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A new nonlinear vortex state in square-duct flow
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A new nonlinear travelling-wave solution for a flow through an isothermal square
duct is discovered. The solution is found by a continuation approach in parameter
space, starting from a case where the fluid is heated internally. The Reynolds number
for which the travelling wave emerges is much lower than that of the solutions
discovered recently by an analysis based on the self-sustaining process (Wedin et al.,
Phys. Rev. E, vol. 79, 2009, p. 065305; Uhlmann et al., Advances in Turbulence XII,
2009, pp. 585–588). Furthermore, the new travelling-wave solution is shown to be
unstable from the onset.
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1. Introduction
Transition to turbulence in canonical unidirectional shear flows is still an unsolved

problem in fluid mechanics since the pioneering experimental study on pipe flow by
Osborne Reynolds in 1883. The difficulty consists in extracting relevant information
from the Navier–Stokes equations to understand what is observed in real-life
turbulence.

The laminar flow through isothermal square ducts and circular pipes is
asymptotically stable to small disturbances (Davey & Drazin 1969; Tatsumi &
Yoshimura 1990). Hence to cause a shift from a laminar to a turbulent state for these
flow cases a finite-amplitude disturbance is necessary, and the threshold amplitude
is a function of the disturbance shape. Such a disturbance is also sufficient if it
sits in phase space on an ‘outer’ unstable manifold (‘outer’ meaning that it faces
the turbulent attractor) of the laminar–turbulent boundary, defined as the boundary
separating the basin of attraction of the laminar flow from that of turbulence. The
experimental work by Darbyshire & Mullin (1995) on pipe flow demonstrates that
the required finite-amplitude disturbance ε to initiate the transition to turbulence in
circular pipe flow, scales like Re−1 – same scaling is reported in the experiments
by Hof, Juel & Mullin (2003) in the range 2000 � Re � 20 000. This has also been
theoretically recovered by Gavarini, Bottaro & Nieuwstadt (2005) on the same flow
configuration. Likewise, Chapman (2002) postulates two scenarios of turbulence
breakdown for plane Couette flow (PCF) and plane Poiseuille flow using asymptotic
analysis of the Navier–Stokes equations. Therein it is found that ε scales in the
interval Re−1.5 � ε � Re−1 depending on the postulated transition scenario and flow
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configuration. A similar result is obtained by Waleffe & Wang (2005) on PCF where
the smallest disturbance amplitude needed to trigger transition scales as Re−1.

The turbulent state is thought to be described by trajectories bouncing around
unstable fixed points such as the travelling-wave states (TWS) initially discovered by
Faisst & Eckhardt (2003) and Wedin & Kerswell (2004) for pipe flow. In linearly
stable flows such equilibrium states, known as exact coherent structures (ECS), are
disconnected from the laminar flow and are unstable in general (Kerswell & Tutty
2007). The ECS in Waleffe (2001, 2003) and the isolated unstable time-periodic
solution in Kawahara & Kida (2001) in PCF are characterized by the same statistics
as numerical turbulence. The nonlinear fixed points may thus provide information
that could advance the understanding of turbulence, e.g. one could collect and classify
these solutions and use them to describe the mean characteristics of a chaotic state.
On the other hand, the direct numerical simulations performed by Willis & Kerswell
(2008) in pipe flow suggest that other types of solutions, of higher amplitude than
those known, are needed in order to describe a fully turbulent flow and that the
existing TWS are only related to transitional flows.

The absence of a linear instability mechanisms has previously prevented the
discovery of nonlinear solutions to linearly stable canonical flows such as PCF.
However, Nagata (1990), for the first time, found time-independent three-dimensional
solutions to PCF by first focusing on Taylor–Couette flow between co-rotating
cylinders. The solutions to PCF were obtained by bringing down the rotation rate
to zero. Later, several nonlinear solutions have been obtained for pipe flow, first
by Faisst & Eckhardt (2003) using the idea of a self-sustaining process (SSP) of
turbulence proposed by Waleffe (1998), followed by Wedin & Kerswell (2004), Pringle
& Kerswell (2007), Duguet, Willis & Kerswell (2008) and Pringle, Duguet & Kerswell
(2009).

As far as the rectangular duct flow is concerned, the linear stability study performed
by Tatsumi & Yoshimura (1990) shows linear stability up to an aspect ratio of A= 3.2
of the rectangular cross-section of the duct. It is only recently that nonlinear solutions
for the square duct (A= 1) have been discovered by Wedin, Bottaro & Nagata (2009)
and Uhlmann, Kawahara & Pinelli (2009) by successfully adopting the SSP approach
used in pipe flow. In Wedin et al. (2009) it is reported that at transitional conditions
the skin friction on the lower branch of the nonlinear solution has a value close to
that obtained in direct numerical simulations by Uhlmann et al. (2007) and Biau &
Bottaro (2009). When the flow speed is sufficiently high, direct numerical simulations
of square-duct flow by Gavrilakis (1992), Huser & Biringen (1993), Uhlmann et al.
(2007) and Biau, Soueid & Bottaro (2008) have all observed an eight-vortex mean
flow with two vortices in each quadrant. For example, the study by Gavrilakis (1992)
suggests that the secondary Reynolds stress terms cause this mean flow. Recently,
Uhlmann & Nagata (2006) performed a linear stability analysis of vertical rectangular
duct flow with an internal heat source, finding unstable states for A= 1. In this paper
we adopt an homotopy approach, alternative to the SSP, by adding the heat equation
to the system. A new nonlinear solution to isothermal square duct is discovered by
bringing the strength of the heat source to zero.

2. Mathematical formulation
2.1. Configuration and the governing equations

We consider the low-speed motion of a fluid with the kinematic viscosity ν∗, the
thermal diffusivity κ∗ and the thermal expansion coefficient αT ∗ in a straight duct
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Figure 1. The configuration of the model with the basic flow in grey scale
at Re = −3000 and Gr = 23 000.

placed vertically in the gravity field. The temperature of all the four vertical walls
are kept the same and constant. The cross-section of the duct is a square with the
side 2b∗. The fluid is subject to internal heating which is homogeneously distributed
with intensity q∗. We take the Cartesian coordinates with the origin at the centre of
the duct. The x∗-axis is directed along the duct and the y∗ and z∗-axes are parallel
to the sides of the cross-section, as shown in figure 1. Here, the subscript ∗ denotes
dimensional quantity. With the Boussinesq approximation, the velocity u, the pressure
P and the temperature deviation T from the wall temperature are governed by the
equation of continuity,

∇ · u = 0, (2.1)

the equation of momentum conservation,

∂t u + (u · ∇)u = −∇P + T ex + ∇2u, (2.2)

and the equation of energy conservation,

∂tT + (u · ∇)T = Pr−1(∇2T + 2Gr), (2.3)

where ei (i = x, y, z) is the unit vector in the i-direction and all the variables have
been non-dimensionalized by the length scale b∗, the time scale b2

∗/ν∗, the velocity
scale ν∗/b∗ and the temperature scale ν2

∗/(g∗αT ∗b
3
∗), where g∗ is the acceleration due

to gravity. We have defined the Grashof number as:

Gr =
g∗αT ∗q∗b

5
∗

2ν2
∗κ∗

, (2.4)

and the Prandtl number as:

Pr =
ν∗

κ∗
. (2.5)

The electrically conducting aqueous solution of ZnCl2 is often used for internal
heating experiments where the heat is released by currents. For 20 wt% aqueous
solution of ZnCl2, Pr = 8.7 at 20◦C and Pr = 6.08 at 40◦C (Generalis & Nagata
2003). Throughout this study we fix Pr =7.

The no-slip condition for the velocity and the isothermal condition for the
temperature are imposed on the wall:

u = 0, T = 0 at y = ±1 and z = ±1. (2.6)

For the x-direction, we impose periodicity over a wavelength of 2π/α.
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2.2. The laminar solution

The x-independent steady laminar solution, u = UB = UB(y, z)ex, P = PB = −χx and
T = TB(y, z), to the governing equations (2.1)–(2.3) with the boundary condition (2.6)
obeys

0 = χ + TB + ∆2UB, (2.7)

0 = ∆2TB + 2Gr, (2.8)

UB = TB = 0 at y = ±1 and z = ±1, (2.9)

where χ is the non-dimensional pressure drop and ∆2 ≡ ∂2
yy + ∂2

zz. Let UBiso(y, z)
be the laminar-velocity field in the isothermal case (Gr =0, TB ≡ 0) and define the
Reynolds number using the centreline velocity:

Re = UBiso(0, 0) =
UBiso∗(0, 0)b∗

ν∗
. (2.10)

Equations (2.7)–(2.9) are solved numerically. The proportionality of the pressure drop
to the Reynolds number obeys χ = 3.3935Re (see Tatsumi & Yoshimura 1990). For
the thermal case, the laminar state is classified into five groups depending on the
Reynolds number and the Grashof number according to Uhlmann & Nagata (2006).
One of the groups, classified in the region M2 (−7.69 < Gr/Re < −5.75) characterizes
the flow with the inflection points and no reverse flow, (i.e. UB(0, 0) � 0), as shown
in figure 1.

2.3. The disturbance equations

We superimpose disturbances, û, p̂ and θ̂ , on the laminar state, UB ex, PB and TB ,
respectively. Disturbances are governed by the following equations:

∇ · û = 0, (2.11)

∂t û + UB∂x û + (û · ∇)UB ex + (û · ∇)û = −∇p̂ + θ̂ex + ∇2û, (2.12)

∂t θ̂ + UB∂xθ̂ + (û · ∇)TB + (û · ∇)θ̂ = Pr−1∇2θ̂ , (2.13)

û = 0, θ̂ = 0 at y = ±1 and z = ±1. (2.14)

Disturbances û, p̂, θ̂ are decomposed into their mean parts, Û(t, y, z), P̂ (t, y, z),
Θ̂(t, y, z), and the residuals, ǔ, p̌, θ̌ , where Û ≡ α/(2π) ∫ 2π/α

0 û dx = (Û , V̂ , Ŵ ), P̂ ≡
α/(2π) ∫ 2π/α

0 p̂ dx, Θ̂ ≡ α/(2π) ∫ 2π/α

0 θ̂ dx, and ǔ = (ǔ, v̌, w̌). We consider the fixed-

pressure-gradient constraint so that ∇P̂ = 0.
First, we take the streamwise average of (2.11):

∂yV̂ + ∂zŴ = 0, (2.15)

from which the stream function ϕ̂ of the cross-sectional mean flow (V̂ , Ŵ ) can be
defined and satisfies

V̂ = ∂zϕ̂, Ŵ = −∂yϕ̂. (2.16)

Then subtracting (2.15) from (2.11), we obtain ∇ · ǔ = 0. Solving for ǔ, we have

ǔ = −∂−1
x (∂yv̌ + ∂zw̌), (2.17)

where the integrating operator with respect to x, ∂−1
x ≡ ∫dx, is defined.
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In the following, we obtain equations for Û , ϕ̂, Θ̂, v̌, w̌ and θ̌ . Operation of the
streamwise average on ex · (2.12), ex · ∇ × (2.12) and (2.13) followed by elimination of
V̂ and Ŵ by (2.16) leads to

∂t Û + (∂zϕ̂∂y − ∂yϕ̂∂z)Ū − Θ̂ − ∆2Û + ∂yǔv̌ + ∂zǔw̌ = 0, (2.18)

−(∂t + ∂zϕ̂∂y − ∂yϕ̂∂z − ∆2)∆2ϕ̂ +
(
∂2

yy − ∂2
zz

)
v̌w̌ + ∂2

yzw̌
2 − v̌2 = 0, (2.19)

∂t Θ̂ + (∂zϕ̂∂y − ∂yϕ̂∂z)Θ̄ − Pr−1∆2Θ̂ + ∂yv̌θ̌ + ∂zw̌θ̌ = 0, (2.20)

where · ≡ α/(2π) ∫ 2π/α

0 · dx and ǔ is given by (2.17). Ū = UB + Û and Θ̄ = TB + Θ̂

are the streamwise mean flow and the mean temperature, respectively.
We eliminate p̌ by taking the rotation of (2.12). Operation of ez · ∇ × (2.12) and

ey · ∇ × (2.12) leads to[
{∂t + (Ū · ∇) − ∇2 + ∂yV̂ }∂x − ∂2

yyŪ
]
v̌ − [{∂t + (Ū · ∇) − ∇2 + ∂yV̂ }∂y + ∂yŴ∂z]ǔ

+
(
∂yŪ∂z − ∂zŪ∂y − ∂2

yzŪ + ∂zV̂ ∂x

)
w̌ − (∂t − ∆2)∂yÛ − ∂y(Û · ∇)Ū

+ ∂y(Θ̂ + θ̌) + ez · ∇ × {(ǔ · ∇)ǔ} = 0, (2.21)

[
{∂t + (Ū · ∇) − ∇2 + ∂zŴ}∂x − ∂2

zzŪ
]
w̌ − [{∂t + (Ū · ∇) − ∇2 + ∂zŴ}∂z + ∂zV̂ ∂y]ǔ

+
(
∂zŪ∂y − ∂yŪ∂z − ∂2

yzŪ + ∂yŴ∂x

)
v̌ − (∂t − ∆2)∂zÛ − ∂z(Û · ∇)Ū

+ ∂z(Θ̂ + θ̌) − ey · ∇ × {(ǔ · ∇)ǔ} = 0, (2.22)

where Ū =(Ū , V̂ , Ŵ ). Subtraction of (2.20) from (2.13) gives

∂t θ̌ + (Ū · ∇)θ̌ + (ǔ · ∇)Θ̄ + (ǔ · ∇)θ̌ − ∂yv̌θ̌ − ∂zw̌θ̌ = Pr−1∇2θ̌ . (2.23)

In (2.21)–(2.23), V̂ , Ŵ and ǔ are given by (2.16) and (2.17).
The boundary conditions for Û , ϕ̂, Θ̂, v̌, w̌ and θ̌ are

Û = ϕ̂ = ∂yϕ̂ = ∂zϕ̂ = Θ̂ = v̌ = w̌ = ∂yv̌ = θ̌ = 0 at y = ±1, (2.24a)

Û = ϕ̂ = ∂yϕ̂ = ∂zϕ̂ = Θ̂ = v̌ = w̌ = ∂zw̌ = θ̌ = 0 at z = ±1. (2.24b)

3. Numerical method
Our method to investigate the linear stability of the flow is exactly the same as

the one used by Uhlmann & Nagata (2006). Therefore, only the method for the
subsequent nonlinear analysis is presented. We seek a finite-amplitude travelling-wave
solution with the streamwise phase velocity, c, so that the residuals, v̌, w̌ and θ̌ , of
the disturbances are expanded as follows:⎛

⎜⎝
v̌

w̌

θ̌

⎞
⎟⎠(x, y, z, t) =

L∑
l=−L
l �=0

⎛
⎜⎝

vl(y, z)

wl(y, z)

θl(y, z)

⎞
⎟⎠ exp[ilα(x − ct)]. (3.1)
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Examination of the governing equations (see (2.18)–(2.23)) reveals the following four
symmetry groups for the variables, vl, wl and θl:

symmetry I: vl

{
(l+; e, e)

(l++; o, e)
, wl

{
(l+; o, o)

(l++; e, o)
, θl

{
(l+; o, e)

(l++; e, e)
, (3.2a)

symmetry II: vl

{
(l+; e, o)

(l++; o, e)
, wl

{
(l+; o, e)

(l++; e, o)
, θl

{
(l+; o, o)

(l++; e, e)
, (3.2b)

symmetry III: vl

{
(l+; o, e)

(l++; o, e)
, wl

{
(l+; e, o)

(l++; e, o)
, θl

{
(l+; e, e)

(l++; e, e)
, (3.2c)

symmetry IV: vl

{
(l+; o, o)

(l++; o, e)
, wl

{
(l+; e, e)

(l++; e, o)
, θl

{
(l+; e, o)

(l++; e, e)
. (3.2d)

Here, l+ and l++ denote odd and even integers, respectively, for l in (3.1). The
notation, e or o, implies that the variable is an even or odd function with respect to
the y- and z-coordinates. Any of the symmetry groups carries the following symmetry
for the mean parts of the disturbance:

Û (e, e), ϕ̂(o, o), Θ̂(e, e). (3.3)

These symmetries are the extension of the four symmetry groups admitted by the
linear stability analysis considered by Uhlmann & Nagata (2006). We focus on the
symmetry I because it is satisfied by one of the modes which renders the flow
unstable according to Uhlmann & Nagata (2006). Note that the symmetries I and IV
are equivalent as there is no distinction between y and z in a square duct.

It is easily verified that the symmetry I is composed of the shift-and-reflect symmetry
S and the mirror symmetry Z about the y-axis used by Wedin et al. (2009):

S :

⎛
⎜⎜⎜⎜⎝

u

v

w

θ

⎞
⎟⎟⎟⎟⎠ (ξ, y, z) →

⎛
⎜⎜⎜⎜⎝

u

−v

w

θ

⎞
⎟⎟⎟⎟⎠

(
ξ +

π

α
, −y, z

)
, Z :

⎛
⎜⎜⎜⎜⎝

u

v

w

θ

⎞
⎟⎟⎟⎟⎠ (ξ, y, z) →

⎛
⎜⎜⎜⎜⎝

u

v

−w

θ

⎞
⎟⎟⎟⎟⎠ (ξ, y, −z),

(3.4)
where ξ = x − ct .

All the variables are expanded onto the basis functions φm and ψn as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vl

wl

θl

Û

ϕ̂

Θ̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

M∑
m=1

N∑
n=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vlmnφm(y)ψn(z)

wlmnψm(y)φn(z)

θlmnψm(y)ψn(z)

Umnψm(y)ψn(z)

ϕmnφm(y)φn(z)

Θmnψm(y)ψn(z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.5)
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where φm and ψn are the combination of the Chebyshev polynomials Tj :

φm =

⎧⎨
⎩

T2m + (m2 − 1)T0 − m2T2, φm : e,

T2m+1 +
m2 + m − 2

2
T1 − m2 + m

2
T3, φm : o,

(3.6)

ψn =

{
T2n − T0, ψn : e,

T2n+1 − T1, ψn : o.
(3.7)

Here, φm satisfies both the Dirichlet and Neumann conditions, whereas ψn satisfies
the Dirichlet condition. To have a real solution, the amplitude coefficients, vlmn, etc. in
(3.5), must satisfy the reality condition, v∗

lmn = v−lmn, etc., where ∗ denotes the complex
conjugate.

The Galerkin projection of (2.18)–(2.23) with an appropriate truncation gives

Aijxj + Bijkxjxk = 0, xj = (vlmn, wlmn, θlmn, Umn, ϕmn, Θmn, c)
T . (3.8)

We solve the algebraic equation (3.8) by the Newton–Raphson iterative method. The
iteration is continued until the relative errors of all the components of the vector xj

reduce below 10−5.
Following Wedin et al. (2009), we adopt the bulk Reynolds number in order to

measure the magnitude of nonlinearity, to be compared to the laminar case, where
Reb = 0.47704Re:

Reb =
1

4

∫ +1

−1

∫ +1

−1

Ū (y, z) dy dz. (3.9)

The skin friction λ defined by

λ =
4χ

Re2
b

(3.10)

and the kinetic energy of the flow for one axial period defined by

E =
1

4

∫ +1

−1

∫ +1

−1

|UB + Û |2
2

dy dz +
α

8π

∫ 2π/α

0

∫ +1

−1

∫ +1

−1

|ǔ|2
2

dx dy dz (3.11)

also measure the nonlinearity.

4. Results
4.1. The continuation to the isothermal solution

The linear stability analysis shows that the laminar flow becomes unstable to a
perturbation with the streamwise wavenumber α = 1.0 inside the dashed curve in
the Re–Gr plane (see figure 2). This region overlaps the region M2 for the basic
flow classified by Uhlmann & Nagata (2006). In order to establish the continuation
of a nonlinear solution in the Re–Gr plane, we first obtain a nonlinear solution
with α = 1.0 bifurcating from the neutral curve. Our goal is to bring the solution to
the isothermal case (Gr = 0); one successful continuation path was accomplished by
following the arrows, as shown in figure 2. This path is composed of three sections:
(a) varying Gr from 17 470 to 30 000 by fixing Re = −3000, (b) increasing Re from
−3000 to 1000 by fixing Gr = 30 000 and (c) decreasing Gr from 30 000 down to 0 by
fixing Re = 1000. The amplitude of the solution at each section varies. Accordingly
Reb changes along the path. We plot Reb at each section in figure 3. In figure 3(a) the
path, which starts from the point (black triangle) on the laminar state (dotted curve),
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Figure 2. The path taken from the linear critical point of the internally heated duct flow to
the isothermal solution indicated by the arrows. The dashed curve represents the neutral curve
with α = 1.0. The region M2 is bounded by the two thin lines, Gr/Re = −7.69 and −5.75.
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Figure 3. The variation of Reb along the path in figure 2. (a) Re = −3000, (b) Gr = 30 000
and (c) Re = 1000. Two closed circles correspond to the isothermal solutions. The dotted line
shows the laminar state, Reb = 0.47704Re + 0.054480Gr .

experiences several turning points before it reaches the point (Gr, Reb) = (30 000, 4.11)
(open triangle). The path in figure 3(b) continues from the point (open triangle) at
(Gr, Reb) = (30 000, 4.11) in figure 3(a). Along the path, Reb increases monotonically
as Re is increased and the path ends at (Re, Reb) = (1000, 1481) (open circle in
figure 3b). As shown in figure 3(c), reducing the Grashof number from 30 000 brings
the solution to the isothermal case Gr = 0 (closed circle on the branch indicated by
‘lower’ in figure 3c). The solution exists even when the Grashof number is decreased
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(L, M,N ) c Reb λ

(4, 14, 14) 451.34 331.86 0.10304
(6, 16, 16) 450.54 331.57 0.10322
(8, 18, 18) 450.62 331.60 0.10320
(10, 20, 20) 450.60 331.59 0.10320

Table 1. The phase velocity c, the bulk Reynolds number Reb and the skin friction λ of the
upper branch solution with α = 1.14 at Re = 836 as functions of the truncation level (L,M,N ).

1000 2000 3000 4000

c

Re

Lower

Upper

New solution (α = 1.14)
WBN (α = 0.85)

 500

 1000

 1500

 2000

 2500

 3000

Figure 4. The phase velocity c. Solid curve: The new solution. Dotted curve: WBN. The
truncation level (L,M,N ) = (6, 16, 16) is used to draw the curve, whereas isolated points with
(L,M,N ) = (10, 20, 20) are plotted with open circles.

further down to −2369, where the path experiences a turning point. After going
around the turning point the path crosses the line, Gr = 0, again (another closed
circle on the branch indicated by ‘upper’ in the figure) as Gr is increased. We refer to
the solution branch closer to the laminar state as the lower branch solution and the
solution further away as the upper branch solution, as shown in figure 3(c).

4.2. Travelling wave

The two isothermal solutions (closed circles in figure 3c) are continued in the Re-axis.
The nature of the saddle-node bifurcation of these new travelling-wave solution is
shown in terms of the phase velocity c in figure 4. The accuracy of the solution close
to the saddle-node point with respect to the truncation level is listed in table 1. The
solution is seen to converge well at (L, M, N ) = (6, 16, 16), which we adopt in the
following analysis unless stated otherwise. Also shown in figure 4 is the bifurcation
of the travelling-wave solution, referred to as WBN hereafter, obtained by the SSP
approach of Wedin et al. (2009). The particular wavenumbers indicated in the figure,
α = 1.14 and 0.85, correspond to those which give their lowest bulk Reynolds numbers
for the present solution and WBN, respectively. These wavenumbers are determined
by tracing the existence domain of the solutions in (α, Reb) space. The domain shrinks
as Re is decreased (see figure 5) and we pinpoint the wavenumbers at the saddle-node
with the accuracy of the wavenumber increment ∆α = 0.01. The domain of our new
travelling-wave solution disappears at Re =827.5.

The kinetic energy E of the flow for one axial period is plotted against Re in
figure 6(a), highlighting the proximity of the lower branch state to the laminar
solution. A similar effect can be ascertained by inspection of figure 6(b); it is also
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Figure 6. (a) Kinetic energy E of the new solution versus Re (solid curve). The dotted

curve indicates the energy for the laminar flow given by 1/4
∫ 1
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∫ 1

−1 UB
2/2 dy dz = 0.1568Re2.

(b) Bulk Reynolds number versus Re. The truncation level (L,M,N ) = (6, 16, 16) is used
to draw the curves, and the circles represent isolated solutions with higher truncation,
(L,M,N ) = (10, 20, 20).

clear that the lower branch of WBN is further away from the laminar state at all
values of Re.

Figure 7 shows the skin friction λ against the bulk Reynolds number. In
addition to the result of our solution, WBN, the laminar solution and the
experimental data of the fully developed turbulence, which obeys λ= 28.45/Reb and
λ−1/2 = 2 log10(2.25Rebλ

1/2)−0.8 (Jones 1976), respectively, are also plotted. The upper
and lower branches of our solution approach the curves given by the experimental
data and the laminar flow, respectively, as Reb is increased. Our solution takes its
minimum bulk Reynolds number, 332, at α =1.14, which is substantially smaller than
that of WBN (min Reb =598 at α = 0.85).

The iso-surfaces of the streamwise vorticity and the streamwise velocity of the
upper branch solution with α =1.0 at Re = 1500 are shown in figure 8. Notice the
low-speed streak manifested as a wrinkle on the iso-surface of the streamwise velocity
in figure 8(b) near the wall at z = −1. As can be seen, the low-speed streak is flanked
by staggered quasi-streamwise vortices near the walls at z = ±1. This structure is
often identified as the coherent structure of the near-wall turbulence. Figures 9(a) and
10(a) show the mean-flow field, (UB + Û , V̂ , Ŵ ). Both the lower and upper branches
display outflow from the wall towards the centre of the duct along y =0. We can



A new nonlinear vortex state in square-duct flow 423

 0.01

 0.02

 0.04

 0.08

 0.16

200 400 800 1600 3200

Reb

New solution (α = 1.14)
WBN (α = 0.85)

Laminar
Turbulent

λ
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Figure 8. The iso-surfaces of the streamwise vorticity and the streamwise velocity of the
upper branch solution with α = 1.0 at Re =1500 (Reb = 506). Black (dark grey) represents
+70 % (−70 %) of the maximum vorticity and light grey represents 40 % of the maximum
velocity. (a) The full-flow domain and (b) the close-up of z < 0.

also notice three stagnation points in terms of the velocity field (V̂ , Ŵ ) on y = 0:
one at the origin of the axes and the other two approximately half way between the
origin and the sidewalls z = ±1. Also noticeable is the eight-vortex structure (four
dominant vortices and four minor vortices): one dominant and one minor vortex in
each quadrant. This structure is different from the eight-vortex structure with diagonal
symmetry observed in the fully developed turbulence at higher Re (Gavrilakis 1992;
Uhlmann et al. 2007). The instantaneous total-flow fields are displayed also in figures
9 and 10. The dominant vortices near the walls z = ±1 oscillate in the y-direction
as they propagate in the x-direction (see also figure 8). The minor vortices observed
in the mean-flow field are not captured at the vorticity level plotted in figure 8.
While the oscillatory motion of the lower branch solution is gentle, the upper branch
solution is more active with a vortex oscillating along each of the walls at z = ±1.
According to the DNS result by Uhlmann et al. (2007), the marginally turbulent
flow (Reb ∼ 1100) has a four-vortex structure: two near one of the walls and two
more near the wall opposite to it. A similar four-vortex structure has been reported
in the DNS by Wedin et al. (2008) (see their figure 12). The four-vortex patterns of
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Figure 11. The disturbance velocity of the lower branch solution with α = 1.0 at Re =1500

(Reb = 664). (a) The mean part Û and (b) the disturbance û at αξ = 0. For the meanings of
arrows and grey scale see the caption of figure 9.

Uhlmann et al. (2007) have two different orientations, vortices located near z = ±1
and y = ±1, that alternate (see their figure 3a, b). Biau et al. (2008) also observed
similar alternating patterns with two pairs of vortices near opposing walls before
the flow eventually relaminarises (see their figure 4). In our system, in addition
to the solution with four dominant vortices near z = ±1 displayed in figures 9 and 10,
the flow with four vortices near y = ±1 is also a solution by symmetry.

Figure 11 shows the disturbance velocity field of the lower branch solution.
Both the mean part Û , V̂ and Ŵ and the instantaneous state of the disturbance
û, v̂ and ŵ surprisingly resemble those of the mirror-symmetric solution M1 in
pipe flow found by Pringle & Kerswell (2007) (see their figure 1). The travelling
wave M1 with the axial wavenumber α possesses the shift-and-reflect symmetry,
S : (u, v, w)(s, φ, z) → (u, −v, w)(s, −φ, z+π/α), where (u, v, w) is the velocity compo-
nents in the cylindrical coordinates (s, φ, z), and the shift-and-rotate symmetry, Ωm:
(u, v, w)(s, φ, z) → (u, v, w)(s, φ + π/m, z + π/α) with m =1 (Pringle et al. 2009).
Coupled with the symmetry S, the symmetry Ω1 implies the mirror symmetry, i.e.
invariance under reflection in the line φ = ±π/2. For square-duct flow the combined
symmetry S(Z), where S and Z are given in (3.4), implies the shift-and-rotate
symmetry by the angle π since S(Z) : (u, v, w)(ξ, y, z) → S : (u, v, −w)(ξ, y, −z) →
(u, −v, −w)(ξ + π/α, −y, −z). Therefore, the solution in square duct and M1 in pipe
flow belong to the same symmetry group. Furthermore, the minimum bulk Reynolds
number of our solution, 332 (defined by using the half-width of the side as the length
scale), is comparable to their 773 (defined by using the diameter of the pipe as the
length scale).

4.3. Stability

In order to investigate the stability of the isothermal travelling-wave solution,
(u

T W
, P

T W
), found in the previous section, we superimpose infinitesimal perturbations,

(ũ, P̃ ), on the solution: (
u

P

)
=

(
u

T W

P
T W

)
+

(
ũ

P̃

)
. (4.1)
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Substituting (4.1) into (2.1) and (2.2), we obtain the governing equations for the
perturbations:

∇ · ũ = 0, (4.2)

and

∂t ũ + (Ū · ∇)ũ + (ũ · ∇)Ū + (ǔ · ∇)ũ + (ũ · ∇)ǔ = −∇P̃ + ∇2ũ, (4.3)

where the nonlinear term, (ũ · ∇)ũ, is neglected. Operating ez · ∇× and ey · ∇× on (4.3)
leads to[

{∂t + (Ū · ∇) − ∇2 + ∂yV̂ }∂x − ∂2
yyŪ

]
ṽ − [{∂t + (Ū · ∇) − ∇2 + ∂yV̂ }∂y + ∂yŴ∂z]ũ

+
(
∂yŪ∂z − ∂zŪ∂y − ∂2

yzŪ + ∂zV̂ ∂x

)
w̃ + ez · ∇ × {(ǔ · ∇)ũ + (ũ · ∇)ǔ} = 0, (4.4)

[
{∂t + (Ū · ∇) − ∇2 + ∂zŴ}∂x − ∂2

zzŪ
]
w̃ − [{∂t + (Ū · ∇) − ∇2 + ∂zŴ}∂z + ∂zV̂ ∂y]ũ

+
(
∂zŪ∂y − ∂yŪ∂z − ∂2

yzŪ + ∂yŴ∂x

)
ṽ − ey · ∇ × {(ǔ · ∇)ũ + (ũ · ∇)ǔ} = 0. (4.5)

Based on the Floquet theory, the velocity perturbations, ũ, is expanded as follows:

ũ(x, y, z, t) =

L∑
l=−L

ũl exp[i(lα + d)(x − ct) + σ t], (4.6)

where σ is the growth rate. We only investigate the fundamental mode (d =0) and
impose the same symmetries as (3.4) on the perturbations. The interaction of the
perturbations ũ and the disturbances ǔ generates the feedbacks on the mean part.
Therefore, we include the x-independent parts (Ũ , Ṽ , W̃ ) = (ũ0, ṽ0, w̃0) exp[σ t] of the
perturbations in (4.6) (cf. (3.1)). Ṽ and W̃ are derived from the stream function ϕ̃ on
the cross-section:

Ṽ = ∂zϕ̃, W̃ = −∂yϕ̃. (4.7)

Taking the streamwise average of ex · (4.3) and ex · ∇ × (4.3) leads to

(∂t + ∂zϕ̂∂y − ∂yϕ̂∂z − ∆2)Ũ + (∂zϕ̃∂y − ∂yϕ̃∂z)Ū + ∂yǔṽ + ũv̌ + ∂zǔw̃ + ũw̌ = 0, (4.8)

−(∂t + ∂zϕ̂∂y − ∂yϕ̂∂z − ∆2)∆2ϕ̃ − (∂zϕ̃∂y − ∂yϕ̃∂z)∆2ϕ̂

+
(
∂2

yy − ∂2
zz

)
ṽw̌ + v̌w̃ + 2∂2

yzw̌w̃ − v̌ṽ = 0, (4.9)

where ũ is solved by using (4.2), as in (2.17).
The Galerkin projection of (4.4), (4.5), (4.8) and (4.9) gives a generalized eigenvalue

problem with the growth rate σ as the eigenvalue,

Ãij x̃j = σB̃ij x̃j , (4.10)

where x̃j stands for (ṽlmn, w̃lmn, ũ0mn, ϕ̃0mn)
T , with l = −L, . . . , −1, 1, . . . , L. ṽlmn, etc.

are the amplitude coefficient of ṽl , etc. which are expressed in a manner similar
to (3.5). The equation is solved by the linear algebra package (LAPACK) routines,
ZGESV and ZGEEV.

Figure 12 shows the real part of the growth rate σ of the fundamental mode
of the perturbations imposed on the travelling-wave solution with α = 1.14. This
travelling-wave solution is unstable from its appearance at the saddle-node bifurcation
at Re = 827.5: while the lower branch has two unstable eigenmodes, the number of
unstable eigenmodes increases on the upper branch as the Reynolds number increases.
The solution on both branches always presents an eigenmode with zero growth rate,
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Figure 12. The real part of the growth rate, Re[σ ], of the perturbations to the (a) lower and
(b) upper branch solutions with α = 1.14. Solid anddotted curves, respectively, indicate that
the growth rates are real and complex conjugate. (c) close-up. Curves with open and closed
circles correspond to the lower and upper branch, respectively.

which corresponds to the infinitesimal translation in the streamwise direction. The
magnified figure (see figure 12c) shows that the growth rates of the upper and
lower branches join at the saddle-node. In particular, as expected from the nature of
the saddle-node bifurcation, where the upper branch must have one more unstable
direction than the lower branch, the third largest real growth rate on the upper
branch connects with the third largest (negative) real growth rate of the lower branch
at zero. The second and third largest real growth rates on the upper branch near the
saddle-node join to become a complex conjugate pair as Re is slightly increased. All
the growth rates which cross zero on the upper branch for larger Re are associated
with a complex conjugate pair so that time-periodic solutions in the frame moving
with the travelling wave are expected to bifurcate there.

The stability analysis for the nonlinear solution with respect to other symmetries
and cases with d �= 0 is in progress; however, the results for the fundamental mode
reported here are sufficient to demonstrate the instability of the equilibrium solutions
identified.

5. Conclusion
The linear stability analysis of internally heated rectangular duct flow by Uhlmann

& Nagata (2006) has been extended to the nonlinear case with the special focus on
seeking a nonlinear solution in an isothermal case. We have presented a path to achieve
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this goal in the Re–Gr plane, starting from the travelling-wave solution bifurcating
from the linear critical point of the internally heated flow. The examination of the flow
structures and the statistics such as the skin friction obtained so far experimentally
(Jones 1976) and numerically (Gavrilakis 1992; Uhlmann et al. 2009; Wedin et al.
2009) has revealed that our isothermal travelling-wave solution is a new solution. The
present disturbance velocity fields exhibit a reflective symmetry about the (mirror)
plane z = 0. This symmetry also holds for the SSP solution by Wedin et al. (2009).
However, in contrast to the one low-speed streak located near the duct centre in
Wedin et al. (2009) (see their figure 3), the present solution has two low-speed streaks,
one near the wall at z = 1 and the other at z = −1 (see figure 8). Uhlmann et al. (2009)
use the symmetry II, and therefore their flow structure with four streaks, each on the
diagonal of the duct cross-section (see their figure 2), is clearly different from ours
which uses the symmetry I. The minimum bulk Reynolds number for the existence of
our solution is found to be 332, which is substantially lower than that of the solution
found by Wedin et al. (2009). The skin frictions of our upper and lower solution
branch approach the curves given by the experimental data and the laminar flow,
respectively, as Reb is increased. Comparison with the DNS results of Biau et al.
(2008) for the flow which lives near the boundary between the laminar and turbulent
states seems to suggest that the new solution is embedded in the edge state of the
system. The new solution is path independent. However, we could not exclude the
possibility of yet other solutions that may exist at the Reynolds number lower than
this new solution. Seeking a nonlinear solution which can exist at a smaller Reynolds
number is meaningful as it might approach the critical Reynolds number for the
global stability of the flow, below which any disturbance eventually decays.

The flow states presented here is the counterpart of the mirror-symmetric solution
in pipe flow obtained by Pringle & Kerswell (2007), although the geometries are very
different: the rotational symmetry with an arbitrary angle for pipe flow allows for
generalization of solutions into larger families than the rotational symmetry with only
90◦ for square-duct flow.

The stability analysis conducted indicates that the newly found nonlinear solutions
are unstable from their onset, thereby rendering their experimental observation tricky.
Since neutral points are found for other eigenmodes as Re is increased, further
bifurcations of tertiary flows are expected.

H. W. acknowledge the support of a Marie Curie Intra-European Fellowship (PIEF-
GA-2008-220201) within the 7th European Community Framework Programme.
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