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Large-scale secondary structures in duct flow
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The spatial growth of small perturbations developing on a fully developed base flow
in a duct with two inhomogeneous cross-flow directions is examined. For a laminar
mean flow it is shown that optimally configured vortices at an upstream cross-section
induce large transient amplification of a disturbance energy norm downstream. Such
a linear growth is a likely initial stage of transition in ducts for which the cross-section
is square or of moderate aspect ratio, asymptotically stable according to conventional
eigen-analyis. With the increase of the cross-sectional aspect ratio the transient
growth results of the plane channel flow case are approached. The optimization
methodology is then employed to study the transient amplification of large-scale
secondary structures developing in a square duct for which the unidirectional base
motion has a turbulent-like profile. Under the hypothesis that fine-scale turbulence
does not affect the growth of large-scale secondary flows, it is shown that cross-stream
vortices are sustained by the mean flow and grow maximally over a streamwise
distance of several thousand viscous units of length.

1. Introduction
The motion of fluids in ducts of rectangular cross-section is of theoretical and

practical interest, and its understanding has motivated much research in the last
eighty years. The observations that Nikuradse (1926) made in the course of his
doctoral studies in Göttingen indicate that, above some value of the Reynolds number,
secondary flows appear near the corners of the duct cross-section, leading to a
deformation of the mean velocity contours. Such corner vortices have been classified
as secondary flows of Prandtl’s second kind, and ascribed to the presence of turbulence,
as opposed to the secondary vortices of the first kind which arise from the skewing of
the cross-stream vorticity, and for which secondary velocities are typically one order
of magnitude larger.

Significant experimental contributions to the study of corner vortices arising in
ducts of square cross-section have been published by Brundrett & Baines (1964)
and Gessner (1973). The former observed that the vortices penetrate farther into the
corners with the increase of the Reynolds number, and ascribed the secondary flows
to the gradients of the normal Reynolds stresses. Gessner (1973), on the other hand,
suggested that the secondary flows are produced by the transverse gradients of the
primary shear stresses occurring in the corner region. The results by Gessner were
surprising since they played down the role of the anisotropy of the turbulent normal
stresses. At the same time, Launder & Ying (1973) had shown that a turbulence model
which used an isotropic eddy viscosity was incapable of capturing corner vortices,
thus highlighting the importance of anisotropic modelling. Several studies followed,
aimed at showing that through appropriate anisotropic modelling of the Reynolds
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stresses, corner vortices could be captured more or less correctly. One notable such
work is that by Demuren & Rodi (1984); they solved a spatially parabolic set
of equations for the mean flow, closing the turbulence problem with an algebraic
stress model, using transport equations for the turbulent kinetic energy and the
dissipation rate. The numerical results reproduced many features of the cross-stream
motion in a turbulent square duct, thus, apparently, settling the issue. However, more
recent attempts (Mompean et al. 1996; Mompean 1998) at predicting corner vortices
using a variety of turbulence closure strategies have consistently underestimated the
magnitudes of the secondary flows compared to direct simulation results for the
same parametric conditions (Gavrilakis 1992). The issue of the origin of the corner
vortices is still open as noted by Gavrilakis who concluded that “a theory on the
flow structures that give rise to the observed mean flow is not yet available”. With the
objective of making progress towards such a theory, we start from the hypothesis that
large-scale secondary vortices in square and rectangular ducts respond linearly to the
mean shear, over a large range of Reynolds numbers and flow regimes.

We begin by studying the initial amplification of disturbances in the laminar square-
duct case and demonstrate that – despite the fact that all eigenmodes of the linearized
problem predict asymptotic stability (Tatsumi & Yoshimura 1990) – cross-stream flows
can appear in the early transitional regime, associated with large (order Re2) distur-
bance energy growth. The study is then extended to the case of arbitrary-aspect-ratio
ducts. Like pipe and plane channel flows, the results suggest that the initial algebraic
growth of perturbations has an important role to play in the transition process.

Then, rather than attempting a nonlinear study of the development of optimal
disturbances (i.e. those disturbances which evoke the largest growth), we focus
on the dynamics of perturbations developing over a fully-developed turbulent flow
profile. The underlying rationale for this approach stems from a number of studies,
starting from Crighton & Gaster (1976) who considered a turbulent jet and argued
that turbulence sets up an equivalent laminar flow profile for large-scale coherent
modes. Agreement between linear stability modes (frequency and spatial scales) and
experimental measurements supported the linear hypothesis. Along similar lines,
Landahl (1990) proposed a simple model for the bursting phenomenon in turbulent
boundary layers, based on the inflectional instability of growing streaks, whose
physical realism prompted him to state that “the success of a quasi-laminar model like
the present one in explaining some of the behaviour of the coherent structures in the
turbulent boundary layer suggests the possibility that certain features of turbulent flow
may be studied in a laminar environment”.

In the present configuration the optimal linear growth of small disturbances results
in the formation of corner vortices in the cross-section, thus supporting the hypothesis
that the presence of secondary flows is a consequence of the linear deterministic
evolution of the flow. This is in line with the arguments by Gessner (1973) on the
role of the turbulent stresses. The importance of the anisotropic modelling of the
Reynolds stresses cannot, clearly, be overstated: it is needed for a proper description
of the turbulent field and to account correctly for the spectral distribution of energy
once fluctuations have attained large amplitudes.

2. The algebraic growth of disturbances in the laminar regime
We consider an infinitely long duct of cross-sectional aspect ratio A filled with an

incompressible fluid whose motion along the x-axis is fully developed. The shape of
the laminar base flow U (y, z) is given, for example, in Tatsumi & Yoshimura (1990).
They studied the exponential damping/amplification of small perturbations in time
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numerically focusing on Tollmien–Schlichting-like waves and concluded that as the
aspect ratio A increases, the critical Reynolds number decreases (tending towards
the value of 5772 of the plane channel case), and the critical wavenumber increases
(the limiting plane-channel value is 1.02). For example, for A= 8 it is reported that
Rec = 6800 and αc = 0.98. Furthermore, they indicated that for A less than roughly
3.2 the flow is linearly stable. Comparison with experiments (Kao & Park 1970)
conducted with A= 8 revealed very poor agreement, the measured value of the
critical Reynolds number being close to 1200 with a corresponding wavenumber
close to 0.4. Tatsumi & Yoshimura (1990) ascribed this disappointing comparison to
the effect of nonlinearities in the experiments.

The experiments by Kao & Park (1970) were meant to produce streamwise travelling
waves, and were conducted both with and without controlled excitation. The authors
report that: (i) the value of the Reynolds number at which the laminar flow breaks
down is practically the same with or without artificial excitation; (ii) the unstable
region includes the zero-frequency, zero-streamwise-wavenumber range; (iii) the
disturbances are three-dimensional. Assuming that the experiments were conducted
in a noisy environment† the findings reported can be reconciled with the theory of
by-pass transition (Schmid & Henningson 2001), according to which environmental
three-dimensional disturbances are initially amplified in a transient manner, until
perturbation amplitude levels are attained for which nonlinear effects, parametric
resonances and/or secondary instabilities take over to complete the transition process.
Thus, the study of the transient growth in space of disturbances is necessary to assess
the importance of this mechanism and to establish it as a viable initial path to
transition in rectangular duct flow.

2.1. Transient growth: the theory

The initial phase of algebraic growth of streamwise-elongated secondary structures
superposed onto a parallel base flow U (y, z) can be adequately described by the use of
linearized equations in which a long scale is used to normalize streamwise lengths and
a short scale for the cross-stream directions. The plane duct is bounded by four solid
walls at y = ±Ah and z = ±h; by scaling the cross-stream axes (y, z) with h, and the
streamwise coordinate x with h/ε, ε a small parameter, it follows that U0, maximum
velocity in the channel, should be used as scale for the streamwise perturbation
velocity u, together with εU0 for the cross-stream components (v, w). Pressure is
normalized by ρ(εU0)

2, with ρ the density of the fluid. Steady equations are considered
because of the low-frequency behaviour of streaks reported by several experimental
observations, e.g. Matsubara & Alfredsson (2001), and of the result by Luchini
(2000) that stationary streamwise vortices at the inflow produce the largest transient
growth in a boundary layer. The scaling employed here yields ε = Re−1 = νU−1

0 h−1

and simplifies the equations at leading order (in particular it renders them parabolic
in x), but has no effect on the results for optimal perturbations (Biau & Bottaro
2004). The Reynolds-number-independent, dimensionless equations are:

ux = −vy − wz,

Uux = −Uyv − Uzw + �2u, Uvx = −py + �2v, Uwx = −pz + �2w,

}
(2.1)

† No mention is made in the paper of the prevailing receptivity conditions; the authors cite fine
mesh screens placed ahead of the inlet section of the channel, but do not provide values of the
turbulence level at the inflow.
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with the operator �2 = ∂yy + ∂zz, together with no-slip conditions at the solid walls.
An energy-like norm is defined as

E(x) =

∫ +1

−1

∫ +A

−A

[u2 + (v2 + w2)/Re2]dy dz. (2.2)

The presence of the Reynolds number in the definition of the norm is due to the
velocity scales adopted. The goal of the analysis is to find the initial condition which
maximizes a gain G, a function of the distance x over which the extremum is sought,
defined as G(x) = E(x)/E(0). Clearly such a ratio is a maximum, and is O(Re2), when
u(0, y, z) = 0, so that the objective functional to leading order reduces to

G(x) = Re2

∫ ∫
u(x, y, z)2dy dz∫ ∫

[v(0, y, z)2 + w(0, y, z)2]dy dz

. (2.3)

The theory of optimal disturbances appeared around fifteen years ago, thanks to
the pioneering efforts of Farrell (1988). In the first studies on optimals the initial
disturbance was sought by considering it as a weighted sum of a truncated set of
eigenfunctions of the corresponding eigen-problem. In the present case, this would
mean taking disturbances of the form exp(iαx) and computing numerically a sufficient
number of eigenmodes, so as to adequately represent an arbitrary initial condition. It
is however extremely difficult to resolve well a sufficiently large number of modes of
this two-dimensional eigen-problem to build an adequate basis (Robitaillié-Montané
& Casalis 2003). Hence, a different strategy – borrowed from optimal control theory –
has been used, based on the repeated numerical resolution of the direct parabolic
problem and its adjoint.

The parabolic equations (2.1) are treated with a pseudospectral collocation method
in the (y, z)-plane, coupled with a finite difference scheme along the x-axis.
The unknowns are the values of the primitive variables p, u, v and w at the
Ny × Nz Gauss–Lobatto grid points yi = A cos π(i − 1)/(Ny − 1) with i = 1, . . . , Ny

and zj = cos π(j − 1)/(Nz − 1) with j = 1, . . . , Nz. For instance, if uij denotes the

value of u at the point (yi, zj ) the approximation u(y, z) ≈
∑Ny

i=1

∑Nz

j=1 φi(y/A)φj (z)uij

is used, where φi(y/A) and φj (z) are the Lagrangian interpolating polynomials based
on the nodes yi and zj , respectively. By denoting as p, u, v and w the column vectors
containing the interior nodal values of the variables, the discretized equations (2.1)
become

Qqx = Rq (2.4)

where q = [ p u v w]T is a 4M × 1 vector, Q and R are 4M × 4M matrices, easy to
recover from (2.1), and M = (Ny − 2)(Nz − 2) is the total number of interior nodes. The
no-slip boundary conditions are enforced implicitly. Since the matrix Q is singular, we
adopt an implicit finite difference discretization of (2.4) along the x-axis. The nodal
values of the pressure at x = 0 can be chosen arbitrarily, so that the initial state vector
is set equal to q(0) = [0 0 v(0) w(0)]T , with an arbitrary initial guess for v(0) (w(0)
follows from the equations). Thus, the discretized problem consists of the following
recurrence relations:

q(0) = [0 0 v(0) w(0)]T , q(1) = G1q(0),

q(n) = G2(4q(n−1)− q(n−2)), n = 2, . . . , NL

}
(2.5)
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where q(n) = q(n�x), G1 = (Q − R�x)−1Q, G2 = (3Q − 2R�x)−1Q, and L =NL�x is
the length of the channel. The Gauss–Legendre quadrature formula gives the gain

G(L) = Re2 u(L)T Hu(L)

v(0)T Hv(0) + w(0)T Hw(0)
,

with H a symmetric 4M × 4M matrix (Canuto et al. 1988). The optimization problem
consists in finding the v(0) that maximize G(L) under the constraint given by (2.4).
This is equivalent to the unconstrained maximization of the Lagrangian functional

L(v(0), q, r) = G(L) +

∫ L

0

rT (Qqx − Rq) dx,

where the 4M × 1 vector r = [a b c d]T is a Lagrange multiplier. By imposing
stationarity of L with respect to q the following discrete adjoint equation is obtained:

QTrx = −RTr

(which is different from the discretized version of the system adjoint to (2.1)), plus
the terminal condition r(L) = [0 b(L) 0 0]T , with b(L) = − (2/E0)A

−1Hu(L). From the
stationarity of L with respect to v(0) (the ‘control’) the optimality condition follows:

v(0) = − E2
0

2Ef

H−1A c(0), (2.6)

with A the diagonal matrix having on the main diagonal the values of the base flow
U (y, z) at the interior nodes. The discrete adjoint equation proceeds from downstream
to upstream:

r (NL) = [0 b(L) 0 0]T , r (NL−1) = F1r (NL),

r (n) = F2

(
4r (n+1)− r (n+2)

)
, n = NL−2, . . . , 0

}
(2.7)

where r (n) = r(n�x), F1 = (QT − RT �x)−1QT , F2 = (3QT − 2RT �x)−1QT . In practice,
the direct problem (2.5) is iterated until the value of b(L) is found; this value is used
to initialize the adjoint solver (2.7). Backward integration of the adjoint equations
gives c(0) and we can thus update v(0) through (2.6). After a few direct-adjoint
iterations (ranging from five when A is large to fifteen for A= 1) the maximum gain
is typically found, for the chosen length L. To find the optimal perturbation the
procedure is repeated for several values of L, until the largest gain G is found. The
corresponding length is denoted xopt .

Figure 1(c) displays the largest attainable gain against the streamwise distance x, for
some values of A. For the square duct (A= 1) the optimal value of G is relatively low,
a consequence of the fact that for this geometry viscous diffusion from the sidewalls
acts most efficiently. As A increases the gain attains a maximum over longer distances,
approaching asymptotically the curve for the plane channel flow (Biau & Bottaro
2004). The optimal gain and the corresponding xopt are reported in figure 1(a, b)
as functions of the aspect ratio. For A= 1 both maximum gain and corresponding
xopt are very close to the values of pipe Poiseuille flow, provided by Reshotko &
Tumin (2001). In the square duct two vortices disposed obliquely in the cross-section
constitute the optimal perturbation at x = 0; their downstream development yields
two large streaks of high and low streamwise momentum. This result, displayed in
figure 2(top row), closely resembles the optimal disturbance found in pipe Poiseuille
flow by Reshotko & Tumin (2001), for which the azimuthal wavenumber is m =1. With
the increase of the cross-sectional aspect ratio A the results approach progressively
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Figure 1. Evolution of the gain with x, for some values of A (c). Maximum gain (a) and
corresponding position (b) as function of A; the upper dashed lines correspond to the
asymptotic results for A → ∞, the dotted lines are the results for pipe flow (Reshotko &
Tumin 2001).

those of the plane channel case (cf. figure 2). For A= 8 the disturbance fields near
the centre of the cross-section are identical – to graphical accuracy – to those in
the plane channel. It is important to stress that, as indicated by Luchini (2000), the
procedure adopted is equivalent to performing power iterations to identify the largest
singular value of the operator propagating the initial condition downstream. The
singular values are well separated from one another in the spectrum – as attested
by the rapid convergence of the procedure to the maximum gain, particularly for
large values of A – and this has the consequence that almost any inflow condition
produces the same downstream pattern (provided the initial guess at x = 0 is not
exactly orthogonal to the optimal perturbation). The second and third singular values
can be computed by forcing the initial condition to be always orthogonal to the first
(or the first and the second) singular function(s). Such solutions are shown in figure 3
for the case A= 1 and correspond, respectively, to four and eight vortices/streaks;
these flows could prevail and be observed over short streamwise stretches, depending
on the receptivity conditions. Indeed, the results of optimization procedures carried
out over streamwise distances smaller than the optimal distance reveal that (relative)
maximum gains are associated with states characterized by four transverse vortices.

3. Secondary flows in a turbulent square duct
Attention shifts now to the problem of corner vortices in a turbulent square duct.

Previous efforts, based on kinetic energy budgets and vorticity balances, aimed at
revealing the mechanism of creation of such vortices met with mixed success. In the
spirit of the approach by Crighton & Gaster (1976) we model the large-scale coherent
structures as instability ‘modes’ of the mean velocity profile. Hence, we perform a
triple decomposition of the field, like Reau & Tumin (2002), as follows:

(u, v, w, p) = [U (y, z), 0, 0, P (x)] + [ũ(x, y, z), ṽ(x, y, z), w̃(x, y, z), p̃(y, z)]

+ [u′, v′, w′, p′](x, y, z, t). (3.1)

The first term on the right of (3.1) represents the steady, fully developed
streamwise flow U (y, z), driven by the mean pressure gradient dP/dx. The steady
contribution (ũ, ṽ, w̃, p̃) represents the large-scale secondary flows, and the last term
(u′, v′, w′, p′) models the incoherent, fine-scale fluctuations. For the same flow, a
similar decomposition (with the first two terms merged) was made by Demuren &
Rodi (1984), who arrived at the same parabolic system of equations, which will
be derived below. They focused on the developing flow starting from a uniform
streamwise velocity condition at the inlet (with no cross-flow), up the fully developed
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Figure 2. Optimal perturbations (secondary velocity vector plots on the left) and isolines of
the streamwise disturbance velocity at xopt for A = 1–4 and A = 8. Positive values of u are
plotted with solid lines. For A � 3 the results show half a domain; they are symmetric about
the vertical centreline y = 0.

(a) (b)

Figure 3. Solutions corresponding to the second and third singular values for the flow in
a duct of square cross-section. Each figure is a composite of the optimal initial condition
(lower left), the ensuing streak at x = xopt (lower right), the final vortex at x = xopt (upper
right), and the base flow, represented through isolines of U (upper left). The velocity vectors
representing the vortices at x =0 and xopt use the same scale in each figure and allow a
graphical appreciation of the downstream damping of the secondary velocity components.
(a) The solution pertaining to the second singular value; it displays four vortices in the
cross-section and is characterized by Gmax/Re2 = 9.8 × 10−5 at xopt =0.0225. The third singular

value (b) is such that Gmax/Re2 = 4.1 × 10−5 at xopt = 0.0095.

regime. In the present case the base flow U (y, z) is a given input, and the focus is on
whether U can sustain the growth of secondary, large-scale structures.

The Navier–Stokes equations are rendered dimensionless by the use of the
conventional scales h, U0 and ρU 2

0 . Upon inserting (3.1) into the equations, neglecting
streamwise diffusion, and averaging over time (this operation is denoted by overbars)
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the Reynolds-averaged equations are found:

∂xũ + ∂yṽ + ∂zw̃ = 0,

U∂xũ + ṽ∂yU + w̃∂zU − 1

Re
(∂yyũ + ∂zzũ) = −dP

dx
+

1

Re
(∂yyU + ∂zzU ) + Su,

U∂xṽ + ∂yp̃ − 1

Re
(∂yyṽ + ∂zzṽ) = Sv,

U∂xw̃ + ∂zp̃ − 1

Re
(∂yyw̃ + ∂zzw̃) = Sw,




(3.2)

with the advective terms

Su = −∂x(ũ
2 + u′2) − ∂y(ũṽ + u′v′) − ∂z(ũw̃ + u′w′),

Sv = −∂x(ũṽ + u′v′) − ∂y(ṽ
2 + v′2) − ∂z(ṽw̃ + v′w′),

Sw = −∂x(ũw̃ + u′w′) − ∂y(ṽw̃ + v′w′) − ∂z(w̃
2 + w′2),

neglected under the assumption that large-scale coherent motion and turbulent
fluctuations are of small amplitude. Such an approximation is clearly the delicate
point of the present analysis; approaches which include modelling of the Reynolds
stresses have been pursued by Reau & Tumin (2002) and Joshi & Tumin (2004).

Low-speed streaks of turbulent boundary layers have a quite short life before
the abrupt emergence of localized ‘spikes’ preceding the ultimate nonlinear stages
of transition to turbulence. Because of the short life of such coherent structures,
Butler & Farrell (1993) conducted a temporal optimization procedure over one eddy
turnover time, arguing that over such a distance turbulent fluctuations had no time to
disrupt the growth of the streaks. With such a hypothesis characteristic streaks spaced
close to 100 wall units apart were found, in agreement with observations. Here the
aim is not to model short-lived low-speed streaks, but large-scale corner structures,
whose existence and spatial persistence (Gavrilakis 1992) is tied to the presence of
two orthogonal walls. Since such vortices have a long life, we search for the optimal
distance, i.e. that yielding the largest gain, which is typically much longer than one
eddy turnover length. The gain is defined as the ratio of final to initial energy, with
the energy norm as in (2.2) (except for the absence of Re, because of the same scaling
adopted for streamwise and cross-stream axes).

The flow distribution in the cross-section is taken from Gavrilakis’ simulation:
the streamwise velocity profiles along the wall bisector and along the diagonal are
taken from his figure 4. We then reconstructed the mean flow in the cross-section
with a least square fit. The resulting isolines of U in a cross-section are displayed
in figure 4 (b, c, upper left curves) and show the presence of thin boundary layers
next to the solid walls. Re (based on maximum speed and half-channel height) is
fixed at the value 2933 of the direct simulations and the corresponding dimensionless
average pressure gradient is −dP/dx = 0.0052323. The optimization proceeds as in
the previous section, with the only difference that the direct system of equations is
now inhomogeneous, and has the symbolic form Qq̃x − Rq̃ = b, with the vector b
arising from mean flow variables (cf. (3.2)). It is important to stress here that our
governing equations have been derived, and that the current study cannot be labelled
as a simple stability analysis of a turbulent base profile. The result of the optimization
procedure, which requires of the order of 100 iterations, is displayed in figure 4(a).
Two oblique vortices in the cross-section extract the most energy from the mean flow.
The largest distortion in streamwise speed, scaled with the peak velocity of the base
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(a) (b) (c)

Figure 4. Solutions pertaining to the first three singular values of the turbulent case arranged,
from left to right, in order of decreasing Gmax . (a) Secondary velocity vectors at x =0 and
isocontours of u at xopt ; (b, c) as in figure 3.

flow, ranges from 0.002 at x =0 to 0.109 at x = xopt = 140.78, with a corresponding
energy gain of 114.2. This should be compared with a streamwise-average streamwise
distortion close to 1% of the maximum speed indicated by Gavrilakis (1992). The
length over which the initial optimal disturbance grows most corresponds to 21000
viscous units, i.e. a distance of the order of 34 large-eddy turnover units.

Clearly it would have been more suggestive to find an optimal solution made up
of eight vortices in the cross-section, symmetric about the diagonals, as computed
by Gavrilakis and many others. On the other hand, the present analysis suggests
that a turbulent-like profile in a square duct is capable of sustaining the growth of
secondary flows of a cross-stream scale comparable to that found in experiments
over a distance significantly longer than the typical life span of low-speed streaks in
turbulent boundary layers. To assess whether the selection of the two-vortex solution
occurs sharply, a number of other calculations were conducted to identify higher
singular values. The second singular value – shown in figure 4(b) and characterized
by four vortices in the cross-section – is very close to the first (Gmax = 112.5 at
xopt =83.6), implying that the state corresponding to the first singular value cannot
rapidly emerge out of an arbitrary initial disturbance field. The third singular value
(figure 4, c) exhibits a maximum gain which is about half that of the first.

The main conclusions we can draw from these calculations is that: (i) a turbulent-
like mean flow is capable of supporting a variety of secondary structures; (ii) such
structures can grow over long streamwise distances because of a linear transient
mechanism; however, in the present simple model, they are damped downstream
under viscosity; (iii) the nonlinear source terms Su, Sv and Sw have been neglected
here, but appropriate Reynolds stress modelling is indispensable for a sharp selection
of the transverse field type and to achieve statistics independent of the streamwise
distance x (Demuren & Rodi 1984; Mompean et al. 1996; Mompean 1998).

4. Concluding remarks
The first optimization of disturbances developing spatially in ducts bounded by

four solid walls has been performed by a discrete direct-adjoint approach. The results
for the laminar base flow complement those available in the literature and provide
a possible interpretation to the experimental findings by Kao & Park (1970) on
transition in rectangular ducts. For a duct of square cross-section the maximum
growth is comparable to that found in a circular pipe, and likewise for the shape
of the optimal perturbation. As the aspect ratio increases, viscous diffusion from the
sidewalls is less effective in hampering the growth of the vortices, so that the largest
attainable gain increases, tending progressively towards the plane channel flow value.

The turbulent flow case has been approached with the assumption that large-scale
structures respond linearly to the mean shear, an idea which has circulated for quite
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some time and in different guises. The result of the optimization shows that, in a square
duct, the two-vortex and the four-vortex solutions are equally capable of extracting
energy from a mean flow with a turbulent-like profile, over a streamwise length of
several thousand viscous units. This finding seems to imply that nonlinearities are not
necessary for the sustainment of secondary flows. Conversely, appropriate modelling
of the turbulent stresses is needed to select key features of such secondary structures,
such as their symmetry, and to ensure x-independent statistics.
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