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A viscosity stratification is considered as a possible mean to postpone the onset
of transition to turbulence in channel flow. As a prototype problem, we focus on
the linear stability of shear-thinning fluids modelled by the Carreau rheological law.
To assess whether there is stabilization and by how much, it is important both to
account for a viscosity disturbance in the perturbation equations, and to employ an
appropriate viscosity scale in the definition of the Reynolds number. Failure to do so
can yield qualitatively and quantitatively incorrect conclusions. Results are obtained
for both exponentially and algebraically growing disturbances, demonstrating that a
viscous stratification is a viable approach to maintain laminarity.

1. Introduction
The problem of the control of fluid flow turbulence (often, but not always, to delay

its occurrence or mitigate its effects) has many practical applications, from aeronautics
to pipeline engineering. In an attempt to pursue effective control strategies, many
different techniques have been proposed, comprehensively reviewed by Gad-el-Hak
(2000). Among them, an approach to delay transition discussed many years ago by
Craik (1969) has received much attention in recent years. It can be put in the category
of the ‘stability modifiers’ and it consists of generating a small viscosity stratification
in the fluid. If, for example, a laminar wall-bounded shear flow of a fluid system in
which two layers of different viscosities are superimposed is considered, there may be
a significant stabilizing effect. This is the case whenever the smaller viscosity fluid is
close to the wall, provided that the viscous interface is positioned near the so-called
critical layer, where the inviscid stability equation becomes singular (i.e. where the flow
velocity matches locally the phase speed of the disturbance wave). This stabilization
approach is attractive because it is passive (i.e. it does not require the input of energy
into the system) and can be pursued very simply by introducing small quantities of a
different fluid or of polymers in the channel, or by producing the required viscosity
contrast with mild temperature or concentration gradients.

The beneficial effect of adding small concentrations of long-chain polymers to
turbulent flows has been known for a long time (Lumley 1969; Metzner 1977;
Bird, Armstrong & Hassager 1987). Friction drag is reduced drastically and the
effect appears to be associated with the enhanced effective viscosity induced by
the extensional thickening properties of polymeric solutions. Numerical observations
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(Orlandi 1997; Sureshkumar Beris & Handler 1997; De Angelis Casciola & Piva 2002)
show that turbulence-generating events in the buffer layer are inhibited by the presence
of polymers: drag reduction is accompanied by a weakening of the streamwise vortices,
a modification to fluctuating velocity characteristics, and an increase in the average
spacing between the streaks within the buffer layer. A mechanistic explanation of the
effects observed is emerging through the study of nonlinear recurrent states which
mirror effects observed experimentally in buffer-layer turbulence of viscoelastic fluids
(Stone et al. 2004; Li, Xi & Graham 2006).

Recent efforts aimed at assessing the effect of a stratification of viscosity examined
the behaviour of small disturbances in laminar channel flows (Ranganathan &
Govindarajan 2001, Govindarajan L’vov & Procaccia 2001, Govindarajan 2002,
Govindarajan et al. 2003, Chikkadi Sameen & Govindarajan 2005). The results of
these studies are summarized below:

(i) any spatial dependence of the viscosity µ in the critical layer, with µ decreasing
towards the wall, is sufficient to considerably delay the onset of two-dimensional
instability modes;

(ii) the effect is related to a reduced production of disturbance kinetic energy by
interaction with the mean field; the energy dissipation responds less dramatically to
changes in viscosity;

(iii) it is argued that in a turbulent configuration the energy budget could
display a similar behaviour when the turbulence-production layer overlaps with
the viscosity-stratified layer, with the same reduced-production mechanism active for
each interacting mode;

(iv) the secondary three-dimensional instability modes are ‘slaved’ to the primary
modes and are rapidly damped;†

(v) transient growth is relatively unaffected by viscosity gradients.
Some of the points above prompted the present investigation since their implications
might have far-reaching consequences for flow control, and so we investigate further
the linear stability issue, focusing on nonlinear, purely viscous fluids:

τ = µ(γ̇ )γ̇ ,

with τ the deviatoric stress tensor and γ̇ the second invariant of the strain-rate tensor
γ̇ , defined by γ̇ = (1

2
γ̇ : γ̇ )1/2, with γ̇ =(∇u + ∇uT ). On the one hand, understanding

the phenomenon of transition initiated by the growth of infinitesimal perturbations
is a necessary prerequisite to finding effective transition-delay strategies. On the other
hand, it has been argued by Farrell & Ioannou (1998) that the mechanism responsible
for the formation of coherent structures in near-wall turbulence obeys linear rules. It
is thus possible that some of the findings reported here carry over to more complex
situations.

We defer further analysis of the literature on viscously stratified flows to a later
section, after having established the equations governing the problem. The paper is
organized as follows: The linear stability equations are derived in § 2. They differ from
the equations reported previously, and a discussion on this difference is provided. In
§ 3 the modal results are presented. The short-time behaviour of disturbances in the
subcritical regime is discussed in § 4; § 5 contains a brief summary of the results
obtained.

† The base flow considered in the secondary stability analysis consists of the steady profile plus
the most unsteady travelling mode of the primary instability, with prescribed finite amplitude. The
base flow is supposed frozen in time, which is admissible under the assumption of separation of
scales.
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2. Set-up of the problem
The motion of an incompressible, shear-thinning fluid of negligible visco-elasticity

in a channel bounded by two parallel plates located at ŷ = ±h is considered. The
flow is driven by a constant gradient of pressure p̂ along the longitudinal direction
x̂. The dimensionless hydrodynamic equations are(

∂

∂t
+ u · ∇

)
u = −∇p + ∇ · τ , (2.1)

∇ · u = 0. (2.2)

Although the disturbance equations derived below are valid for any nonlinear
purely viscous fluid, a rheological law must be chosen to model the shear-thinning
behaviour of fluids such as colloidal suspensions, paints, dispersions or polymer
solutions. Among the many possibilities (power-law, Ellis, Carreau–Yasuda, Cross
etc) we have chosen the Carreau (1972) model for the following reasons:

(i) It has a sound theoretical basis, since it arises from Lodge’s molecular network
theory and has proven capable of modelling simultaneously the steady shear, complex
viscosity, stress growth and stress relaxation functions;

(ii) It is frequently adopted to describe the rheological behaviour of pseudoplastic
fluids and stability analysis data are available in the literature.
Unpublished results obtained by our group show that the conclusions to be reported
below are qualitatively unaffected when the power-law constitutive model is used
instead of the Carreau law.

The constitutive relation is thus

τ =
1

Re
µ γ̇ with µ =

µ̂∞

µ̂0

+

[
1 − µ̂∞

µ̂0

]
[1 + (λγ̇ )2](n−1)/2; (2.3)

the variables have been normalized with the half-channel thickness h, the centreline
velocity Uc, the zero-shear-rate viscosity µ̂0 and the dynamic pressure ρ U 2

c , with ρ

the fluid density. The Reynolds number Re is defined as

Re =
ρ Uc h

µ̂0

. (2.4)

The infinite-shear-rate viscosity µ̂∞, which is generally associated with a breakdown
of the fluid, is frequently significantly smaller (10−3 to 10−4 times) than µ̂0, see
Bird, Armstrong & Hassager (1987) and Tanner (2000). The ratio µ̂∞/µ̂0 will be
thus neglected in the following. The power-law index n represents the degree of
shear thinning, the onset of which is function of the time constant of the material
λ. Note that for n= 1 or λ=0, the Carreau model describes the behaviour of a
Newtonian fluid of viscosity µ̂0 and if λ is very large, it reduces to the power-law
model µ̂ = K ˆ̇γ

n−1
with the consistency factor K defined by K = µ̂0 λ̂

n−1 (λ̂ and ˆ̇γ
are dimensional quantities). An example of rheological data for polymer solutions is
given by Bird et al. (1987). Typically, 0.2 � n< 1 and O(0.1) � λ<O(102).

2.1. Linear stability equations

We are interested in the stability of the steady unidirectional base flow Ub = Ub(y)ex

satisfying equations (2.1–2.3), together with no-slip conditions at the rigid walls.
Sample velocity distributions are plotted in figure 1 and it can be demonstrated that
the profiles are ‘fuller’ for increasing values of the time constant of the fluid λ, for any
fixed value of n. By analogy with previous results obtained by Fransson & Corbett
(2003) for the asymptotic suction boundary layer and by Corbett & Bottaro (2000)
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Figure 1. Velocity profiles. (a) Effect of n at λ= 10: (1) Newtonian; (2) n= 0.7 and (3)
n= 0.3. (b) Effect of λ at n= 0.5: (1) Newtonian, (2, dashed-line) λ= 1.5 and (3) λ= 10.

for the boundary layer under conditions of favourable streamwise pressure gradient,
it is not unreasonable to anticipate that the effect of shear thinning (increasing
λ or decreasing n) is stabilizing, both from the point of view of the asymptotic
behaviour of small disturbances and from that of the short-time transient behaviour.
Unexpectedly, whereas the modal behaviour did indeed conform to expectations, the
non-modal short-time results did not, leading Chikkadi et al. (2005) to “state firmly
that a stratification of viscosity alone does not affect transient growth”. It will be
argued below that such a conclusion is incorrect.

To characterize the stability of the flow, an infinitesimal perturbation (εu′, εp′) is
considered and the momentum equation is linearized around (Ub, pb):

∂u′

∂t
= −(u′ · ∇)Ub − (Ub · ∇)u′ − ∇p′ + ∇ · τ ′, (2.5)

where τ ′ is the shear stress perturbation given by τ ′ = µ(Ub) γ̇ (u′) + µ′ γ̇ (Ub) with µ′

the viscosity perturbation:

µ′ = γ̇ij (u′)
∂µ

∂γ̇ij

(Ub). (2.6)

Since the base flow is unidirectional, it can be shown straightforwardly that

τ ′
ij = µ(Ub) γ̇ij (u′) for ij �= xy, yx, (2.7)

τ ′
ij = µt (Ub) γ̇ij (u′) for ij = xy, yx, (2.8)

where

µt = µ(Ub) +
dµ

dγ̇xy

(Ub) γ̇xy(Ub) (2.9)

is termed the tangent viscosity. For a one-dimensional shear flow, with velocity Ub(y)
in the x-direction, the tangent viscosity is defined by µt = dτxy/dγ̇xy , as sketched in
figure 2 for a given reference point (recall that the effective viscosity µ is experimentally
defined as the ratio between τxy and γ̇xy in a flow such as that considered here).
For shear-thinning fluids we have µt < µ, whereas the opposite holds for shear-
thickening fluids. It is important to observe that the fluctuating shear stress tensor
τ ′ is anisotropic, because of the presence of a viscosity perturbation. This is a
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Figure 2. (a) Qualitative behavior of τxy versus γ̇xy for a Carreau fluid. The slope of the
dotted line is the so-called effective viscosity, the slope of the dashed line is the tangent
viscosity. (b) Effective and tangent viscosity as functions of the wall-normal coordinate y, for
n= 0.5 and two values of λ. The thick line is the effective viscosity and the thin line is the
tangent viscosity.

characteristic of nonlinear viscous fluids, with or without yield stress†. For instance,
in the case of the Bingham–Poiseuille flow, τ ′

xy is independent of the Bingham number,
which is a dimensionless yield stress (Nouar et al. 2007). Since this appears to have
been overlooked by some authors, a brief review of the literature is appropriate at
this point.

2.2. Brief summary of research results on viscously stratified flows in channels

A stratification in viscosity can be obtained by considering different immiscible fluids
in contact (in which case the viscosity presents a discontinuity), or when temperature
and/or concentration gradients are involved (so that a diffusive interface of non-
zero thickness is present), or in the case of non-Newtonian fluids. The case of
two superposed immiscible fluids of constant (and different) viscosities was initially
considered by Yih (1967) who focused on long waves and found an interfacial mode
of instability at all Reynolds numbers. Hooper & Boyd (1983) later found that short
waves can also be easily destabilized. The instability mechanism was studied by Hinch
(1984) and Charru & Hinch (2000), who elucidated the roles of the layer thicknesses
and of the viscosity ratio.

A smooth viscosity stratification can be obtained when µ depends on an intensive
quantity obeying an advection–diffusion equation. The equations for two-dimensional
stability modes, when µ is a linear functional of concentration or temperature alone,
are given, for example, by Govindarajan (2002), under the assumption that the scalar
diffusion coefficient is sufficiently small to allow the neglect of the thickening of
the interface along x. Govindarajan’s equations correctly include the terms arising
from a viscosity disturbance, so that a modified Orr–Sommerfeld equation is found,
coupled to a linear scalar transport equation. The same equations have been employed
by Wall & Wilson (1996), Ern, Charru & Luchini (2003) and, in the context of
an exponential (rather than linear) viscosity–temperature relationship, by Pinarbasi
& Liakopoulos (1995) and Sameen & Govindarajan (2007). Govindarajan (2002)

† For Newtonian fluids with a viscosity stratification induced, for instance, by temperature
gradients τ ′ remains isotropic.
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indicates that her results are qualitatively different from those related to the interfacial
stability of immiscible fluids; conversely, Ern et al. (2003) show that the stability of a
diffused interface tends smoothly to that of the discontinuous case when the interface
thickness tends to zero. In either case, the details of the stratification are crucial in
determining the fate of small disturbances.

Other authors, e.g. Ranganathan & Govindarajan (2001), Govindarajan et al. (2001,
2003), Malik & Hooper (2005), do not include viscosity fluctuations in the linear
stability equations. This can only be justified if an infinite scalar diffusion coefficient
D were considered for the perturbations; such an assumption is however untenable
with the assumed steady viscosity stratification since, if D → ∞, the basic viscosity
gradient cannot be maintained. In a similar vein, Zhang, Acrivos & Schaflinger (1992)
performed a linear analysis for a flowing suspension of a uniform concentration of
particles. As pointed out by Ern et al. (2003), the presence in related experiments of
concentration gradients, and the existence of fluctuations in the concentration (and,
as a consequence, in the fluid viscosity) could alter the conclusions.

The linear stability of non-Newtonian fluids to two-dimensional travelling wave
modes in a plane channel with heat transfer has been studied by Pinarbasi &
Ozalp (2001) for the case of inelastic liquids modelled by the Carreau constitutive
equation. In this case, µ′ was included in the analysis and considered a function
of the shear rate only, dropping the (supposedly negligible) dependence on the
temperature fluctuations. The same type of viscosity law was later adopted by
Chikkadi et al. (2005), who also examined the case of two miscible fluids of equal
densities and different viscosities. This latter analysis focused, in particular, on the
problem of the transient growth of disturbances, a problem practically ignored until
very recently in the literature of non-Newtonian fluids. In their paper Chikkadi et al.
(2005) did not account for the anisotropic nature of the shear stress disturbance
tensor.

A very recent paper by Saamen & Govindarajan (2007) addresses the effect of
heating on the modal and non-modal stability of channel flow of a Newtonian fluid;
the viscosity depends on temperature with an Arrhenius law. A decrease in viscosity
towards the wall stabilizes normal modes, in line with previous findings; non-modal
results are found to be significantly affected by an increase in Prandtl number
and, surprisingly, optimal disturbances are found to be two-dimensional spanwise
homogeneous. The paper employs a reference viscosity which is the value averaged
across the normal-to-the-wall direction, as suggested by Wall & Wilson (1996).

The present contribution examines some of the assumptions that have appeared
in the literature and the aim is at a rational assessment of the effect of a viscosity
stratification on the modal and non-modal growth of disturbances. The question of
which reference viscosity to adopt is also addressed.

2.3. Final equations

The disturbance field is assumed of the form [u′, p′] = [ũ(y, t), p̃(y, t)] exp[i(αx +βz)],
with α and β the streamwise and spanwise wavenumbers, respectively. Equation
(2.5) can be written in terms of the normal velocity ṽ and the normal vorticity
η̃ = iβũ − iαw̃, so that the initial-value problem becomes

−i

(L C1

C2 S

) (
ṽ

η̃

)
=

∂

∂t

(
	ṽ

η̃

)
, (2.10)
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where the operators L, C1, C2 and S are defined as

L = α[Ub	 − D2Ub] +
i

Re
[µ	2 + 2DµD3 + D2µD2 − 2k2DµD + k2D2µ]

+ i
α2

Re k2
(D2 + k2)[(µt − µ)(D2 + k2)], (2.11)

C1 = −i
αβ

Re k2
(D2 + k2)[(µt − µ)D], (2.12)

C2 = βDUb − i
αβ

Re k2
D[(µt − µ)(D2 + k2)], (2.13)

S = αUb +
i

Re
µ 	 +

i

Re
DµD +

i

Re

β2

k2
D[(µt − µ) D], (2.14)

with k2 = α2 + β2; D = d/dy and 	= D2 − k2.
A Chebyshev collocation method is used to solve (2.10) along with boundary

conditions ṽ = Dṽ = η̃ =0 at y ± 1. Standard techniques (described in Schmid &
Henningson 2001 and references therein) are employed to compute eigenvalues,
eigenmodes and transient energy growth. The convergence of the results has been
verified and the code has been thoroughly tested by comparing both the modal and
the non-modal results with those provided in Chikkadi et al. (2005).

3. Long-time behaviour of the disturbance: eigenvalue problem
When the long-time behaviour is sought, the disturbance mode can be assumed

to vary exponentially with time, i.e. [ṽ, η̃](y, t) = [v, η](y; α, β) e−iω t . The initial-
value problem (2.10) is transformed into a generalized eigenvalue problem with the
complex frequency ω as the eigenvalue. Since there is no equivalent of Squire’s
theorem for nonlinear viscous fluid, we have performed several tests for different
values of n ∈ [0.2, 1] and λ ∈ [0, 20], as well as different wavenumbes α and
β ∈ [0, 5]. The results indicate that the lowest critical Reynolds number is obtained
for spanwise-homogeneous disturbances, i.e. β = 0. In hindsight, there are clues as to
the validity of Squire’s theorem: On the one hand, if µ′ is artificially forced to zero,
it can be shown easily that Squire’s transformation holds (see, e.g., Drazin & Reid
1981), and that an equivalent two-dimensional problem can be defined. Secondly,
when the viscosity perturbation is accounted for, its effect appears only through τ ′

xy ,
present in the x- and y-perturbation equations and involving only axial and normal
velocity disturbances. Finally, it is of significance that τ ′

xy enters the tangent viscosity
only, which is here smaller than µ.

The two-dimensional eigenvalue problem reduces to the solution of a Orr–
Sommerfeld-like equation, Lv = ω	v. The even and odd v-modes decouple and
may be considered separately, with boundary conditions on the channel centreline
y = 0 being v = D2v = 0 or Dv = D3v = 0 for odd and even symmetries, respectively.
For Re greater than the critical value Rec the even modes have a positive imaginary
part, corresponding to a linearly unstable Tollmien–Schlichting wave. To compare
our results with those in the literature, Re (based on the zero-shear-rate viscosity µ̂0)
is converted to Re: the overbar defines a Reynolds number based on the viscosity
averaged across the channel. This definition was suggested by Wall & Wilson (1996)
for Newtonian fluids, to better represent the global decrease of µ when the channel
walls were heated. Later, it was also adopted by Chikkadi et al. (2005) for Carreau
fluids.
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Figure 3. Variation of (a) the critical Reynolds number and (b) streamwise wavenumber
with the time constant λ at n= 0.5: line (1) corresponds to results including the viscosity
perturbation and line (2) excluding the viscosity perturbation. The + signs correspond to
unpublished data provided by Chikkadi & Govindarajan (2007).

The importance of the viscosity perturbation term is illustrated by figure 3(a) where
the critical Reynolds number, Rec, is reported as a function of the time constant λ at
n=0.5 and compared with the situation where µ′ is artificially forced to zero. The
results obtained for this last situation are in excellent agreement with those given by
Chikkadi et al. (2005). The evolution of the corresponding streamwise wavenumber
is also represented (figure 3b). In the range of the rheological parameters considered
in figure 3, it is found that shear thinning stabilizes the flow, but the degree of
stabilization is more modest when all terms are included in the equations, and the
critical Reynolds number is about a factor of 2 smaller. The fact that including or
excluding the viscosity perturbation gives rise to such large variations is, in itself, a
significant result; V. Chikkadi & R. Govindarajan (2007, personal communication)
indicate that such differences in critical Reynolds numbers are mildly attenuated when
n increases from 0.5 to 0.7.

To interpret the effect of the viscosity disturbance, the modified Orr–Sommerfeld
equation is multiplied by v∗, the complex conjugate of v, and integrated in y from
the lower to the upper wall. Taking the real part of the result it is easy to obtain

ωi 〈|Dv|2 + α2|v|2〉 = α 〈DUb(vrDvi − viDvr )〉

− 1

Re
〈µ(4α2|Dv|2 + |D2v + α2v|2)〉 +

1

Re
〈(µ − µt )|D2v + α2v|2〉, (3.1)

where |v|2 = v2
r + v2

i and 〈.〉 =
∫ 1

−1
(.) dy. The third term on the right-hand-side of

(3.1) arises from the viscosity perturbation. It is a positive-definite term for shear-
thinning fluids (µt < µ) which has the consequence that viscous dissipation is reduced
compared to the case with µ′ = 0. Hence, the onset of instability is found earlier
than in the µ′ =0 case. When an infinitesimal perturbation is imposed on the basic
flow, the shear stress and the shear rate are disturbed by δτxy and δγ̇xy , so that the
disturbance field ‘will feel’ the (smaller) tangent viscosity µt = δτxy/δγ̇xy , sketched in
figure 2, and not the effective – nor the average – viscosity. We will come back to this
point later on. In the remainder of the paper the viscosity perturbation is accounted
for, unless otherwise stated.
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Figure 4. Effect of shear thinning on (a) the critical Reynolds number Rec and (b) the position
of the reference point yb where µ(yb) = µ. The curves are labelled by the flow behaviour
index n.

To analyse the effect of shear thinning on the critical conditions, Rec was computed
for different values of n and λ. Results are reported in figure 4(a). Note that:
(i) at ‘low’ values of the time constant λ, shear thinning stabilizes the flow, and the
maximum degree of stabilization is reached for λ≈ 1, i.e. when the characteristic time
associated with the fluid rheology equals the characteristic time of the flow; (ii) for
‘large’ values of λ, shear thinning appears to be destabilizing. This observation agrees
with results obtained by Gupta (1999) for the case of power-law fluids, where the
Reynolds number is defined with a nominal viscosity, K(Uc/h)n−1. We further observe
that if the computations are carried out with µ′ = 0, only a stabilizing effect is present.

In the discussion so far, the reference viscosity is the average viscosity µ = 〈µ〉/2
of the Carreau fluid. The relevance of this scaling can be assessed by plotting
the position yb where the local effective viscosity µ(yb) = µ. Figure 4(b) shows
that this reference point yb is away from the wall. Employing an effective
viscosity which pertains to a position far from the wall is counterintuitive, since
Tollmien–Schlichting waves originate in a near-wall viscous layer. Analysis of the
dominant terms of the Orr–Sommerfeld equation in the critical and wall layers
helps establish the relevant viscosity scale. In a neighbourhood of y = yc, the Orr–
Sommerfeld equation Lv = ω	v, must be rescaled so that viscous terms enter the
primary balance. By letting v̂(ξ ) = v(y) and µ̂t (ξ ) = µt (y), with ξ = (y − yc)/ε and
ε = (α Re dUb/dy|y=yc

)−1/3, it is simple to see that the critical-layer equation at lowest
order reduces to

ξ D̂2v̂ = −i µ̂t D̂
4v̂, (3.2)

where D̂ = d/dξ . Also, close to the wall at y =1 (and likewise for the lower wall) the
boundary layer approximation of the Orr–Sommerfeld equation is

D2
χv∗ = −i µ∗

t D
4
χv∗, (3.3)

where χ = (y − 1)/ε∗, ε∗ = (α Re c)−1/2, c = ω/α, v∗(χ) = v(y), µt
∗(χ) = µt (y) and

Dχ = d/dχ . It is clear from (3.2) and (3.3) that it is the tangent viscosity that enters
the balance in wall and critical layers. This supports the choice of the wall tangent
viscosity µtw = µt (y = ±1) as reference, in place of µ.
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(a) with the time constant λ, for different values of n; (b) asymptotic behaviour for large λ
(results obtained by fixing λ = 20).

When µtw is adopted in the definition of the Reynolds number,

Re tw =
ρUch

µtwµ̂0

, (3.4)

it is shown in figure 5(a) that shear thinning is consistently stabilizing. Figure 5(b)
displays the asymptotic (large-λ) behaviour of Retw as function of the power-law
index n: the critical Reynolds number decreases exponentially with n, and reaches
the Newtonian limit when n= 1.

In laboratory experiments it is a customary to employ the effective viscosity at the
wall in the definition of the Reynolds number (see, for instance, Peixinho et al. 2005).
From measurements of the pressure drop, the wall stress is estimated; rheological
diagrams are then used to infer an approximate value of the wall viscosity. If the
viscosity perturbation were not taken into account in the equations, the effective
wall viscosity would emerge from the critical- and wall-layer equations as the most
appropriate reference. Should we adopt the effective viscosity at the wall as scale,
to conform to experimental practice, we would find the same qualitative behaviour
as with µtw , as shown by figure 6. However, for the arguments advanced above, we
maintain the tangent viscosity at the wall as the most appropriate scale.

To complete the description of the critical conditions, we represent in figure 7(a)
the evolution of the streamwise wavenumber with the rheological parameters λ and
n. Independently of the flow behaviour index, longer waves are found at criticality
when λ≈ 1; the critical wavenumbers tend to constant values with increasing λ and
the asymptotic curve of figure 7(b) displays a non-monotonic behaviour, with shorter
waves emerging with the increase of shear thinning for n below 0.6.

Examination of the energy budget provides additional insight into the effect of
shear thinning. It is simple to derive the Reynolds–Orr equation for the perturbation
energy, by following the procedure that led to (3.1); in symbolic form the equation is

d〈I1〉
dt

= 〈I2〉 − 1

Re
〈I3〉. (3.5)

The term on the left-hand side represents the time variation of the disturbance kinetic
energy density, 〈I2〉 is the integral of the product of the Reynolds stress with the mean
velocity gradient and quantifies the energy available to the perturbation, and 〈I3〉/Re
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Figure 6. As figure 5 but with the critical Reynolds number based
on the wall effective viscosity.
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Figure 7. Variation of the critical wavenumber with the time constant λ, (a) for different
values of n; (b) asymptotic behaviour for large λ (results obtained by fixing λ= 20).

is the rate of dissipation of kinetic energy into heat. Following Govindarajan et al.
(2001), it is convenient to compute and compare the space-averaged production and
dissipation terms Γ± defined by

Γ+ =
〈I2〉
〈E〉 , Γ− =

1

Re

〈I3〉
〈E〉 , (3.6)

with I1 = Eexp(2ωi t). At criticality, the transfer of energy from the base flow to the
disturbance motion is exactly balanced by viscous dissipation as shown in figure 8 for
the case of a Newtonian fluid. The disturbance kinetic energy is supplied mainly in
the vicinity of the critical layer, of thickness O(αRe)−1/3, while most of the dissipation
occurs in the wall layer, which is O(αRe)−1/2. The effect of viscosity stratification
on the energy budget can be appreciated by comparing the results obtained for a
Newtonian fluid (figure 8) with those given in figure 9 for a Carreau fluid. In the latter
case we have Re tw = 5772, λ= 10, α corresponds to the critical wavenumber value for
the given parameters, and the value of n is either 0.7 or 0.5. With increasing shear
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Figure 9. Effect of viscosity stratification on the energy budget for a Carreau fluid,
Retw =5772, λ= 10. (a) n= 0.7, α = 1.12, Γ+ = 1.798 × 10−4, Γ− = 9.581 × 10−3. (b) n= 0.5,
α = 1.264, Γ+ = −7.904 × 10−3, Γ− = 1.312 × 10−2.

thinning we observe that: (i) the portion of flow domain where the production term
I2 is negative increases, rendering the flow progressively more stable compared to the
Newtonian case displayed in figure 8; (ii) the position of the critical point approaches
the wall; (iii) the order of magnitude of the average viscous dissipation remains the
same as the Newtonian case.

The main factor determining stability or instability of the flow is the exchange
of energy between base flow and perturbation, which is driven by the phase change
between the two fluctuating velocity components, caused by the viscosity stratification.
When the viscosity fluctuation is artificially forced to zero, a large negative production
region appears, leading to a fictitious stabilization (see figure 10).
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Figure 10. Effect of viscosity stratification on the energy budget at Re =5772 (Retw = 56630),
n= 0.5 and λ= 10. (a) Unstable case with α = 1.001, Γ+ = 6.153 × 10−3, Γ− = 5.700 × 10−3.
(b) Stable case obtained by artificially imposing µ′ =0, α = 1.107, Γ+ = 1.847 × 10−3,
Γ− = 7.769 × 10−3.

4. Short-time behaviour: transient growth and optimal disturbances
The transient evolution of perturbations in the linear regime is determined following

the methodology described by Schmid & Henningson (1994). For a given Fourier
mode, the instantaneous disturbance kinetic energy is given by

Et (q0; α, β) =
1

2k2

∫ 1

−1

(|Dv|2 + k2|v|2 + |η|2) dy, (4.1)

which is function of time and of the initial condition, q0 = (v, η)T0 = q(y, 0; α, β). As
usual, the gain G is defined as the amplification of the kinetic energy at time t over
all non-zero initial conditions:

G (t, α, β) = sup
q0 �=0

(
Et (q0, α, β)

E0 (q0, α, β)

)
; (4.2)

then the maximum transient energy growth possible over all times is
Gmax(α, β) = supt�0G(t, α, β). The maximum of Gmax for all the pairs (α, β) is denoted
Gopt which is reached by the optimal perturbation at a specific time topt . Unlike the
exponential amplification case, here the growth of disturbances occurs over a relatively
short initial time and is related to an inviscid mechanism, the lift-up of low-speed
streaks from the wall. Viscosity acts only to moderate the amplification and also, in
this case, employing a wall-based viscosity appears reasonable.

We have initially employed µ to compare with the results obtained by Chikkadi
et al. (2005), and have thus used the following parameters: Re = 1000, n= 0.5 and
λ= 2. In figure 11(a), the curve labelled (2) is in very good agreement with that given
by Chikkadi et al. (2005) (see their figure 4); the curve labelled (1), which accounts
for µ′, displays an amplification which is up to 27 % larger and Gopt reaches 230
at a time of 81. It is thus clear that the conclusion by Chikkadi et al. (2005) that
transient behaviour is unaffected by stratification of viscosity must be revised. The
apparent enhanced growth experienced by a shear-thinning fluid compared with a
Newtonian fluid occurs in the presence of a ‘fuller’ base velocity profile and this is
at odds with previous transient growth studies (Corbett & Bottaro 2000; Fransson &
Corbett 2003). Figure 11(b) helps reconcile physical intuition with numerical results:
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the amplification factor G at Re tw =1000, α = 0, β = 2.05, λ=2, is shown for different
values of the shear-thinning index n. The case n= 1 coincides with the Newtonian
case for Re = 1000, i.e. Gopt = 196 at topt =75.9 (Schmid & Henningson 2001). The
effect of shear thinning is to reduce significantly the maximum growth attainable at
fixed Re tw , and the corresponding time, by the approximate scalings

G
opt

n�=1

G
opt

n=1

≈ n3.60,
t
opt

n�=1

t
opt

n=1

≈ n1.57,

which apply when λ is large enough. A similar stabilizing effect of shear thinning
would have arisen had we used a Reynolds number based on the effective wall
viscosity. The optimal horizontal scales of motion do not differ much from the
Newtonian case.

To obtain a complete picture of the transient growth dependence on the horizontal
wave vector, the maximum growth is calculated for a range of wavenumbers and
plotted in the (α, β)-plane. An example of contours of Gmax for Re tw = 4584
(Re = 1000) at n= 0.5 and λ=2 is provided in figure 12. The optimal perturbation
occurs at α = 0 and β =1.93, and Gopt = 236.8 is reached after topt =99 advective time
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Figure 13. Optimal perturbation and optimal streaks for (a) Carreau fluid at Retw =4584
(Re =1000), n= 0.5, λ= 2 and (b) Newtonian fluid at Re = 1000. On the left the velocity
vectors vey + wez of the optimal perturbation at t = 0 are plotted; on the right equally spaced
contours of the streamwise velocity u at t = topt are displayed.

units. The numerical results show that around these optimal conditions the transient
behaviour is weakly dependent on β whereas the variation with the streamwise
wavenumber is rather rapid. For comparison, in the Newtonian case at Re = 4584 the
optimal disturbance is found at α = 0, β =2.04, and after topt = 348 the amplification
reaches Gopt = 4119 (Biau & Bottaro 2004). In the range 0.2 � n � 1 and 0 � λ� 10,
it is found that the optimal perturbation is formed by streamwise vortices (α = 0)
with longer spanwise wavelength when the shear-thinning character becomes more
important, i.e. when the viscosity contrast between the axis and the wall is stronger.

The velocity field vey +wez associated with the optimal perturbation is displayed
in figure 13. It is characterized by two counter-vortices which transform into streaks
at t = topt . In this respect the ‘optimal’ behaviour is analogous to that of Newtonian
fluids. Nevertheless, for shear-thinning fluids, the maximum in the longitudinal speed
of the streak approaches the walls where the effective viscosity is lower.

A global view of the effect of shear thinning on the optimal transient amplification
of disturbances is provided in figure 14. In figure 14(a), the Reynolds number is
based on the viscosity averaged across y, and in figure 14(b) it is based on µtw .
Figure 14(a) appears to demonstrate that shear thinning significantly enhances the
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amplification experienced by ‘optimal’ initial streaks compared to the Newtonian case
(with a negligible effect for the case in which µ′ is neglected). Exactly the opposite
effect is found by using as scale the tangent viscosity at the wall (figure 14b). As in the
case of the exponential growth, the curves collapse onto one another for λ sufficiently
large.

5. Conclusions
The linear stability of viscously stratified channel flow (with the viscosity modelled

by the Carreau law) has been revisited, focusing on both exponentially and
algebraically growing perturbations. The motivation for this study comes from the
possibility of delaying transition to turbulence by creating a viscosity contrast in the
channel. We have accounted for a non-vanishing viscosity disturbance µ′, and this
yields an anisotropic disturbance stress tensor.

The results we arrive at contradict previously reported conclusions. Part of the
disagreement stems from the neglect of µ′ in past studies, and part arises from the
choice of the viscosity used to define the Reynolds number. Whereas in the past it
has been deemed appropriate to use the average effective viscosity to produce results
for shear-thinning fluids (to compare with corresponding results for the Newtonian
case), we argue here that the tangent viscosity evaluated at the wall is a more
pertinent choice. Although the selection of the viscosity scale appears to be simply
a matter of choice, the conclusions from comparing different shear-thinning fluids
among themselves and to Newtonian fluids can be radically different depending on
that choice.

For the case of two-dimensional exponentially growing waves the choice of the wall
tangent viscosity as the relevant scale is dictated by the asymptotic behaviour of the
flow in the wall and critical layers. It is found that the instability occurs much earlier
than previously reported for a range of material time constants λ and power-law
indices n, as a consequence of the more efficient transfer of disturbance energy across
the critical layer compared to the µ′ = 0 case. The largest stabilization occurs for
λ≈ 1.5 (independent of n) and the stabilizing effect is maintained for arbitrarily large
values of λ.
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For the transient growth of three-dimensional waves in the subcritical regime,
previous results indicated that shear thinning had negligible influence. Our main
conclusion is embodied by figure 14: whilst shear thinning appears to be destabilizing
when Re is based on the average effective viscosity, the opposite effect appears when
the (tangent or effective) viscosity at the wall is used. The superiority of a wall-
based viscosity in describing the physics of the problem cannot be easily ascertained
on asymptotic grounds. However, the lift-up effect is an inviscid phenomenon and
viscosity acts primarily in a near-wall layer to moderate the growth of streaks: thus,
it seems reasonable to employ a wall-based viscosity to describe this diffusive effect.
Choosing µ underestimates the effective Reynolds number.

In all situations considered here it has been found that the transition is effectively
postponed when a viscosity contrast is produced in the critical layer. Although
the results were presented only for the case of Carreau fluids, we expect that the
conclusions reported in this paper are qualitatively unaffected when another shear-
thinning model is used. This is supported by unpublished results obtained by our
group for power-law fluids. Current work focuses on the viscosity contrast needed to
optimally delay transition to turbulence.

A. B. acknowledges the support and the hospitality he benefitted from at LEMTA
while carrying out part of this work. We thank Professor Rama Govindarajan for
useful comments on the manuscript and for providing the unpublished data points
plotted in figure 2.
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