PHYSICS OF FLUIDS VOLUME 13, NUMBER 6 JUNE 2001

Linear stability and receptivity analyses of the Stokes layer produced
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The stability and the receptivity of the boundary layer produced by the impulsive motion of a flat
plate in its plane is studied. The evolution of two-dimensional traveling disturbance waves for this
physical situation, known as Stokes’ first problem, is treated by integrating directipah&bolic in

time) linearized Navier—Stokes equation and by a multiple-scale approach. In the asymptotic
analysis, the Orr—Sommerfeld equation is found at leading order. Through the compatibility
condition for the equation at next order, &(1) correction to growth rates and frequencies is
achieved. Such corrections are found to be very mild. After having established that the leading-order
results are adequate when looking at the stability characteristics of the flow for a(lgixgs time,

a receptivity analysis is performed. The adjoint of the parabolic system is obtained, and through its
backward-in-time integration, the initial and wall Green’s functions are obtained. These are then
compared to the results of the multiple-scale receptivity analysis20@1L American Institute of
Physics. [DOI: 10.1063/1.1369605

I. INTRODUCTION onset of transition. Myersdrreported that “the same experi-
) ) o ments performed in a hone@ery smooth shock tube of
We consider the flow induced by a flat plate initially at seamless stainless steel showed considerably longer times
rest in a quiet medium and impulsively set in a motion par-pefore reaching the transition from laminar to turbulent
allel to itself at a constant spel, , a situation commonly ,,nary Jayer, than did the previous tube in which the inner
}flgowln. ar? S’;)olkes:’ first pProbleg (_I?r‘]g" ﬂSCh“Cht'Q@ O surface was left with the rough surface from the fabrication
ayleigh probiem (e.g.,_ antof). IS Tlow can be seen (extrusion process.” This seems at odds with what was re-
as analogous to the Blasius flow, with time being here th orted by Aoki et al® for which, apparently, “transition
“streamwise” direction of evolution; it becomes linearly un- propagates from the edge of the boundary layer to the wall.”
stable after aritical time when two-dimensional Tollmien— X '
T . The matter clearly deserves further work; although the anal-
Schlichting-like waves appear and occupy the whole hori-

zontal(x) space. However, in contrast to the Blasius flow, the®dY with Stokes’ first problem is strictly valid for weak

evolution of instabilities in Stokes’ first problem is exactly shocks only, an understanding of the stability and receptivity

described by a parabolic equation, whose numerical solutioRroPerties of Stokes proble_m may be useful. On_the ‘?ther
can be obtained relatively quickly and with no uncertainty a and, ;Neak shogks are mdged encountered- n rallvyay
to the appropriate initial and boundary conditions. It is therefunnels. When a high speed train enters a tunnel it gives rise

fore an ideal test bed for asymptotic techniques of stabilityto a pressure disturbance that precedes the train in the form
analysis. of a weak shock and abruptly sets still air into motion. The
The Stokes layer generated by a moving plate is also thBoundary layer behind such a shock is described by Stokes’
flow produced behind a weak shock wave that propagates ifirst problem. Since the walls of typical railway tunnels are
a shock tube, when viewed in wall-fixed coordinates. Shockiot smooth, disturbance waves are expected to be triggered
tubes are interesting in that they allow extreme operatindy the surface inhomogeneitiégis is the receptivity step
conditions—high stagnation enthalpies—and are often usednd to be exponentially amplifietinear stability step
for studying transient aerodynamic effects. The assessment The work on the stability of Stokes’ first problem ap-
of shock tubes, and in particular the estimate of the transitiopears to have been initiated by Gtiwho found good agree-
time before turbulent flow sets in, has been the subject ofnent between loca(in time) Orr—Sommerfeld results and
several investigation&see e.g., Hartuniaat al® and Dillon  triple-deck solutions in regimes of common validity. The re-
and Nagamatg$l. However, this is not an easy task and, for sults were further extended by Wekbal® who conducted
example, the surface finish of the shock tube walls—an issuknear and nonlinear marchingn time) calculations. Closely
related to the flow receptivity—has a strong influence on theelated studies include plane Couette flow during its startup
phase from rest, and the decaying stages of the plane Couette

dpresent address: Dipartimento di Ingegneria Meccanica, Univelisgal- ﬂ_OW’ _When the_ moving Wal_l is suddenly stopped. In bo_th
erno, 84084 Fiscian(SA), Italy. situations, strictly local viscous analyses were carried
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out!®1j.e., the mean flow at each instant was regarded awhere the similarity variabley is taken to bep=y/25(t),
stationary. Despite this approximation, excellent agreemenwith §(t) = (vt)Y? characteristic length.
between the measured and the predicted most amplified The nondimensional linearized perturbation equations
wavelengths was reported by Tillmark and Alfredssbn. are
This is due to the fact that the base boundary layer flow,
about which small disturbances are imposed, depsiuigy
on time, since there is a slow diffusion of vorticity from the 1
plate outward to the medium. The disturbances evolve on a gg Ut UtxtvUy+pe— g (UxctUyy) =0, (2b)
. & Re

fast time scale so that the problem appears to be naturally
amenable to an asymptotic approach based on separation of 1 1
scales, which yields, at leading order, the strictly Id¢#io- ﬁvﬁ Uvyt+py— @(Uxﬁ vyy) =0, (20
zen flow”) stability equations. ) ] ) ]

A multiple-scale technique is customarily applied to theWith (u,v) disturbance velocity vector, with components

study of the stability of spatially evolving boundary layers 2/0ng the streamwise and the verticay axis, andp distur-
(see, e.g., Bouthid?® Gaster! Saric and Nayfef® and bance pressure. In this work, to limit the number of param-

Itoh'®). The main difference with the problem studied here iseters, we cons_ider _twq—dimensional disturbances only. For
that Stokes’ problem remains parabolic in its exact formulatn€ nondimensionalizatio), has been employed as VS;OC'
tion (no approximation of the PSE tyHeis needed for the Y Scale,to—a referen(2:e time—as time scalé, = (vto)

study of this temporally developing boundary layemd @S length scale, angUj as pressure scale. Hence, a Rey-
hence exempt from the uncertainties due to the ellipticity of10ldS number Rg=Uqdy/v=Uq(to/v)"" arises naturally. It is
the corresponding spatial problem. This bears more partici£onvenient to introduce a perturbation stream funcijoso
larly on the receptivity aspects of the problem. While thethat system(2) becomes

exact parabolic nature of the temporal model allows treat- 1 1

ment of the solution at and arourtd=0, the PSE often Re At UAiﬁx—Uyylﬂx—ﬁAzlﬂ:O. 3
adopted for the analysis of the spatial problem cannot be

used in proximity of the leading edge. It is hoped that anwith =, =0 for y=0, y—c. Equation(3) is parabolic in
understanding of the initial receptivity of Stokes’ first time and can be solved subject to an initial condition at the
problem—besides its intrinsic interest—could also shednitial time. Hence, the short-time behavior is a function of
some light onto its spatial counterpart. In closing this sectiorthe initial state, but for sufficiently large times a common
we note that Hift® used a local adjoint technique to establishasymptotic limit is achieved.

the influence of inhomogeneous wall conditions and source

terms in the equations in exciting two-dimensional A- Marching and multiple-scale formulations
ToIImien—SchIichting waves in the Blasius flow. A simjlgr— Equation(3) can be Fourier transformed by assum-
nonlocal—technique has been adopted by Luchini anqlng| that ¢ varies like

Bottard”® for the case of Guler vortices developing over a

Uy+uvy=0, (29

concave wall boundary layer. (t,xy)=1(ty)exdiagx], 4
and ag=a 8y denotes the dimensionless streamwise wave
1. THE STABILITY PROBLEM number. Equatlorﬁ3) then becomes
. If an infinitely long flat platg is suddenly set into motione[U _ i}(DZ— aé)f —Uft [ (D2— a(z))zf
in its plane at a constant velocity the ensuing boundary layer  ao R& dt ao Rey
flow satisfies the equations —0, (53)
Ux=0, (1a) . . -
and it needs to be solved together with boundary conditions
Ur=vUyy, (1b) f=f,=0 for y=0 andy—. (5b)
V=0, (19 Equations(5) represent the marching formulation, which for

with U=U, aty=0 andU=0 for y—o. In the more gen- this problem is an exact one.

eral case, the outer velocity need not vanish, such as in the Alternatively, a multiple-scale approximation can be set
inviscid region behind a moving shock. For the sake of defilP when the disturbance behaves as a fast exponential
niteness, however, we limit ourselves to the case of the ureXd —iaoe(t)/e]. The scale factore can be determined by
disturbed outer flow, bearing in mind that the more generarequiring that the dominant terms in E() be of compa-
situation of a constant/ #0 for y—o can always be re- rable magnitudes. Classically, by requiring that (L)Rex
duced to the present one by a change of reference frame. AO(UAy,—U,y4s), and introducing the fast time scate

well known similarity solution of Eq.(1) was given by =t/e, the scaling parameter=Re;* emerges. However,

Stokes and takes the form since a straightforward expansion in powers of Revould
lead to a differential equation of reduced ordre Rayleigh
U . o : .
—=1—erf(7) (1d) equation which is not uniformly valid across the boundary
Uo layer, we include some terms formally of ordebut locally
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larger in the leading-order equation. This procedure, dis-

cussed among others by Gasters legitimate with the un- A(t)=A ex;{ -

derstanding that the asymptotic serig in powers ofe,

now becomes arasymptotic sequencef unknown—and

decreasing—functions ofe?° The alternative to this

approach—the solution of the Rayleigh equation together ® J
01(1)=

tqa(7)
t,d1(7) dr),

with

1§ (D2 ad)fdy

with a treatment of the inner and outer viscous 0

layeré¢*—would have considerably delayed the convergence

of the approximation with increasing Reynolds number. Ongnd

the other hand, the recent analysis by Govindarajan and

Narasimh& of the spatial problem shows that the scaling

indicated by the multiple-deck approach can indeed be incor-

porated into a multiple-scale approximation wherds a

combination of nonintegral powers of Rand «g. The (arbitrary but uninfluentialnormalization chosen for the
When e=1/Rg, a Wentzel-Kramers—Brillouin-type eigenfunctions of7a) in ye[0,%) andVt is

asymptotic expansion can be set up in the form

f(t,y)=exd —iaop(t)/e][fo(t,y)+ef(t,y)+...], o fo (|fgy2+ aflfol?)dy=1. (10)

gqx(t)= fo ﬁ(Dz_ af)fq dy.

where the first factor on the right-hand side accounts for th(-an addition, a phase for each eigenfunction has been fixed by

rapid growth and oscillation dfin time, whereas the second 'Mmposing thah‘d,yy(O)_ be a positive rea_l number._lt should be
: noted that the solutiofi, becomes unique and independent
term accounts for the slow temporal evolution. Insertifg o . -
. T ; of the normalization off y once the first-order compatibility
into (5a and collecting like powers o we obtain S
condition is imposed.

0O(€%): [U—c(t)](D?%—a?)fo— Uyyfo A local complex phase vglocity of the exact solutioitt,
to be used for comparison with the asymptotic results, can be
N (D2— a2)?4=0, (73 defined as
*Re U _dv

e () =c(t) +icP(t)= U—+0-

O(e): [U—c(t)](D?~ad)f;—Uy,f 2Eag Jo Vot " Vet

i
+
agRe

1 o
with the phase velocityc(t) defined by c(t)=de(t)/dt E=5 fo (Jul?+v]*)dy. (17)
=c,(t) +ic;(t). At leading orderthe “geometrical optics”
approximation of wave theojy we have the Orr— The imaginary part®™ of c®is related to the growth rate of
Sommerfeld equation, while at first ordéhe “physical op-  the instability
tics” approximation we have a forced Orr—Sommerfeld
equation that can be solved under the condition e JE

e fr E—
(0= 2Eq ot

with E disturbance kinetic energy given by

i
(D2~ ag)zflza—O(Dz— ad)for, (70

fo (D2~ ag)fo=0, ®)
. L . . Both the real and imaginary parts of* can be compared

V.VIth ’ ?er?otlr(;g !nnﬁr product, anth bt?lmg t?‘ﬁ elgerll(fun’cf-l with the corresponding quantities from the multiple-scale
tions of the adjoint homogeneous problem. The Stokes 0V\ﬁinalysis, which at the geometrical optics level are just the

is parallel for all times, but unsteady, with the unsteadines%al and imaginary parts af and at the physical optics ap-
playing the role of the nonparallelism of the correspondingpmx",mition are '

spatial problem. Incidentally, in this paper the term “nonpar-

allelism” is often used in place of “unsteadiness” to indi- (1)

cate that the base flow evolves and is not frozen. cf°=ci—eRea o01(D +0(€), (1239
The solutionsf of Eq. (78 are given by the product of ot

an amplitude functiorA(t) times the appropriately normal- (1)

ized direct eigenfunction$y(t,y). Hence, by adopting the cho= cﬁdma%W +0(€?), (12b)

conventional definition of inner product over the space of %ot

complex-valued differentiable functions yne[0,), i.e., because in the latter approximation the energy has become
a-b= f%dy, © E=|Aexiag(x—¢()/e)]?

0

with the normalization(10) understood. Clearly, a different
with the overbar meaning complex conjugate, the solvabilitynormalization would introduce an additional, smé&l(¢)
condition(8) leads to correction to(12) without changing the physical result.
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B. Numerical solution technique and stability results Re=Ret'? and a,= at* Both the “parallel” (O(€%))

Both Egs.(5a and (78 with their boundary conditions and the “nonparallel” O(e")) terms in(12) are computed
are discretized by fourth-order compact finite differences irft all times. _ _
y. The outer boundary is set git, = 20, where the standard A d_|menS|onIess wave number Wh!Ch does not contain
asymptotic condition of inviscid outer behavior is enforced.the arbitrary reference timg can be defined as
The marching equation is solved by a fully implicit method
using second-order backward differences; ithe eigenvalue
problem by inverse iteration. Problefvia is also solved by with « the dimensional wave number. Similarly to the fre-
a spectral collocation procedure and the eigenvelalarg-  quency parameteF = wv/U3 normally used in presenting
est imaginary part is found in agreement with any desirablespatial stability resultsP is a constant during the evolution
precision between the two approaches, when a sufficierdf any one instability mode and is a small number of the
number of finite difference nodes and Chebyshev collocatiomrder of 10 ° in the interesting range where disturbances are
points are used. To solve the equation adjoint(7@ we  amplified.
simply determine, using the same inverse-iteration process, In Fig. 1 we show the time evolution af, andc, for
the left eigenvector corresponding to the same eigenvalue dhree values ofP. Dotted lines represent the strictly local
the generalized eigenvalue probleXi,=cBf, [a symbolic  results, continuous lines are the first ordghysical optics
form of (7a)]. The numerical integration starts from a small solutions, while the symbols pertain to simulations of the
value oft (oftent=0.1) and marches in time iftypically) = marching equatiof5) started at=0 with an impulse distur-
100 nonuniform steps up to=1. Thus, the reference time bance at the wall. The agreementdnandc, between the
used to define Reand «q is the final time, and the local exact solution and the nonparallel values provided by the
Reynolds number and wave number for smaller times vary amultiple-scale analysis is excellent folarge enough for the

P=a;/Rg=ay/Rey=av/U,
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initial transient in the marching solutions to have died out.each value of the Reynolds number there are only a few
The growth rate is seen at first to increase, to peak, and thatiscrete eigenmodes, together with a continuous spectrum of
to decrease, just like in the case of the Blasius boundargamped modes with, = 0.
layer.

Curves of constant amplification factar and phase
speedc, in the (Re,a;) plane are given in Fig. 2. Also these lll. RECEPTIVITY IN THE MULTIPLE-SCALE

; . FORMULATION
curves resemble the corresponding ones for the Blasius flow
and the nonparallel correction to the strictly local results is  Receptivity of amplified modes to external disturbances
very small. The critical conditions from the local solutions is generally calculated, in a parallel setting, by Laplace trans-
are found to be form tecg?ique$e.g., CrouchH? Hill, *® Tumin?2* Ashpin and
_ _ _ Reshotk6). In the present problem this would mean endow-

R =1485.68, areri=0.2128, ¢; ¢ =0.686 45, ing Eq. (5) with a nonzero forcing term, Laplace transform-
in excellent agreement with those reported by Stiehich  ing both sides with respect to time, solving the resulting
were, respectively, 1484.2, 0.2128, and 0.6865. Like in th@ne-dimensional problem in the transformed domain, and
case of the Blasius boundary layer, nonparallel estimates ahen reducing the inverse-transform complex integral to a
the critical Reynolds number produce slightly lower values,sum of residues over the dominant poles. The poles of the
and in the present case physical optics results are solving kernel correspond to the eigenvalues of the associ-

_ _ _ ated homogeneous problem, and the residues of simple poles

R&yii=1456.72, aii= 0.2139, €; = 0.684 74. split into the product of direct and adjoint eigenfunctions
The phase speed is also reasonably close to the critical pha&ee., eigenfunctions of the adjoint differential problenihe
speed for the Blasius boundary layer, which in the referenceadjoint eigenfunctions therefore become projectors of the ex-
frame of the outer stream is 1-039.61. To set ideas, if ternal forcing onto the corresponding direct mode.
the medium in which the plate moves is, say, air, &hgl The above procedure, however, does not produce a one-
=10(m/s), after a time¢,= Reﬁritvlugmo.%(s), Tollmien—  dimensional eigenvalue problem if the underlying base flow
Schlichting waves of streamwise wavelength is time dependentonparallel in a spatial settihngn fact, in
=27 (vt )Y agi=0.067 (M) and frequency f.  this case the Laplace transform produces a two-dimensional
= (1/27) weriUo(vtei) ~Y2~590 (Hz) become amplified. integrodifferential equation, which is even more intractable
The stream function shadg of the mode corresponding to than the original. This approach was nonetheless found to
the local critical conditions is represented in Fig. 3, togethemive useful resul® if the base flow is linearized with respect
with the corresponding solution from the marching equa-to the longitudinal coordinate in a neighborhood of a rough-
tions. As expected, the peak g is shifted towards the edge ness element and the Laplace-transformed equation is solved
of the Stokes layerdqg~4), and so is the critical layer. At perturbatively. The resulting solution, however, is not uni-
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formly valid downstream of the roughness element, becausgansform approach. With respect to just replacing a nonpar-
of the secular behavior which typically affects perturbativeallel problem by a parallel one with the same local profile,
solutions to oscillation problems. This situation is well however, Eq.(14) already contains first-order nonparallel
known in wave-propagation theotg.g., Whithar?’), where  corrections, in the form of the term,A, which has no
evaluation of Laplace integrals provides small-wavelengthequivalent in the local approach, and can be continued to
asymptotics in homogeneous media, but direct multiple-scalbigher orders ire with no conceptual nor practical difficulty.
expansions of the differential problem are used for weaklyThis is just as well, because replacing time by space and
inhomogeneous media. Therefore, to generalize the results applying the same reasoning to a spatial stability problem
previous authorg¢who replaced the boundary layer by a par- poses no difficulty.

allel flow with the same local profile in order to be able to

apply a Laplace transformand produce a uniformly valid
asymptotic expansion capable of providing higher-order nonlV: EXACT ADJOINT FORMULATION OF THE

parallel corrections, we shall resort to a multiple-scale for-RECEPTIVITY PROBLEM: MARCHING BACKWARD IN
. . - - TIME
mulation of the receptivity problem. This will now be for-
mulated for the time-growing Stokes layer, but with an eye  Having established that a unique functional fof@nor-
to keeping it general enough that it can also be applied tenal mode is obtained fort sufficiently large, we now set to
space-evolving flows. formulate the receptivity problem, i.e., to study the way in
If problem (5) is modified by an inhomogeneous known which disturbances at the waly0) and att=0 produce
term, either in the differential equation or in the boundarythis functional form. An exact technique of receptivity analy-
conditions, we may still assume that the solution behavesis perfectly suited for this task is the backward-in-time ap-
approximately as exXp-iagg(t)/€] provided the known term proach described by Luchini and Bottdrblt relies on the
is O(e), say—(i/ag)es(y,t). In fact in this case, under the integration of the (backward parabolic adjoint stability
same assumption of an expansion in the form of B).Eq.  equation from the final timet& 1) down to the initial time
(7a) is unchanged. EquatiofTb) on the other hand acquires (t=0) where the instability normally originates. With a
an additional source term and the compatibility condili®n  single integration of the adjoint equation, the wall receptivity
becomes functions and the receptivity to production terms in the equa-
¥ 2 2 . _ tions are also obtained, at no additional cost. All of this is
fo {(D"~ag)fo,—sly.exdiage()/e]}=0. (13 easily established by application of the Green—Lagrange
On assuming, as before, thif is the product of an ampli- identity’®?° to Eq. (5), equipped, for generality, of inhomo-
tude factorA(t) times the appropriately normalized direct geneous wall conditions, i.ef(0t)=f,(t) and f (0)
eigenfunctionf 4(t,y), Eq. (13) can be read as a first-order =g, (t). By using the inner produc®), the adjoint equation

linear differential equation foA(t), namely, is easily found to be
dA/dt+q, A=fg -s(y,t)exdiage(t)/ €], (14 d
h G2/ 1o -s(y.Uexilicoe V)] e] ~ —|(D2—ad)f* +2U,Df *
which has an elementary analytical solution. Thus the prod agRey ot
uct of the adjoint eigenfunction and the source term emerges
naturally. Equation(14) if applied to a time-independent - (D?—ad)?f+ =0, (159

problem withq, andfg independent of timep(t) linear and 2o Re
g, equal to zero, gives the same result as the Laplacetogether with the boundary conditions

Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1674 Phys. Fluids, Vol. 13, No. 6, June 2001 P. Luchini and A. Bottaro

ft= f+ =0 for y=0 and y—o. (15h  ences iny and Crank—Nicolson in time for the presgroth
matrices may generally depend on the time indékecause
Furthermore, the following relation, arising from the time the pase flow doe@sVector b, contains the inhomogeneous

derivative and the boundary terms, must be satisfied: boundary conditions at discrete timeandf, the initial data
d o o at time 0.
a[f-(D2—a(z))f+]+D2f+(0,t)gw(t)—D3f+(0,t)fw(t)=0. The solution of Eq(18) can be formally written as

(16) fu=An"(by-1F By 1An 2 1(by- 2+ By 2ANI (... (by
Equation(16) is key to defining receptivities. To see it, note +B1AL L(bg+Bofo))...))).

that direct integration of5) yields att=1 a normal mode, . ] . )
ie., f(Ly)="fo(ly)=A(1)f4(Ly), with the normalization NOW assume the final result at tinme=N is to be projected

of the direct eigenfunction given by Eq10). The initial onto a given arbitrary vectdiy, through the scalar product
condition for the adjomt calculation is taken to be the localA="fyfy [discrete representation ¢8)]. Then this product,

adjoint eigenfunctiorfJ (1,y), normalized by explicitly written as

(Dz—ag)fg(l,y)fd(l,y)=1. A:flGAlil(bel"_ BNflAﬁil(bez
Hence, by integrating Eq.16) in time the final amplitude + By AL 5(.. (b + BiAT H(bo+ Bofg))...))),
A=A(1) of the direct mode is immediately available: (19)

can more easily be calculated for arbitrary datesandf, by
working it out from left to right. In fact, Eq(19) can obvi-
ously be written as a linear superposition of the boundary

0 t
A:f f(O,y)GtZO(y)dvaf U (D) Gy (t)
0 0

vw()Gy(t)dt, (17 and initial data with suitable coefficients andfo , hamely
with G'=%(y)=(D2—a2)f*(0y) the initial Green’s func- N-1
tion, and theu andv wall Green’s function given, respec- A= Z b*b +f0 fo. (20
tively, by Gy, (t)=— f (Ot) and Gy (t)=— (|/a0)fyyy(0t) n=0

The Green’s functions defined above are obtained by & direct comparison of Eq919) and(20) then shows that
single integration of15), starting fromt=1 and proceeding the coefficients obey the following recursion relations:
backward to the nonmodal region of very smathese func- _f A L.  -b’ B 21)
tions are of immediate use. If, for example, the wall bound- n1 n-17Fn-17n-1
ary conditions are homogeneoi®., the wall is smooth, and Equations(21) are, in fact, the discrete adjoint equations,
no blowing/suction is applied to)itand if the initial condi-  wherefrom b+ and f+ can be obtained by iterating back-
tion att=0 is such thatf (0,y) = 8(y—Y,), the final ampli-  wards fromn N down ton=0, at the same computational
tude of the mode produced by this initial condition is simply cost as a single numerical solution of the forward problem.

=G'%(y,). Suppose now that initially no disturbances areOne can notice that, as just a few components of the vector
present in the flow, and that a pointwige t) disturbance is b, are generally nonzero in order to represent the boundary
provided in the vertical wall velocity, i.ey(t,0)=v,(t)  conditions at the wall, only the corresponding components of
=6(t—ty). In this case the final amplitude of the mode ish* need to be permanently stored for the subsequent calcu-
A=G(ts). Clearly, if the initial and/or boundary conditions |ation of the final amplitude\ from the scalar produd®0).
are distributed ovey and/ort (and not pointwise like in the Just as the backward-parabolic differential adjoint equa-
above examplgs the scalar productl?) immediately pro- tion (153, the discrete adjoint equatio2l) must be
vides the final amplitude. In closing the section we note thakquipped with an initial condition at the final tinme=N. As
the Green’s functions obtained froome backward-in-time s clear from the above argument, the most appropriate initial
calculation could also have been obtained from a large nuMeongitionf;; for the backward iteratiofi21) is the projector
ber of forward numerical integrations ). of the final state onto the mode whose amplitude is to be
calculated, that is, if the final time is large enough for local
eigenfunctions to be well established, the left eigenfunction
of the local problem. However, if a single mode is locally

In a discrete setting, the solution of a parabolic differen-amplified at the final time, just any initial conditidf that is
tial equation such ag5a) is obtained through a chain of not orthogonal to this mode is acceptabds already noticed
(generally impliciy algebraic problems of the form by Luchini and Bottar®’ for the spatially parabolic Gter

_ problem. In fact, provided only thaty, is normalized so that

An+1fn+1=Boftbn, 18 s scalar product with this modeaglauals unity, E20) will
where subscriph numbers consecutive discrete instants ofyield the final amplitude of the most amplified forward
time, f,, is the numerical vector containing the discretizedmode. This also means that, to the same degree of approxi-
stream function at time, and matrice®\,, ; andB, contain  mation that the direct solution tends to one and the same final
a representation of the differential problem in whatever comshape, apart from an amplitude factor, for almost any initial
putational scheme is chosdfourth-order compact differ- condition at time zero, the adjoint solution as well shall tend

A. The numerical implementation of the adjoint
equation
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FIG. 4. Absolute value of the vertical-velocity receptiv-
ity Gy, for ap=0.2 and Rg=5000. Symbols are used
for the multiple-scalgorder €) results, the line corre-
300000 - J sponds to the exag¢marching solution.

400000 - 3

1GLl

200000 - 1

100000 - _

to one and the same shape at time zero, apart from an aramplified instability, which can serve as a check on the much
plitude factor which has to be fixed through normalization,more quickly computed multiple-scale approximation of the

for almost any initial condition at timé\. same quantity presented in Sec. Ill.
_ For a wave numbet,=0.2 and Reynolds number Re
B. The wall Green’s functions =5000, corresponding to a time large enough that a sizeable

By applying the backward-marching procedure detailec@MPlification has taken place after the neutral point, Figs. 4
in the previous section and extracting from the ve@rthe and 5 report the absolute values of the rec_eptivities_ of _the
coefficients that multiply the values af= , andv = — ¢, at most amplified mode to normal aqd tangential veIQC|ty dis-
the wall, we can obtain a complete map of the receptivity tgturbances at the wall, calculated with both the multiple-scale
these two quantities. We can therefore quantify the effect oformula (14) and the exact adjoint formulation. Both curves
external disturbances that translate into nonzero values @fe normalized to a unit value of the final ener@y). In
velocity at the wall, either directly through active blowing other words, they represent the amplification factor by which
and suction or wall vibration, or indirectly through imperfec- the wall velocity must be multiplied to produce the corre-
tions of the wall geometry which can be represented in sponding final amplitudésquare root of the final enerpgyAs
perturbative setting by inhomogeneous velocity boundarynay be seen, the agreement is very satisfactory, notwith-
conditions. The computation must be performed with a largestanding the fact that the multiple-scale result is 100 times
number of time steps to allow for the oscillating character offaster to calculate.
the solution, but gives the exact wall receptivities of the most ~ To give a general picture of the time and wave number
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20000 - 1

15000 | 1
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FIG. 5. Same as Fig. 4 fdB,, .
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at the time motion is started. A receptivity can be defined
and calculated for these as well, which plays the same role as
the leading-edge receptivity of a spatially evolving problem.
The initial time Green'’s function is much trickier to cal-
culate than the wall Green’s function, for these two reasons:
(i) a multiple-scale approximation becomes invalid at small
times and(ii) the result comes out of a balance between a
025 . large attenuation, taking place up to the neutral time, and a
large amplification taking place afterward. Therefore, the to-
tal receptivity factor of the final mode to the initial distur-
1 ' bance is, like the difference of two large quantities, very
FIG. 6. Three-dimensional view of the absolute value of the receptivity tosens_ltlve tq computation errors, and .COUId only be reliably
horizontal-velocity disturbances at the wall, RE000. obtained with a very large number of time stépsthe order
of 100000 at Re5000. In addition, for any practically at-
tainable Reynolds number the balance turns out to be in fa-
distribution of wall receptivity, Fig. 6 shows a three- vor of damping, even if by analogy with the asymptotic es-
dimensional plot of the receptivity to tangential velocity dis- timates of Goldstef#? for the spatially evolving boundary
turbances. As may be expected, maximum receptivity occurfayer one could imagine that, with increasing and increasing
in a neighborhood of the neutral point, but in both the timeReynolds number, eventually amplification might win. This
and wavelength axes this neighborhood is broader than coufdrther complicates the matter, because it means that the
be expected on the basis of the relatively large amplificatiomode that is eventually the fastgstind only growing one
involved. On the other hand, the receptivity, whose absolutgeceives but a small fraction of the initial disturbance.
value Only has been p|0tt8d up to this moment, also involves A typical curve for the initial receptivity, at Re5000
a rapidly varying phase factor. This shows up in a plot of theand a,=0.2, is shown in Fig. 8. This is a stream function
Fourier transform of the previous result, that is the receptivyeceptivity, that is the factor by which the initial stream func-
ity to disturbances of a given wave number and frequencyion must be multiplied in order to give the final amplitude of
rather than a given wave number and time of application. l{he most amplified mode. The very fact that the numbers on
turns out that the frequency response is very selective, angjs plot are on the order of 16 shows that the coupling of
can only be poorly represented by a three-dimensional ploihe eventually amplified mode with an initial disturbance is
A serles'of cross sections at discrete wave numberg are givegr all purposes negligible: the receptivity of this mode is
instead in Fig. 7. As can be seen, the half-amplitude fregyen |ess than that of a disturbance traveling outside the
quency band is about 3% of the center frequency. boundary layer, which undergoes viscous dissipation without
any interaction with the base flow.
Just as the leading-edge receptivity of a spatially evolv-
Just as inhomogeneous boundary conditions for(gg. ing problem?° the initial receptivity of the Stokes layer can
represent external disturbances appearing at the wall in thge split in anO(1) nonmodal contribution, which can be
course of time, inhomogeneous initial conditions representalculated once and for all from a boundary-layer type equa-
external disturbances already present in the whole flowfieldion, and a modal contribution, calculable within the
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C. The initial time Green’s function
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multiple-scale approximation, which contains both the dampti,, it would give the exact receptivity. If, on the other hand,
ing and the amplification stages. The nonmodal contributiorihe second step is replaced by its limit ¥+ 0 with T such

to the receptivity can be formally obtained from E§) by  that simultaneouslyU,T—o and a?»T—0, a universal
letting the Reynolds number tend to infinity withJ ,t; and  receptivity curve is obtained. Such a curve, which applies for
y\Jav/U, constant. In fact, fot>(aUy) ! the multiple- any sufficiently large Reynolds number and not just fog Re
scale approximation of Sec. Il applies, whereas for =5000, is shown in Fig. 9 fory,= .

<(a?v)~! terms containingy are negligible in Eq(5) and
the solution becomes a function of the produgtRe, only.
The ratio of these two characteristic timebly/(av)
=P~!, is a large number in the region of parameter space A linear analysis of the stability and receptivity proper-
where the instability is observed, and therefore the two limitdies of the Stokes flow produced by a flat plate suddenly put
overlap and a composite solution becomes possible. Thimm a motion parallel to itself in a previously quiescient me-
composite solution is obtained by arbitrarily choosing adium has been conducted. The characteristic parameter of the
matching valuey, of aUyt and computing a multiple-scale analysis is a Reynolds number based on time and the insta-
amplification on one side from=t,,/(«Uy) up to the actual bility sets in after a critical time, in close analogy to the case
final timety, and on the other the receptivity to initial dis- of the Blasius boundary layer for which Tollmien—
turbances of the amplitude at a tinfie>t), /(aUg) less its  Schlichting waves are amplified beyond some critical length.
multiple-scale amplification for /(aUq) <t<T. The result  Just like in this latter flow situation, the amplification factor

is of course independent of; and, if T were the final time of the present instability first grows and then decreases at any

V. SUMMARY AND CONCLUSIONS
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FIG. 9. Absolute value of the initial receptivi!=° to
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