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The propagation of waves in an inhomogeneous medium, or of small disturbances in a fluid flow, is
often cumbersome to study, even by numerical means, because of the presence of fast oscillations. On
the other hand, when the oscillations become fast enough, both of these phenomena lend themselves
to a geometrical approximation using ray theory. A ray, formally defined as a characteristic line
of the eikonal equation, may be considered as a path along which the main contribution to the
Green’s function propagates. When dealing with instability waves in nonparallel boundary layers,
the ray coordinates are complex-valued. The extension to the complex plane of techniques which
are standard for the propagation of conservative waves can lead to useful asymptotic methods
approximating the instability, as will be shown in the example of the Falkner-Skan-Cooke flow. In
this approach, singularities may arise when multiple rays become tangent at a point, leading to the
formation of a caustic. The existence of caustics in boundary layers is demonstrated and a method
is proposed to account for their presence.

PACS: 47.20-k, 47.35.+i, 42.25.-p

I. INTRODUCTION

The prediction of instabilities leading to transition in
three-dimensional boundary layers has been the subject
of intense research over the last thirty years. Since tran-
sition in most shear flows is influenced to a great extent
by environmental conditions, it is of great interest to be
able to determine the spatial development of disturbances
induced by a small external forcing. This may be alter-
natively characterized in time by an impulse response
or by the response to harmonic forcing. Both problems
constitute canonical models, whose understanding is in-
dispensable to develop predictive tools to appraise the
stability characteristics and the ensuing transition phe-
nomenon for, e.g., the flow over swept wings. Depending
on the physical situation one model may be more perti-
nent than the other: a small roughness element on a wing,
for example, might be modelled as a harmonic forcing of
zero frequency, whereas the injection of atmospheric tur-
bulence into the boundary layer is best represented as
an impulse forcing. Since it is typically very difficult to
assess properly the receptivity environment which deter-
mines transition under a wide range of conditions, each
one of these two configurations deserves particular atten-
tion.

When the disturbances are of small amplitude, a nu-
merical solution of the linearized Navier-Stokes equa-
tions is in principle possible. In practice, however,
whereas such a numerical solution is viable for slowly-
varying disturbances (transient growth), a rapidly oscil-
lating Tollmien-Schlichting wave in a Blasius boundary
layer undergoes at least 50 (spatial) periods of oscilla-
tion in its amplification towards transition. To properly
capture the instability over a long region of space, a very
refined grid is needed, rendering the numerics very costly,
particularly when a detailed parametric study is required.

A more elegant and computationally efficient approach
can be traced back to early work by [1], who solved
the linearized Navier-Stokes equations for the impulse-
response problem in a parallel flow using asymptotic
methods, focussing on the most amplified mode. Gaster
obtained the wave packet by writing the disturbance in
the form of a double integral in the spectral domain,
which he evaluated by a steepest descent method. For
each given direction of propagation, a saddle point in
spectral space was identified, point which provides the
largest contribution to the integral. This procedure in-
troduces the concept of ray in hydrodynamic stability,
defined as the line along which the instability wave prop-
agates. In a seminal article [2] applied the concept of
kinematic wave theory (see [3] and [4]) to flow instability
within the problem of shear-flow transition. In partic-
ular, Landahl used the concept of rays which are the
characteristic lines of the dispersion relation for the wave
vector. The extension of the theory, originally developed
for neutral (or quasi-neutral) waves, to instability waves
is not straightforward. The generalization to the case of
unstable waves was apparently initiated by [5]. He solved
the linearized Navier-Stokes equations subject to a point-
wise impulse forcing by performing a multiple-scale anal-
ysis. The leading-order problem yields the eikonal equa-
tion which Itoh treated by the method of characteristics,
leading to ray theory.

In parallel flows, there is perfect equivalence between
ray theory and the Fourier-integral formulation of, for
example, [1]. With time, a number of improvements over
the original integral formulation were proposed. For ex-
ample, around the most amplified wavenumber, which
plays a crucial role in transition, an expansion can be
made to compute the disturbance, leading to the gaus-

sian approximation proposed by [6]. On the other hand,
the many different studies on convective/absolute insta-
bilities which appeared in the literature in the last thirty
years encouraged people in the way of using the original
approach, i.e. to pursue a solution of the impulse and/or
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harmonic forcing problems by closing the contour of in-
tegration and using the residue theorem to apply Briggs’
method. [7] provides an example and a complete way
to compute three-dimensional wave packets in parallel
flows.

Whereas the integral formulation is perfectly appropri-
ate for parallel flows, problems arise when trying to han-
dle an inhomogeneous base motion, such as that occur-
ring over a swept tapered wing, because a Fourier trans-
form can no longer be applied. Here, ray theory shows
its full power. In weakly non-parallel flows the inhomo-
geneities produce curved rays which, when the growth
rate of the instability differs from zero, force the ray tra-
jectories to go into the complex plane. This has been
the crux of the problem for some time. Initially, a num-
ber of attempts were made to force the rays to remain in
the real plane, but it was proved later that this real axis
approximation can be grossly inaccurate (see [8]).

We also note that more than one definition has been
provided in weakly non-parallel flows of the amplifica-
tion undergone by an instability wave. To compute the
N -factor used to identify the transition ”point” by the
eN method, one has to integrate the amplification rate
along the path followed by the energy-transporting wave.
This path is determined by the group velocity, i.e. by
the rays. [9], for example, developed a theory (denoted
as the “zarf”) that yields the N -factor by conducting the
integration over the locus of points with real group ve-
locity. Whereas this approach provides a conservative
estimate of the maximum amplification, because as will
be shown later the amplification rate is greatest when
wavenumber and group velocity are simultaneously real,
it actually compounds together amplification rates that
belong to different waves, and thus does not accurately
represent any one of them. For this latter purpose it
is necessary to use the local properties of the flow and
compute the complex-valued trajectory of each instabil-
ity wave in coordinate-wavenumber space [40]. One of
the first applications of complex-ray theory to boundary
layers was performed by [10]. He found the disturbance
at a given physical point in a Falker-Skan-Cooke bound-
ary layer (model of the flow over an infinite swept wing)
by computing the ray which starts from a point source
and reaches a target point through a path in complex
space. [11] used a similar method and also underlined
the confusion thereto made in eN methods as applied to
non-parallel flows. A complete mathematical formula-
tion of complex-ray theory as applied to fluid mechanics
has recently been developed by [12]. Much earlier ap-
plications have existed, of course, in fields such as elec-
tromagnetics, quantum mechanics, plasma dynamics and
laser optics (see e.g. [13]).

The approach we will present here is similar to Itoh’s

[40] The formulation of the problem may lead to rays with either
complex coordinates or complex wavenumber or both.

and Lingwood’s, but we bring some extra theoretical re-
sults concerning the physical optics approximation, i.e.

the subsequent correction to the leading-order approxi-
mation (known as geometrical optics) and concerning the
possible appearance of caustics in the pattern of rays.
Furthermore, in [5] the treatment of the compatibility
condition was approximated; here a method is developed
to exactly handle this condition. Finally, the fact that
rays transport both the phase and the amplitude of the
disturbance is shown. Through examples, we shall also
examine where and when it is important to account for
the physical optics correction.

We choose to focus on wedge-shaped disturbances orig-
inating from a harmonic point source in a Falker-Skan-
Cooke flow. Whereas this example is of some practical in-
terest (since it is an intermediate step towards the swept
wing) it is interesting also in that it demonstrates the ex-
istence of caustics in a boundary layer. The phenomenon
of caustics is very well known in other fields of physics;
for fluid flows it is known to take place, for example, on
the edges of the wake produced by a boat progressing in
still water. In this problem, the boat can be modeled
by a steady point source, and it can be shown that an
interaction between waves propagating in the direction
toward and away from the boat lead to this effect ([14]).
On the other hand, impulse forcing in time would corre-
spond here to a stone thrown in a river: the circular wave
crests cannot self-interact and no caustics are found. In
boundary layers, the word caustic first appeared in [1]
and then in [15] for a time-impulsive excitation (see also
[16]). In [11]’s reconsideration of the impulse problem
no caustics were found. However, the question remains
open on whether caustics can indeed occur in the prop-
agation of flow instabilities, because the case of time-
harmonic forcing has not yet been considered. This case
is addressed here on some specific (representative) test
problems, issued from a general theoretical background.

II. COMPLEX-RAY THEORY

To develop the mathematical formulation of complex-
ray theory as applied to instability waves in weakly inho-
mogeneous media we start from classical multiple-scale
analysis, following the lead of authors such as [17], [18],
[19] and [20]. The theory of characteristics is then applied
to the eikonal equation, obtained from the leading-order
equations.

A. Multiple-scale analysis in boundary layers

We consider the conventional dimensionless Navier-
Stokes equations for an incompressible fluid whose state
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FIG. 1: Boundary layer development over an infinite swept
wing. The attachment line is shown as a dashed line; the
external streamline is plotted with dotted line and the veloc-
ity profiles in the reference frame attached to the chordwise
direction is also sketched.

is defined by a velocity vector V and a pressure field P :

DV

Dt
= −∇P +

1

Re
∇2

V,

∇ · V = 0.
(1)

The coordinate system is defined by x∗, streamwise coor-
dinate, y∗, wall-normal coordinate and z∗, spanwise co-
ordinate, a superscript ∗ referring to dimensional quan-
tities. In the system of equations (1), D/Dt denotes the
convective derivative, and the Reynolds number is de-
fined as:

Re =
Q∗

eδ
∗

ν
, (2)

with Q∗
e =

√

(U∗
e )2 + (W ∗

e )2, U∗
e being the x∗-component

of the velocity outside the boundary layer, W ∗
e the z∗

component of the velocity outside the boundary layer
and δ∗ being a representative boundary-layer thickness
(which in the particular case of Falkner-Skan-Cooke flow

will be taken δ∗ = (l∗0ν/Q∗
e)

1
2 , in terms of the abscissa

l∗0 where the disturbance is applied, cf. figure 1). Thus,
all lengths are nondimensionalized by δ∗, velocities by
Q∗

e and time by δ∗/Q∗
e. The system is closed by no-slip

boundary conditions at the solid wall and by the imposed
free-stream conditions.

The state of the system is decomposed into a steady
base flow plus a small disturbance:

V = V + v,

P = P + p.
(3)

We then apply the boundary layer approximation. A
small parameter ε is introduced, function of the ratio of
the characteristic transverse to the longitudinal scale; it
indicates the property of the boundary layer that varia-
tions along the directions x and z are slower than along
the direction normal to the wall y. New coordinates are
then introduced, defined by X = εx, Y = y, Z = εz and
T = εt, so that the base flow can be written as a power

series in ε:

V(x, y, z) = V0(X, Y, Z) + V1(X, Y, Z)ε + ...

P (x, y, z) = P0(X, Y, Z) + P1(X, Y, Z)ε + ...
(4)

Upon inserting (4) into system (1), the leading-order
term in the continuity equation trivially yields V0 = 0.

B. Linear system for the disturbance

The disturbance equations are obtained by substitut-
ing (3) into system (1). Quadratic terms for the distur-
bances are neglected and only a time harmonic frequency
ω is considered. This leads to the following linear system:

−iωu + εUuX + V uY + εWuZ + εuUX + vUY + εwUZ

= −εpX +
1

Re

(

ε2uXX + uY Y + ε2uZZ

)

−iωv + εUvX + V vY + εWvZ + εuV X + vV Y + εwV Z

= −εpY +
1

Re

(

ε2vXX + vY Y + ε2vZZ

)

−iωw + εUwX + V wY + εWwZ + εuW X + vW Y + εwW Z

= −εpZ +
1

Re

(

ε2wXX + wY Y + ε2wZZ

)

εuX + vY + εwZ = 0

(5)

As already mentioned, we observe that in its general for-
mulation ray theory can handle the case of impulse forc-
ing in time (cf. [5] and [11]).

C. Multiple-scale (WKB) analysis

To solve the linear system (5) two procedures are pos-
sible. The first approach, based on an asymptotic expan-
sion in which ε, Re−1 and ω are simultaneously driven to
zero in a coupled manner, leads to a multiple-deck for-
mulation. The wall-normal direction is decomposed into
several layers, the number of which changes with the as-
sumed asymptotic dependence between ω and Re, and
the solution is expressed in the form of matched asymp-
totic expansions. The advantage of this method is that
an explicit dependence on the parameters is obtained,
in the form of a power series. However, when practi-
cal applications are sought after, i.e when the Reynold
number is not exceedingly large, the convergence of this
method is slow and the leading-order term of the series
does not provide a sufficiently accurate solution. Another
method, yielding a solution uniformly valid in y, consists
of asymptotically expanding equations (5) with respect to
ε only, while retaining their exact parametric dependence
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on ω and Re. This is, without doubt, formally allowed,
even in cases in which the value of ε we are finally inter-
ested in is O(Re−1) (see e.g [21]). Not neglecting higher-
order terms in Re−1 and ω does not harm the accuracy
of the solution. In addition it should be noted that the
limit of ε → 0 for fixed ω and Re is physically realizable,
for instance in a channel with slowly diverging walls or in
a boundary layer subject to a steady external bulk force.
The appropriate expansion in the limit of ε → 0 for given
ω and Re is the multi-dimensional equivalent of a WKB
expansion (see, for example, [1] and [19]).

We thus look for solutions of (5) in the form:

v(X, Y, Z) = ei Φ(X,Z)
ε (v0(X, Y, Z) + v1(X, Y, Z)ε + ...) ,

p(X, Y, Z) = ei Φ(X,Z)
ε (p0(X, Y, Z) + p1(X, Y, Z)ε + ...) .

(6)
The disturbance is represented as a wave rapidly oscillat-
ing in the X and Z directions, and thus having a large
phase Φ/ε.

The local wavenumbers of the disturbance can be de-
fined as:

α =
∂Φ

∂X
,

β =
∂Φ

∂Z
.

(7)

To obtain equations of successive orders for the distur-
bance, we substitute (6) into (5), and make use of (4).
Thence:

• Order ε0:

i(αU0 + βW0 − ω)u0 + U0Y v0

= −iαp0 +
1

Re

(

u0Y Y − (α2 + β2)u0

)

i(αU0 + βW0 − ω)v0

= −p0Y +
1

Re

(

v0Y Y − (α2 + β2)v0

)

i(αU0 + βW0 − ω)w0 + W0Y v0

= −iβp0 +
1

Re

(

w0Y Y − (α2 + β2)w0

)

iαu0 + v0Y + iβv0 = 0

(8)

• Order ε1:

i(αU0 + βW0 − ω)u1 + U0Y v1 =

−iαp1 +
1

Re

(

u1Y Y − (α2 + β2)u1

)

+ A1,

i(αU0 + βW0 − ω)v1 =

−p1Y +
1

Re

(

v1Y Y − (α2 + β2)v1

)

+ A2,

i(αU0 + βW0 − ω)w1 + W0Y v1 =

−iβp1 +
1

Re

(

w1Y Y − (α2 + β2)w1

)

+ A3,

iαu1 + v1Y + iβv1 = A4,

(9)

with A1 to A4 given in Appendix A. In this paper we
do not address the limit in which ε and Re−1 (and pos-
sibly ω) simultaneously tend to zero. In such a limit
slightly different forms of equations (8-9) can be intro-
duced which differ in their asymptotic error estimation
but often produce practically equivalent results, see e.g

[22] and [23].

D. Local eigenvalue problem

In order for the solution (v0, p0) of system (8) to exist,
the wavenumbers α, β and the frequency ω have to satisfy
a dispersion relation which we formally write as:

F (α, β, ω, X, Z) = 0. (10)

Equation (10) can alternatively be made explicit with
respect to one of its arguments. It is straightforward
to show that (8) can be reduced to the following Orr-
Sommerfeld/Squire eigenproblem:

[(−iω + iαU0 + iβW0)(D
2 − k2) − iαU0Y Y

−iβW0Y Y −
1

Re
(D2 − k2)2]v0 = 0,

[(−iω + iαU0 + iβW0) −
1

Re
(D2 − k2)]η0

= [iαW0Y − iβU0Y ] v0,

(11)

with η0 = i(βu0 − αw0), k = α2 + β2 and D denoting
derivation with respect to Y . The boundary conditions
for this system are:

v0 = Dv0 = 0 at Y = 0 and Y → +∞,

η0 = 0 at Y = 0 and Y → +∞.
(12)

The above equations have been solved by a pseudospec-
tral collocation technique, implemented in MatLab. We
have chosen to discretize the Y direction at the Gauss-
Lobatto points, with at least 30 collocation points inside
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the boundary layer. A shooting method is used to solve
the spatial eigenvalue problem for the mode of interest.

Since we only look for the most amplified streamwise
wavenumber, it is convenient to express (10) as:

α = f(β, ω, X, Z) (13)

α denoting the numerically determined eigenvalue from
the above procedure.

E. The equations for the rays

The local properties defined by the dispersion relation
(13) are all that is needed to determine the global propa-
gation of the instability. In fact, the phase Φ can now be
computed as the solution to the eikonal equation, defined
as the equation that is obtained after sustituting (7) into
(13):

ΦX = f(ΦZ , ω, X, Z). (14)

This first-order partial differential equation for Φ can be
solved by the method of characteristics, as explained,
e.g., in [24] (p. 75). This yields the equations for the
rays:

dZ

dX
= −

∂α

∂β
,

dβ

dX
=

∂α

∂Z
,

dΦ

dX
=α − β

∂α

∂β
,

(15)

X having been chosen as the variable which parameter-
izes the rays.

The first equation of system (15) gives the trajectory
of a ray in the (X, Z) plane. The slope of this tra-
jectory in space is determined by a “group direction”
dg = −∂α/∂β, which is a priori a complex number. This
is the main difference with standard ray theory devel-
oped for nondissipative waves by e.g. [14]. The possible
occurrence of unstable waves implies that the physical
Z space is complex, i.e. a ray is a curve in the three-
dimensional space (X, Zr, Zi) (subscripts r and i refer-
ring to the real and imaginary part of the variable). The
second of equations (15) yields the variation of the span-
wise wavenumber β, and the last equation provides the
spatial variation of the phase itself along the ray.

The choice of X as the independent variable is mo-
tivated by the fact that the base flow depends on this
coordinate, which is thus kept real. With this choice we
avoid having to perform an analytical continuation of the
base flow in complex space. On the other hand, when the
base flow also depends on Z (as is the case for the mo-
tion over swept tapered wings), the analytic continuation
cannot be avoided.

The ray equations can be solved numerically by com-
puting at each position X the dispersion relation and its

derivatives; the spatial integration of equations (15) is
performed here with a fourth-order Runge-Kutta scheme.
In the examples presented later, 10 streamwise points
have proven sufficient to ensure the convergence of the
ray trajectories.

F. Action principle for the rays

In this section an alternative formulation of ray the-
ory is outlined, classical for purely dispersive waves but
whose extension to complex rays is not widely known; it
provides a complementary view and some useful proper-
ties for the rest of the work. The ray equations can be
rewritten in the following form:

dZ

dX
=

∂H

∂β
,

dβ

dX
= −

∂H

∂Z
,

(16)

with H = −α. As indicated by [4], [14] and many others
before, equations (16) describe a Hamilton system with
H the Hamiltonian; X plays the role of time, Z that of
position and β is the momentum.

It is then possible to derive an action principle. A
Lagrangian operator associated to H can be defined as:

L = β
dZ

dX
− H. (17)

The action associated to an arbitrary path in the X-Z
plane can be expressed as the integral:

S =

∫ X2

X1

LdX, (18)

which is a function of the path of integration and of the
initial and final stations X1 and X2. Incidentally, we note
that we could also have defined an ordinary “temporal
Lagrangian”, leading to the same action as an integral
over time rather than X , had we aimed at solving the
problem of the impulse response, like [5] or [11].

As explained for instance in [25], it is possible to show
the equivalence between (16) and the fact that the action
is an extremum if the path of integration is the ray. This
principle is widely used in optics to define the ray, i.e. the
shortest optical path (Snell’s law), as well as in classical
and in quantum mechanics. The main difference here is
that the functions S, H and L are complex-valued and
defined for complex arguments (see [13] on the subject).
Nonetheless we still find, comparing (18) and the last of
(15), that the value of the action integral computed along
the ray equals the (complex) phase difference between the
final and initial state:

S(X1, Z1, X2, Z2) = Φ2 − Φ1. (19)

A ray can be specified either by its starting coordi-
nates and wavenumber or by its initial and final positions
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(X1, Z1) and (X2, Z2), in the same way as in classical me-
chanics the trajectory of a particle is determined either
by its initial position and momentum or by two positions
at different instants of time. The action (phase differ-
ence) associated with the ray that passes through given
initial and final positions has useful properties. When Z1

or Z2 are modified, following [25] (p. 205), it is possible
to write:

∂S(X1, Z1, X2, Z2)

∂Z1
= −β1 ;

∂S(X1, Z1, X2, Z2)

∂Z2
= β2.

(20)
This property depends only on formal differentiation of
the integral (18), and remains true in the complex do-
main. Sometimes, it is preferable to specify a ray with its
final position Z2 and initial momentum β1. The change
of variables from Z1 to β1 corresponds to a canonical
transformation of the action into

Ŝ(X1, β1, X2, Z2) = S(X1, Z1, X2, Z2) + β1Z1. (21)

Differentiating this function with respect to β1 and using
(20) yields a useful formula that we shall exploit later:

∂Ŝ(X1, β1, X2, Z2)

∂β1
= Z1. (22)

It is important to observe that all the intermediate steps
leading to (22), although classically presented for conser-
vative systems only, remain valid when the action and its
arguments are complex.

G. Propagation of a sinusoidal disturbance along
rays

Let us suppose that at the initial station X1, for a given
forcing of temporal frequency ω, we have a disturbance
sinusoidal in the Z-direction of amplitude A and large
wavenumber β1/ε. It is possible to write it in the form:

a(X1, Z1, Y ) = A(X1, Z1)â0(X1, Z1, Y )ei
β1Z1

ε (23)

In the above expression, â0 = (v̂0, p̂0) denotes the nor-
malized eigenfunction of the most amplified mode com-
puted at the position X1. The normalization is per-
formed so that the maximum modulus of v0 equals 1
for every X, Z. By considering only the most ampli-
fied eigenfunction, we suppose that the disturbance will
be dominated by this mode at X2, far enough from X1.
This is generally verified for Tollmien-Schlichting modes.
For every specified physical mechanism which creates the
excitation, the initial amplitude A at X1 can be ob-
tained from the receptivity coefficient for the disturbance
through a suitable adjoint calculation (see, for example,
[26] and [27]). For the present purposes, A is consid-
ered to be a given (slowly varying) function of Z1 and
the problem consists in computing the propagation of an
initial sinusoidal disturbance, using ray theory, up to a

specified final location (X2, Z2). A fortiori, these coor-
dinates are real since we are interested in the physical
effect of the disturbance, but the intermediate path of
each ray is allowed to be complex. Only the leading or-
der of the WKB expansion, a0, is initially considered. It
is represented as the product of the vector normalized
eigenfunction â0 and the scalar amplitude A. The per-
turbation produced at X2 can then be written as follows:

a(X2, Z2, Y ) = A(X2, Z2)â0(X2, Z2, Y )e
i
ε Φ2(X2,Z2)

(24)
The phase Φ2 is associated with the ray of initial momen-
tum β1 at station X1 passing through the point (X2, Z2),
and can be calculated from the last of equations (15), i.e.
from the integral of the Lagrangian (17), with the initial
condition Φ1 = β1Z1. As the initial condition has a nar-
rowly determined wavenumber but an infinite range of Z,
the departure position Z1 of this ray is a priori undeter-
mined, and may turn out to be complex. The determina-
tion of Z1 is considerably simplified if it is observed that
Φ2(X2, Z2) coincides with the action Ŝ(X1, β1, X2, Z2)
as defined in equation (21), so that property (22) applies
to it. The wavenumber β2 is derived from the second
of the ray equations (15), or alternatively as ∂Ŝ/∂Z2,
and equals β1 if the base flow is homogeneous in the Z-
direction. The amplitude A can also be obtained along
each ray, by the procedure that is detailed next.

H. Propagation of the amplitude

In order to compute the amplitude A it is necessary to
write a compatibility condition using the O(ε) equations
(9). We start by rewriting (8) and (9) in compact form,
as:

L(a0) =0,

L(a1) =χ(a0),
(25)

with χ = (A1, A2, A3, A4). We now introduce the scalar
product

< b, a >=

∫ +∞

0

b
+
a dY, (26)

with the symbol + denoting conjugate transpose. From
(25) the following compatibility condition is found:

< b̂0, χ(a0) > = 0, (27)

with b̂0 the normalized eigenfunction of the operator ad-
joint to L.

In (27) a0 is now replaced by Aâ0 and, using the ex-
pression for χ, we obtain the first-order scalar differential
equation:

< b̂0, γX > AX+ < b̂0, γZ > AZ+ < b̂0, γ0 > A = 0,
(28)
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where the vectors γX, γZ and γ0 are given in Appendix B.
The above equation for A can be solved by the method
of characteristics (just as the eikonal equation (14)). The
slope of the characteristics for this linear first-order par-
tial differential equation in the (X, Z) plane is given by

− < b̂0, γZ > / < b̂0, γX >.

It is interesting to note that (even when Z is complex-
valued) the characteristics of the amplitude equation (28)
are just the rays. At a given station (X, Z), we can dif-
ferentiate the leading-order equation (25) with respect to
β. This gives:

Lβ(β, α)a0(β) +
∂α

∂β
Lα(β, α) + L(β, α)a0β(β) = 0.

(29)
By taking the scalar product of (29) with the adjoint

eigenfunction b̂0 and using the properties of the adjoint
we obtain the following result (already shown by [28]):

∂α

∂β
= −

< b̂0,Lβa0 >

< b̂0,Lαa0 >
. (30)

It is possible to check directly that −iLα = γX and
−iLβ = γZ. This proves the result that the rays are
also the characteristic lines of the equation for the am-
plitude, even in complex Z. We show in Appendix C
that this is a general property of this kind of systems.
As a consequence, the rays are the trajectories followed
by the instability, i.e. they transport both the phase and
the amplitude of the wave.

It is then possible to solve (28) and obtain:

A(X2, Z2) = A(X1, Z1)e
−

R X2
X1

<b̂0,γ0>

<b̂0,γX>
dX

, (31)

where the integral in (31) is carried out along the path
followed by the ray.

It is also important to observe that whereas the value
of A depends on the normalization of the egeinfunction
â0, the product a0 = Aâ0, being the solution of the WKB
system (25), is independent of this arbitrary choice.

I. Propagation of an initially pointlike disturbance

When the disturbance at the initial station X1 is not a
wave packet, i.e cannot be locally approximated by a si-
nusoid, then indirect methods must be adopted to study
its propagation. This is particularly true for the case of
a disturbance concentrated at a single position Z = 0;
a single ray is not sufficient to get a correct approxima-
tion of the disturbance wavepacket downstream. On the
other hand, if the pointlike disturbance is expanded in
a Fourier representation, the solution can be written as
an integral in spectral space. With the receptivity coef-
ficient (i.e. the initial amplitude) previously computed

and its Fourier transform denoted as Â(X1, β1), the ini-

tially localised disturbance can be written as:

a(X1, Z1, Y ) =
∫ +∞

−∞

Â(X1; β1)â0(X1, Z1, Y ; β1)e
i

β1Z1
ε dβ1,

(32)

i.e. as a sum of sinusoidal disturbances. The propagation
of the disturbance to the point (X2, Z2) can be calculated
from (24) (also denoted as a Maslov integral, see [29]):

a(X2, Z2, Y ) =
∫ +∞

−∞

A(X2, Z2; β1)â0(X2, Z2, Y ; β1)e
i
ε Φ2(X2,Z2)dβ1.

(33)

In â0 we have explicitely indicated β1 as a parameter.
It is clear, however, that the calculation of â0 in (33) is
performed by entering β2 in the local eigenvalue prob-
lem (11), with β2 related to β1 through the second of
equations (15).

To compute (33) without having to compute a ray for
every value of β1, a steepest-descent method can be used
(see e.g. [30]). In this method, the saddle point β? of the

phase Φ2(X2, Z2) = Ŝ(X1, β1, X2, Z2) provides the main
contributions to the integral. Such a point is defined by:

∂Ŝ

∂β1
(X1, β

?, X2, Z2) = 0. (34)

In the case of a pointlike disturbance, from (22), we ob-
tain that the ray corresponding to the saddle point starts
from Z1 = 0, consistently with the idea that the initial
disturbance is concentrated at this point. In the case of
a parallel flow, when β2 = β1, to find the position β? of
the saddle point one has to solve the following problem
by iterative methods (see [10]):

Z2 = −

∫ X2

X1

∂α

∂β
dX (35)

The saddle-point approximation of the disturbance at
a given location is then:

a(X2, Z2, Y ) '

A(X2, Z2; β
?)â0(X2, Z2, Y ; β?)e

i
ε Ŝ(X1,β?,X2,Z2)

√

√

√

√

2πiε
∂2Ŝ
∂β2

1
|β?

,

(36)

the accuracy of the result being of the same order as that
of the WKB approximation.

J. Falkner-Skan-Cooke equations for the base flow

A frequently used model for the flow over a swept wing
is the family of similarity solutions for yawed wedge flows
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developed by [31]. It introduces two parameters: m, re-
lated to the pressure gradient, and θ, which is the angle
between the external velocity components. We follow the
classical method to compute the base flow described in
[32], using the similarity variable ξ = (U ∗

e /(νx∗))1/2y∗.
The flow outside the boundary layer is supposed to be-
have like U∗

e = C(x∗)m and W ∗
e =constant. Upon posing

U
∗

= U∗
e f ′(ξ) and W

∗
= W ∗

e g(ξ) the functions f and g
are found to satisfy:

f ′′′ +
m + 1

2
ff ′′ + m(1 − f ′2) = 0,

g′′ +
m + 1

2
fg′ = 0,

(37)

with

f(0) = f ′(0) = g(0) = 0 and f ′(∞) = g(∞) = 1,
(38)

U
∗

and W
∗

are obtained by solving numerically the

system (37). The velocity normal to the wall V
∗

is then
deduced from mass conservation. When the Falkner-
Skan-Cooke flow is used as a local approximation of a
more general three-dimensional boundary layer, U ∗

e and
W ∗

e are taken as the local external velocity components
and m is deduced from the local velocity gradient as
m = (xeq

∗/U∗
e )∂U∗

e /∂x∗, where xeq is not the actual
abscissa along the surface but the equivalent position at
which an exact Falkner-Skan-Cooke boundary layer along
a wedge would have the same momentum thickness.

III. APPLICATION OF RAY THEORY TO
PARALLEL FLOWS

A. Determination of the complex saddle points

In order to test the accuracy of the steepest-descent
approximation to compute the disturbance originating
from a spatially localized time-harmonic source, we start
from the study of a parallel base flow. In this context,
the local dispersion relationship (13) does not depend on
X and Z. As a consequence, α, β and the slope ∂α

∂β of

a ray are constant and we drop the suffix 1 and 2 in the
expressions for them. A ray with a given initial β passing
through a given point (X2, Z2) has then to satisfy:

Z2 = −
∂α

∂β
(X2 − X1) + Z1, (39)

and the corresponding phase, using (15) reads:

Φ2 = α (X2 − X1) −
∂α

∂β
β (X2 − X1) + Φ1, (40)

Thus the above expression (40) can be simplified using
(39) and the fact that Φ1 = βZ1 to read:

Φ2 = α(X2 − X1) + βZ2. (41)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−0.02

−0.01
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0.01
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0.05

0.06

Saddle point

βr

βi

Steepest Descent path

Hill

Iso Im(Φ)

Hill

Im( ∂α
∂β

) = 0

FIG. 2: Steepest descent path for a parallel Blasius flow with
Re = 1000, ω = 0.04 and for the ray Z

X
= 0.15. Also plotted

with thick line is the path where the group direction dg = − ∂α
∂β

is real. This path is the locus of the different saddle points
when the direction Z

X
is changed.

By differentiating (41) with respect to β and imposing
the saddle point condition (34), it is easy to check the
relation Z1(β

?) = 0, i.e the ray giving the main contri-
bution starts from the position where the perturbation
originates. All this is, of course, consistent with the fact
that for a parallel base flow the WKB approximation be-
comes coincident with the exact solution Φ = αX + βZ.

For Z2, X1 and X2 to be real, the condition (39) gives
that the group direction dg must be real at the saddle
point while the chordwise wavenumber β? associated to
it is generally complex. As discussed in [33] and [34]
(but for the group velocity in a temporal representation),
the very fact that the saddle-point condition (39) iden-
tifies ∂α/∂β as the slope of the straight line connecting
(X1, Z1) to (X2, Z2) leads us to denote this quantity as
the group direction dg (up to a minus sign). We thus see
that in the parallel case dg is always real whereas β∗ can
be complex [40].

The rays associated with saddle points are straight
lines starting from the origin of the perturbation in the
real plane X , Z. The locus of the β? associated to each
ray direction can be represented in the complex plane,
as the curve where ∂α/∂β is real. Figure 2 gives an ex-
ample, for Blasius flow, of such a curve in the complex-β
plane. The steepest-descent path and the iso-contours of
the imaginary part of Φ2 are also represented, for a single
value of dg , for later use.

The ray (or direction) which has the biggest amplifi-
cation plays a crucial role as it may indicate where the
instability triggers the transition process. Therefore, we
outline a procedure to find it easily in our representation.
The amplification can be calculated from the imaginary
part of Φ2(X2, Z2) = Ŝ(X1, β

?, X2, Z2) and is a maxi-
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FIG. 3: Amplification rate (−Im(Φ)) as a function of the
group direction, along the branch where the group direction
is real for the ray Z

X
= 0.15 corresponding to the saddle point

on figure 2, Φi = −0.0052. Blasius base flow with Re =
1000, ω = 0.04.

mum when dIm(Ŝ)/dZ2 = 0; the differentiation gives:

dŜ

dZ2
=

∂Ŝ

∂Z2
+

∂Ŝ

∂β?

dβ?

dZ2

(42)

but, since ∂Ŝ/∂β? = 0 by definition of β?,

dŜ

dZ2
=

∂Ŝ

∂Z2
= β2 (43)

Hence, the amplification is the largest at the position Z2

where β2 is real. In the parallel case, when β2 = β1 = β?,
we have Im(β?) = 0 as the condition for the maximum
amplification rate (see also [1] or [35] for the analogous
demonstration in the temporal case). In figure 2, the
intersection of the locus of the saddle points with the
real axis is at β? = 0 (dg = 0) and the corresponding
maximum can be seen on the curve for the amplification
rate in figure 3.

The maximum is not always situated at the origin of
the β-plane. In the example considered later in figure
11, the locus of the saddle points meets the real axis at
β? 6= 0.

B. Accuracy of ray theory

Since our asymptotic method to compute disturbances
is an approximation, we need to check that it gives ac-
curate enough results in areas of parameter space where
the growth rate of the unstable mode becomes significant.
In parallel flows the integral (33) actually represents the
exact solution of the problems, and can be computed
by numerical quadrature to any desired accuracy. Such

XZ

Ar

FIG. 4: Wedge-shaped disturbance in a parallel Blasius flow
at Re = 1000 and ω = 0.04. The straight line is the ray
Z
X

= 0.15.

computations have been performed with a very fine inte-
gration step for different wave configurations in parallel
Blasius flow, and compared to the saddle-point approxi-
mation of the same integral. On choosing, in particular,
an initial disturbance represented by a δ-function in Z1,
and therefore by a constant in β, the amplitude A at X2

will be expressed by

A(X2, Z2) =

∫ +∞

−∞

e
i
ε [α(β1)X2+β1Z2]dβ1. (44)

Figure 4 shows the real part of this amplitude to take
the form of a wedge-shaped disturbance. The value of β
yielding the maximum amplification is 0, corresponding
to the case studied in figure 2 and 3. In figure 5, on the
other hand, a case for which the β of largest amplification
is different from zero is displayed. Both cases refer to a
Reynolds number of 1000. In both figures the amplitude
of the instability is observed to grow exponentially from
the origin (0, 0), and to produce a wedge-shaped distur-
bance packet which becomes of visible amplitude on the
scale of the plot near the exit section only (X = 2).

At the fixed position X = 2 a comparison is made be-
tween the exact amplitude provided by the inverse trans-
form and its saddle-point approximation; as shown in fig-
ures 6 and 7 the agreement is good. On the other hand,
in the case of figure 8 where the β of maximum amplifica-
tion is non zero, the amplitude A is not caught very well
by the first order approximation of the integral (44). To
explain this behaviour and obtain a better estimate of A,
we must evaluate differently the integral, upgrading the
steepest descent approximation. This technique, referred
to as Airy approximation, will prove very useful in the
handling of singularities, such as caustics.
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XZ

Ar

FIG. 5: Wedge-shaped disturbance in a parallel Blasius flow
at Re = 1000, ω = 0.03.

IV. CAUSTICS

A. Occurrence of caustics

By reducing the forcing frequency from ω = 0.03 to
ω = 0.025 we encounter a case worthy of discussion. Fig-
ure 9 shows the ”exact” real part of the amplitude of the
disturbance in a case where the β of maximum ampli-
fication is clearly different from 0 and the wave packet
excited at (X1, Z1) = (0, 0) propagates laterally. The
comparison with ray theory is provided at X2 = 4 in fig-
ure 10. It can be noticed that the agreement is good ev-
erywhere except in a neighbourhood of Z2 = 0.68, where
standard steepest descent yields visibly larger amplitude
values. This divergence is due to the fact that the term
∂2Φ2

∂β2
1

in equation (36) approaches zero.

To properly appraise this phenomenon, we have plot-
ted isolines of the imaginary part of the phase Φ in figure
11, for two different rays in the complex β plane; such
isolines are the steepest-descent paths. The first obser-
vation is that the line of real dg = −∂α/∂β = Z2/X2

has two branches, named I and II here. Thus, two cases
can be encountered. For large angles, or large values
of Z2/X2 (figure 11 a), the steepest-descent path goes
through one saddle point only, like in figure 2. Ray the-
ory produces then a good agreement with the direct com-
putation. For smaller Z2/X2, however, two saddle points
occur (marked by bold circles in figure 11b). Generally,
one saddle point provides a much larger contribution to
the integral than the other, since it has a larger amplifi-
cation rate; in this case it is sufficient to consider only its
contribution. This occurs in this example for Z2

X2
= 0.2 so

that ray theory is in good agreement with the direct com-
putation of the integral (33). It is not the case, however,
when the two saddle points happen to give comparable
amplification rates, so that both have to be considered.
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FIG. 6: Comparison of real part (a) and absolute value (b)
of the integral for A. (–) is the direct computation and (.) is
ray theory. Parallel Blasius flow at Re = 1000, ω = 0.04 at
X = 2.

To identify where this occurs we have plotted in figure
12 the growth factor on each branch as a function of
the group direction. The bifurcation between one sad-
dle point and two saddle points on the steepest descent
path occurs at a point C in the complex-β plane where

the second derivative ∂2α
∂β2 equals zero (cf. figure 11). In

figure 12, branch II is shown as a dashed line beyond the
complex caustic point C, where it does not provide any-
more a contribution to the integral (33), despite the fact
that its amplification rate is larger than that provided by
branch I.

However, close to the complex caustics point C the
growth rates of the two branches are of the same order,
and both must be accounted for in the evaluation of the
disturbance amplitude, i.e a single ray is unable to yield
a correct estimate of the instability wave.

This phenomenon is even more important if it occurs
close to the most amplified direction. As shown earlier
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FIG. 7: Comparison of direct computation of the integral (44)
and ray theory for a parallel Blasius flow at Re = 1000, ω =
0.04 on the ray Z

X
= 0.15. Symbols as in figure 6.

in this paper, the value of β associated to the most am-
plified direction is real, so that it can be identified in
the graphs as the direction where one branch intersects
the real axis. The example we have just shown is one in
which the caustic is very close to the direction of maxi-
mum amplification (cf. figure 12).

A mathematical analogy can be observed with the be-
havior identified by Healey [38] in studying the large-
Reynolds asymptotics of absolute instabilities of the
rotating-disk boundary layer. He found that the second
derivative ∂2ω/∂α2 was vanishing at the same time as
the first for a complex α and a certain combination of
real β and Re, and termed it as a super branch point.
The caustic as traditionally encountered in optics arises
during the spatial propagation of a time-harmonic wave
field, and this is the case that we deal with in this paper;
however, if β takes the role of frequency and time the
role of spatial direction of propagation, Healey’s problem
is obtained. In this sense, his super branch point of abso-
lute instabilities might also be seen as a time-like caustic.
Both his case and ours are characterized by divergence
of the saddle-point approximation of the wave field, and
in both this divergence can be corrected by considering
higher-order terms in the Taylor series of the exponent.

B. Higher-order approximation of the disturbance
wave

To compute wave amplitudes around caustics, we re-
fer to techniques well known in optics (see e.g [36]). In
this section we will provide a higher-order approxima-
tion of (33), by deforming the contour of integration to
the steepest descent path P and using a Taylor-series ex-
pansion in β1 around the saddle point to approximate
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FIG. 8: Comparison of real part (a) and absolute value (b)
of the integral (44). (—) is the direct computation, (·) is
ray theory and the dotted line (...) is the approximation of
A based on Airy functions. Parallel Blasius flow at Re =
1000, ω = 0.03 at X = 2.

the phase:

aint '

∫

P

Aâ0e
i
ε [Φ?

2+ 1
2Φ

′′

2?(β1−β?)2+ 1
6Φ′′′

2?(β1−β?)3]dβ1,

(45)
where we omit to indicate all the independent variables
to simplify notations. The range of validity of this ex-
pression is in a neighbourhood of the the saddle point
defined by Φ′

2? = 0. The integral (45) can be reduced, by
a suitable rescaling of the integration variable, to a Airy
function defined as follows:

Ai(Z) =
1

2πi

∫ ∞e+iπ/3

∞e−iπ/3

e
t3

3 −Ztdt. (46)
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FIG. 9: Wedge-shaped disturbance in a parallel Blasius flow
at Re = 1000, ω = 0.025.
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FIG. 10: Comparison of direct computation of the integral
and ray theory for the parallel Blasius flow at Re = 1000, ω =
0.025 and X = 4. (–) direct computation of the integral, (.)
first order steepest descent, (*) second order correction.

It results that:

aint(X2, Z2, Y ) ' A(X2, Z2, β
?)â0(X2, Z2, X1, β

?, Y )×

2πi

R
e

i 1
ε (Φ2?+

(Φ′′

2?)3

3(Φ′′′

2?)2
)
Ai

(

i 1
ε (Φ′′

2?)
2

2Φ′′′
2?R

)

,

(47)
with R defined as follows:

R =
3

√

1
ε iΦ′′′

2?

2
. (48)

R being a multi-valued cubic root, its choice depends on
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FIG. 11: Steepest descent path for a Blasius flow with Re =
1000andω = 0.025, for the ray Z

X
= 0.2 (a) and Z

X
= 0.15

(b). The locus of the saddle points of real group direction is
composed by two branches, I and II, shown with thick lines.
The steepest descent paths can present one (a) or two (b)
saddle points. In this latter case one must verify the relative
importance of the two contributions. At a caustic, i.e. when
branches I and II join, the approximation of ray theory is
invalid and an approximation based the Airy functions must
be employed.
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FIG. 12: Amplification rate (−Φi) as function of the group
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group direction is real for a Blasius flow, Re = 1000, ω = 0.025
close to a caustic. Branch II is dotted when the steepest
descent path does not have a saddle point on it, i.e. branch
II no longer brings a contribution to the disturbance.
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FIG. 13: Solid line: parallel neutral curve for the Blasius
boundary layer. The curve of caustics (- -) is plotted and is
found to lie close to the lower neutral branch. Dots are used
to show the locus of the points of maximum amplification.

the initial configuration of the steepest-descent contour.
The above result (the ”Airy approximation”, see [39])

is shown with the thin-dot curve in figure 8, and as
the curve labelled ”second order correction” in figure 10,
which corresponds to the near singular case of figure 11b.
The results are satisfactory in all cases.

C. Spatial localization of caustics

Having established the existence of caustics in bound-
ary layers, it would be of interest to determine whether
they have an influence on transition. In fact, when caus-
tics are present ray methods predict infinite disturbance
amplitudes and fail, unless the correction (47) is applied.
For these reasons, it is interesting to locate caustics in
the (α, β, ω, Re) space to see whether they can be found
next to the most amplified modes. Figure 13 shows the
neutral curve for two-dimensional disturbances together
with the locus of the caustics in the frequency-Reynolds
number plane for a Blasius flow. The caustics cross into
the unstable zone close to Re = 650, but remain rather
close to the lower branch of the neutral curve. Since the
most amplified modes are approximately centred between
the two neutral branches (cf. dotted line in the figure),
one can conclude that caustics should not hold a relevant
role in the two-dimensional case in triggering transition
to turbulence.

The situation is different, however, for the Falkner-
Skan-Cooke flow, where two parameters can be indepen-
dently varied, the sweep angle θ and the pressure gradient
(defined through the parameter m). Table 1 provides the
location of caustic points as function of different variables
for selected combinations of angle and pressure gradient.

At a Reynolds number of 1000, figure 14 shows the
frequencies at which caustics occur. This figure brings
out the role of the pressure gradient on the caustics: the
larger the pressure gradient, the larger the frequency at
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FIG. 14: Location of caustic points for different pressure gra-
dients at Re = 1000.

which caustics appear. The dependence with the sweep
angle is not monotonic: for positive pressure gradients,
the frequency of caustics presents a peak (around 20-30
degrees), which turns into a minimum when the pressure
gradient becomes adverse.

Figure 15 displays the curves of caustic points at
Re = 1000 together with the line joining the points of
maximum amplification, as a function of θ and for some
representative values of m. It appears that when the
sweep angle is large (typically beyond 70 degrees), caus-
tics can be found in conditions for which the spatial am-
plification is maximum (or near maximum), thus imply-
ing the potential for very large amplification. In such
circumstances where the caustic curve ”touches” the line
of maximum amplification, particular care should be paid
when computing the amplification rates of the instability.

V. NON-PARALLEL FLOWS

In the previous sections, ray theory has been vali-
dated on parallel flow configurations and its accuracy has
been demonstrated; we can now test the method on non-
parallel cases. This constitutes indeed the real interest of
the method, since the dependence on the X-direction is
no longer sinusoidal, and the ”exact” integration of the
disturbance wave packet employed earlier to verify ray
theory results can no longer be applied.

A. Example

We choose here to illustrate by way of an example some
of the conclusions drawn in the previous part. We take a
Falkner-Skan-Cooke similarity solution at X1 = 1, char-
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FIG. 15: Amplification rate as a function of the angle θ at
Re = 1000 for different pressure gradients. Curve of caustic
points (—) and of maximum amplification rate (- - -). For
each value of m, the sweep angle where the two curves are
tangent (or appear to intersect) is that for which the presence
of caustics should be most relevant for transition.
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FIG. 16: Caustic in a non-parallel Falkner-Skan-Cooke flow
with θ = π/3, m = 0.3, Re = 800, ω = 0.0607 at X2 = 2.
Branches I and II represent the locus of points in the β plane
for which the final Z point is real.

acterized by Re = 800, m = 0.3 and with a yaw angle
θ = π/3, and let it evolve (grow) in the streamwise direc-
tion. We further suppose that a harmonic pointwise dis-
turbance of frequency ω = 0.0607 is applied at X1 (with
the initial value of Z arbitrarily fixed at 0) and evolves
in space, simultaneously spreading along the span. As
the equations are marched downstream, along the rays,
the parameters of the adimensionalisation are maintained
constant, i.e. those of the inflow position. Under these
conditions a caustic appears at X2 = 2.

As in the parallel case, we can find the locus of saddle
points in the β-plane. Figure 16 shows the curves over
which the final position Z is real, which is the analogue of
having a real group direction dg in the parallel case. Just
like in the parallel case, the property that the maximum
amplification is found for real β1 holds (indeed, equation
(43) applies in general and when the mean flow in the
Z-direction is homogeneous β2 = β1.)

Figure 16 also displays two branches of real Z2 pinching
at the caustic. It is therefore interesting to understand
how this can affect the estimate of the instability growth.
For a given real Z2, two rays from branch I and II arrive
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FIG. 17: Ray trajectories in the complex plane (X−X1,Zr ,Zi)
for a non parallel Falkner-Skan-Cooke flow with θ = π/3,
m = 0.3, Re = 800, ω = 0.0607. (—) corresponds to rays on
branch I and (- - -) to rays on branch II.

at this downstream location as illustrated in figure 17;
they have been computed by solving equation (35) itera-
tively.

We observe that the ray which has the larger maxi-
mum in the complex Z-plane has the smaller amplifica-
tion rate. At a caustic these two rays become tangent,

a condition expressed by ∂2Φ2

∂β2
1

= 0. The location of the

caustic in the final plane is Zcaus = 2.037 for this case.
To know which rays have to be taken into account to eval-
uate the wave amplitude, we should look at the steepest
descent path in figure 16. The configuration is analo-
gous to that of the parallel case studied earlier on. If
Z2 > Zcaus, the saddle points are present only on branch
I. On the contrary, if Z2 < Zcaus two branches, I and II,
provide saddle points which may contribute to the inte-
gral. The first order ray approximation is derived from
equation (36); for Z2 < Zcaus the two saddle point con-
tributions must be added to one another. Results for the
real part and absolute value of the disturbance amplitude
A at X2 = 2 are given in figures 18 and 19. When the
first order approximation is close to Zcaus the term Φ

′′

2

in equation (2.36) approaches zero causing divergence of
the result. To achieve a continuous approximation of the
disturbance, locally valid around the caustic, the Airy
approximation (4.3) must be used.

As for the first order ray approximation, the Airy
expansion is derived on each branch, the final ampli-
tude is obtained by summing the two contributions for
Z2 < Zcaus whereas, for Z2 > Zcaus only branch I counts.
As displayed in figure 18 (b), the Airy approximations
(on both sides of Zcaus) match one another in correspon-
dance of the caustic. Continuity is ensured at Z = Zcaus,
the point where the two branches pinch, but special care
must be paid at choosing the correct value of R when
going through the singularity (cf. equation 48).

The difference in results that can be observed in fig-
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FIG. 18: Treatment of a caustic in a non-parallel Falkner-
Skan-Cooke flow with θ = π/3, m = 0.3, Re = 800, X=2,
ω = 0.0607. Different approximations for Re(A) function of
the chordwise direction Z. A caustic is situated at Zcaus =
2.037. The first order geometrical optics approximation (—
) is given by branch I for Z > Zcaus and from the sum of
the contributions of branches I and II for Z < Zcaus. The
dotted line (...) is the approximation with Airy functions
from branch I, valid for Z > Zcaus. The stars denote the Airy
approximation resulting from the contributions of branches I
and II, valid for Z < Zcaus.

ure 18 between the first order ray approximation of the
disturbance amplitude and Airy approximation reflects
the limitations of the steepest descent methode close to
caustics.

With the approximation through Airy functions, we
thus possess a tool to properly compute instabilities in
non-parallel flows, even when ordinary ray theory di-
verges.
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FIG. 19: Different approximations for |A| along the chord Z.
Parameters and symbols as in figure 18.

B. Physical optics

We have also implemented the physical-optics approx-
imation, as described in section (2.8)[41].

In the physical-optics approximation, for a given fre-
quency, the amplification factor of the unstable distur-
bance wave at the position X2 is defined as:

∫ X2

X1

(

−
1

ε
αi +

(

< b̂0, γ0 >

< b̂0, γX >

)

r

)

dX, (49)

with the path of integration taken along the rays. The
results for the growth rate depend on the normalization
chosen for the eigenfunctions, and here we have imposed
that the maximum of v̂ equals 1.

An application to the Falkner-Skan-Cooke flow is
shown in figure 20, for both geometrical and physical
optics with the Airy approximations. Although the wave
packet computed with the higher order approximation is
in phase (along Z) with that arising from the geomet-
rical optics, the amplification undergone by the wave is
quite different, an indirect indication of the effect of base-
flow non-parallelism. In both cases the curves are very
smooth, an indication of the correct handling of singu-
larities.

VI. DISCUSSION AND CONCLUDING
REMARKS

The method of ray theory up to the physical-optics ap-
proximation has been presented here in details starting
from the Navier-Stokes equations. After representing the
disturbance with a WKB ansatz, the eikonal equation for
the problem is obtained in the form of a dispersion re-
lation tying the first derivatives of the phase (which can
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FIG. 20: Non parallel Falkner-Skan-Cooke flow with θ = π/3,
Re = 800, X=2, ω = 0.0607. Comparison between geometri-
cal optics (—) and physical optics (- - -) for the Airy approx-
imation.

be interpreted as a local wavenumber and frequency).
This equation is solved by the method of characteristics,
leading to the equation of rays. As the dispersion rela-
tion is complex the characteristics are too (except for the
trivial case of neutral disturbances in a parallel flow for
which rays are straight lines in the X − Z plane) entail-
ing an analytic extension of all dependent variables for
complex values of the spatial coordinates. The ray tra-
jectories, phase and amplitude propagation are therefore
computed using the local eigenvalue problem. The dis-
turbance at a given final location can be written in the
form of a Maslov integral as the sum of all rays pass-
ing through this point. A choice for the representation
here has to be made. Rays can indeed be parameterized
employing the initial spanwise position Z or the initial
spanwise wavenumber β. A similar choice arises in clas-
sical mechanics where, for a set final position and time,
we can parameterize the trajectory of a particle arriving
at that point either by its initial position or its initial
momentum. For a Dirac delta disturbance at a point
in space the spatial representation has to be discarded,
because it violates the assumption of slow spatial vari-
ation, and the representation in spectral space becomes
compulsory. It is, however, possible to simplify this inte-
gral representation by using the steepest-descent method.
Under the same assumptions that underlie the original
WKB ansatz, it is sufficient to consider the saddle points
giving the main contribution to the integral, and there-
fore we deform the contour of integration to pass through
these points. The asymptotic method has been verified
to provide an accurate approximation for reasonable val-
ues of the Reynolds number, and not only in the infinite
limit.

In the example of a parallel flow without pressure gra-
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dient, for a given forcing frequency, the approximation is
good as long as the steepest-descent path presents one
saddle point with a dominant amplification rate. This
is not always the case for the present problem of har-
monic forcing in time (as opposed to the situation of
time-impulsive excitation considered by other authors).
Indeed, the integral for the disturbance over the spanwise
wavevector turns out to present two branches of saddle
points. If both branches have an amplification rate of the
same order, then two rays have to be taken into account
to compute the instability. The limit case where these
two branches pinch together corresponds to a caustic,
where both the first and second derivative of the complex
phase with respect to β equal zero. This does not occur
in the case of time-impulsive forcing, studied by [1] and
many authors thereafter ([37], [34]). These authors did
not find any caustics because in their case the condition,

∆ =

[

(

∂2ω
∂β∂α

)2

− ∂2ω
∂β2

∂2ω
∂α2

]
1
2

= 0 does not occur. One

way of understanding this is to make an analogy with
the problem of harmonic versus impulsive excitation of
surface waves in a water pool. In the harmonic case, the
most prominent example of which is the ship wake gener-
ated when the frequency is zero but the water is moving
(with respect to the ship, at least!), caustics arise from
the interaction between two kinds of wave fronts. On the
other hand, no caustics occur when a stone is dropped
through the water (impulsive excitation).

As far as the distribution of caustics is concerned, in
the Blasius boundary layer we found that the curve of
caustics in the (ω, Re) plane is close to the lower neu-
tral curve. In the case of a Falkner-Skan-Cooke flow,
on the other hand, caustics also appear in the amplified
zone, yielding a significant cumulative effect. A paramet-
ric study has been conducted for different sweep angles
θ and pressure gradient (represented through the veloc-
ity exponent m). Under most conditions caustics are not
situated close to the most amplified direction, but this
does happen for large sweep angles. In a neighbourhood
of caustics the combined effect of the two branches of
the dispersion relation cannot be neglected, as has been
shown through several examples. To take into account
the correction to the growth rate due to the caustic singu-
larity, we applied Airy asymptotic method obtained upon
developing the phase in a Taylor series up to the third
order around the saddle point. This correction, which is
expressed in terms of Airy functions and has been de-
rived here for the first time for boundary-layer instabil-
ities, prevents the approximation from diverging at the
caustic and also provides a much better approximation of
the maximum amplification rate. Finally, an application
to a non-parallel flow case has been illustrated.
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APPENDIX A

A1 = −U0u0X − V1u0Y − W0u0Z − u0U0X − w0U0Z

−p0X − v0U1 + 2i
Re (αu0X + βu0Z)

A2 = −U0v0X − V1v0Y − W0v0Z − v0V1Y − p0Y

−iαv0U1 − iβv0W1 + 2i
Re (αv0X + βv0Z)

A3 = −U0w0X − V1w0Y − W0w0Z − u0W0X − w0W0Z

−p0Z − v0W1 + 2i
Re (αw0X + βw0Z )

A4 = −u0X − w0Z

(A1)

APPENDIX B

γ0 = −































(U0 −
2iα
Re )û0X + V1û0Y + (W0 −

2iβ
Re )û0Z

+U0X û0 + U0Zŵ0 + p̂0X + v̂0U1

(U0 −
2iα
Re )v̂0X + V1v̂0Y + (W0 −

2iβ
Re )v̂0Z

+V1Y v̂0 + p̂0Y + iαv̂0U1 + iβv̂0W1

(U0 −
2iα
Re )ŵ0X + V1ŵ0Y + (W0 −

2iβ
Re )ŵ0Z

+W0X û0 + W0Z ŵ0 + p̂0Z + v̂0W1

û0X + ŵ0Z































(B1)

γX = −

0

B

B
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(U0 − 2iα
Re

)û0 + p̂0

(U0 − 2iα
Re

)v̂0

(U0 − 2iα
Re

)ŵ0

û0

1

C

C

A

, γZ = −

0
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B

@

(W0 −
2iβ

Re
)û0

(W0 −
2iβ

Re
)v̂0

(W0 −
2iβ

Re
)ŵ0 + p̂0

ŵ0

1

C

C

A

(B2)

APPENDIX C: CHARACTERISTIC LINES FOR
THE AMPLITUDE EQUATION

With a suitable choice of variables (in this case u, v,
vx, w, wx, p), it is always possible to choose the state
vector a for the stability equations so that the problem
is recast as a system of first-order differential equations,
of the form:

ε (AaX + BaZ) = Ca (C1)
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where A, B, C are suitable 6 × 6 matrices. The distur-
bance is then expressed in the form of a WKB ansatz:

a = ei Φ
ε (a0 + εa1 + ...). By injecting into (C1) it is

found that:

• Order ε0:

iαAa0 + iβBa0 = Ca0 (C2)

• Order ε1:

iαAa1 + iβBa1 − Ca1 = −Aa0X − Ba0Z (C3)

We express the zeroth-order solution as the product
of a normalized eigenfunction and an amplitude:
a0 = Aâ0. The equation for the amplitude (28),
given by the compatibility condition applied to the
ε1-order equation can be written as:

< b̂0, Aâ0 > AX+ < b̂0, Bâ0 > AZ =

−A
(

< b̂0, Aâ0X > + < b̂, Bâ0Z >
)

,
(C4)

where b̂0 is the normalized left eigenvector, solution of
the adjoint problem. We now prove that the character-

istic direction for equation (C4), i.e dZ
dX = <b̂0,Aâ0>

<b̂0,Bâ0>
is

given by −∂α
∂β just as the characteristic direction of equa-

tion (C2). For this purpose we differentiate (C2) with
respect to β to get:

i

(

A
∂α

∂β
+ B

)

â0 = (C − Aα − Bβ)
∂â0

∂β
(C5)

Upon taking the scalar product of (C5) with the left
eigenvector, the right-hand side vanishes and we obtain
the result required. Therefore, even when the dispersion
relation is complex, the amplitude equation has the same
rays as the eikonal equation.
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imaginary part of ∂α
∂β

. This is equivalent to using the
stationary-phase rather than the saddle-point approxi-
mation of the integral (32), and quickly becomes inaccu-
rate when the complex saddle point β? is far from the
real axis.

[41] The base flow terms U1 and W1 are not included in the
approximation.
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Re m θ (deg.) ω β? α? ∂α
∂β

?

1000 0 0 0.0247 0.0796 - 0.0125i 0.0763 - 0.0001i -0.1676

-0.025 0 0.0210 0.0700 - 0.0130i 0.0668 - 0.0024i -0.1695

60 0.0172 0.0616 - 0.0042i 0.0563 + 0.0016i -0.1834

0.3 0 0.0576 0.1596 - 0.0054i 0.1555 + 0.0197i -0.1592

60 0.06491 0.2377 - 0.0371i -0.05494 + 0.0742i -0.2354

500 0 0 0.0317 0.0912 - 0.01063i 0.0871 + 0.0028i -0.1666

TABLE I: Values of the different parameters on some repre-
sentative caustics. Superscript * denotes that the variable is
evaluated at the saddle point.


