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The linear stability of flows in curved compliant channels is examined. The walls bounding
the fluid are modelled as thin cylindrical shells supported by a rigid outer frame through
arrays of springs and dampers; this is often referred to as Kramer-type coating. Sufficiently
soft compliant walls have an influence on the large-scale streamwise vortices produced in
the channel by the centrifugal force, although the effect is limited to modes of large enough
spanwise wavelengths. For even longer wavelengths, a spanwise-periodic surface-based
wave precedes the onset of the streamwise vortex instability. Longitudinal or oblique
travelling-wave flutter modes may appear and dominate the transition scenario, for
sufficiently compliant walls, depending on the receptivity conditions.
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1. Introduction

The idea of tailoring the characteristics of solid walls to control the fluid flowing
over them originates from Gray (1936)’s observations of swimming dolphins and
from the assumption that their high propulsive efficiency should be ascribed to
the compliance of their skins. Many studies followed including in particular the
tests by Kramer (1957, 1960), which appeared to demonstrate the efficiency of
compliant surfaces in delaying transition to turbulence. Given the importance of
the subject for its implications on control and manoeuvring of aerial and marine
vehicles, many people approached the problem from the theoretical point of view
to shed light on the interactions between the fluid and the solid. Initial theories
were laid out by Benjamin (1960) and Landahl (1962), who focused on the
behaviour of small disturbances in the system, after modelling the solid as a thin
elastic membrane. In the approach by Carpenter and co-workers (Carpenter &
Garrad 1985, 1986; Carpenter 1990; Davies & Carpenter 1997a,b; Carpenter
et al. 2000), a surface-based compliant wall model is adopted; a thin plate is
supported by a rigid foundation through springs and dampers. A more realistic
approach consists in the use of volume-based methods that start from the
continuum equations of solid mechanics and cater naturally to anisotropic
multilayered materials. The efforts of Yeo and co-workers are notable in this
respect (Yeo & Dowling 1987; Yeo 1988, 1990, 1992, 1994; Yeo et al. 1994, 2001).
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On the other hand, the simplicity of surface-based models appealed to many
other researchers (Denier & Hall 1991; Nagata & Cole 1999; Wiplier &
Ehrenstein 2001; Allen & Bridges 2003; Davies 2003; Xu et al. 2003) allowing
them to make rapid progress in the understanding of the transition-delaying
potential of different types of wall coatings in a variety of configurations.

The problem addressed here aims at elucidating the effect of wall compliance
on the instabilities developing in a curved channel. It has been known for
approximately 80 years that curvature sustains the amplification of longitudinal
vortices in channels (Dean 1928), and longitudinal or quasi-longitudinal vortices
arise in a variety of technological applications that involve curved passages and
ducts, affecting strongly heat transfer coefficients and friction factors. However,
the interactions that take place when the bounding walls are not infinitely rigid
are unknown. Limited experimental evidence has been produced for the case in
which the vortices are present in a boundary layer next to a curved compliant
wall. Yurchenko & Babenko (1987) observed that a porous rubber coating could
delay the amplification of Görtler vortices developing over the concave wall of a
water channel. A very mild stabilizing effect is found when the large Görtler
number and spanwise wavenumber limits are taken (Denier & Hall 1991), but
the theory does not address the behaviour of flow-induced surface waves. It will
be shown here that such hydroelastic waves, related to the compliance of the
bounding walls, are important and could trigger early transition.

Before providing a brief overview of the different kinds of flow-induced surface
modes, we wish to briefly comment on the expected effect of flexible walls on
hydrodynamic waves. Surface compliance acts primarily in a near-wall viscous
layer; the Dean instability originates from an inviscid mechanism, related to the
curvature of the flow streamlines, and the vortices occupy the whole cross-section
of the curved channel. On first impression, thus, it might be expected that
compliant coating should have but a mild effect on Dean vortices. On the other
hand, also crossflow vortices such as those arising in the boundary layer on a
rotating disc are inviscidly unstable, but compliant coating can strongly stabilize
them (Cooper & Carpenter 1997a,b; Davies & Carpenter 2001, 2003). It is thus
not so immediate to anticipate on the effect of wall coating on the steady Dean
modes. In the case of viscous (Tollmien–Schlichting) instabilities, wall
compliance acts by modifying the phase relationship between the streamwise
and the wall-normal perturbation velocity components, thus changing the
Reynolds stress and consequently the energy balance. Criteria for the complete
suppression of Tollmien–Schlichting waves have been given, but, if the wall is too
compliant, the effect on transition to turbulence can be opposite to the expected
one, owing to the premature appearance of hydroelastic modes. In the present
configuration, Tollmien–Schlichting modes should not hold a role, given the
exceedingly small value of the curvature parameter needed for them to appear
before the Dean vortices, at any value of the Reynolds number.

Just as in the case of the rotating disk boundary layer (Cooper & Carpenter
1997a), wall compliance greatly increases the complexity of the eigenmodes’
spectrum. A sketch of the geometry under consideration, with some of the modes
which can appear, is provided in figure 1. The most important flow-induced
surface instabilities (FISI) are travelling-wave flutter (TWF) and static
divergence (SD). They are the incompressible analogue of classical aeroelastic
phenomena: flutter and divergence. Flutter of thin panels consists of the
Proc. R. Soc. A (2007)
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Figure 1. Sketch of the problem under investigation with some of the instability modes which can
emerge: Dean vortices, TWF and spanwise-periodic surface waves (simply labelled as FISI). The
upper wall is not shown. Both walls are modelled as thin elastic shells supported by rigid frames
through arrays of springs and dampers.
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self-excited oscillations of plates and/or shells exposed on one side to a, usually
transonic or supersonic, stream of air; the prevention of flutter modes represents
a primary design criterion for aerospace structures. Divergence occurs when a
lifting surface deflects under aerodynamic load so that the applied load is either
increased or displaced so as to enhance the twisting effect on the structure.

In the incompressible setting, TWF has been usually identified as a high-
frequency streamwise travelling wave, capable of leading to rapid breakdown to
turbulence when a critical flow speed, which increases with the wall stiffness, is
exceeded. Davies & Carpenter (1997a) report that the fluid layers nearest to the
walls play as crucial role in stabilizing TWF, and the stabilization is enhanced by
wall damping, i.e. when a viscous fluid substrate or viscoelastic losses are
included in the wall model. In the present paper, TWF modes are computed and
a previously unreported standing or travelling FISI is discovered.

Static divergence occurs in the form of very slowly travelling or stationary
waves of long wavelength and, as such, can have an effect similar to that of
surface roughness. Its characteristics have often been difficult to determine: it is
associated with the onset of an absolute instability and its occurrence is
reportedly dominated by the presence of nonlinear effects (Gad-el-Hak 1986,
2000). As shown by Landahl (1962), SD can be qualitatively described using
potential flow theory (TWF cannot) and wall damping is necessary for its
appearance. According to Davies & Carpenter (1997a), SD is unlikely to appear
when coatings that are efficient at stabilizing Tollmien–Schlichting waves are
considered; it arises when the flow moves at a speed much larger than the elastic
shear-wave speed of the material so that the internal restoring forces in the walls
(related to the coating stiffness) are outweighed by the large disturbance pressure
imposed by the fluid. When this happens, a unidirectional transfer of energy
towards the solid occurs.
Proc. R. Soc. A (2007)
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It should be noted that other forms of FISI characterized by coalescing modes
have been reported in the literature, with strong interactions possible between
TWF modes and either divergence or Tollmien–Schlichting waves, possibly
leading to absolute instabilities. With the parameters adopted in this research,
we have neither observed coalescing modes nor SD waves.

This brief overview makes clear that this hydroelastic problem is very rich and
that a large number of parameters must be accounted for (curvature, Reynolds
number, coating parameters such as flexural rigidity, elasticity, damping
properties, etc.). For the sake of clarity, after a description of the stability
equations and of the surface-based wall equations adopted, we have divided the
instability modes into three classes and dedicated a section to each class: two-
dimensional streamwise homogeneous (Dean-like) modes; two-dimensional
spanwise homogeneous (Tollmien–Schlichting-like) modes; and three-dimen-
sional modes. A summary of the findings and concluding remarks are left for the
last section of the paper.
2. The model

We consider the flow of an incompressible, Newtonian fluid in a slightly curved
channel bounded by two compliant walls. When undeformed, the walls are
separated by a distance 2h; the constant radius of curvature at the channel
centreline is R, and the curvature parameter defined as gZ2h/R, is taken to be
small, in such a way that, to first order in g, the dimensionless base flow reads
(Matsson & Alfredsson 1990)

U Z ð1Ky2Þ 1K
1

3
gy

� �
: ð2:1Þ

In this expression, the velocity has been scaled with the centreline velocity U0

and y is the dimensionless normal-to-the-wall coordinates defined below.
(a ) Linear stability equations

The Navier–Stokes equations in cylindrical coordinates (r, q, x) written for the
primitive variables (ur, uq, ux, p

�) are linearized about a mean flow Uq(r). Since
the curvature parameter g is small, it is convenient to define a set of ‘pseudo-
Cartesian’ coordinates (x,y,z) representing the streamwise direction, the
direction normal to the wall and the spanwise direction, respectively. Such
coordinates in dimensionless form are

x Z
2q

g
; y Z

2ðrKRÞ
gR

; z Z
2x

gR
: ð2:2Þ

The new dependent variables (u, v, w, p) and time t are obtained after scaling
the dimensional variables as follows:

u Z
uq
U0

; v Z
ur
U0

; w Z
uz
U0

; pZ
p�

rU 2
0

; t Z
U0

h
t�: ð2:3Þ
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To first order in g, the linearized equations of motion are
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where ReZU0h/n is the Reynolds number and D is the operator

ðv2=vx2ÞCðv2=vy2ÞCðv2=vz2Þ. Strictly speaking, the equations above are not
O(1) in g since terms like gUv/2 contain both g and g2, given (2.1). Terms
proportional to g2 are henceforth neglected.

Normal modes are considered, i.e.

ðu; v;w; pÞZ ðûðyÞ; v̂ðyÞ; ŵðyÞ; p̂ðyÞÞeiaxCibzCst; ð2:5Þ
with a and b the (real) wavenumbers in the streamwise and spanwise directions,
respectively, and s the (generally complex) amplification factor. This means that
the, simpler, case of temporally growing normal modes is adopted, an approach
which renders the numerical eigenvalue problem easily tractable.

Introducing (2.5) into (2.4) produces the following set of equations
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with k2Za2Cb2 and DZd/dy.
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(b ) Wall model via thin shell theory

A number of options are available for the model of the compliant coating,
comprehensively reviewed by Gad-el-Hak (1986, 2000). Yeo (1992) gives a
comparative discussion of volume-based versus surface-based models. In short,
volume-based models provide a more realistic treatment of the problem and
allow three degrees of freedom in the displacement of each point in the wall.
However, they are more difficult to implement numerically. Surface-based models
are simpler to use and can still reproduce the salient dynamical features of
compliant coatings, since they retain the main ingredients of volume-based
approaches: inertia, elasticity and damping. As already stated in the
Introduction, the simplicity of surface-based models, which generally allow a
single degree of freedom in the wall displacement, has been the main reason for
their wide dissemination and use. In the present paper, we have decided to model
the compliant walls as spring-backed cylindrical shells, following the lead of
Carpenter & Garrad (1985) for an isotropic thin compliant plate. The shells are
constrained to move only in the y direction. We use asterisks to denote
dimensional quantities and call h� the vertical displacement of each wall from its
equilibrium position. The equation of motion of the surface can be obtained from
Love’s thin cylindrical shell theory (Timoshenko & Woinowsky-Krieger 1959)

m* v2

vt *2
Cd* v

vt *
CB*D2

hKT *DhCK *

� �
D2

hC
E *H

R2

v4

vz*4

� �
h*Z

D2
hp

*ðhÞ

KD2
hp

*ðKhÞ
;

(

ð2:7Þ

where DhZðv2=vx�2ÞCðv2=vz�2Þ. In the equation above, m� is the plate mass per

unit area, d� is the wall damping coefficient, B�ZðE �H 3=12ð1Kn�2ÞÞ is the
flexural rigidity of the shell, with E � the Young modulus, H the thickness of the
shell and n� Poisson’s ratio; K� is the spring stiffness and T� is the longitudinal
tension per unit width. The term on the right-hand side represents the normal
stress exerted by the fluid on the shell. For sufficiently large values of the
Reynolds number, it has been shown by Nagata & Cole (1999) that the
contribution of the normal viscous stresses is negligible: they have thus been
omitted from the equations above.

In scaling the wall properties, it is important to adopt reference quantities
such that, as the Reynolds number ReZU0h/n is varied, the wall maintains the
same physical properties. For this, we impose that variations in Re are only
related to changes in the centreline velocity and scale the wall properties with h,
r and n as

mZ
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rn
; B Z
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rn2h
; E Z

E *h2

rn2
; K Z

K *h3

rn2
; T Z

T *h

rn2
:

After writing the wall displacement, scaled by h, as a normal mode in the form
hZ ĥeiaxCibzCst, the following dimensionless shell equation is found
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4
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(
ð2:8Þ
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This equation differs only in the term proportional to g2 from that of the thin plate;
terms of this same order have been neglected in system (2.6), and the same has thus
been done here. This term, which is proportional to g2, can be shown to be equal to

3ð1Kn*2Þðh=HÞ2ðb=kÞ4Bg2;

and it could become of the same order asBk4 when k becomesO(gb2)1/4.While this
provides no restrictions for the case of spanwise-homogeneous waves, disturbances
with aZ0 can be considered with the approximation above only if b is larger than
g1/2. All cases reported below have been computed by fixing g to 0.025, the value
used in the experiments by Matsson & Alfredsson (1990) and in the simulations by
Finlay et al. (1988). If H/h is O(1), neglecting the term proportional to g2 in
equation (2.8) is acceptable when aZ0 only for spanwise wavenumbers larger than
approximately 10K1. The smallb limit could be treated by an asymptotic expansion
of the governing equations, along the lines of Phillips & Wu (1994); such an
expansion has, however, not been attempted since such long-wave modes are of
limited interest and can be easily stabilized by small amounts of viscoelastic losses
within the walls (cf. figure 7).
(c ) Boundary conditions

The no-slip condition on the upper wall at yZ1Ch reads

U Cu Z 0; v Z vh=vt; w Z 0: ð2:9Þ
Linearizing around yZ1 we find

ûC ĥU 0 Z 0; ð2:10Þ

v̂KsĥZ 0; ð2:11Þ

ŵ Z 0; ð2:12Þ
and combining (2.10) and (2.11) allows us to eliminate ĥ

sûCU 0v̂ Z 0: ð2:13Þ
Likewise, introducing (2.10) and (2.11) into (2.8) yields

msv̂C
1

Re
dv̂K

1

U 0Re2
Bk4 CK CTk2
� �

û Z p̂: ð2:14Þ

Hence, the three boundary conditions on yZ1 are (2.12)–(2.14). For yZK1, the
same set of equations applies except for the minus sign in front of the pressure term
in (2.14). The system of equations (2.6) plus boundary conditions can be reduced to
a two-equation set and associated boundary conditions, for example, by
eliminating pressure and one velocity component. However, the reduction
procedure yields very long-coupled expressions for the two remaining velocity
components. To keep things simple, we have preferred to discretize directly the full
system, by using a Chebyschev collocation method. Although this doubles the
computer memory requirements, we are still largely within the memory limits set
by current PCs, even for the better resolved cases. The spectrum of eigenvalues has
been explored by employing both global (QZ) and local (Arnoldi) techniques.
Proc. R. Soc. A (2007)
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The code has been validated by checking results against those for the plane channel
flow with compliant walls (Davies & Carpenter 1997a; Nagata & Cole 1999) and
curved channel flow with rigid walls (Finlay et al. 1988; Matsson & Alfredsson
1990). Furthermore, we have always verified that the ss of interest were converged
to several significant digits.
(d ) The modified Reynolds—Orr energy equation

Scalar multiplication of the linearized disturbance momentum equation (last
three equations of (2.4)) by (u, v, w) yields the following equation for the
disturbance kinetic energy

v

vt
Cð1Kg
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where the repeated suffix convention has been employed. By averaging over a
period along x and z (the averaging procedure is denoted by overbars) and
integrating across the channel, we obtain
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A similar equation, for the case of spatially developing Tollmien–Schlichting
waves in a plane channel with finite compliant panels, was derived by Davies &
Carpenter (1997b). For the case of the temporal development of disturbance in a
boundary layer over a compliant wall, the energy equation was given by
Domaradzki & Metcalfe (1987). Compared to these two studies, there are here
additional terms arising from the curvature of the channel so that perturbations are
not exactly symmetrical (or antisymmetrical) about the channel centreline. The
terms labelled with (I1) and (I2) are the classical Reynolds stress production and
dissipation terms, respectively. They are typically important in the disturbance
energy balance. Other significant terms are those labelled as (C1), (C2) and (G1),
Proc. R. Soc. A (2007)
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whereas all of the remaining terms are invariably negligible. (C1) represents the
rate of irreversible work done on the wall by the disturbance pressure; it provides a
very small contribution to the Dean vortex mode, while it is large for the FISI
modes. (C2) was identified by Carpenter (1990) as an extra-energy removal term
for the case of the Tollmien–Schlichting instability. In the present case, (C2) is
positive for the spanwise-periodic surface modes, thus providing energy to the
disturbance for all values of the spanwise wavenumber b. In addition, (C2) feeds
energy to the Deanmode at low bs, and drains energy from it after b has exceeded a
threshold value. Finally, the term (G1) is the centrifugal energy production term,
always positive—and small—in our case.Although itmight be interesting to raiseg
and increase the importance of such a term, it should be kept in mind that our
equations remain tenable only in the small g limit.
3. Results

The number of parameters at play is very large; hence we have restricted
attention to the case of two walls with identical physical and mechanical
properties. We will pay particular attention to the effects of the rigidity of the
walls (through the flexural rigidity B) and to the damping coefficient d.
Following Davies & Carpenter (1997a), the spring stiffness K is usually taken
equal to B/4 (unless otherwise indicated), the mass of each wall takes the value
mZ2 and the longitudinal tension T is assumed equal to zero. These assumptions
limit somehow the generality of our results, although some numerical tests (not
reported here) carried out with different parametric conditions are reassuring as
to a wide applicability of the conclusions drawn below.

The relative value of K versus B is important since awZðK=BÞ1=4 represents
the wavenumber at which free waves in the compliant wall can propagate with
minimum possible phase speed. Since a match between a wavenumber
characteristic of the coating and one which characterizes fluid-based disturbances
could be necessary for the wall to have a significant effect on the fluid, aw will also
be allowed to vary, to assess whether some wall parameters can be found that
maximally affect Dean vortices.

(a ) Streamwise-homogeneous disturbances

We are first concerned with the effect of compliant coatings on modes with
aZ0. The Dean vortex mode belongs to this class. Representative neutral curves
for different values of K and in the absence of viscous damping are shown in
figure 2a. For K larger than 105, the curves are indistinguishable from that of the
rigid-wall case. As the walls become softer, two phenomena occur: (i) Dean
modes are destabilized at smaller values of the Reynolds number, for bs below
the critical value of the rigid-wall case and (ii) for even larger spanwise
wavelengths, the Dean instability is preceded by a weakly amplified surface wave
(simply labelled as FISI, grey regions in the figure 2). Hence, as far as a delay of
the Dean instability is concerned, the adoption of flexible walls with the
characteristics indicated has, at best, no effect for b larger than two. Conversely,
if the walls are too soft, for example, when coatings made from household gelatin
or a PVC plastisol (Gad-el-Hak 1986) are employed, a long spanwise wave
surface-based mode can be excited at very low Re. Numerical results obtained for
Proc. R. Soc. A (2007)
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Figure 2. Neutral curves showing the effect of wall compliance on streamwise homogeneous
disturbances. The grey regions correspond to an unstable spanwise-periodic FISI. The damping
coefficient d is taken equal to zero. (a) KZB/4; vertical dashed lines are drawn for ReZ225 and
ReZ275. (b) BZ400, effect of varying K.
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decreasing values of b suggest that the critical spanwise wavenumber of the
travelling wave tends to zero, which would correspond to a mode with no
horizontal structure. However, modes with b/0 are outside of the domain of
validity of our equations (see discussion at the end of §2b). Furthermore, the
numerical search of solutions characterized by aZ0 and very small bs is very
difficult owing to the stiffness of the equations, with the spanwise velocity ŵ that
progressively decouples from the other dependent variables as the spanwise
wavenumber decreases. On the other hand, as already anticipated, such low-b
modes are immediately stabilized by the presence of even a weak damping in the
wall. Further tests demonstrate that the onset of FISI modes is delayed when the
curvature parameter is decreased.

The influence of aw is investigated in figure 2b via variations of the spring
stiffness K for a flexural rigidity fixed at BZ400. An increase in spring stiffness
has a stabilizing effect on both large-wavelength Dean vortices and FISI.
Additionally, the broadest region of destabilized wavenumbers for the spanwise-
periodic surface modes corresponds to the case KzB (i.e. awz1); this unstable
region shrinks with either an increase or a decrease of K and remains localized in
a region of small b, reflecting a weak coupling between the characteristic coating
length (aK1

w ) and the wavelength of the Dean modes.
In figure 3a, we have fixed ReZ225, KZ1000 and BZ4000 and spanned the b

range from 0.1 to 2.0, plotting all the points of the spectrum. Three modes are
clearly identified, labelled in figure 3a as ‘Dean vortex’, ‘FISI1’ and ‘FISI2’. The
latter mode is damped for all bs; the other two exhibit opposite behaviours with
the increase of the spanwise wavenumber. For b larger than approximately 0.75,
the growth rate of the steady Dean mode exceeds that of the FISI1 mode. This is
confirmed by the plot of the amplification rate (2s) of the disturbance kinetic
energy Ek versus b displayed in figure 3b. The Dean mode becomes unstable for b
larger than 0.82 and achieves its maximum amplification at bZ2.22. Although for
small bs, the FISI1 mode is dominant, its amplification factor remains very small
and the mode is unlikely to be responsible for transition in practical applications.
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Interestingly, two such surface modes appear simultaneously with opposite phase
velocities and their superposition could yield a standing wave. To assess the
direction in which the energy of the FISI1 modes propagates, the group velocity
must be computed. For example, for the parameters of figure 3a, when aZ0 and
bZ0.2, the phase speed along z is czZG0.414, whereas the two components of the
group velocity are cgxZKvsi=vaZ0:2407 and cgzZKvsi=vbZG0:0136. Thus, in
general, long-wave spanwise-periodic surface-based instabilities transport energy
obliquely in the (x, z) plane.

In figure 4, the terms contributing themost to the energy budget of the spanwise-
periodic FISI1 mode are plotted as function of b. The figure demonstrates that the
budget is dominated by the terms denoted by (I 2), (C1) and (C2), with the latter
two terms always destabilizing. Analysis of the individual contributions reveals
that all the termswhich depend ong have no influence in the balance, and that (C2)
is the main source of energy up to b equal to approximately 2.2. As the waves
become shorter (in z), the work done on the wall by the disturbance pressure, term
(C1), contributes the most to the disturbance energy balance, with a strong
damping effect provided by viscous dissipation, through term (I 2).

At slightly larger values of Re, the FISI1 mode is damped and the Dean vortex
dominate. The total kinetic energy and the main terms of the energy balance for
the Dean mode are calculated for ReZ275 and compared to the rigid-wall case in
figure 5. The most important terms are (I 1), (I 2) and (C2), with (C2) stabilizing
(like for Tollmien–Schlichting waves, Carpenter 1990) except for the case of
vortices elongated in z. The comparison with the rigid-wall case indicates that
the destabilization of the large-wavelength modes is not due to an increase of
energy production by the Reynolds stresses (I 1), contrary to what happens for
Tollmien–Schlichting waves or crossflow vortices (Cooper & Carpenter 1997a).
The major influence of wall compliance occurs through a decrease of viscous
dissipation (I 2) and the appearance of (C2), destabilizing for small values of b.

The shapes of the different modes are displayed in figure 6, for the same
parameter values as in figure 3a for bZ0.7. The streamwise û and wall-normal v̂
Proc. R. Soc. A (2007)
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velocity shapes for the Dean vortices resemble those for the rigid-wall case, aside
from the behaviour in the vicinity of the walls. FISIs exhibit, as it could have
been expected, velocity peaks in correspondence of yZG1.

Kramer’s surfaces typically include a viscous fluid substrate through the
presence of the coefficient d in equation (2.8) (Carpenter & Garrad 1985). The
effect of this parameter can be assessed from figure 7. The surface-based mode
present when dZ0 disappears in the presence of damping; the neutral curves for
various values of ds0 are all superposed to one another and correspond to
stationary streamwise vortices. The effect of d appears when attention shifts from
marginal curves to isolines of constant srs0. For example, when srZ0.01, the
figure shows that modes with low bs are stabilized by damping. For dZ1000, the
curve of constant amplification approaches that for the rigid-wall case.
Proc. R. Soc. A (2007)
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| û |

0 0.01 0.02 0.03 0.04
–1.0

–0.5

0

0.5

1.0

y

0.03 0.04 0.05 0.06 0 0.01 0.02 0.03 0.04 0.05

(a) (b) (c)
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The results obtained demonstrate that compliance does not stabilize longitudinal
vortex structures induced by centrifugal forces; this is in contradiction with the
limited experimental data available (Yurchenko&Babenko 1987). The experiments
by Yurchenko & Babenko (1987) dealt with near-wall Görtler vortices and the
presence of slip boundaries has an influence in their case. The effect of compliance on
near-wall flow structures is confirmed by the measurements by Choi et al. (1997),
where a 7% drag reduction is found for the case of a turbulent boundary layer. The
different behaviour encountered here is noteworthy; it must probably be ascribed to
the fact that Dean vortices are not confined to a thin, near-wall layer.
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Since transition inwall-bounded shear flows is linked to the receptivity conditions,
and waves with a different from zero might be excited by the environment, it is
worthwhile to extend the investigation to different kinds of modes.
(b ) Spanwise-homogeneous disturbances

The results for waves with bZ0 are very similar to those of the plane channel
case. The effect of curvature on the marginal stability of Tollmien–Schlichting
modes can be inferred from examination of figure 8a. When dZgZ0, the results
in the figure are identical to those reported by Davies & Carpenter (1997a) (cf.
their figure 1). Notably, increased wall compliance shrinks the marginal curve,
forcing it to close into a single loop. This stabilizing effect is further enhanced by
curvature, whereas damping (cf. Figure 8b) is destabilizing, and more so for
increasing compliance.

Besides the viscous mode, wall-based instabilities may appear, such as TWF
(Carpenter & Garrad 1985, 1986). Like for the case aZ0, wall damping tends to
reduce the amplification of surface-based modes. In the present case, the TWF
has been classified into two categories, quasi-symmetrical (STWF) and quasi-
antisymmetrical (ATWF), with the prefix ‘quasi’ stemming from the presence of
curvature. The study of Davies & Carpenter (1997a) for the case of the plane
channel focused on TWF with the same parity as the Tollmien–Schlichting
instability, e.g. v̂ is symmetric about the channel centreline.

However, it has been clear since Nagata & Cole (1999) that antisymmetric
TWF modes always become unstable before their symmetric counterparts, at
least for the same parameters considered by Davies & Carpenter (1997a) (it
should also be observed that the labels in fig. 1 of the paper by Nagata & Cole are
misplaced; they should be, from top to bottom, (b), (c) and (a)). The situation is
similar when the channel is curved, and the neutral curves are but slightly
displaced with respect to the plane case. The spectrum in figure 9 pertains to the
case aZ1 and it reveals that two TWF modes of positive phase velocity, i.e.
Proc. R. Soc. A (2007)
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negative si , remain very close to the imaginary s axis (rendering difficult the
numerical identification of the neutral curve) in a large range of Reynolds
numbers (3000!Re!5000), before the growth rate of the ATWF mode starts
increasing in a clear manner. At ReZ10 000, it is the quasi-antisymmetric wave
that exhibits the largest amplification; when Re has increased to the value of
16 000 the quasi-symmetric mode grows faster. For the untensioned wall
considered, the phase velocity of the STWF modes at each value of Re is well
approximated by the relation proposed by Davies & Carpenter (1997a) for the
critical speed of travelling flutter modes, i.e.

cm Z
1

Re

4KB

ðmC1=5Þ2
� �1=4

:

In the Re range considered, the TS-mode is always stable. Furthermore, two
upstream TWF modes are present in the spectrum; they are damped, and
increasingly so with the increase of Re. The eigenfunctions of the two unstable
TWF modes at ReZ10 000 are plotted in figure 10. These plots show that in
both cases the flow is separated into two regions: an almost parallel core region
and a near-wall flow region. Quasi-symmetric and antisymmetric pressure
fluctuations produce oscillations of the walls, which propagate downstream at
speeds close to the bulk speed.

Isolines of amplification rate in the a–Re plane are provided in figure 11. The
left frame, obtained for KZ107, makes clear that transition can be initiated by
the quasi-antisymmetric instability waves. The kinks in the isolines reveal the
points where the growth of the quasi-symmetric TWF mode overtakes that of the
ATWF. On the right frame, for the case of larger spring stiffness, we observe that
Proc. R. Soc. A (2007)
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the TS mode occurs earlier than the streamwise-travelling wall-based modes. For
larger values of Re, the quasi-antisymmetric mode (which is but mildly delayed
by damping, whereas the TS mode is practically unaffected) is capable of
destabilizing waves in a large range of wavenumbers. Quasi-symmetric modes
become dominant for Re exceeding 20 000 (not shown in the figure).

The influence of aw is considered in figure 12 for a flexural rigidity fixed at
BZ24!107. Like for the case of the spanwise-periodic surface waves, the TWF
modes are stabilized by an increase in spring stiffness. Conversely, TS waves are
only slightly destabilized.

To conclude this section, we observe that TWF modes can completely overrule
Tollmien–Schlichting instabilities and be the primary causes of transition when
the compliance of the wall is increased. However, by comparison with the results
of the previous section, it is evident that very soft coatings would be required for
TWF to become ‘competitive’ with the Dean vortex mode in triggering transition
for the value of g considered. As far as transition delay is concerned, also for the
case of spanwise-homogeneous disturbances, there is not much of a case for wall
coating, at least in the isotropic form proposed here, owing to the premature
appearance of surface-based instabilities.
(c ) Three-dimensional disturbances

With the scalings employed for the coating properties, a generalization of
Squire’s theorem applies to the plane channel case so that attention can be
focused on the case of two-dimensional disturbances (Rotenberry & Saffman,
1990; Davies & Carpenter 1997a). When curvature is present, no such theorem
applies and the behaviour of three-dimensional waves must be studied. The
results shown in figure 13 pertain to the rigid-wall cases and provide a reference
against which subsequent results can be compared. The figure shows that when
oblique modes are excited by the receptivity conditions, steady vortices are
Proc. R. Soc. A (2007)
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progressively stabilized when a increases. This indicates that a Squire-like
theorem applies, i.e. that in centrifugally unstable flows the critical conditions
can be obtained from consideration of two-dimensional modes with aZ0.
Conversely, as a is raised above zero, the viscous TS mode is destabilized
initially, with a subsequent stabilization for larger a values. Critical conditions
are found for RecZ5814 and acZ1.018 when b vanishes. Comparing the growth
rates of the two modes for all possible orientations of the horizontal wavevector
shows that the centrifugal mode is never overruled by the viscous mode. For this
to occur, g should be taken smaller than 2!10K5.

Also in the presence of wall compliance, the viscous instability becomes
irrelevant in bringing about transition, owing to the appearance of surface-based
modes. For small values of a, the situation is qualitatively similar to that
treated in §3a; for large values of a compared with b, the behaviour can be
reconducted to that described in §3b. The intermediate situation of aZ1 is
considered in figure 14, where curves of constant amplification factor sr are
displayed in the b–Re plane for different values of the spring stiffness K. For the
case of very soft coatings (KZ103), a TWF mode disposed obliquely in the
horizontal plane emerges as the main cause of instability for Re as low as 28.
The centrifugal mode is dominant only when b is larger than 6; it grows much
more slowly than the surface-based mode (as it can be easily inferred by
comparing the spacing between isolines for the two cases). Increasing the spring
stiffness has a negligible influence on the centrifugal mode, whereas the onset of
the rapidly growing flow-induced surface instability is shifted to higher values of
the Reynolds number.
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4. Conclusions

A study of the different modes of instability occurring in a curved channel
equipped with Kramer-type walls has been conducted. The compliant surfaces
have been treated as thin elastic shells supported by rigid frames through arrays of
springs, following a procedure initiated by Benjamin (1960) and Landahl (1962)
and perfected by Peter Carpenter and co-workers in a long series of publications.

As far as hydrodynamic modes are concerned, it is found that wall compliance
has a noticeable effect on both Dean and TS waves. Long-wavelength Dean
modes are destabilized by soft coating by the combined action of the Reynolds
stress production term (term (I 1) in equation (2.16)) and the term of diffusion of
momentum from the wall (term (C2)). For sufficiently large values of the
spanwise wavenumber b, no differences are found when compared with the rigid-
wall Dean case. The influence of compliance on the Tollmien–Schlichting
instability is the same as in the plane channel case and soft coatings can
completely stabilize the mode, provided that wall damping remains small.
Proc. R. Soc. A (2007)
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The importance of compliance is manifest in the appearance of hydroelastic
modes, and in this problem a long spanwise-periodic surface instability has been
discovered. Such a mode appears in the small b limit owing to the diffusion of
momentum from the flexible wall towards the fluid (the disturbance energy
source term is (C2)). The mode is weakly amplified and it transports energy both
along x and z; its growth is reduced by viscoelastic losses in the wall or by
lowering the curvature parameter g. When two-dimensional spanwise homo-
geneous disturbances are focused upon, the results conform to those of the plane
channel case; the importance of considering quasi-antisymmetric v̂-modes in the
analysis of TWF instabilities has been highlighted.

Despite the large number of parameters at play, we have conducted a rather
extensive parametric investigation, without ever being able to identify SD modes
or the occurrence of absolutely unstable coalescing modes. The present problem
appears thus to give rise uniquely to convective instabilities so that the
environment crucially determines structure and orientation of the developing
perturbations. A receptivity analysis of this flow following the lead of Luchini &
Bottaro (1998) could provide useful indications on the initial conditions more
likely to provoke transition. Another interesting line of research concerns the
study of hydrodynamic and hydroelastic modes in a boundary layer over a curved
compliant wall; if such instabilities are of convective nature—as the present study
suggests for the related case of the curved channel flow—their study could be
conducted on the basis of the parabolic equations derived by Hall (1983).

We thank Mohamed Gad-el-Hak for interesting discussions on the topic of this paper and
Francesco Asuni for his help with some numerical calculations. A.G. has been supported during her
stay in Genova by a Marie Curie Early Stage Training grant through the FLUBIO project (MEST-
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