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Linear theory is used to analyze the stability of two-dimensional boundary layer flows to stationary
Görtler vortices. The basic flow profiles in the boundary layer are described by the Falkner–Skan
similarity solutions. We approach the problem both with local linear theory ~with the streamwise
position held fixed! and with a streamwise marching technique ~to represent the evolution of the
inlet disturbance!. Comparisons of solutions obtained by the two methods are presented: The results
are consistent in showing that adverse pressure gradients are destabilizing, as in the case of
Tollmien–Schlichting waves. This is at odds with recent findings by Otto and Denier and
underscores the sensitivity of the results to initial conditions. © 1996 American Institute of Physics.
@S1070-6631~96!01702-3#

I. INTRODUCTION

The topic of the linear growth of longitudinal vortices in
a boundary layer developing along a rigid, curved surface is
worthy of attention because of its technological relevance. In
turbomachineries, for instance, the boundary-layer Reynolds
number may be fairly low and the stability of the laminar
flow might be important to determine the efficiency of the
application in question. In such situations the base flow is
three dimensional and subject to pressure gradients. A recent
paper by Otto and Denier1 analyzed, via a nonlocal linear
stability analysis, the effect of cross-flow and pressure gra-
dient on Görtler vortices developing along a concave wall of
constant radius of curvature, in a parameter space of interest
for practical situations. A previous theory,2 in the asymptotic
limit of large G ~G denotes the Görtler number, an appropri-
ate combination of the Reynolds number and a curvature
parameter! demonstrated that the presence of cross-flow in
the underlying basic motion is such that the Görtler instabil-
ity is superseded by the cross-flow vortex mechanism. Otto
and Denier showed that for small magnitudes crossflows and
for G5O(1) the Görtler mechanism is still operational. Fur-
thermore, they considered the effect of a longitudinal pres-
sure gradient in the absence of cross-flow, to find that ad-
verse pressure gradients were stabilizing. This is opposite to
what Ragab and Nayfeh3 found with a local stability ap-
proach. Ragab and Nayfeh even reported that for decelerated
boundary layers ~before the occurrence of separation! there is
a range of wave numbers for which instability occurs at all
G’s. The present paper aims at elucidating the problem of the
stability of Görtler vortices in a two-dimensional boundary
layer, subject to streamwise pressure gradients. Since it
might appear that the discording conclusions available in the
literature originate from the local or nonlocal nature of the

stability approach, we will start with a brief review of the
different techniques available for the analysis.

Local theories for the stability of the Blasius flow with
respect to streamwise vortices started with Görtler.4 His
analysis was later extended by Hammerlin,5 Smith,6 Ragab
and Nayfeh,3 and Floryan and Saric.7 All of these investiga-
tors formulated the problem by fixing the streamwise posi-
tion, hence neglecting the variation of the mode function of
the perturbation with streamwise distance. Because of differ-
ent levels of approximation ~for example, parallel or nonpar-
allel base flows! the results differed, sometimes widely. Hall8

was the first to approach the problem correctly by consis-
tently taking into account the growth of the boundary layer.
The stability equations he formulated were the same as Flo-
ryan and Saric’s:7 However, Hall abandoned the traditional
eigenvalue solution technique and solved the parabolic equa-
tions directly by downstream marching, subject to some ini-
tial disturbance conditions. He clearly pointed out the non-
existence of a unique neutral curve and the dependence of
the results on the shape of the initial perturbation and on the
initial point of marching. Hall9 also derived asymptotic equa-
tions in the large wave number and large G region and
pointed out the uniqueness of the linear stability results in
such a parameter space. Hall’s conclusions received a mixed
welcome in the transition–prediction community10 since
they seemed to preclude access to simple transition criteria
of the en type. Day et al.11 indicated that the results of the
local nonparallel technique of Ref. 7 could be considered, in
some asymptotic sense, as the limit to which the marching
results tend some distance away from the leading edge. Far
enough downstream, growth rates of linear Görtler vortices
as a function of streamwise distance were found to be in
good agreement between local and marching analyses, and
similarly for the eigenfunctions. Problems arise in the deter-
mination of the first neutral point, before the collapse of
marching and local curves of the spatial amplification factor.
If the initial condition is taken from the solution of the local
problem ~an acceptable procedure, but not a necessary re-
quirement!, there is good accord between local and marching
results for neutral stability. Conversely, the adoption of initial
conditions such as those of Hall8 and Otto and Denier1 can
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produce wide discrepancies in neutral curve prediction be-
tween the local and nonlocal approach. One should then de-
termine whether the differences encountered stem uniquely
from the different initial conditions chosen, or whether other
factors hold some importance.

II. FORMULATION

The Navier–Stokes and continuity equations in cylindri-
cal coordinates ~r ,u,z! are the starting point of our analysis.
We consider a boundary layer flow over a concave wall with
constant radius of curvature R ,R→`. If l is a typical length
along the wall and U l is the value of the free-stream velocity
that refers to l , the dimensionless boundary layer coordinates
x , y , and z can be introduced via the equations

x5

uR

l
, y52

~r2R !

l
Re, z5

z

l
Re, ~1!

where Re5U ld/n@1 is the Reynolds number, with
d5(nl/U l)

1/2 and n the kinematic viscosity. The velocity
components (vr ,vu ,vz) and the pressure p are made nondi-
mensional and expanded in terms of the small parameter D
as follows:

vr

U l
Re52@V~x ,y !1Dv~x ,y ,z !1O~D2!# ,

vu

U l
5U~x ,y !1Du~x ,y ,z !1O~D2!,

~2!
vz

U l
Re5Dw~x ,y ,z !1O~D2!,

p

rU l2
Re25P~x !Re21p0~x ,y !1Dp~x ,y ,z !1O~D2!,

with r being the density. Substituting into the steady Navier–
Stokes and continuity equations, grouping together all terms
proportional to the same power of D, and neglecting terms of
order Re22 and smaller, we find at order O~1!,

Ux1Vy50, ~3a!

UUx1VUy52Px1Uyy , ~3b!

UVx1VVy52p0y1Vyy2~GU !2; ~3c!

at order O~D!,

ux1vy1wz50, ~3d!

Uux1Vuy1uUx1vUy5uyy1uzz , ~3e!

Uvx1Vvy1uVx1vVy52py1vyy1vzz22G2Uu ,
~3f!

Uwx1Vwy52pz1wyy1wzz , ~3g!

with the Görtler number G5O(1) defined by

G2
5

l

R
Re. ~4!

The leading-order equations ~3a! and ~3b! allow the de-
termination of the basic flow and pressure fields (U ,V ,P).
Equation ~3c! is not used; it shows that a normal gradient of

p0 is set up to balance the centrifugal term (GU)2. A self-
similar boundary layer solution can be obtained for the gen-
eral case of nonzero streamwise pressure gradients by assum-
ing the outer flow to vary as xm, and by enforcing no-slip
conditions at the wall. This procedure yields the well-known
Falkner–Skan similarity solution, so that a nondimensional
streamfunction f ~h! satisfying the ordinary differential equa-
tion,

f-1
1
2~m11 ! f f 91m~12 f 82!50, ~5!

with boundary conditions

f5 f 850, at h50, ~6a!

f 851, at h→` , ~6b!

is sought. The similarity variable h is defined by

h5yx ~m21 !/2, ~7!

and the velocity components U and V are given by

U5xm f 8, ~8a!

V5x ~m21 !/2S 12m

2
h f 82

11m

2
f D . ~8b!

For m50 the Blasius solution is recovered. Some Falkner–
Skan solutions are shown in Fig. 1; m520.0904 corre-
sponds to the limiting case of decelerating flow without sepa-
ration at the wall. For accelerated flows the Falkner–Skan
solutions obtained are unique for each m; for decelerating
flows with 20.0904,m,0, there are infinite solutions avail-
able, the laminar wall jet in an external stream being an
example.12 Although such flows are of interest, we have cho-
sen to focus here only on the classical solutions, where U
monotonically increases with h. The Görtler instability of
wall jets has been recently studied by Matsson.13

Equations ~3d!–~3g! define the linear stability problem
for the leading-order perturbations (u ,v ,w) and for p . The
boundary conditions appropriate to ~3d!–~3g! are

u5v5w50, at y50 and y→` . ~9!

III. LINEAR STABILITY THEORY

A. Local approach

When a perturbation of the form f̃ (y)exp(sx1ibz) is
superimposed on the Falkner–Skan profile, the disturbance
equations become

s ũ1D ṽ1ibw̃50, ~10a!

sUũ1Uxũ1VDũ1Uyṽ5D2ũ2b2ũ , ~10b!

sU ṽ1Vxũ1VD ṽ1Vyṽ52Dp̃1D2
ṽ2b2

ṽ

22G2Uũ , ~10c!

sUw̃1VDw̃52ib p̃1D2w̃2b2w̃ , ~10d!

where s is the spatial growth rate of the vortices, b is the
spanwise wave number, and D denotes differentiation with
respect to y . The local, nonparallel linear stability eigenvalue
problem is derived by equating the current streamwise loca-
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tion to the length scale l , i.e. setting x51 and h5y . The
pressure and w̃ are eliminated, and one finally arrives at a
system of equations of the form

L~s ,b ,G ! f̃50, ~11a!

L5FL11L21

L12
L22

G , f̃5F ṽũ G . ~11b!

The spatial stability problem consists in determining s for
given values of b as function of G . The components of the
linear operator L are

L1152~D2
2b2!21V~D2

2b2!D1Vy~D
2
2b2!

1sU~D2
2b2!2sUyy , ~12a!

L1252b2Vx22b2G2U1s~VyD1Vyy!, ~12b!

L215Uy , ~12c!

L2252~D2
2b2!1VD2Vy1sU , ~12d!

and the boundary conditions ~9! become

ũ5 ṽ5D ṽ50, at y50 and y→` . ~12e!

By dropping all nonparallel terms in Eqs. ~12a!–~12d!, the
original Görtler equations are retrieved:

L1152~D2
2b2!21sU~D2

2b2!2sUyy , ~13a!

L12522b2G2U , ~13b!

L215Uy , ~13c!

L2252~D2
2b2!1sU . ~13d!

B. Marching approach

The following analysis for the nonlocal approach fol-
lows closely the one given by Bertolotti14 for the Orr–
Sommerfeld case. The perturbation quantities are assumed to
have the form

f ~x ,y ,z !5 f̃ ~x ,y !expS E s~x !dx1ibz D . ~14!

The new feature compared to the local analysis is that the
mode function f̃ is allowed to depend on x . The double de-
pendence of f on x ~both through s and through f̃ ! is re-
solved by letting ] f̃ /]x contain only changes in the mode
shape, whereas the downstream growth of the perturbation is
transferred to s. The x dependence of f̃ and s is relatively
weak, but comparable to the x dependence of the basic flow.
Hence, when streamwise diffusion terms are present in the
governing equations ~such as for the Orr–Sommerfeld case!,
x derivatives of s of all orders and x derivatives of f̃ of
orders larger than unity, can be consistently neglected.14 No
particular procedure needs to be applied in the present case,
since the linearized boundary layer equations ~3c!–~3g! are
the starting point of our analysis. On substitution of ~14! into
Eqs. ~3c!–~3g!, and after some algebraic manipulations, a
parabolic system of equations of the form

L f̃1M
] f̃

]x
50, ~15!

is obtained. The 232 linear operator matrices L and M are
given by

L1152~D2
2b2!21V~D2

2b2!D1Vy~D
2
2b2!

1VyyD1Vyyy1sU~D2
2b2!2sUyy , ~16a!

FIG. 1. Profiles of the basic flow velocity components for a variety of m’s.

453Phys. Fluids, Vol. 8, No. 2, February 1996 Goulpié, Klingmann, and Bottaro



L1252Vx~D
2
1b2!22b2G2U

12s~VyD1Vyy!1Vxyy , ~16b!

L215Uy , ~16c!

L2252~D2
2b2!1VD2Vy1sU , ~16d!

M 115U~D2
2b2!2Uyy , ~16e!

M 1252~VyD1Vyy!, ~16f!

M 2150, ~16g!

M 225U . ~16h!

Note that here L is different from the local one. This is
because in the local analysis the mode shape assumption is
introduced directly into the original system of equations;
subsequently p̃ and w̃ are eliminated. This is the same pro-
cedure as, e.g., Floryan and Saric.7 In the marching analysis,
a two-equation set is first derived through elimination of p
and w; then ~14! is used. It should also be pointed out15 that
a local problem with L as by ~16a!–~16d! produces results
almost indistinguishable from those of the original local
problem ~12a!–~12d!.

III. NUMERICAL PROCEDURE

The equations are solved by a spectral method, with f̃
decomposed into Chebyshev polynomials. The domain ~y :
0→`! is mapped onto ~yT : 21→1! by the transformation

yT5122e2y /y0, ~17!

where y0 is a parameter that defines the clustering of points
and is taken between 15 and 50. The Chebyshev polynomial
are evaluated at the collocation points

yT52cos
jp

M11
, j50,.. . ,M , ~18!

and M is the number of collocation points ~typically 80!. The
local eigenvalue problem is solved using a QZ algorithm
from the NAG library; the code has been validated through
extensive comparisons against the results of Floryan and
Saric7 and those of Zebib and Bottaro16 for the case of
Görtler vortices with system rotation. The marching equa-
tions are discretized in x with a second-order accurate finite
difference scheme, and have been validated against results
obtained from a different finite volume code.17

In the local code, the amplification rate s is obtained
directly from the equations; in the marching procedure a lo-
cal amplification rate can be defined as

s̃5

DE

E Dx
, ~19!

where E is a chosen measure of the amplitude of the pertur-
bation. At each x step the energy growth is transferred to the
exponential term and s is updated in such a way that the
amplitude is unchanged, i.e.

]E

]x
50; ~20!

this is also called the normalization condition.14 Because of
the scalings adopted, the locally scaled amplification rate is

s5s̃x . ~21!

Several choices of E are possible. A common ~and a priori
reasonable! choice is to take

E5

1

A E
A
u2 dA , ~22a!

with A the cross section. In this case E represents the per-
turbation energy; v and w are not included because they are
one Re order of magnitude smaller. Note, however, that E
defined by ~22a! can grow algebraically for small x’s in the
absence of the driving term ~G[0! because of the ‘‘lift-up
effect.’’18 Conversely, both cross-stream perturbation veloc-
ity components are damped at all values of x .19 Because of
the algebraic ‘‘instability,’’ criterion ~22a! could have the ef-
fect of indicating growth in an x range where vortices are
decaying. Hence, the adoption of a criterion based on v

and/or w and/or the streamwise vorticity could be more ap-
propriate to represent growth or decay of streamwise vorti-
ces. We have thus chosen an alternative criterion, with E
defined by

E5

1

A E
A
v
2 dA . ~22b!

In the following, the two criteria ~22a!–~22b! will be referred
to as the u criterion and the v criterion. They will both be
adopted and compared. Obviously, other criteria are acces-
sible and are equally valid/justifiable ~Day et al.11!.

All marching calculations are started from the initial lo-
cation x51, and as an initial value of the Görtler number G0
we have chosen G050.5 unless otherwise specified. At each
downstream station x the local Görtler number is defined by

G5G0x
~31m !/4. ~23!

To trace curves of neutral stability in the G2b plane, several
nonlocal calculations must be carried out for a variety of
initial values of the spanwise wave number b. By defining
with b0 the initial value of b, the locally scaled b becomes

b5b0x
~12m !/2. ~24!

The nondimensional wavelength L can also be introduced,
via the relation

L5GS 2p

b D
3/2

. ~25!

Clearly, if at G0 we have L5L0 at the generic downstream
station x , we have

L5L0x
m, ~26!

and for m50 we recover the well-known result that L re-
mains unchanged downstream.

The choice of initial disturbance conditions for the
marching calculations is especially crucial. We ideally wish
to specify initial conditions that are physically sound and
satisfy the governing equations; these conditions should rep-
resent the outcome of a complex receptivity process through
which disturbances at the inlet of a test section, in the free
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stream or at the wall, enter the boundary layer and are trans-
formed into instability waves. The boundary layer approxi-
mation adopted is valid only sufficiently far downstream of
the plate’s leading edge; it is not unreasonable to think that at
the streamwise distance l from which our calculations start,
the receptivity of the flow has already operated on the dis-
turbances to transform them into streamwise vortices of
weak amplitude. The reason why streamwise vortices should
be preferred to other possible forms of perturbations, in a
flow case for which the instability is not yet operational
~small G! lies in the fact that streamwise vortices represent
the ‘‘optimal’’ perturbations20 in the flat plate boundary layer
flow ~G[0!. Optimal perturbations are those perturbations
that attain maximum energy growth over a chosen space or
time interval; this algebraic energy growth is transient and
occurs despite the absence of exponential normal mode in-
stability in the shear flow. In the present case streamwise
vortices might be amplified initially by the ‘‘algebraic’’ in-
stability when G→0; with the increase of x ~and G!, expo-
nential amplification may be turned on by the forcing term
2G2Uu in the vertical disturbance momentum equation.

Since there is no formal mathematical justification for
adopting as initial conditions the eigenfunctions of the local
stability problem, we have chosen to apply at the inlet of the
calculation domain the perturbation velocities u and v shown
in Fig. 2. Such velocity profiles represent near-wall vortices,
and are constructed by solving the linear marching equations
for m50, L562, from G51 to G540, starting from the
local linear solution; the results obtained at G540 are used
as inlet conditions for all calculations performed. Although
these initial perturbation velocity distributions are arbitrary,
they are physically plausible. In Fig. 2 we have also repre-
sented the initial conditions proposed by Hall8 and adopted
in the study by Otto and Denier.1 Although they are not
‘‘wrong,’’ the absence of a vertical perturbation velocity
component a finite distance downstream of the plate’s lead-
ing edge makes them ‘‘unusual.’’ The effect of Hall’s initial
conditions is that the perturbation will always relax in the
initial phase until velocity distributions consistent with the

governing equations are obtained; past this stage the spatial
development of the vortices becomes the same as for more
physical inlet velocity profiles.21 Since the initial relaxation
will be interpreted as a decay, it is expected that Hall’s initial
conditions will produce neutral points farther downstream
~hence, for larger G! than other inlet distributions, for ex-
ample, those based on the solution of the local problem. This
has been verified by our calculations.

An alternative choice of starting conditions, which was
proposed to us by a referee, could possibly be obtained di-
rectly from the governing equations appropriately reduced to
a self-similar set of ordinary differential equations.22 This
would be particularly useful in the limit of small spanwise
wave numbers, where local theories do not hold.

IV. RESULTS

A local analysis produces a unique neutral curve for each
value of m . Results of nonlocal analyses are of more ambigu-
ous interpretation if one has the objective of defining a neu-
tral curve. The factors causing this ambiguity are examined
below.

A. Factors affecting the determination of the neutral
point in a nonlocal analysis

In Fig. 3 we have reported the locally scaled amplifica-
tion factor s as a function of G , for m50, L562, and for
G050.5, 1, and 2. The value of s is based on the v criterion;
similar results are achieved for s based on u or other criteria
and for different values of m and L0 . In all cases there is an
initial phase in which s decreases until a peak negative value
is reached and the vortices are maximally damped; farther
downstream, s starts increasing and the vortices amplify.
The neutral points, where the curves cross the s50 axis
while in their ascending phase, are found at G53.8, 5.3, and
7.4 in order of increasing G0 .

In Fig. 4, the influence of the criterion chosen for the
definition of the neutral point is shown, for m50.05,
G050.5, and L05210. For comparison purposes, the local

FIG. 2. Disturbance initial conditions for the present marching solutions ~left! and for Hall’s8 case. In this latter case the (u ,v) initial perturbations are given

by (h6e2h2/hext,0) and hext has here been chosen equal to 2.
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curve is also plotted. The difference between the u and the v

criteria in the definition of the neutral point appears imme-
diately: The v criterion seems to indicate that for all G.G0
vortices are amplified. On the other hand, according to the u
criterion growth occurs only for G.1.3. Interestingly, the
neutral point of the local nonparallel theory is contained in
between these two predictions.

The last factor causing nonuniqueness in the definition
of the neutral point is the initial condition used to initiate the
marching. Its influence can be appreciated by inspection of
Fig. 5, where a comparison of results obtained with the
present initial conditions and with Hall’s is presented. The
case considered to illustrate our point corresponds to L0562,
m50.05. The u criterion predicts a neutral point at G51.8

with our initial conditions and G53.8 with Hall’s initial con-
ditions. If the v criterion is adopted, the neutral point is
shifted toward even larger G’s.

These ambiguous results leave one wondering about the
effective importance of a neutral curve in this problem. It
might be more appropriate to consider, instead of one mar-
ginal curve, curves of constant, and sufficiently large, ampli-
fication factor. In this latter case, all procedures are likely to
produce results in good agreement with one another; how-
ever, in order to answer the question of whether acceleration
of the base flow is stabilizing or not for Görtler vortices near
their onset, one needs to turn toward the ‘‘neutral curve.’’

B. Neutral curves from local and marching analyses

To define a neutral curve based on the nonlocal equa-
tions, several calculations starting from different values of
L0 need to be carried out. Because of the arguments pre-
sented in the previous section, it is clear that whatever neu-
tral curve one obtains, the result should be interpreted in a
qualitative sense. Only the generic question, ‘‘Is acceleration
of the basic flow stabilizing or not for Görtler vortices?’’ can
be somehow addressed, and an equally valid ~or ambiguous!
answer is also accessible from the local equations. Still, we
set out to pursue the task of defining nonlocal neutral curves,
at least to check whether they are consistent with the results
of the local theory. Figure 6 shows an example of calcula-
tions of the growth rates s as a function of G for a variety of
initial L0 , for m50.075 and for the two criteria under con-
sideration. For the u criterion ~Fig. 6, left! neutral points can
be easily defined; for the v criterion some cases exist for
which Görtler vortices appear to be always amplified.

Some local nonparallel marginal stability curves in the
b2G plane are plotted in Fig. 7. The area above each curve
is the area of instability to Görtler vortices for the specified
value of m . The local calculations would seem to predict
instability for arbitrarily small b and G when m520.075; it
is, however, clear that such a conclusion is hasty and prob-
ably erroneous because of the limitations of any local ap-

FIG. 3. Influence of the initial Görtler number G0 on the first neutral point.
Here L562, m50; the v criterion.

FIG. 4. Influence of the criterion used to define s on the first neutral point,
and comparison with the local nonparallel solution. Here L05210 at
G050.5, m50.05.

FIG. 5. Influence of the inlet condition on the first neutral point. Here
L0562 at G050.5, m50.05.
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proach there. Our results indicate that the unstable area in-
creases with the decrease of m , for the b2G range for which
the equations are tenable. All the neutral curves intersect at
b'2.2 and G'11; for G.11, favorable pressure gradients
become destabilizing, since the right branches of the neutral
curves are moved progressively to the right. This behavior of
the asymptotic large G regime was also noted by Otto and
Denier.1

A summary of all the results obtained ~local parallel and
nonparallel, and marching! is presented in Fig. 8, and for
comparison purposes the solutions of Otto and Denier1 have
been included. The local nonparallel marginal solutions
agree with those of Ragab and Nayfeh,3 including the sharp
drop in the neutral curves for negative m’s and low b’s.
Interestingly, for large negative m ~m520.075! the u crite-
rion for the nonlocal equations always indicates instability,

and for m520.05 only neutral points in a very narrow b
range can be found. For m560.075 and 60.05 a range of
wave numbers appears ~contained between two oblique
curves shown with thin solid lines! for which the v criterion
predicts instability for all G.G0 . The presence of jumps in
the nonlocal neutral curves must be ascribed to the initial
condition chosen ~and subsequent initial transient behavior
of the solution! and to the initial Görtler number, from which
the marching procedure is initiated. Different choices would
have produced different neutral positions, reflecting the am-
biguity of the problem and the existence of infinitely many
‘‘neutral curves.’’ Keeping in mind the crucial importance of
these factors, our results based on the u criterion and local
results are consistent in showing that deceleration is desta-
bilizing: With the decrease of m , the marginal curves are
shifted toward lower values of G . The neutral points calcu-
lated by Otto and Denier1 ~with the u criterion! predict the
opposite trend; we verified that the cause of this behavior
stems from their choice of initial conditions.

V. CONCLUDING REMARKS

The linear stability of Görtler vortices in accelerated and
decelerated boundary layers of the Falkner–Skan family has
been examined with local and nonlocal solution techniques.
Whereas local analyses ~parallel and nonparallel! predict a
unique neutral curve for each base flow considered, nonlocal
approaches yield a variety of marginal stability curves. This
nonuniqueness stems from a variety of reasons, which have
been examined in this paper: Initial conditions and the initial
point where the conditions are applied, and criterion used to
define a neutral point. Since discording results can be ob-
tained, extreme care should be used to avoid hasty conclu-
sions.

Both the local and marching results presented are con-
sistent in showing destabilization of the flow under condi-

FIG. 6. Determination of the neutral points with the marching code for the two different criteria, m50.075.

FIG. 7. Some local nonparallel neutral curves.
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tions of adverse pressure gradients, and this is in line with
linear stability results for the onset of Tollmien–Schlichting
waves in boundary layers.23 However, one can easily obtain
the opposite result by a different choice of initial conditions;
hence, the conclusions reached here should only be consid-
ered as indicative. A definite answer to the question of how
pressure gradients affect the stability of Görtler vortices can
be obtained only when receptivity calculations are used to
supply the initial disturbance field.
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layers,’’ J. Fluid Mech. 130, 41 ~1983!.
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