to notice that the perturbation energy keeps growing
until the perturbation is advected by the mean flow outside
the domain, due to the spreading of the disturbances up-
stream and downstream of the main wave packet. Thus, we
do not observe in this DNS a state in which the energy os-
cillates around a fixed value, as in the case of the pipe flow
with periodicity in the streamwise direction �13�.

Figure 6 shows snapshots of the vortical structures iden-
tified by the Q-criterion �20� �light gray surfaces� and of the

streamwise component of the perturbation �gray and black
surfaces� extracted from the DNS at times t=0, 35, 65, 95,
and 125. The first frame shows the presence of alternated
quasistreamwise vortices, which present an inclination in the
�x ,z� plane of about 4° with respect to the streamwise direc-
tion, whereas in the linear case they are aligned with x. These
vortices are tilted in the streamwise direction by the Orr
mechanism, presenting at t=35 �second frame� an inclination
of about 10° in the �x ,y� plane �not shown�. Due to such an
inclination, the downstream part of the vortex, which lies
away from the wall, is convected downstream faster than the
upstream part because it experiences higher base flow veloc-
ity; this causes the stretching and the amplification of such
structures, which take the form of � vortices. These recall
the ones found prior to breakdown in �8� and in the oblique-
transition scenario in �21�. At the same time, such vortices
induce patches of high and low velocities via the transport of
the momentum associated with the base flow and with the
finite amplitude streamwise perturbation.

Due to the initial inclination of the vortices, base-flow
transport does not induce streamwise streaks but rather it
generates �-shaped low-momentum regions alternated to
high-momentum sinuous ones. At t=65 �third frame� the vor-
tices are further stretched in the streamwise direction, so that
the two structures placed on the flanks of the low-momentum
region approach one another in their downstream part. A
vortex filament oriented in the spanwise direction �the arch�
is formed and it connects the two quasistreamwise vortices,
inducing the formation of an hairpin, whose head is clearly
visible at t=95 �despite the fact that the vortices are breaking
up into smaller patches of vorticity, and an elongated low-
momentum zone appears under the legs of the hairpin�. Thus,
it seems that the formation of an arch connecting two iso-
lated streamwise vortices is the primary cause of breakdown,
because it induces the rupture of the � structures into smaller
zones of low momentum. Moreover, the formation of a
streamwise streak seems to be a consequence of the creation
of the hairpin vortex, corroborating the hypothesis �8� that, in
the presence of non-negligeable nonlinear effects, stream-
wise streaks are only a kinematic feature induced by the
presence of the hairpin vortices. Such a behavior is recovered
for all of the target times considered here, with 75�T
�125; nonetheless, we cannot be sure that for larger target
times and/or different initial energies the mechanism could
be the same. In order to further validate these results, the
spanwise spacing of the low-speed streaks has been mea-
sured at t=200 when a turbulent spot is established in the
flow. Normalizing the spanwise spacing with respect to the
wall shear stress, one obtains �+�114,5, which is close to
the streak spacing found in the literature �22�. It is worth
remarking that such a spacing is not imposed by the span-
wise domain length. Moreover, after the breakdown and up-
stream of the incipient turbulent spot, sinuous streamwise
structures are observed at all times, the dashed rectangle in
the bottom frame of Fig. 6 showing an example. Such struc-
tures are reminiscent of a class of traveling waves recently
obtained for Couette flow �23�. Thus, it is possible that, be-
ing on the turbulent side of the laminar-turbulent edge, the
nonlinear optimal perturbation evolves into a trajectory
which visits exact coherent solutions.
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FIG. 5. �Color online� Streamwise distribution of the spanwise-
averaged skin-friction coefficient for T=50,100,150,200,250
�solid lines from left to right� together with the laminar and turbu-
lent theoretical distributions �bottom and top dashed lines,
respectively�.

FIG. 6. �Color online� Snapshots of the perturbation at t=0, 35,
65, 95, and 125 obtained by the DNS initialized by the nonlinear
optimal for T=75 and E0=0.01. The light gray �green� isosurfaces
refer to the Q criterion; the gray �blue� and black �red� isosurfaces
refer to the negative and positive values of the streamwise velocity
component, respectively. Each variable has been normalized using
its maximum value at each time. Isosurfaces show the values Q
=0.07 and u= �0.5 at all times except for the snapshot at t=125
showing u= �0.25.
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In this paper we have shown that in a boundary-layer flow
nonlinear mechanisms exist capable of inducing an energy
amplification much larger than the linear one. Optimal per-
turbations have been computed for different times and ener-
gies; most of them are found to lie in the basin of attraction
of the turbulent flow for lower levels of the initial energy
than their linear optimal counterparts. Such perturbations are
localized in the streamwise and spanwise direction and char-
acterized at t=0 by a series of streamwise alternated vortices,
slightly inclined with respect to the streamwise direction.
The optimal initial perturbations are highly amplified in time
by the stretching of the quasistreamwise vortices, induced by
the wall-normal shear and by the transport of the base-flow

momentum. The quasistreamwise vortices are then con-
nected by a spanwise vortex filament, originating an hairpin
vortex which induces a low-speed streak between its legs.
Such a coherent structure is maintained for some time, until
a fully turbulent state ensues. Such results confirm those ob-
tained by DNS �8�, showing that, even when it is not initial-
ized by the optimal perturbation, the flow reaches transition
following a route which approximates the optimal one. This
suggests that �i� a preferential route exists, connecting the
laminar to the turbulent states and visiting exact coherent
structures and that �ii� such a route does not rely on the
presence of streamwise-invariant streaks nor vortices.
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