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The coupling between the flow through a fibrous porous medium and that in a free-fluid region is studied. The flow
dynamics inside the porous medium are described using the volume averaging method applied to the incompressible
Navier–Stokes equations in the laminar regime. The two different flow domains are coupled via a penalization method
that consists of varying the porous medium properties (porosity and permeability) continuously across the interface.
This approach permits the use of the same set of the equations throughout the whole domain. The averaging method is
validated against simulations which fully account for the presence of cylindrical fibers positioned at the bottom wall
of a square driven cavity. Numerical experiments are carried out for two different Reynolds numbers, large enough to
ensure that inertial effects inside the porous domain are not negligible. Good agreement is found when comparing the
two approaches.
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1. INTRODUCTION

The problem of a fluid flowing above and through porous media is prototypical of many natural flow systems. Several
animals present some sort of porous coatings, the most well-known examples being perhaps the denticles of sharks
(Dean and Bhushan, 2010) and the feathers of birds (Lilley, 1998). Some of these flows display rich interactions
between the porous medium and the exterior flow field, for example in the form of vortex structures near the dividing
surface (Jimenez et al., 2001). These vortices can modify the energy spectrum of the flow field (Finnigan, 2000),
suggesting the use of porous layers as synthetic, passive control devices to delay separation and/or reduce drag
(Klausmann and Ruck, 2017; Mimeau et al., 2017; Zampogna et al., 2018).

Although the set of equations for the flow both inside and outside the porous medium is well established, the
problem of the interface condition between a porous medium and a free fluid is still open. Ehrhardt (2012) has given
a concise but very clear introduction to the coupling problem; recent advances are reported by Angot et al. (2017),
Lācis and Bagheri (2017), and Zampogna et al. (2018).

Approaches used to handle the interface can be classified into two groups: theone-domain-approach(ODA)
and thetwo-domain-approach(TDA). In the TDA the whole domain is split into two and boundary conditions at
the interface have to be specified. Historically, the necessity of such a treatment was mainly due to the difference of
order between the Stokes equation and Darcy’s law that renders them incompatible at the interface. The Brinkmann
model “adjusts” the order of the porous medium equations so that continuity of velocity and traction vectors can be
enforced (cf. Devakar and Ramgopal, 2015; Verna and Gupta, 2018); however, the validity of the viscous correction
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to the Darcy’s law inside the porous medium has been questioned (Nield, 1991). The TDA was followed by Beavers
and Joseph (1967), Mikelić and J̈ager (2000), Ochoa-Tapia and Whitaker (1995), and Le Bars and Worster (2006).
These works have in common the fact that a certain slip velocity has to be specified at the interface. For example, the
Beavers and Joseph (1967) condition to leading order reads:

uβ(x1,Γ
+) =

√
K11

α

∂uβ(x1,Γ
+)

∂x2
,

whereuβ is the velocity vector tangential to the dividing surface, whose normal direction isx2. Γ+ represents the
wall-normal coordinate right above the interface,K11 is the permeability component in the tangential direction, and
α is a coefficient based on the porous medium structure and geometry. Other formulations change and/or extend this
equation, basically maintaining a slip velocity at the interface, function of one or more parameters which can be tuned
to fit experimental data.

On the contrary, in the ODA approach the final averaged equations are valid through the whole domain and the
quantities that define the presence of the porous media, i.e., the porosity and the inverse of the permeability, vanish
in the free-fluid region. This method is also known aspenalization method. One of the first applications of the penal-
ization method was described by Caltagirone (1994). Later on, it was used by many other authors, including Bruneau
and Mortazavi (2004, 2008), Bruneau et al. (2010) and Hussong et al. (2011). The two approaches (TDA and ODA)
require at least one parameter to close the formulation. The advantage of using the penalization method is that the
parameter needed is the spatial distribution of the porosity field which is easily available on a known medium geom-
etry. However, it is still not clear how the permeability in the transition/interface zone should be varied. Most authors
propose a sharp jump from the value in the porous medium to that in the free-fluid region. Neglecting the variation
of permeability across the transition zone appears to be acceptable, even though examples of linear variation of this
term exist (Caltagirone, 1994). Hussong et al. (2011) make a direct comparison with a direct numerical simulations
(DNS) simulation which includes a discretization of all the pores and indicates that the variation of permeability is
very important in order to have accurate comparison with high-fidelity computations.

A direct comparison between the ODA and the TDA is presented by Cimolin and Discacciati (2013), who con-
clude that the macroscopic description of the interface provided by the two different methods is similar. They also
point out that the penalization method has the advantage of being easily implemented in a Navier–Stokes solver
without convergence problems, unlike the TDA.

There is evidence in the literature (Ochoa-Tapia et al., 2017) that a transition zone the size of the pore scale exists,
in which velocity and pressure exhibit a continuous variation rather than a steep one. It has been demonstrated by the
same authors that the transition zone is physical and not a result of the averaging procedure.

The present work adopts the penalization approach with the porosity variation computed directly from the ge-
ometry of the fibrous medium via a moving average. The effective permeability is varied linearly at the interface
with the same law as the porosity. This interface approach coupled with the macroscopic volume-averaged equations
is validated against a full microscopic direct numerical simulation. Computations are performed on a closed cavity
configuration with a lower porous layer. This represents a more difficult test bed for the porous/fluid coupling than
the classical Poiseuille flow, because of the presence of recirculating motion, with both velocity components different
from zero at the dividing surface.

2. CLOSED CAVITY PROBLEM DESCRIPTION

The configuration chosen to test our approach is the square cavity of sideL, depicted in Fig. 1. The lateral and bottom
walls are fixed and a constant velocityUtop is specified at the top side. On the front and back sides (i.e., alongx3)
periodic boundary conditions are enforced. The distance between the front and the back side of the cavity is indicated
asℓ. A rigid porous medium made by regularly arranged fibers is set at the bottom of the cavity, of vertical extension
equal toh = L/3. Therepresentative elementary volume,REV , of the porous medium is a cubic cell of sizeℓ3 with
a cylinder of diameterd at its center. The cylinders are disposed in a regular arrangement and 50 fibers are assumed
to be present in the cavity (i.e.,ℓ = 0.02L).
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FIG. 1: Schematic of the closed cavity problem. The porous medium internal structure is depicted in the zoom which shows the
REV geometry. By definition,Aβσ is the interface between the fluid phase,β, and the solid phase,σ, and the unit normal vector,
nβσ, points from theβ phase toward theσ phase (Whitaker, 1999).

The origin of the coordinate system is taken at the bottom left corner of the cavity.
We denote byVβ the volume of the fluid phase within the REV, and byVσ that of the solid phase, so that

the porosity of the medium within theΩp region (cf. Fig. 1) isε = Vβ/(Vβ + Vσ) = 1 − π (d/2ℓ)2 = 0.8. The
macroscopic Reynolds number is Re= (Utop L)/νβ; it is taken sufficiently large for inertial effects within the porous
medium to have some significance, at least in a layer below the interface. We remark that if inertial terms must be
accounted for with a Darcy-like model, the permeability of the porous medium must be replaced by anapparent
permeability which depends on both the amplitude and the orientation of the pore velocity (Luminari et al., 2018).

3. MICROSCOPIC APPROACH: DIRECT NUMERICAL SIMULATIONS

The most rigorous way to solve the problem above is to perform a full DNS in which the fluid flow around each fiber
is well resolved. In this approach the incompressible Navier–Stokes equations are solved in three dimensions. The
problem is however only weakly three-dimensional, since a single REV along thex3 axis is included, together with
periodic boundary conditions. To complete the set of boundary conditions, no-slip is enforced at all the cavity walls,
with the top wall moving at a prescribed speed. The mesh is fine enough to resolve the flow within the fibers and the
spatial and time convergence is also ensured (Zampogna and Bottaro, 2016). The above setup is described by the set
of equations: 

∂vβ
∂t

+ vβ · ∇vβ = − 1
ρβ

∇pβ + νβ∇2vβ,

∇ · vβ = 0,

vβ = 0, at x1 = 0, L and x2 = 0,

vβ = Utope1, at x2 = L,

vβ|x3=0 = vβ|x3=ℓ,

pβ|x3=0 = pβ|x3=ℓ,

(1)

wherevβ, pβ, ρβ, andνβ stand, respectively, for velocity, pressure, density and kinematic viscosity of the fluid;e1

is the unit vector alongx1.
Once system (1) is solved, the microscopic fields (velocity and pressure) inside the porous medium are averaged

in order to obtain homogenized macroscopic fields. Two averaging operators can be defined (Whitaker, 1999). The
superficial average is
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⟨ψβ⟩ =
1

Vβ + Vσ

∫
Vβ

ψβ(x)dVβ, (2)

andthe intrinsic average is

⟨ψβ⟩β =
1
Vβ

∫
Vβ

ψβ(x)dVβ. (3)

Theseoperators are related by⟨ψβ⟩ = ϵ⟨ψβ⟩β, and are applied through the whole porous domain using a REV
of dimensionℓ3. The centroid of the REV, over which the averaging operations are performed, spans all the porous
domain extension. An example of REV adopted in this case is depicted in Fig. 1, on the right. The choice of the REV
size is trivial for ordered porous media, as in our case; however, there are delicate technical issues on the REV choice
when the medium is disordered (Davit and Quintard, 2017). As a rule of thumb, the REV is the smallest fluid domain
over which periodic boundary conditions can be applied. The averaging procedure yields a two-dimensional averaged
field as a result; the only nonzero values are in thex1 andx2 directions. This is due to the symmetry of velocity and
pressure in thex3 direction that returns zero averaged fields.

4. MACROSCOPIC APPROACH: VOLUME-AVERAGED NAVIER-STOKES (VANS) METHOD

4.1 A Brief Description of the Method

A more computationally convenient way to solve the problem is to apply the VANS method to derive a homogenized
model for the flow inside the porous medium, described as a continuum.

In order to derive the averaged version of system (1) we first define the fundamental ingredients needed in
the development. The first one consists of the averaging operators (2) and (3), introduced above. The second is the
decomposition of any flow variableψ into an intrinsic average part⟨ψ⟩β plus a perturbatioñψ, as:ψ = ⟨ψ⟩β + ψ̃.
Applying the above decomposition and averaging the first two equations of system (1) we have

∂⟨vβ⟩β

∂t
+

1
ε
∇ ·

(
ε⟨vβ⟩β⟨vβ⟩β

)
= − 1

ρβ
∇⟨pβ⟩β + νβ∇2⟨vβ⟩β +

νβ

ε
∇ε · ∇⟨vβ⟩β

+
νβ

ε
⟨vβ⟩β∇2ε+

1
Vβ

∫
Aβσ

(
− p̃β
ρβ

I+ νβ∇ṽβ

)
· nβσ dA, (4)

∇ ·
(
ε⟨vβ⟩β

)
= 0, (5)

upon neglecting in Eq. (4) the sub-REV-scale dispersion term (linked to⟨ṽβṽβ⟩β) which is often small in porous
media flows (Breugem, 2005; Breugem et al., 2006). The derivation of Eqs. (4) and (5) is rather involved and is
presented in details by Whitaker (1996, 1999) and Breugem et al. (2006); it relies on the use of thespatial averaging
theorem(Anderson and Jackson, 1967) to transform the average of a gradient into the gradient of an average, which is
the reason why the integral term in Eq. (4) arises. Such a term represents the drag (per unit mass) due to surface forces
at the fluid–solid interface of the medium. It is called the Darcy–Forchheimer microscale force,Fm, and it depends
on perturbation quantities only. The equations are, however, often to be solved at the macroscale, so that a macroscale
force model,FM, must be used to replaceFm in the governing equation. Such a model is based on a permeability
tensor,K, and a Forchheimer tensor,F, and reads:

FM = −νβεK−1(I+ F)⟨vβ⟩β = −νβεH−1⟨vβ⟩β,

whereH = K−1(I + F) is called theapparentpermeability tensor. The system is closed by imposingFm = FM.
One of the main aspects of the VANS approach consists of the identification of the permeability and Forchheimer
tensors. Some empirical regressions are available in the literature for simple porous media geometries (Carman, 1937;
Kozeny, 1927) in the limit of Stokes flow within the pores. It is however also possible to derive some generalized
closure problems for the solution of the two tensors, as discussed by Whitaker (1986, 1996).

Finally, the complete set of VANS equations reads:
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∂⟨vβ⟩β

∂t
+

1
ε
∇ ·

[
ε⟨vβ⟩β⟨vβ⟩β

]
= − 1

ρβ
∇⟨pβ⟩β + νβ∇2⟨vβ⟩β +

νβ

ε
∇ε · ∇⟨vβ⟩β

+
νβ

ε
⟨vβ⟩β∇2ε− νβεH−1⟨vβ⟩β,

∇ ·
(
ε⟨vβ⟩β

)
= 0,

⟨vβ⟩β = 0 at x1 = 0, L and x2 = 0,

⟨vβ⟩β = Utope1 at x2 = L.

(6)

The boundary conditions are the same as the DNS approach except for thex3 dimension that in the present case
disappears through averaging. The solution of system (6) gives directly the averaged velocity and pressure fields to
be compared to the averaged DNS fields.

4.2 Treatment of the Interface

In order to use the so-called penalization method, the porosity field and the effective permeability have to be defined
in the whole domain, i.e.,Ωp andΩf . In the free fluid the porosity is, of course, unitary and the effective permeability
infinite. With such numerical values the Navier–Stokes system (1) is retrieved from system (6) after some simplifi-
cations. In the porous medium far from the interface the porosity is constant and set equal to 0.8. The permeability
is also constant and the two independent components of the tensor have been taken froma posteriorievaluations of
the homogenized-DNS problem. This requires the inversion of the Darcy system⟨vβ⟩β = −H/(εµβ)∇⟨pβ⟩β. The
numerical values forH, given in Table 1, are different at the macroscopic Reynolds numbers of 100 and 1000, an
indication of the fact that inertia through the pores is no more negligible. The values in Table 1 are by no means exact:
they represent the peak values of the computed distributions.

The apparent permeability tensorH is diagonal; this is consistent with the results of Luminari et al. (2018) for
low pore Reynolds number. It turns out that in the cavity the pore Reynolds number, based on the local velocity and
the diameter of the fibers, is always below 5 for the cases tested.

The most delicate part is the matching of properties across the dividing surface. The exact profile for the porosity
field can be computed knowing the geometry of the medium.

By a moving average procedure it is easily found thatε is equal to:

ε(x2) =


1 x2 > (h+ ℓ/2),

ε+
1− ε
ℓ

[x2 − (h− ℓ/2)] (h− ℓ/2)< x2 < (h+ ℓ/2),

ε x2 6 (h− ℓ/2),

(7)

to within the averaging approximation. A similar relation is used for the inverse of the effective permeability field,
with Hii referring to the effective permeability components of the deep medium, reported in Table 1.

Hii
−1(x2) =


0 x2 > (h+ ℓ/2),

Hii
−1 − Hii

−1

ℓ
[x2 − (h− ℓ/2)] (h− ℓ/2)< x2 < (h+ ℓ/2),

Hii
−1 x2 6 (h− ℓ/2).

(8)

TABLE 1: Apparent permeability values from Zampogna
and Bottaro (2016)

Re H11 = H22 H33

100 2.63× 10−2 5.49× 10−2

1000 2.65× 10−2 5.63× 10−2
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The data analysis by Luminari et al. (2018) suggests that the components ofH are mostly driven by the porosity,
so it is acceptable to assume that the same dependence onx2 occurs for both the porosity and the permeability fields.
The analysis in Kozeny (1927) and Ergun and Orning (1949) also shows that, in other porous media geometries, the
permeability follows a linear trend with the porosity. For comparison purposes, we have also tested a step variation
of the permeability at the dividing surfaces (results not shown), finding significant differences when compared to the
direct simulation results. Finally, observe that in Eq. (6) the terms containing the first derivative of the porosity remain
as sources in the equations near the interface, whereas the Laplacian ofε disappears.

4.3 The Flow in the Free-Fluid Domain

Before addressing the problem of the fluid-porous dividing surface, it is appropriate to inspect the flow solutions
in the free-fluid region,Ωf , as they arise from the three-dimensional simulations in the presence of fibers (upon
averaging alongx3), and compare them to corresponding two-dimensional solutions obtained in a driven cavity of
height(2/3)L, bounded by solid walls. Such a comparison, at two values of the Reynolds number, is displayed in
Fig. 2 and allows an appreciation of the effects that we wish to capture by the use of the volume-averaged Navier–
Stokes equations. An expected large recirculation vortex is observed at the two values of Reynolds number, and larger
corner vortices appear when Re = 1000. Since the same values of the streamfunction isolines — computed on the basis
of theu andv velocity components — are plotted in each frame of the figure, and given that solid and dashed lines
are very close to one another in each frame, it is clear that the porous layer provides a major obstacle to the flowing
by the fluid, and acts in a way very similar to a solid, impermeable wall. As we will see later, the fluid permeates the
Ωp domain only minimally, and velocity components which are typically three orders of magnitude smaller than in
the pure fluid region are present when 0< x2 ≤ h. Thus, the case we are focusing upon does not represent a simple
test case for the penalization method, since very small effects are looked at.

The next section will focus more closely on the porous domain; we aim to demonstrate that the use of the VANS
equations coupled to the moving average procedure forε andHii represents a valid alternative to the complete
three-dimensional numerical description of the flow over the porous layer and through the pores, at a fraction of the
computational cost.

5. CAVITY FLOW AT Re = 100

This section presents the comparison between the microscopic and macroscopic approaches for the cavity at Re = 100.
The two different sets of equations are solved using the finite volume method implemented in the OpenFOAM library

FIG. 2: Streamlines in the pure fluid region,Ωf , for the flow in the presence of fibers (continuous lines) and the flow in a domain
bounded by solid walls, i.e., without the porous region (dashed lines). Left: Re = 100; right: Re = 1000.
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(Weller et al., 1998). In the case of the VANS approach a specific solver has been developed to account for all the
extra terms present in system (6) as compared to the Navier–Stokes equations. Figures 3 and 4 show the pressure
gradient terms and the velocity fields for the two different approaches.

Each field is made non-dimensional using the macroscopic lengthL and the velocity scale,Utop, as follows:

u∗ = u/Utop, v∗ = v/Utop,
∂p∗

∂x1
∗ =

L

ρβU2
top

∂p

∂x1
,

∂p∗

∂x2
∗ =

L

ρβU2
top

∂p

∂x2
.

At Reynolds number equal to 100 a good agreement is found for both the velocity components and the pressure
gradient (Fig. 3). The contours and the location of the local minima and maxima are the same for the two approaches.
Focusing on the numerical values, for some fields the relative errors are not negligible; however, the trends are always

FIG. 3: Left: VANS approach. Right: Homogenized DNS approach. The figures show, from top to bottom, the two components of
the pressure gradient and the streamlines inside the porous domainΩp for Re = 100.

FIG. 4: View of the macroscopic profile ofu∗ (left frame) andv∗ (right frames) forx1
∗ = 0.5 (middle of the cavity) for the

VANS (red line with circles) and the DNS approaches (blue line with crosses) at Re = 100.
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well captured by the volume-averaged approach and the streamlines inside the porous domain are in very good
agreement with the DNS result. The horizontal pressure gradient at the interface (Fig. 5) is quite overestimated by the
VANS approach whereas the vertical component shows a relatively good agreement. Some differences between the
two models have to be expected since in the VANS approach the micro-scale flow behavior is modeled. This means
that some of the small-scale features that the DNS is able to retain are lost in the macroscopic approach. However,

FIG. 5: View of the macroscopic profile ofu∗, v∗, ∂p∗/∂x1
∗, and∂p∗/∂x2

∗, for x2
∗ = 0.33 (interface position) for the VANS

(red lines with circles) and the DNS approaches (blue lines with crosses) at Re = 100.
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Fig. 4 shows that the two approaches produce very similar velocity profiles both near the interface and within the
domainsΩp andΩf .

To quantify the error between the two approaches right at the interface,x∗
2 itf = 0.33, we define a metric as:

eq =

√∫ 1

0

[
qDNS(x

∗
1, x

∗
2 itf )− qV ANS(x

∗
1, x

∗
2 itf )

]2
d x∗

1√∫ 1

0

[
qDNS(x

∗
1, x

∗
2 itf )

]2
d x∗

1

, (9)

with q equal tou∗, v∗, ∂p∗/x1
∗, and∂p∗/∂x2

∗. The values from Table 2 confirm that the relative errors associated
with the two velocity components are reasonably small and equal to a few percentage points; conversely, the horizontal
component of the pressure gradient displays a non-negligible percentage variation, which decreases with the increase
of Re. This discrepancy is probably the price to pay for having neglected the terms linked to⟨ṽβṽβ⟩β in Eq. (4)
and for the approximation made at the interface forH−1. This disadvantage is largely overcome by the savings in
computer time and storage when using the VANS equations instead of performing direct numerical simulations.

6. CAVITY FLOW AT Re = 1000

The same comparison has also been carried out for a Reynolds number equal to 1000 and the results within the
porous medium are shown in Figs. 6–9. For this case similar conclusions as in the previous case can be made. Both

TABLE 2: RelativeL2 error between the VANS and the DNS approaches at the
interface, for the two different Reynolds numbers

Re eu ev ep epx

100 4.67× 10−2 3.83× 10−2 2.67× 10−1 2.88× 10−2

1000 2.29× 10−2 2.07× 10−2 1.27× 10−1 6.21× 10−3

FIG. 6: Left: VANS approach. Right: Homogenized DNS approach. The figures show, from top to bottom, the two components of
the pressure gradient and the streamlines inside the porous domainΩp for Re = 1000.
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FIG. 7: View of the macroscopic profile ofu∗, v∗, ∂p∗/∂x1
∗, and∂p∗/∂x2

∗, for x2
∗ = 0.33 (interface position) for the VANS

(red lines with circles) and the DNS approaches (blue lines with crosses) at Re = 1000.

the velocity and the pressure fields display good agreement between the “exact” (DNS) solution and that obtained
with the VANS system, both within the porous layer (Fig. 6) and the free-fluid domain (not shown). The velocity at
the dividing surface (x2

∗ = 0.33) is very well described by the volume-averaged resolution of the equations (Fig. 7),
as well as the vertical pressure gradient. The∂p∗/x1

∗ term shows the same trend, but the VANS system enhances the
value of the gradient, albeit less than in the lower Re case. This is also borne by the measure reported in Table 2. The
vertical velocity distribution through the domain atx1

∗ = 0.5 is in excellent agreement between the two approaches
(Fig. 8), and in particular the zooms around the interface demonstrate that the VANS approach is reliable; such plots
should be compared to those by Zampogna and Bottaro (2016) from the same configuration, to appreciate even more
the accuracy of the volume averaged equation in the form of system (4), (5), as well as the simple choice made for
the variation of porosity and permeability across the dividing surface.
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FIG. 8: View of the macroscopic profile ofu∗ (left frame) andv∗ (right frames) forx1
∗ = 0.5 (middle of the cavity) for the

VANS (red line with circles) and the DNS approaches (blue line with crosses) at Re = 1000.

FIG. 9: Left: VANS approach. Right: Homogenized DNS approach. The figures show the horizontal and the vertical velocity
components in the domain. In all frames the ranges of values plotted have been chosen to highlight the flow structure within the
fibers in the DNS case for Re = 1000.

Focusing on the zone around the porous interface in Fig. 9, the minor differences between the DNS and homoge-
nized approach are clear. The DNS shows oscillations in both the vertical and horizontal velocity components due to
the presence of the fibers; on the contrary, in the homogenized approach these local oscillations are smoothed out by
the averaging operation. However, the oscillations have a very small amplitude and to make them visible the range of
values plotted needs to be suitably chosen (see the velocity scales on the right of Fig. 9).

7. CONCLUSIONS

The VANS approach has been used to study the flow field inside a cavity that presents a porous medium at its bottom.
A formulation of the penalization method has been proposed for the interface treatment; it is based on the observation
that for fibrous media the porosity profile at the interface between the porous region and the free-fluid domain can
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be simply computed by a moving average. Knowing the porosity profile we impose the same behavior also for the
apparent permeability, since results in Luminari et al. (2018) show the strong link between these two quantities even
for varying velocity amplitude and flow angles. This approach simplifies the coupling between the two domains,Ωf

andΩp, allowing us to use the same set of equations throughout. Both ODA and TDA need at least one free parameter,
for DNS or experimental data to be properly fit. In our case, this degree of freedom is represented by the choice of a
linear trend for the components of the apparent permeability.

The proposed approach has been tested in a configuration in which both vertical and horizontal momentum
transfer are present. We have also explored two Reynolds numbers for which inertial effect inside the porous medium
are not negligible. The two test simulations conducted display promising results. The error metrics are reasonably
low for all the measured quantities, with the possible exception of the horizontal pressure gradient which shows
differences in the magnitude, but not in the peak positions. Such small differences might also be ascribed to our
treatment of the sub-REV-scale dispersion terms. Despite them, we believe that the evidence provided is sufficiently
convincing in favor of the averaging approach, which is capable to reproduce the rich dynamics inside porous media
at a fraction of the computational cost of a complete DNS.
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