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The spatial, linear stability of an incompressible parallel boundary layer flow with
uniform suction through the wall is studied for the case of rigid and flexible bounding
surfaces. It is demonstrated, first, that the effect of the plate’s permeability is crucial
in defining the disturbance boundary conditions at the wall, and that stability limits
depend strongly on it. Next, the combined effect of plate’s permeability and compli-
ance on the onset of Tollmien-Schlichting modes is assessed. Finally, the possible
insurgence of an absolute instability mode is studied, as function of the Reynolds
number, the modulus of elasticity of the plate, and its permeability. © 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4921422]

. INTRODUCTION

Laminar flow control, via boundary layer suction, is a well-known technique to increase aerody-
namic performances. This method is suitable to delay laminar-turbulent transition' but is not effective
if the objective is that of relaminarizing a turbulent flow because of the high input energy needed to
apply adequate suction speeds.

The present work deals with the initial stages of the transition process taking place on a flat
plate boundary layer, with suction applied through the surface. The study is restricted to the special
case of the asymptotic suction boundary layer, whose threshold for transition has long been believed
to be around the exceptionally high displacement-thickness-based Reynolds number of 54 000 (see,
for example, the early work by Hocking? or the more recent results by Fransson and Alfredsson?),
about two orders of magnitude larger than for the Blasius boundary layer at the same outer speed.
Previous work on drag reduction via suction through spanwise slots, porous panels, and discrete
holes has been carried out by, e.g., Pfenninger and Groth,* Reynolds and Saric,” and MacManus and
Eaton.® A general review of various types of surface and of the results achieved in wind tunnel tests is
given by Gregory,” where a discussion for practical applications on aircrafts is provided. MacManus
and Eaton® performed both experimental and computational investigations to show that suction may
destabilize the flow by introducing co-rotating streamwise vortices when discrete holes are used. In
their work, the ratio of the perforation diameter to the boundary layer displacement thickness was
quite large, around unity. Better control authority can be achieved by using suction panels through
which a quasi-uniform normal-to-the-wall velocity distribution can be achieved. An experimental and
theoretical study on the effect of boundary layer suction on the laminar-turbulent transition process
has been carried out by Fransson.® In his study, an asymptotic suction boundary layer was established
in a wind tunnel. Uniform suction was applied over a large area, with boundary layer thickness nearly
constant over a length of 1800 mm. Fransson’s linear stability results were not in close agreement
with the experimental measurements, a fact which we will address in the present paper.

Acroelastic effects are also of importance for aeronautical applications, and the interplay be-
tween suction at the wall and the plate’s flexibility might be important in defining the onset of
hydrodynamic instabilities. The only work to-date which has considered a bounding surface which

3Electronic mail: franck.pluvinage @univ-orleans.fr

1070-6631/2015/27(5)/054104/11/$30.00 27, 054104-1 ©2015 AIP Publishing LLC

@CmssMark
Bk joth



054104-2 Pluvinage, Kourta, and Bottaro Phys. Fluids 27, 054104 (2015)

is both compliant and (weakly) porous is due to Pluvinage et al.” They have treated, with the parallel
flow approximation, the temporal growth of hydrodynamic and hydroelastic modes occurring in the
Falkner-Skan-Cooke boundary layer. The main conclusion of their work is that the porous wall has a
destabilizing influence on Tollmien-Schlichting (TS) modes, which can be mitigated by wall compli-
ance. Porosity was found to have a stabilizing influence on flow-induced surface instabilities, such as
the so-called travelling wave flutter (cf. Carpenter and Garrad'?). As far as absolute instability modes
are concerned, Lingwood'! has shown that suction is capable of delaying the onset of the instabilities
which can arise in the boundary layer over a rotating disk.

The linear stability analysis described in the present contribution is spatial, rather than temporal;
after showing that the plate’s permeability can have a profound influence on the Tollmien-Schlichting
waves in the boundary layer which forms over a rigid wall, we will demonstrate that an absolute
instability can arise in the boundary layer over a poroelastic plate, via the coalescence between
hydrodynamic and wall-based modes.

Il. THE MODEL
A. The asymptotic suction boundary layer (ASBL) velocity profile

The fully developed velocity profiles which set in when a fluid (of density p and kinematic
viscosity v) flows over a porous surface with a constant suction velocity V,, through the pores of the
plate are'?

Vo
U=Us(1-e %), V=V, (1)

with U the external velocity parallel to the plate and y the wall-normal coordinate. Note that V,, is
negative-definite for physical solutions to arise. This fully developed velocity profile is known as the
ASBL; its displacement thickness 0™ is equal to

0" = l-—|dy=——, 2
/0 ( Um) V= (2)
and the Reynolds number based on this value is Re = U%‘S* = —Y= The velocity profile near the wall

is fuller than in the Blasius case and — because of this — thevﬁow is believed to be less prone to
destabilization (as it occurs for the case of the boundary layer under a negative pressure gradient), as
argued in a number of linear and nonlinear analyses.>* All studies to date have consistently assumed
a zero normal-to-the-wall velocity condition at the porous boundary, on the argument that a small
permeability has a negligible effect on the perturbation. Such an argument is however fallacious, even
for low permeabilities, as will be demonstrated herein.

B. Linearized Navier-Stokes equations

For low environmental disturbances, transition in a flat-plate boundary layer is dominated by TS
waves, which grow exponentially.> According to Squire’s theorem, the critical Reynolds number is
obtained for a two-dimensional wave, that is why a two-dimensional analysis will be performed here.
Disturbance waves are considered of the form

p= pf\(y)eiax—iwt’ U= ﬁ(y)eiafx—iwt, v = ﬁ(y)eiax—iwt,
with @ the streamwise wavenumber and w the frequency. The study focuses initially on the linear
growth/decay of spatially evolving waves (@ = @, +i@; is thus a complex number whereas
w = w, + iw; is taken with w; equal to zero). In the second part of this work, Briggs’ criterion'? is
used (i.e., w; is assigned, and a range of w, is spanned) to analyze the coalescence of modes and the
conditions for the occurrence of an absolute instability.
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The linearized momentum and mass conservation equations in dimensionless form reduce to

A
(—iw +iaU + V,D — —)i + (DU)D + iap = 0,
Re A (3a)
(—iw +iaU + VOD - R—)ﬁ + Dﬁ = O,
e

il + Db =0, (3b)

with D = d/dy and A = D? — . The equations are solved using the same Chebyshev spectral collo-
cation method employed by Ref. 9, with p, i, and # as dependent variables. From now on, hats will
be dropped from the names of the dependent variables.

C. Boundary conditions at the wall

The boundary layer is assumed to develop above an isotropic, untensioned plate of density p,,
and thickness b, attached to a rigid, impermeable base through regularly arranged stubs which behave
like springs (cf. Fig. 1). The plate is porous, of permeability &, and the fluid beneath it is assumed to
be maintained under controlled, unperturbed conditions. A small perpendicular displacement n*(x, )
of the plate from its rest position is considered, caused by the load exerted by the medium flowing
above it.

Provided that n* < b and that the wavelength of the plate’s flexural motion is much larger than
b, n* satisfies the (dimensional) bending wave equation

827]* svrd % k% *
prW+BV2n +Kk'n =—p 4)
(asterisks denote dimensional variables). Accounting for both plate’s deflection and flow through the
pores (governed by Darcy’s law), the boundary conditions for the perturbation velocity components

at y* = n" are
u=0 vv=——-—7p,
or* pvbp
where kp is the isotropic permeability of the plate. Once linearized, the (now dimensionless) equation
for the plate’s displacement becomes

®)

X 2 . B , T,
——w" —idw+ —k"+ —k"+ kR =-p, 6
Sw' —idw 5 . Ke)n p (6)

and the adimensional disturbance boundary conditions at the fictitious (Kramer-type) wall placed at
y =0 are

u+nU' =0, v=—iwn-ap. @)
Finally, the boundary conditions become
B
iéw(v +ap) + 'R (R_eza4 + KReZ) u=np, (®)

VSVVYNVS RS i
% Vo "gwwgﬂv‘é

FIG. 1. Sketch of the problem considered.
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—iwu+U'(v +ap) =0, 9

yUsob . . . . .
where y = p’p—v is the dimensionless plate mass per unit area, B = Bp%‘” the dimensionless flexural
rigidity (with B* = # the bending rigidity per unit width and v,, the Poisson ratio), and k = :—U’Q
~vp B8

the adimensional spring stiffness (the dimensional counterpart of which, per unit area, is denoted as
k*). We have used U, throughout to normalise the equations; this means that the external speed is
maintained constant and the Reynolds number is varied by acting on the suction velocity V,, (which
must remain sufficiently smaller than U, for the boundary layer equations to remain applicable); this
can be easily achieved in practice by changing the mean pressure gradient across the porous plate.
Furthermore, the parameter a appears in Eq. (7); it is defined as a = kpU./(vb) and represents the
adimensional permeability coefficient. In the rigid-plate limit, we recoveru = v +ap =0aty =0,a
condition first proposed by Gustavsson,'* but never tested.

ill. COMPARISON WITH THE EXPERIMENTS BY FRANSSON AND ALFREDSSON

In order to validate the model, we compare with the wind tunnel results by Fransson and Al-
fredsson;’ we thus consider air as the working fluid (p = 1.225 kg m™, v = 1.5x 107 m? s7!),
flowing at a speed U, = 5 m s™! over a b = 3.2 mm thick porous plate, whose Young modulus is
E = 974 MPa, Poisson ratio vp = 0.5, and isotropic permeability kp = 3.7 x 107! m?. By assuming a
plate’s density p, = 945 kg m~>, the dimensionless plate mass is y = 8.23 x 10°, the flexural rigidity
is B = 4.4 x 10° E, and the permeability coefficient is a = 3.854 x 10~*. In the previous expression
for B, the numerical value of E, in Pascal, must be inserted without its dimensional units. It is useful
to write explicitly the dependence of B on E, since we will later analyze the effect of varying E.

The plate in the experiments® is sustained by longitudinal T-profiles spaced 50 mm apart from
one another along the span. In the points where there is contact between the plate and the T-profile,
the plate does not bend; in the space in between, the maximal deflection is measured to be around
50 um for a pressure difference AP = 1500 Pa across the porous plate. The value of 50 um agrees
well with the theoretical one, which can be obtained considering a simply supported plate bent under
the action of a constant pressure load. In this case, theory'> prescribes a deflection at the center of the
plate equal to 2APLY + 46 ym (where /1 is the depth), with I = % the moment of area. An equivalent

384ET
. . . 3 . .
spring stiffness per unit area k* = &+E2° = 3.3 x 10’ N m~3 can thus be defined, with corresponding

non-dimensional value x = 3. With the set of values reported, the plate can be considered rigid.
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FIG. 2. Marginal stability curves for a rigid wall with a =0 and for Fransson and Alfredsson’s conditions, i.e., a =
3.854x 107*. These neutral curves are unaffected by increasing values of «.



054104-5 Pluvinage, Kourta, and Bottaro Phys. Fluids 27, 054104 (2015)

° L L L
0.04 0.06 0.08 0.1 012 0 0.05 o.1
P u v

FIG. 3. Modulus of the mode shapes at the critical point (Re =54 380, F' =0.43, and a =0).

A. Comparison in terms of the wavenumber

The dimensionless frequency F classically used when computing boundary layer’s neutral sta-
bility results is F = 106%. Marginal curves for both impermeable and permeable rigid plates are
displayed in Fig. 2 to demonstrate that even a very small permeability coefficient destabilizes the
boundary layer, while increasing the value of the critical frequency at the onset of TS waves. The TS
mode shapes at the critical point is shown in Fig. 3.

Fransson and Alfredsson® carried out measurements in strongly stable conditions, at Re = 347
and F = 59. Fig. 4 displays the real and imaginary parts of @ for permeability varying from O to 1
in the conditions of the experiments. The thin solid horizontal lines in the graph correspond to the
measured values, i.e., @, = 0.043 and «@; = 0.015, and are, respectively, larger and lower than the
reference values obtained for a = 0 by Fransson and Alfredsson (and reproduced by our calculations).
The theoretical trends shown in the figure for a slightly larger than zero go in the same direction as
the experiments; to render the agreement more quantitative, one may possibly need to account for the
disturbance field underneath the porous plate (here neglected) or use a different model for the flow
within the porous plate when the permeability is above some threshold, for example, accounting for
inertia via a Forchheimer term.
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FIG. 4. Variation of real (upper curves) and imaginary (lower curves) parts of a for varying wall elasticity E in the conditions
of the experiments by Fransson and Alfredsson: Re =347, F =59, and « =2.94. Thick solid lines: rigid wall. Dashed lines:
E =2x10° Pa. Symbols: E =8x 10* Pa. Grey dotted-dashed lines: E = 5x 10* Pa. The experimental results are indicated by
thin horizontal lines.
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Another alternative consists in employing homogenization theory to treat the flow within the
possibly anisotropic poro-elastic medium, and coupling the homogenized field with the continuum
field which develops above it, by the use of some interface conditions. Whereas, the homogenized
equations are reasonably well established and can be derived, for example, by the use of volume
averaging'® or multiple-scale theory,'’doubts subsist as to the appropriate matching conditions at
the interface between the two media, particularly when inertia is significant within the porous, or
poroelastic, domain.

In any case, in the simplified setting employed here, we have found correct trends in comparison
to the very careful experiments by Fransson and Alfredsson, and this encourages us to explore the
problem further, on the basis of the current model.

B. Influence of surface permeability

Typically, the permeability kp is in a range from 2 x 107'7 m? (concrete) to 10~® m? (metal
foams),'® and depends on the porosity and the structure of the medium. With the parameters of Frans-
son and Alfredsson,’ this translates to a range [2 X 102, 10?] for the dimensionless parameter a. In
the calculations to follow, we limit the upper bound to a = 1 on account of Darcy’s model (which is
untenable when the permeability becomes too large).

The influence of a on the neutral TS curves is displayed in Fig. 5, still in the rigid-plate case. The
rapid destabilization induced by increasing values of a is impressive, both in terms of the Reynolds
number and in terms of the range of frequencies which can be excited. This is further elaborated in
Fig. 6, which shows critical Reynolds numbers, frequencies, and wavenumbers for a between 0 and
1 (critical values are denoted with a ¢ subscript).

For the most permeable case computed, Re. becomes lower than 70, with a corresponding critical
frequency which exceeds 10°. The behavior of the critical wavenumber (Fig. 6, right frame) is less
predictable, with an initial increase for very small values of a, followed by a decrease with a minimum
for a around 0.2, and a final monotonic shortening of the wavelength with the further increase of a.
The values of the critical wavenumber remain, however, confined to a narrow range around «,- = 0.15.

What these results clearly show is that when analyzing the stability over porous surfaces, it is
fundamental to account for the effect of the permeability in the boundary conditions of the distur-
bance field; in most circumstances, it is not adequate to simply force zero disturbance velocity at
y = 0 and even relatively small values of the parameter a cause dramatic variations on the stability
characteristics of the flow.
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FIG. 5. Neutral curves for varying values of a; from left to right, a =0.1, 0.05, and 0.02.
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FIG. 6. Behavior of the critical Reynolds number and frequency (left frame) and of the critical wavenumber (right frame) as
function of the permeability a.

IV. EFFECT OF PERMEABILITY AND SURFACE ELASTICITY ON TS MODES

Previous studies on the Blasius boundary layer™'® have demonstrated that decreasing the wall

elasticity yields a stabilization of the TS modes. The same happens in the asymptotic suction bound-
ary layer when a is taken to vanish, as exemplified in Fig. 7 for three values of E. Here, the Young
modulus enters both the definition of B as well as «, since the latter parameters depend linearly
on E.

The combined effect of plate’s porosity and flexibility shows the trend displayed in Fig. 8. For
a = 0.1, decreasing the value of E has a mild destabilizing effect on TS waves, and this is at odds
with the assumption®” that class A perturbations are “stabilized by irreversible energy transfer from
the fluid to the coating.” For a summary of the classification of fluid-solid instabilities, we refer to
Ref. 9. The unexpected destabilizing effect of compliance must be ascribed to the coupled effect of
permeability and wall flexibility. There is, however, a threshold value of a below which flexibility
becomes stabilizing. As an example, Fig. 8 (right) shows that the cross-over between stabilization
and destabilization occurs for a = 0.033, when comparing the cases E — oo and E = 10° Pa.
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FIG. 7. Stabilization of the neutral curves for increasingly softer plates.
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FIG. 8. Left: effect of plate’s softness on the neutral stability curves for TS modes, a =0.1. Right: combined effect of
permeability and softness on TS instability threshold.

The main conclusion here is that the plate flexibility does not have a very large influence on
the critical TS conditions, the major variations being associated to the permeability a. The critical
Reynolds number for the onset of TS waves on a rigid plate decreases from 54 380 (a = 0) to 3200
(a = 0.1). On the other hand, the plate’s flexibility might induce potentially dangerous surface elastic
modes, addressed in Sec. V.

V. ABSOLUTE INSTABILITY

It is interesting at this point to look at modal coalescence and search for conditions under which
absolute instabilities — spreading both upstream and downstream of the point from which they
originate — arise. The identification of absolutely unstable modes can be carried out on the basis
of the asymptotic approach described by Briggs'? and initially applied to plasma physics instabil-
ities. This technique is thoroughly described by Schmid and Henningson.?! It is on the basis of this
spatio-temporal approach that Brazier-Smith and Scott? have highlighted the existence of absolutely
unstable modes for the potential flow over a compliant panel, above a certain threshold velocity.
Carpenter and Garrad'® have put a name on such an instability, static divergence, suggesting that such
waves were likely to be absolute over a damped, infinitely long, compliant panel. An absolute insta-
bility can also arise in the Blasius boundary layer over a compliant coating, from the coalescence be-
tween an upstream-propagating evanescent mode and a Tollmien-Schlichting wave.>>>* This absolute
instability has been identified as being the divergence-type mode observed by Lucey and Carpenter.>
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FIG. 9. Branch point (left) and corresponding saddle point in the @ plane upon contour deformation (right); = :
w;i=7.98x1073;0: w; =8.08x1073; X : w; =8.18 x 1073 (E =10 MPa, Re =28 000 and a = 0.4).
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FIG. 10. Modulus of the perturbation profiles before lowering the inversion contour. Upper frame: mode 1: lower frame:
mode 2 (E =10 MPa, Re =28 000, @ =0.4 and w =74 x 1073 +32.6x 1073 1).

Finally, absolute instabilities have also been detected in flows over a rotating disk with compliant coat-
ing by Cooper and Carpenter,?® with suction having a stabilizing effect, as discussed by Lingwood.!!

Here, we consider a free-stream speed larger than in Secs. Il and IV, i.e., U, = 40 m s~!, but
maintain the same functional dependence of the parameters on E and b, i.e., y goes like b, while B
and « are proportional to E b>. We write explicitly the dependence on b to highlight the fact that the
plate’s thickness affects the onset of the absolute instability. We anticipate here that for U, = Sms~!,
there are absolutely unstable modes only for plate’s thicknesses lower than 0.1 mm, and it is precisely
for this reason (e.g., to consider plates whose thickness is closer to actual values) that we have focused
on a larger outer velocity.

We consider a soft, porous elastomeric plate (£ = 10 MPa) of thickness b = 2 mm; when Re
= 28000 and a = 0.4, a branch point is found by lowering the temporal inversion contour in the
Laplace plane, for wy = 5.96 X 1072 + 8.08 x 1073i, as shown in Fig. 9 (left). This point has a singu-
larity associated to it in the Fourier plane, when the spatial inversion contour is pinched between two
spatial branches. The pinch point is found at @y = 0.1808 — 0.189 (Fig. 9, right frame) between a
mode 1 coming from below and a mode 2 coming from above. We believe that we are in the presence
of a static divergence mode.? Perturbation profiles on Fig. 10 correspond to the same conditions as
the branch point, before lowering the temporal inversion contour (thus for @; = 0). They confirm that
mode 1 stems from a strongly spatially damped hydroelastic wave, named “evanescent mode” by
Wiplier and Ehrenstein,?* whereas mode 2 is a TS wave.

Fig. 11 demonstrates the effect of Re and a on the growth rate of the absolutely unstable mode
identified. The left frame shows that the absolute instability arises fairly early (Re around 3000) and
is maximally amplified near Re = 30 000. Surprisingly, the imaginary part of w( decreases for larger
values of the Reynolds numbers with the mode becoming convective at very large values of Re. When
the plate is rendered more rigid (E = 30 MPa), the range of Re for which an absolutely unstable mode
appears is reduced, and the absolute instability appears very early (in Re terms). Similar results have
been reported by Wiplier and Ehrenstein®* in a Blasius boundary layer, with the viscous substrate
playing a damping role in their case.

The influence of the plate permeability is rendered in the right frame of Fig. 11. The first obser-
vation is that the absolutely unstable mode exists also for a = 0. Previous authors (see, for example,
Landahl®’ or Carpenter and Garrad'’) have noted that damping is necessary for the onset of this
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FIG. 11. Evolution of the growth rate of the absolute instability mode as function of Re for a =0.4 (left frame) and as
function of a (Re =28 000), for soft and rigid plates.

mode on infinitely long wall, while edge conditions can play the same role on finite surfaces. Lucey
and Carpenter® suggest that both damping and edge effects can be liable to break the balance be-
tween hydrodynamic stiffness and restoring forces; here, we see that suction is sufficient to play this
destabilizing role, in the absence of damping. Furthermore, for both the softer and the more rigid
plate, an increasing permeability has initially the effect of enhancing the absolute instability, before a
subsequent stabilization. Thus, the porous wall plays a role analogous to dissipation: a small amount
of it slows the propagation of surface waves and favours the transfer of energy from the fluid to the
wall. Conversely, a strong permeability has a damping effect and inhibits the growth of the static
divergence mode.?’

VI. CONCLUSIONS

The motion of fluid over and through walls which are both permeable and compliant can be
found in nature, i.e., canopy flows, fluid going through the lungs or in the inner ears (with ciliated
surfaces), motion through the feathers of birds’ wings, as well as in technological applications, since
suction is, for example, being tested as a mean of flow control through wings and nacelles of airplanes,
both exhibiting compliance to some degree. It is thus important to understand the combined effect of
surface suction and flexibility on the onset and growth of instability modes. The present contribution
represents a step in this direction, albeit in the simplified setting of the ASBL.

Boundary conditions at the wall have been tested, which take into account the plate’s permeability
on the linear disturbance field; permeability is quantified by a parameter, a, which is the product of the
Darcy number (Da = kp/b?), the Reynolds number, Re, and the ratio between the plate’s thickness,
b, and the boundary layer displacement thickness, 6*. The permeability coefficient a significantly
destabilizes TS waves; conversely, elasticity of the wall plays a minor effect, i.e., mildly destabilizing
for small values of a and mildly stabilizing when a overcomes a certain threshold, function of E.

The possible presence of absolutely unstable modes has also been addressed here; they arise
from the coalescence of an evanescent, hydroelastic mode and a TS wave, giving rise to a quasi-static
divergence instability, which can be very important over a wide range of Re and a. This mode is
enhanced by the plate becoming softer. Previous studies?>?”?® have suggested the need for dissipation
in the wall for the appearance of the static divergence mode on infinite flexible walls. Here we have
shown that wall-dissipation is probably not necessary, and that suction through the wall is sufficient
for the static divergence instability to emerge.

Possible extensions of this work may be envisioned by considering an anisotropic bounding
surface, eventually with flow through it also along the x-direction, for the u = 0 condition at y = 0
(in the rigid case) to be relaxed.
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