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Linear stability and receptivity analyses of the Stokes layer produced
by an impulsively started plate
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The stability and the receptivity of the boundary layer produced by the impulsive motion of a flat
plate in its plane is studied. The evolution of two-dimensional traveling disturbance waves for this
physical situation, known as Stokes’ first problem, is treated by integrating directly the~parabolic in
time! linearized Navier–Stokes equation and by a multiple-scale approach. In the asymptotic
analysis, the Orr–Sommerfeld equation is found at leading order. Through the compatibility
condition for the equation at next order, anO(1) correction to growth rates and frequencies is
achieved. Such corrections are found to be very mild. After having established that the leading-order
results are adequate when looking at the stability characteristics of the flow for a given~large! time,
a receptivity analysis is performed. The adjoint of the parabolic system is obtained, and through its
backward-in-time integration, the initial and wall Green’s functions are obtained. These are then
compared to the results of the multiple-scale receptivity analysis. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1369605#
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I. INTRODUCTION

We consider the flow induced by a flat plate initially
rest in a quiet medium and impulsively set in a motion p
allel to itself at a constant speedU` , a situation commonly
known as ‘‘Stokes’ first problem’’~e.g., Schlichting1! or
‘‘Rayleigh problem’’ ~e.g., Panton2!. This flow can be seen
as analogous to the Blasius flow, with time being here
‘‘streamwise’’ direction of evolution; it becomes linearly un
stable after acritical time when two-dimensional Tollmien–
Schlichting-like waves appear and occupy the whole h
zontal~x! space. However, in contrast to the Blasius flow, t
evolution of instabilities in Stokes’ first problem is exact
described by a parabolic equation, whose numerical solu
can be obtained relatively quickly and with no uncertainty
to the appropriate initial and boundary conditions. It is the
fore an ideal test bed for asymptotic techniques of stab
analysis.

The Stokes layer generated by a moving plate is also
flow produced behind a weak shock wave that propagate
a shock tube, when viewed in wall-fixed coordinates. Sh
tubes are interesting in that they allow extreme opera
conditions—high stagnation enthalpies—and are often u
for studying transient aerodynamic effects. The assessm
of shock tubes, and in particular the estimate of the transi
time before turbulent flow sets in, has been the subjec
several investigations~see e.g., Hartunianet al.3 and Dillon
and Nagamatsu4!. However, this is not an easy task and, f
example, the surface finish of the shock tube walls—an is
related to the flow receptivity—has a strong influence on

a!Present address: Dipartimento di Ingegneria Meccanica, Universita` di Sal-
erno, 84084 Fisciano~SA!, Italy.
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onset of transition. Myerson5 reported that ‘‘the same exper
ments performed in a honed~very smooth! shock tube of
seamless stainless steel showed considerably longer t
before reaching the transition from laminar to turbule
boundary layer, than did the previous tube in which the in
surface was left with the rough surface from the fabricat
~extrusion! process.’’ This seems at odds with what was
ported by Aoki et al.6 for which, apparently, ‘‘transition
propagates from the edge of the boundary layer to the wa
The matter clearly deserves further work; although the an
ogy with Stokes’ first problem is strictly valid for wea
shocks only, an understanding of the stability and receptiv
properties of Stokes’ problem may be useful. On the ot
hand, weak shocks are indeed encountered in railw
tunnels.7 When a high speed train enters a tunnel it gives r
to a pressure disturbance that precedes the train in the
of a weak shock and abruptly sets still air into motion. T
boundary layer behind such a shock is described by Sto
first problem. Since the walls of typical railway tunnels a
not smooth, disturbance waves are expected to be trigg
by the surface inhomogeneities~this is the receptivity step!
and to be exponentially amplified~linear stability step!.

The work on the stability of Stokes’ first problem ap
pears to have been initiated by Otto8 who found good agree
ment between local~in time! Orr–Sommerfeld results an
triple-deck solutions in regimes of common validity. The r
sults were further extended by Webbet al.9 who conducted
linear and nonlinear marching~in time! calculations. Closely
related studies include plane Couette flow during its star
phase from rest, and the decaying stages of the plane Co
flow, when the moving wall is suddenly stopped. In bo
situations, strictly local viscous analyses were carr
8 © 2001 American Institute of Physics
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1669Phys. Fluids, Vol. 13, No. 6, June 2001 Stability and receptivity analyses of the Stokes layer
out,10,11 i.e., the mean flow at each instant was regarded
stationary. Despite this approximation, excellent agreem
between the measured and the predicted most ampl
wavelengths was reported by Tillmark and Alfredsson11

This is due to the fact that the base boundary layer flo
about which small disturbances are imposed, dependsslowly
on time, since there is a slow diffusion of vorticity from th
plate outward to the medium. The disturbances evolve o
fast time scale so that the problem appears to be natu
amenable to an asymptotic approach based on separati
scales, which yields, at leading order, the strictly local~‘‘fro-
zen flow’’! stability equations.

A multiple-scale technique is customarily applied to t
study of the stability of spatially evolving boundary laye
~see, e.g., Bouthier,12,13 Gaster,14 Saric and Nayfeh,15 and
Itoh16!. The main difference with the problem studied here
that Stokes’ problem remains parabolic in its exact formu
tion ~no approximation of the PSE type17 is needed for the
study of this temporally developing boundary layer! and
hence exempt from the uncertainties due to the ellipticity
the corresponding spatial problem. This bears more part
larly on the receptivity aspects of the problem. While t
exact parabolic nature of the temporal model allows tre
ment of the solution at and aroundt50, the PSE often
adopted for the analysis of the spatial problem cannot
used in proximity of the leading edge. It is hoped that
understanding of the initial receptivity of Stokes’ fir
problem—besides its intrinsic interest—could also sh
some light onto its spatial counterpart. In closing this sect
we note that Hill18 used a local adjoint technique to establi
the influence of inhomogeneous wall conditions and sou
terms in the equations in exciting two-dimension
Tollmien–Schlichting waves in the Blasius flow. A similar—
nonlocal—technique has been adopted by Luchini a
Bottaro19 for the case of Go¨rtler vortices developing over a
concave wall boundary layer.

II. THE STABILITY PROBLEM

If an infinitely long flat plate is suddenly set into motio
in its plane at a constant velocity the ensuing boundary la
flow satisfies the equations

Ux50, ~1a!

Ut5nUyy , ~1b!

V50, ~1c!

with U5U0 at y50 andU50 for y→`. In the more gen-
eral case, the outer velocity need not vanish, such as in
inviscid region behind a moving shock. For the sake of d
niteness, however, we limit ourselves to the case of the
disturbed outer flow, bearing in mind that the more gene
situation of a constantUÞ0 for y→` can always be re-
duced to the present one by a change of reference fram
well known similarity solution of Eq.~1! was given by
Stokes and takes the form

U

U0
512erf~h!, ~1d!
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where the similarity variableh is taken to beh5y/2d(t),
with d(t)5(nt)1/2 characteristic length.

The nondimensional linearized perturbation equatio
are

ux1vy50, ~2a!

1

Re0
ut1Uux1vUy1px2

1

Re0
~uxx1uyy!50, ~2b!

1

Re0
v t1Uvx1py2

1

Re0
~vxx1vyy!50, ~2c!

with (u,v) disturbance velocity vector, with componen
along the streamwisex and the verticaly axis, andp distur-
bance pressure. In this work, to limit the number of para
eters, we consider two-dimensional disturbances only.
the nondimensionalization,U0 has been employed as velo
ity scale, t0—a reference time—as time scale,d05(nt0)1/2

as length scale, andrU0
2 as pressure scale. Hence, a Re

nolds number Re05U0d0 /n5U0(t0 /n)1/2 arises naturally. It is
convenient to introduce a perturbation stream functionc so
that system~2! becomes

1

Re0
Dc t1UDcx2Uyycx2

1

Re0
D2c50, ~3!

with c5cy50 for y50, y→`. Equation~3! is parabolic in
time and can be solved subject to an initial condition at
initial time. Hence, the short-time behavior is a function
the initial state, but for sufficiently large times a commo
asymptotic limit is achieved.9

A. Marching and multiple-scale formulations

Equation~3! can be Fourier transformed inx by assum-
ing thatc varies like

c~ t,x,y!5 f ~ t,y!exp@ ia0x#, ~4!

and a05a d0 denotes the dimensionless streamwise wa
number. Equation~3! then becomes

FU2
i

a0 Re0

]

]t G~D22a0
2! f 2Uyyf 1

i

a0 Re0
~D22a0

2!2f

50, ~5a!

and it needs to be solved together with boundary conditi

f 5 f y50 for y50 and y→`. ~5b!

Equations~5! represent the marching formulation, which fo
this problem is an exact one.

Alternatively, a multiple-scale approximation can be s
up when the disturbance behaves as a fast expone
exp@2ia0w(t)/e#. The scale factore can be determined by
requiring that the dominant terms in Eq.~3! be of compa-
rable magnitudes. Classically, by requiring that (1/Re0)Dct

5O(UDcx2Uyycx), and introducing the fast time scalet
5t/e, the scaling parametere5Re0

21 emerges. However
since a straightforward expansion in powers of Re0

21 would
lead to a differential equation of reduced order~the Rayleigh
equation! which is not uniformly valid across the bounda
layer, we include some terms formally of ordere but locally
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1670 Phys. Fluids, Vol. 13, No. 6, June 2001 P. Luchini and A. Bottaro
larger in the leading-order equation. This procedure, d
cussed among others by Gaster,14 is legitimate with the un-
derstanding that the asymptotic series~6! in powers ofe,
now becomes anasymptotic sequenceof unknown—and
decreasing—functions ofe.20 The alternative to this
approach—the solution of the Rayleigh equation toget
with a treatment of the inner and outer visco
layers21—would have considerably delayed the converge
of the approximation with increasing Reynolds number.
the other hand, the recent analysis by Govindarajan
Narasimha22 of the spatial problem shows that the scali
indicated by the multiple-deck approach can indeed be in
porated into a multiple-scale approximation wheree is a
combination of nonintegral powers of Re0 anda0 .

When e51/Re0, a Wentzel–Kramers–Brillouin-type
asymptotic expansion can be set up in the form

f ~ t,y!5exp@2 ia0w~ t !/e#@ f 0~ t,y!1e f 1~ t,y!1...#,
~6!

where the first factor on the right-hand side accounts for
rapid growth and oscillation off in time, whereas the secon
term accounts for the slow temporal evolution. Inserting~6!
into ~5a! and collecting like powers ofe we obtain

O~e0!: @U2c~ t !#~D22a0
2! f 02Uyyf 0

1
i

a0 Re0
~D22a0

2!2f 050, ~7a!

O~e!: @U2c~ t !#~D22a0
2! f 12Uyyf 1

1
i

a0 Re0
~D22a0

2!2f 15
i

a0
~D22a0

2! f 0,t , ~7b!

with the phase velocityc(t) defined by c(t)5dw(t)/dt
5cr(t)1 ic i(t). At leading order~the ‘‘geometrical optics’’
approximation of wave theory! we have the Orr–
Sommerfeld equation, while at first order~the ‘‘physical op-
tics’’ approximation! we have a forced Orr–Sommerfe
equation that can be solved under the condition

f 0
1
•~D22a0

2! f 0t50, ~8!

with • denoting inner product, andf 0
1 being the eigenfunc-

tions of the adjoint homogeneous problem. The Stokes’ fl
is parallel for all times, but unsteady, with the unsteadin
playing the role of the nonparallelism of the correspond
spatial problem. Incidentally, in this paper the term ‘‘nonp
allelism’’ is often used in place of ‘‘unsteadiness’’ to ind
cate that the base flow evolves and is not frozen.

The solutionsf 0 of Eq. ~7a! are given by the product o
an amplitude functionA(t) times the appropriately norma
ized direct eigenfunctionsf d(t,y). Hence, by adopting the
conventional definition of inner product over the space
complex-valued differentiable functions inyP@0,̀ ), i.e.,

a•b5E
0

`

ābdy, ~9!

with the overbar meaning complex conjugate, the solvabi
condition ~8! leads to
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A~ t !5A0 expS 2E
t0

t q2~t!

q1~t!
dt D ,

with

q1~ t !5E
0

`

f 0
1~D22a0

2! f ddy

and

q2~ t !5E
0

`

f 0
1~D22a0

2! f d,tdy.

The ~arbitrary but uninfluential! normalization chosen for the
eigenfunctions of~7a! in yP@0,̀ ) and;t is

E
0

`

~ u f d,yu21a0
2u f du2!dy51. ~10!

In addition, a phase for each eigenfunction has been fixed
imposing thatf d,yy(0) be a positive real number. It should b
noted that the solutionf 0 becomes unique and independe
of the normalization off d once the first-order compatibility
condition is imposed.

A local complex phase velocity of the exact solutioncex,
to be used for comparison with the asymptotic results, can
defined as

cex~ t !5cr
ex~ t !1 ic i

ex~ t !5
i e

2Ea0
E

0

`

ū
]u

]t
1 v̄

]v
]t

dy,

with E disturbance kinetic energy given by

E5
1

2 E0

`

~ uuu21uvu2!dy. ~11!

The imaginary partci
ex of cex is related to the growth rate o

the instability

ci
ex~ t !5

e

2Ea0

]E

]t
.

Both the real and imaginary parts ofcex can be compared
with the corresponding quantities from the multiple-sca
analysis, which at the geometrical optics level are just
real and imaginary parts ofc, and at the physical optics ap
proximation are

ci
po5ci2e RealF q2~ t !

a0q1~ t !G1O~e2!, ~12a!

cr
po5cr1e ImagF q2~ t !

a0q1~ t !G1O~e2!, ~12b!

because in the latter approximation the energy has beco

E5uA exp@ ia0~x2w~ t !/e!#u2

with the normalization~10! understood. Clearly, a differen
normalization would introduce an additional, smallO(e)
correction to~12! without changing the physical result.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 1. ~a! Amplification factor as a function of Ret for,
from left to right,P51024, 431025, and 231025. ~b!
Phase speed.
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B. Numerical solution technique and stability results

Both Eqs.~5a! and ~7a! with their boundary conditions
are discretized by fourth-order compact finite differences
y. The outer boundary is set aty`520, where the standar
asymptotic condition of inviscid outer behavior is enforce
The marching equation is solved by a fully implicit metho
using second-order backward differences int; the eigenvalue
problem by inverse iteration. Problem~7a! is also solved by
a spectral collocation procedure and the eigenvaluec of larg-
est imaginary part is found in agreement with any desira
precision between the two approaches, when a suffic
number of finite difference nodes and Chebyshev colloca
points are used. To solve the equation adjoint to~7a! we
simply determine, using the same inverse-iteration proc
the left eigenvector corresponding to the same eigenvalu
the generalized eigenvalue problemA f05cB f0 @a symbolic
form of ~7a!#. The numerical integration starts from a sm
value of t ~often t50.1! and marches in time in~typically!
100 nonuniform steps up tot51. Thus, the reference tim
used to define Re0 and a0 is the final time, and the loca
Reynolds number and wave number for smaller times var
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
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Ret5Re0 t1/2 and a t5a0t1/2. Both the ‘‘parallel’’ (O(e0))
and the ‘‘nonparallel’’ (O(e1)) terms in~12! are computed
at all times.

A dimensionless wave number which does not cont
the arbitrary reference timet0 can be defined as

P5a t /Ret5a0 /Re05an/U0 ,

with a the dimensional wave number. Similarly to the fr
quency parameterF5vn/U0

2 normally used in presenting
spatial stability results,P is a constant during the evolutio
of any one instability mode and is a small number of t
order of 1025 in the interesting range where disturbances
amplified.

In Fig. 1 we show the time evolution ofci and cr for
three values ofP. Dotted lines represent the strictly loca
results, continuous lines are the first order~physical optics!
solutions, while the symbols pertain to simulations of t
marching equation~5! started att50 with an impulse distur-
bance at the wall. The agreement inci and cr between the
exact solution and the nonparallel values provided by
multiple-scale analysis is excellent fort large enough for the
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Curves of constant phase speed and grow
rate. Dotted lines correspond to local solutions (cr ,ci),
while solid lines indicate non-parallel results (cr

po ,ci
po).
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initial transient in the marching solutions to have died o
The growth rate is seen at first to increase, to peak, and
to decrease, just like in the case of the Blasius bound
layer.

Curves of constant amplification factorci and phase
speedcr in the (Ret ,at) plane are given in Fig. 2. Also thes
curves resemble the corresponding ones for the Blasius
and the nonparallel correction to the strictly local results
very small. The critical conditions from the local solution
are found to be

Recrit51485.68, acrit50.2128, cr crit50.686 45,

in excellent agreement with those reported by Otto13 which
were, respectively, 1484.2, 0.2128, and 0.6865. Like in
case of the Blasius boundary layer, nonparallel estimate
the critical Reynolds number produce slightly lower valu
and in the present case physical optics results are

Recrit51456.72, acrit50.2139, cr crit50.684 74.

The phase speed is also reasonably close to the critical p
speed for the Blasius boundary layer, which in the refere
frame of the outer stream is 1 – 0.3950.61. To set ideas, if
the medium in which the plate moves is, say, air, andU0

510 (m/s), after a timetc5Recrit
2 n/U0

2'0.33 (s), Tollmien–
Schlichting waves of streamwise wavelengthlc

52p(ntc)
1/2/acrit'0.067 (m) and frequency f c

5(1/2p)vcritU0(ntcrit)
21/2'590 (Hz) become amplified

The stream function shapef d of the mode corresponding t
the local critical conditions is represented in Fig. 3, toget
with the corresponding solution from the marching equ
tions. As expected, the peak inf d is shifted towards the edg
of the Stokes layer (d99'4), and so is the critical layer. A
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each value of the Reynolds number there are only a
discrete eigenmodes, together with a continuous spectrum
damped modes withcr50.

III. RECEPTIVITY IN THE MULTIPLE-SCALE
FORMULATION

Receptivity of amplified modes to external disturbanc
is generally calculated, in a parallel setting, by Laplace tra
form techniques~e.g., Crouch,23 Hill, 18 Tumin,24 Ashpin and
Reshotko25!. In the present problem this would mean endo
ing Eq. ~5! with a nonzero forcing term, Laplace transform
ing both sides with respect to time, solving the resulti
one-dimensional problem in the transformed domain, a
then reducing the inverse-transform complex integral to
sum of residues over the dominant poles. The poles of
solving kernel correspond to the eigenvalues of the ass
ated homogeneous problem, and the residues of simple p
split into the product of direct and adjoint eigenfunctio
~i.e., eigenfunctions of the adjoint differential problem!. The
adjoint eigenfunctions therefore become projectors of the
ternal forcing onto the corresponding direct mode.

The above procedure, however, does not produce a
dimensional eigenvalue problem if the underlying base fl
is time dependent~nonparallel in a spatial setting!. In fact, in
this case the Laplace transform produces a two-dimensi
integrodifferential equation, which is even more intractab
than the original. This approach was nonetheless found
give useful results26 if the base flow is linearized with respec
to the longitudinal coordinate in a neighborhood of a roug
ness element and the Laplace-transformed equation is so
perturbatively. The resulting solution, however, is not u
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. Modulus~left! and phase of
the disturbance stream function fo
a050.2128 and Re051485.68. Solid
lines denote the marching solution
while the local eigensolution is plotted
with dotted lines.
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formly valid downstream of the roughness element, beca
of the secular behavior which typically affects perturbat
solutions to oscillation problems. This situation is we
known in wave-propagation theory~e.g., Whitham27!, where
evaluation of Laplace integrals provides small-wavelen
asymptotics in homogeneous media, but direct multiple-sc
expansions of the differential problem are used for wea
inhomogeneous media. Therefore, to generalize the resul
previous authors~who replaced the boundary layer by a pa
allel flow with the same local profile in order to be able
apply a Laplace transform! and produce a uniformly valid
asymptotic expansion capable of providing higher-order n
parallel corrections, we shall resort to a multiple-scale f
mulation of the receptivity problem. This will now be for
mulated for the time-growing Stokes layer, but with an e
to keeping it general enough that it can also be applied
space-evolving flows.

If problem ~5! is modified by an inhomogeneous know
term, either in the differential equation or in the bounda
conditions, we may still assume that the solution beha
approximately as exp@2ia0w(t)/e# provided the known term
is O(e), say2( i /a0)e s(y,t). In fact in this case, under th
same assumption of an expansion in the form of Eq.~6!, Eq.
~7a! is unchanged. Equation~7b! on the other hand acquire
an additional source term and the compatibility condition~8!
becomes

f 0
1
•$~D22a0

2! f 0,t2s~y,t !exp@ ia0w~ t !/e#%50. ~13!

On assuming, as before, thatf 0 is the product of an ampli-
tude factorA(t) times the appropriately normalized dire
eigenfunctionf d(t,y), Eq. ~13! can be read as a first-orde
linear differential equation forA(t), namely,

q1dA/dt1q2 A5 f 0
1
•s~y,t !exp@ ia0w~ t !/e#, ~14!

which has an elementary analytical solution. Thus the pr
uct of the adjoint eigenfunction and the source term emer
naturally. Equation~14! if applied to a time-independen
problem withq1 and f 0

1 independent of time,w(t) linear and
q2 equal to zero, gives the same result as the Lapla
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
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transform approach. With respect to just replacing a nonp
allel problem by a parallel one with the same local profi
however, Eq.~14! already contains first-order nonparall
corrections, in the form of the termq2A, which has no
equivalent in the local approach, and can be continued
higher orders ine with no conceptual nor practical difficulty
This is just as well, because replacing time by space
applying the same reasoning to a spatial stability probl
poses no difficulty.

IV. EXACT ADJOINT FORMULATION OF THE
RECEPTIVITY PROBLEM: MARCHING BACKWARD IN
TIME

Having established that a unique functional form~a nor-
mal mode! is obtained fort sufficiently large, we now set to
formulate the receptivity problem, i.e., to study the way
which disturbances at the wall (y50) and att50 produce
this functional form. An exact technique of receptivity anal
sis perfectly suited for this task is the backward-in-time a
proach described by Luchini and Bottaro.19 It relies on the
integration of the ~backward parabolic! adjoint stability
equation from the final time (t51) down to the initial time
(t50) where the instability normally originates. With
single integration of the adjoint equation, the wall receptiv
functions and the receptivity to production terms in the eq
tions are also obtained, at no additional cost. All of this
easily established by application of the Green–Lagra
identity28,29 to Eq. ~5!, equipped, for generality, of inhomo
geneous wall conditions, i.e.,f (0,t)5 f w(t) and f y(0,t)
5gw(t). By using the inner product~9!, the adjoint equation
is easily found to be

FU2
i

a0 Re0

]

]t G~D22a0
2! f 112UyD f 1

2
i

a0 Re0
~D22a0

2!2f 150, ~15a!

together with the boundary conditions
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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f 15 f y
150 for y50 and y→`. ~15b!

Furthermore, the following relation, arising from the tim
derivative and the boundary terms, must be satisfied:

d

dt
@ f •~D22a0

2! f 1#1D2f 1~0,t !gw~ t !2D3f 1~0,t ! f w~ t !50.

~16!

Equation~16! is key to defining receptivities. To see it, no
that direct integration of~5! yields at t51 a normal mode,
i.e., f (1,y)5 f 0(1,y)5A(1) f d(1,y), with the normalization
of the direct eigenfunction given by Eq.~10!. The initial
condition for the adjoint calculation is taken to be the loc
adjoint eigenfunctionf 0

1(1,y), normalized by

~D22a0
2! f 0

1~1,y!• f d~1,y!51.

Hence, by integrating Eq.~16! in time the final amplitude
A5A(1) of the direct mode is immediately available:

A5E
0

`

f ~0,y!Gt50~y!dy1E
0

t

uw~ t !Gw
u ~ t !

1vw~ t !Gw
v ~ t !dt, ~17!

with Gt50(y)5(D22a0
2) f 1(0,y) the initial Green’s func-

tion, and theu and v wall Green’s function given, respec
tively, by Gw

u (t)52 f
yy

1(0,t) andGw
v (t)52( i /a0) f yyy

1 (0,t).
The Green’s functions defined above are obtained b

single integration of~15!, starting fromt51 and proceeding
backward to the nonmodal region of very smallt; these func-
tions are of immediate use. If, for example, the wall boun
ary conditions are homogeneous~i.e., the wall is smooth, and
no blowing/suction is applied to it!, and if the initial condi-
tion at t50 is such thatf (0,y)5d(y2y0), the final ampli-
tude of the mode produced by this initial condition is simp
A5Gt50(y0). Suppose now that initially no disturbances a
present in the flow, and that a pointwise~in t! disturbance is
provided in the vertical wall velocity, i.e.,v(t,0)5vw(t)
5d(t2ts). In this case the final amplitude of the mode
A5Gw

v (ts). Clearly, if the initial and/or boundary condition
are distributed overy and/ort ~and not pointwise like in the
above examples!, the scalar product~17! immediately pro-
vides the final amplitude. In closing the section we note t
the Green’s functions obtained fromone backward-in-time
calculation could also have been obtained from a large n
ber of forward numerical integrations of~5!.

A. The numerical implementation of the adjoint
equation

In a discrete setting, the solution of a parabolic differe
tial equation such as~5a! is obtained through a chain o
~generally implicit! algebraic problems of the form

An11fn115Bnfn1bn , ~18!

where subscriptn numbers consecutive discrete instants
time, fn is the numerical vector containing the discretiz
stream function at timen, and matricesAn11 andBn contain
a representation of the differential problem in whatever co
putational scheme is chosen~fourth-order compact differ-
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
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ences iny and Crank–Nicolson in time for the present!. Both
matrices may generally depend on the time indexn ~because
the base flow does!. Vector bn contains the inhomogeneou
boundary conditions at discrete timen and f0 the initial data
at time 0.

The solution of Eq.~18! can be formally written as

fN5AN
21~bN211BN21AN21

21 ~bN221BN22AN22
21 ~ ...~b1

1B1A1
21~b01B0f0!!...!!!.

Now assume the final result at timen5N is to be projected
onto a given arbitrary vectorfN

1 through the scalar produc
A5fN

1fN @discrete representation of~9!#. Then this product,
explicitly written as

A5fN
1AN

21~bN211BN21AN21
21 ~bN22

1BN22AN22
21 ~ ...~b11B1A1

21~b01B0f0!!...!!!,

~19!

can more easily be calculated for arbitrary databn and f0 by
working it out from left to right. In fact, Eq.~19! can obvi-
ously be written as a linear superposition of the bound
and initial data with suitable coefficientsbn

1 andf0
1, namely

A5 (
n50

N21

bn
1bn1f0

1f0 . ~20!

A direct comparison of Eqs.~19! and ~20! then shows that
the coefficients obey the following recursion relations:

bn21
1 5fn

1An
21; fn21

1 5bn21
1 Bn21 . ~21!

Equations~21! are, in fact, the discrete adjoint equation
wherefrombn

1 and fn
1 can be obtained by iterating back

wards fromn5N down ton50, at the same computationa
cost as a single numerical solution of the forward proble
One can notice that, as just a few components of the ve
bn are generally nonzero in order to represent the bound
conditions at the wall, only the corresponding components
bn

1 need to be permanently stored for the subsequent ca
lation of the final amplitudeA from the scalar product~20!.

Just as the backward-parabolic differential adjoint eq
tion ~15a!, the discrete adjoint equation~21! must be
equipped with an initial condition at the final timen5N. As
is clear from the above argument, the most appropriate in
condition fN

1 for the backward iteration~21! is the projector
of the final state onto the mode whose amplitude is to
calculated, that is, if the final time is large enough for loc
eigenfunctions to be well established, the left eigenfunct
of the local problem. However, if a single mode is loca
amplified at the final time, just any initial conditionfN

1 that is
not orthogonal to this mode is acceptable~as already noticed
by Luchini and Bottaro19 for the spatially parabolic Go¨rtler
problem!. In fact, provided only thatfN

1 is normalized so that
its scalar product with this mode equals unity, Eq.~20! will
yield the final amplitude of the most amplified forwar
mode. This also means that, to the same degree of app
mation that the direct solution tends to one and the same
shape, apart from an amplitude factor, for almost any ini
condition at time zero, the adjoint solution as well shall te
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. Absolute value of the vertical-velocity receptiv
ity Gw

v for a050.2 and Re055000. Symbols are used
for the multiple-scale~order e! results, the line corre-
sponds to the exact~marching! solution.
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to one and the same shape at time zero, apart from an
plitude factor which has to be fixed through normalizatio
for almost any initial condition at timeN.

B. The wall Green’s functions

By applying the backward-marching procedure detai
in the previous section and extracting from the vectorbn

1 the
coefficients that multiply the values ofu5cy andv52cx at
the wall, we can obtain a complete map of the receptivity
these two quantities. We can therefore quantify the effec
external disturbances that translate into nonzero value
velocity at the wall, either directly through active blowin
and suction or wall vibration, or indirectly through imperfe
tions of the wall geometry which can be represented i
perturbative setting by inhomogeneous velocity bound
conditions. The computation must be performed with a la
number of time steps to allow for the oscillating character
the solution, but gives the exact wall receptivities of the m
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
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amplified instability, which can serve as a check on the mu
more quickly computed multiple-scale approximation of t
same quantity presented in Sec. III.

For a wave numbera050.2 and Reynolds number Re0

55000, corresponding to a time large enough that a size
amplification has taken place after the neutral point, Figs
and 5 report the absolute values of the receptivities of
most amplified mode to normal and tangential velocity d
turbances at the wall, calculated with both the multiple-sc
formula ~14! and the exact adjoint formulation. Both curve
are normalized to a unit value of the final energy~11!. In
other words, they represent the amplification factor by wh
the wall velocity must be multiplied to produce the corr
sponding final amplitude~square root of the final energy!. As
may be seen, the agreement is very satisfactory, notw
standing the fact that the multiple-scale result is 100 tim
faster to calculate.

To give a general picture of the time and wave numb
FIG. 5. Same as Fig. 4 forGw
u .
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distribution of wall receptivity, Fig. 6 shows a three
dimensional plot of the receptivity to tangential velocity d
turbances. As may be expected, maximum receptivity occ
in a neighborhood of the neutral point, but in both the tim
and wavelength axes this neighborhood is broader than c
be expected on the basis of the relatively large amplifica
involved. On the other hand, the receptivity, whose abso
value only has been plotted up to this moment, also invol
a rapidly varying phase factor. This shows up in a plot of
Fourier transform of the previous result, that is the recep
ity to disturbances of a given wave number and freque
rather than a given wave number and time of application
turns out that the frequency response is very selective,
can only be poorly represented by a three-dimensional p
A series of cross sections at discrete wave numbers are g
instead in Fig. 7. As can be seen, the half-amplitude
quency band is about 3% of the center frequency.

C. The initial time Green’s function

Just as inhomogeneous boundary conditions for Eq.~5!
represent external disturbances appearing at the wall in
course of time, inhomogeneous initial conditions repres
external disturbances already present in the whole flowfi

FIG. 6. Three-dimensional view of the absolute value of the receptivity
horizontal-velocity disturbances at the wall, Re055000.
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at the time motion is started. A receptivity can be defin
and calculated for these as well, which plays the same rol
the leading-edge receptivity of a spatially evolving proble

The initial time Green’s function is much trickier to ca
culate than the wall Green’s function, for these two reaso
~i! a multiple-scale approximation becomes invalid at sm
times and~ii ! the result comes out of a balance between
large attenuation, taking place up to the neutral time, an
large amplification taking place afterward. Therefore, the
tal receptivity factor of the final mode to the initial distu
bance is, like the difference of two large quantities, ve
sensitive to computation errors, and could only be relia
obtained with a very large number of time steps~of the order
of 100 000 at Re55000!. In addition, for any practically at-
tainable Reynolds number the balance turns out to be in
vor of damping, even if by analogy with the asymptotic e
timates of Goldstein30 for the spatially evolving boundary
layer one could imagine that, with increasing and increas
Reynolds number, eventually amplification might win. Th
further complicates the matter, because it means that
mode that is eventually the fastest~and only! growing one
receives but a small fraction of the initial disturbance.

A typical curve for the initial receptivity, at Re055000
and a050.2, is shown in Fig. 8. This is a stream functio
receptivity, that is the factor by which the initial stream fun
tion must be multiplied in order to give the final amplitude
the most amplified mode. The very fact that the numbers
this plot are on the order of 1024 shows that the coupling o
the eventually amplified mode with an initial disturbance
for all purposes negligible: the receptivity of this mode
even less than that of a disturbance traveling outside
boundary layer, which undergoes viscous dissipation with
any interaction with the base flow.

Just as the leading-edge receptivity of a spatially evo
ing problem,30 the initial receptivity of the Stokes layer ca
be split in anO(1) nonmodal contribution, which can b
calculated once and for all from a boundary-layer type eq
tion, and a modal contribution, calculable within th

o

FIG. 7. Absolute value of the Fourier transformG̃w
u of

Gw
u at different values ofa0 .
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FIG. 8. Absolute value of the initial receptivityGt50 to
stream function disturbances,a050.2, Re055000 (P
5431025).
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multiple-scale approximation, which contains both the dam
ing and the amplification stages. The nonmodal contribut
to the receptivity can be formally obtained from Eq.~5! by
letting the Reynolds number tend to infinity withaU0t0 and
yAan/U0 constant. In fact, fort@(aU0)21 the multiple-
scale approximation of Sec. II applies, whereas fort
!(a2n)21 terms containinga0

2 are negligible in Eq.~5! and
the solution becomes a function of the producta0 Re0 only.
The ratio of these two characteristic times,U0 /(an)
5P21, is a large number in the region of parameter sp
where the instability is observed, and therefore the two lim
overlap and a composite solution becomes possible.
composite solution is obtained by arbitrarily choosing
matching valuetM of aU0t and computing a multiple-scal
amplification on one side fromt5tM /(aU0) up to the actual
final time t0 , and on the other the receptivity to initial dis
turbances of the amplitude at a timeT@tM /(aU0) less its
multiple-scale amplification fortM /(aU0),t,T. The result
is of course independent oftM and, if T were the final time
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
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t0 , it would give the exact receptivity. If, on the other han
the second step is replaced by its limit forP→0 with T such
that simultaneouslyaU0T→` and a2nT→0, a universal
receptivity curve is obtained. Such a curve, which applies
any sufficiently large Reynolds number and not just for R0

55000, is shown in Fig. 9 fortM5p.

V. SUMMARY AND CONCLUSIONS

A linear analysis of the stability and receptivity prope
ties of the Stokes flow produced by a flat plate suddenly
in a motion parallel to itself in a previously quiescient m
dium has been conducted. The characteristic parameter o
analysis is a Reynolds number based on time and the in
bility sets in after a critical time, in close analogy to the ca
of the Blasius boundary layer for which Tollmien
Schlichting waves are amplified beyond some critical leng
Just like in this latter flow situation, the amplification fact
of the present instability first grows and then decreases at
FIG. 9. Absolute value of the initial receptivityGt50 to
stream function disturbances in the limit ofP→0, for
tM chosen equal top.
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given streamwise wave number, even though with decre
ing wave number a larger and larger maximum amplificat
can be found at a larger and larger time. The marginal cu
and curves of constant growth rate and frequency have b
given here for the first time. The main conclusion of t
stability work is that the effect of unsteadiness~nonparallel-
ism in the corresponding spatial problem! is small. This con-
clusion entails that a unique functional form~a normal mode!
exists fort sufficiently large, so that the objective of a rece
tivity study becomes the determination of the amplitude
this mode. An adjoint receptivity analysis is particularly we
suited for this problem and, once proper care is taken
normalizing things appropriately, the Green’s functions o
tained by integrating the adjoint stability equation backwa
in time are of immediate interpretation and use. The w
Green’s functions show the efficiency of arbitrary inhom
geneous wall conditions~roughness and blowing/suction! in
triggering temporally growing Tollmien–Schlichting~TS!
waves, whereas the initial Green’s function gives the e
ciency of whatever initial condition is exciting the instabilit
At the wall it is found that an excitation in the vertical com
ponent of the velocity is more effective than one inu; unsur-
prisingly, the largest response is found for excitations giv
at times close to the lower branch of the neutral stabi
curve. A very interesting result is that the initial receptivity
exceedingly small. If transposed to the spatial case,
would suggest that the leading-edge receptivity to TS wa
in a Blasius boundary layer developing over an infinitely th
plate is negligible with respect to other receptivity mech
nisms.
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