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We explore the spatial growth of disturbances developing on top of a base flow given
by the Hagen–Poiseuille profile, which has been modified by a small axisymmetric
and axially invariant distortion. Such deviations from the ideal parabolic profile
may, for instance, occur in experiments as a result of experimental uncertainties.
The optimal distortion (i.e. the distortion with a prescribed norm that induces the
maximum growth rate) is computed by a variational technique. Unstable modes are
found to exist for very small values of the norm of the deviation at low Reynolds
numbers, and the instability is governed by an inviscid mechanism. The growth of
these modes and the ensuing transition to turbulence is then studied by means of
direct numerical simulations. Two possible paths of transition are found, one based
on the exponential amplification of axisymmetric disturbances and the subsequent
formation of �-vortices and the other based on the growth and breakdown of
streamwise streaks.

1. Introduction
In the transition process from laminar to turbulent flow in a cylindrical pipe, at

least two stages can be distinguished: the initial and the late stage. The initial stage
is related to the receptivity, i.e. the way the flow filters incoming disturbances, and
to their initial linear growth into finite-amplitude perturbations, for which eventually
nonlinear mechanisms (late stage) become important. Recently, much progress has
been made in our understanding of the late stage of transition. Both experiments
(Han, Tumin & Wygnanski 2000) and numerical simulations (Reuter & Rempfer
2000) have shown that in pipe flow this late stage is accompanied by the formation
of �-like vortices characterized by strong shear layers and by spikes in the temporal
traces of the velocity. These spikes are associated to ring-like vortices that separate
from the tips of the large �-vortices. Similar structures have also been found in the
late stages of transition in boundary layers, either in the K-, N- or O-regimes of
breakdown (see Berlin, Wiegel & Henningson 1999). These observations indicate that
a considerable degree of similarity exists in the late stage of transition in a pipe and
in a boundary layer.
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The initial stage of transition in a flat-plate boundary layer in the presence of acou-
stic disturbances in the free stream and of roughness elements on the surface usually
starts with the excitation of unstable Tollmien–Schlichting (TS) waves if the Reynolds
number exceeds a critical value. When these two-dimensional TS waves reach a suffi-
ciently large amplitude, a three-dimensional secondary instability develops. This in-
stability produces a streamwise component of the vorticity which eventually leads to
the formation of �-vortices, i.e. to the start of the late stage described above. However,
when the disturbance environment is dominated by reasonably high levels of free-
stream turbulence, Matsubara & Alfredsson (2001) have shown that transition closely
approaches the oblique transition path (see Berlin, Lundbladh & Henningson 1994),
in which the initial exponential growth is by-passed by another linear and stronger
amplification mechanism, i.e. the non-modal growth of streamwise-elongated struc-
tures. This is an example of the ‘weak-disturbance by-pass’ introduced by Morkovin
(1993). In the presence of even higher levels of free-stream turbulence, the whole initial
stage of linear growth is by-passed and the late stage of transition sets in immediately.
This has been categorized as the ‘strong-disturbance by-pass’ by Morkovin.

For the cylindrical pipe geometry, much less is known about the initial stage of
transition, one of the reasons being that there are no linearly unstable modes of the
TS kind. Analytical treatment of pipe flow transition, through the classical normal-
mode approach, has shown that the fully developed parabolic Hagen–Poiseuille
profile is linearly stable at all Reynolds numbers, Re (see Lessen, Sadler & Liu
1968; Davey & Drazin 1969; Garg & Rouleau 1972). Although a rigorous proof of
stability exists only for axisymmetric disturbances (Herron 1991), there is very strong
evidence (e.g. Salwen, Cotton & Grosch 1980; Meseguer & Trefethen 2003) that all
linear perturbations decay exponentially for all values of Re and for any value of
the streamwise and azimuthal wavenumbers α and m. Nevertheless, in experiments,
transition to turbulence in pipe flow is typically observed for Re � Recrl

. Here, Recrl
is

the lower limit of the critical (we should rather say ‘transitional’) Reynolds number,
which means that below Recrl

all finite perturbations decay. The value of Recrl
has

been estimated experimentally to lie in the range 1760<Recrl
< 2300. We speak in

this case of subcritical transition to turbulence, as transition occurs at values of the
Reynolds numbers, for which linear theory indicates stability.

On the other hand, in very carefully performed experiments, conceived to exclude all
causes for external perturbations, laminar Hagen–Poiseuille flow can be maintained
up to very large values of the Reynolds number. In the very first experiments
conducted by Reynolds in 1880, for instance, a transitional value of the parameter,
that eventually became known as the Reynolds number, close to 13000 was observed.
Reynolds’ original observations were published three years later (Reynolds 1883)
and for a long time his results remained unchallenged and unexplained by theory.
In more recent times, Pfenniger (1961) reports Recru

� 105, where Recru
denotes the

upper limit of the critical Reynolds number. Different values of Recru
are reported for

individual experiments (see, for example, Draad, Kuiken & Nieuwstadt 1998). For all
these experiments, however, it turns out that Recru

>Redev, where Redev is the value of
the Reynolds number, for which the velocity profile at the end of the pipe deviates
by less than 1% from the theoretical Hagen–Poiseuille profile. This could imply that
the transition process found in these experiments may not be considered as natural
transition of cylindrical pipe flow, but rather as the result of the instabilities of the
developing boundary layer on the wall of the pipe. On the other hand, these high
values of Recru

do not contradict the estimate Recr → ∞ of linear stability theory for
the fully developed flow.
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Another route to transition in pipe flow has been reported in the experiments of
Darbyshire & Mullin (1995); Eliahou, Tumin & Wygnanski (1998); Draad et al. (1998)
and the numerical simulations of Ma et al. (1999) and Reuter & Rempfer (2000). In
this case, transition is forced by the introduction of finite disturbances at the wall, in
particular by periodic blowing and suction through slots in the pipe wall. Although
the perturbations are finite, they are nevertheless small and, without additional
amplification, they should decay as predicted by the classical linear eigen-analysis.
However, it has been suggested by various authors (Boberg & Brosa 1988; Bergström
1992, 1993; Trefethen et al. 1993; Schmid & Henningson 1994) that, in this case, the
non-normality of the linearized Navier–Stokes operator can play an important role,
since it implies potential for strong initial amplification of disturbances, also denoted
as transient growth. As a result of this growth, the disturbance amplitude may reach
a level for which nonlinear interactions are triggered and the eventual viscous decay
predicted by the linear asymptotic analysis is overcome. The scenario of amplification
of small finite perturbations through transient growth in pipe flow was, for instance,
suggested by Ma et al. (1999) and O’Sullivan & Breuer (1994a , b) based on numerical
simulations. Adopting the definitions that were introduced above for a boundary-
layer flow, this transition scenario could be referred to as by-pass transition, since the
linear amplification of disturbances requires a by-pass of the single mode growth. The
estimates for Recrl

that have been obtained following this by-pass scenario lie in the
range of 1760< Recrl

< 2300, which has already been mentioned and this provides an
encouraging argument for the transient-growth picture. It should also be noted that
these values still differ strongly from the lower bound for transition, i.e. Recre

= 81.49,
obtained through the energy method (Joseph & Carmi 1969; Schmid & Henningson
1994).

The non-normality of the linearized operator has another important consequence,
i.e. the high sensitivity of some of its eigenvalues to perturbations, such as, for
example, distortions in the base flow (Bottaro, Corbett & Luchini 2003). Such a strong
sensitivity is clearly observed in the experiments by Darbyshire & Mullin (1995), who
show a broad intermittent range of turbulent flow and decaying perturbations in
the disturbance amplitude versus Reynolds-number space. In the carefully controlled
experiments by Eliahou et al. (1998), it was noted that, by exciting the azimuthal
periodic modes m = ±2 with time-periodic suction and blowing through slots in
the pipe wall, transition could be triggered at Re =2200 only for sufficiently large-
disturbance amplitudes. Eliahou et al. (1998) concluded with the suggestion that
‘transition to turbulence in a fully developed pipe Poiseuille flow can occur only after
the parabolic velocity profile became distorted.’

Base-flow deviations from the theoretical parabolic Hagen–Poiseuille profile can
be ascribed to a variety of physical reasons. They are likely to occur in any
experimental set-up owing to surface-roughness effects, external volume forces, inflow
inhomogeneities, and so on. Even when the theoretical profile is linearly stable, as is
the case for the Hagen–Poiseuille flow, it is possible that small base-flow distortions
render the flow linearly unstable. This possible scenario of instability has already
been examined by Gill (1965) in an effort to explain some laboratory measurements.

The objective of the present work is to show by means of theory and numerical
simulations that the sensitivity of the eigenmodes to small distortions in the base
flow can be a cause for initial exponential growth of perturbations. It is expected
that those eigenvalues, which show the highest sensitivity to infinitesimal variations
in the base flow, are the most affected and can become unstable. These so-called
most ‘receptive’ eigenvalues have been recently identified by Tumin (1996) through a
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spatial analysis which employs the direct and adjoint stability operator. Our analysis
here differs from that of Tumin because, given these most ‘receptive’ eigenvalues,
we identify so-called ‘optimal’ base-flow deviations, i.e. those distortions from the
Hagen–Poiseuille profile, which maximize the instability of the flow in a way to
be described shortly. It will be shown that deviations with a very small (but
finite) norm are already sufficient for the modified flow to become exponentially
unstable at low Reynolds numbers. This exponential instability, which can also act in
combination with transient-growth mechanisms, may amplify disturbances to a level
where eventually nonlinear interactions can take over bringing the flow to the late
stage of transition.

In the next two sections, we describe the theory of the optimally perturbed base
flow. First, a method based on spatial eigen-analysis is presented to determine the
sensitivity of individual eigenvalues to variations introduced in the base flow. Then a
standard variational technique is used to determine the optimal base-flow deviations,
i.e. those deviations that can best destabilize the flow. Finally, in § 4, we describe
results from direct simulations of the nonlinear governing equations carried out to
study the evolution of unstable eigenmodes, and discuss the viability of the transition
scenario identified.

2. The theory
As the starting point of our analysis we introduce a cylindrical coordinate system

(x, r, θ). Here, x, r and θ denote the axial, radial and azimuthal directions, respectively,
and u, v and w the corresponding velocity components. The laminar solution to the
incompressible Navier–Stokes equations for a cylindrical pipe geometry is the well-
known Hagen–Poiseuille flow, which in non-dimensional form, using the centreline
velocity Umax and the pipe radius R as scales, reads:

V (r) = U (r)ex = (1 − r2)ex, P (x) = P0 − 4

Re
x, (2.1)

where P0 is the static pressure at x =0 and ex is the unit vector in the x-direction. The
Reynolds number is Re = Umax R/ν. Linearization of the full Navier–Stokes equation
around the laminar solution U produces:
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Next, we assume the disturbance quantities v = (u, v, w) and p to be of the form:

v (r, θ, x, t) = v̂ (r, x; m, ω) ei(mθ−ωt),

p (r, θ, x, t) = p̂ (r, x; m, ω) ei(mθ−ωt),
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where m is the azimuthal wavenumber, ω the dimensionless circular frequency and
v̂ =(û, v̂, ŵ) and p̂ the complex disturbance amplitudes. Following Tumin (1996),
two auxiliary variables are introduced, namely v̂x = ∂v̂/∂x and ŵx = ∂ŵ/∂x. The
equations (2.2a)–(2.2d ) can then be rewritten as a system of first-order differential
equations in x, for which the vector of the unknowns is given by a (x, r; m, ω, Re) =
(v̂, v̂x, û, p̂, ŵ, ŵx). The resulting system in compact notation reads:

∂a
∂x

= C0a + C1

∂a
∂r

+ C2

∂2a
∂r2

, (2.4)

where Ck (k = 0, 1, 2) are 6 × 6 coefficient matrices whose non-zero entries are given
in Appendix A.

In a spatial stability analysis, the frequency ω is a real parameter and the solution
to system (2.4) is assumed to behave as:

a(x, r; m, ω, Re) = aα(r; m, ω, Re)eiαx.

Introduction into (2.4) results in the following eigenvalue problem:

iαaα = Laα, (2.5)

where α is the complex eigenvalue, whose real and imaginary parts give, respectively,
the wavenumber and the growth rate of the eigenmode in the streamwise direction.
The linear operator L is given by:

L =

2∑
k=0

Ck

dk

drk
.

At the pipe wall, the no-slip boundary condition is assumed:

r = 1: a1 ≡ v̂ = 0, a3 ≡ û = 0, a5 ≡ ŵ = 0

and, as a result, the other variables must satisfy the conditions:

r = 1: a′
4 ≡ p′ =

1

Re
a′′

1 , a2 ≡ v̂x = 0, a6 ≡ ŵx = 0,

in which primes indicate derivation with respect to the radial coordinate.
Although r =0 is not a physical boundary, it is a numerical boundary and the

condition that must be imposed at the pipe centreline is that all flow quantities
remain bounded. This is accomplished by the following conditions for r → 0, as a
function of the azimuthal wavenumber m:

m = 0 : a1 = a′
3 = a5 = 0, ⇒ a2 = a′

4 = a6 = 0,

m = ±1 : a′
1 = a3 = a′

5 = 0, ⇒ a′
2 = a4 = a′

6 = 0,

|m| > 1 : a1 = a3 = a5 = 0, ⇒ a2 = a4 = a6 = 0.

The numerical solution of the resulting eigenvalue problem is achieved by the
use of a Chebyshev pseudospectral collocation technique. To determine the adequate
number (N +1) of Chebyshev polynomials, spectra obtained with N = 64 and N = 128
collocation points have been compared. With N = 64, the first 60 eigenvalues, taken
in order of increasing absolute value of their imaginary part, have been found to be
sufficiently well resolved. When it was necessary to investigate higher eigenvalues in
the spectrum, 128 collocation points have been used.

As an example, in figure 1, the spectrum of eigenvalues for azimuthal index m =1,
Reynolds number Re =3000 and frequency ω =0.5 is displayed. As mentioned in
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Figure 1. Spatial spectrum of eigenvalues for Hagen–Poiseuille flow at Re = 3000, m= 1,
ω =0.5. The large circle includes the two most receptive eigenvalues (cf. § 3.1.) The numbers 1
and 2 denote the two main branches of eigenvalues (represented respectively by + and ×, to
distinguish them from the rest of the spectrum, �).

§ 1, all available evidence indicates that linear modes are stable. The presence of
some eigenvalues with αi < 0 does not imply instability; these modes are simply
propagating upstream, reflecting the fact that the initial-value problem for spatially
developing disturbances is not well posed. The property of upstream and downstream
propagation of some of these modes has been recently verified in the numerical simula-
tions by Ma et al. (1999). In figure 1, for the purpose of subsequent data presentation,
we have labelled with 1 and 2 the two neighbouring branches belonging to the two
main groups of eigenvalues and we have indicated them with different symbols.

3. Optimal base-flow deviations
3.1. The sensitivity function GU

Let us introduce an infinitesimal real variation δU in the base-flow velocity profile U

and compute the corresponding variation in the eigenvalues δα and eigenfunctions
δaα of system (2.5). The variational system reads:

iδα aα + iα δaα = δL aα + L δaα, (3.1)

where δL is given in matrix form by:

δL =




0 0 0 0 0 0
0 ReδU 0 0 0 0
0 0 0 0 0 0(

δU

r
− δU ′

)
0 0 0

imδU

r
0

0 0 0 0 0 0
0 0 0 0 0 ReδU




+




0 · · · 0
0 · · · 0
0 · · · 0

δU · · · 0
0 · · · 0
0 · · · 0




d

dr
.
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In the analysis that follows, we will make use of a scalar product between two vectors
f and g, defined as:

( f , g) ≡
∫ 1

0

r g† f dr =

∫ 1

0

r (g∗
1f1 + g∗

2f2 + · · · + g∗
6f6)dr,

where the superscripts † and ∗ denote, respectively, the conjugate transpose and the
complex conjugate. Upon taking the inner product of both sides of the variational
system (3.1) with a function bα:

(iδα aα, bα) + (iα δaα, bα) = (δL aα, bα) + (L δaα, bα) , (3.2)

and after some manipulations, including the integration by parts of the term δU ′ in
δL, (3.2) can be reduced to the form:

iδα

∫ 1

0

r b†
αaα dr + (δaα, −iα∗bα) = i

∫ 1

0

r GUδU dr + (δaα, Labα) ,

with GU given by:

GU = −i Re b∗
2a2 + b∗

4

[
ma5 − 2i a1

r
− 2ia′

1

]
− i a′∗

4 a1 − i Re b∗
6a6. (3.3)

The function bα is now chosen to be a solution of the adjoint eigenvalue problem,
defined by

−i α∗bα = Labα =

2∑
k=0

(−1)k
1

r

dk(rC†
kbα)

drk
,

with the following boundary conditions for r =1:

b2 = b4 = b6 = 0 ⇒ b′
2 = b5 = 0, b1 +

1

Re
b′

4 = 0

and for r → 0

m = 0 : b2 = b′
4 = b6 = 0 ⇒ b1 = b5 = 0, − 3

2
b′′

2 + b′
3 = 0;

m = ±1 : b′
2 = b4 = b′

6 = 0, ⇒ b3 = 0, b1 + im b5 = 0, b′
5 +

im

2Re
b′′

4 = 0;

|m|> 1 : b2 = b4 = b6 = 0 ⇒ b3 = 0, b1 +
1

Re
b′

4 = 0, b5 +
im

Re
b′

4 = 0.

The functions bα and aα are normalized so that the bi-orthonormality condition is
satisfied:

(aα, bβ) =

∫ 1

0

r b†
β aα dr = δαβ.

With this choice for bα , the variation δα in the eigenvalue can be evaluated from (3.2)
as:

δα =

∫ 1

0

rGUδU dr, (3.4)

where GU represents the sensitivity function of each eigenvalue α to base-flow
variations.

Relation (3.4) shows that (rGU ) can be interpreted as an integrating factor between
a variation introduced in the base flow δU and the corresponding variation in the
eigenvalue δα. Depending on the property of GU , it is possible that small base-flow
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Figure 2. Infinity norm of (rGU ) for the eigenvalues shown in figure 1, numbered in order
of increasing |αi |.

deviations render the flow linearly unstable. Our interest is therefore primarily focused
on those eigenvalues, for which the sensitivity function GU is large. By solving the
direct and adjoint problem, the function GU has been computed for all eigenvalues
of the spectrum, according to the definition (3.3). The results for the infinity norm,
i.e. the largest absolute value, of (rGU ) are presented in figure 2 for the first 80
eigenvalues of the spectrum shown in figure 1. Here, the symbols correspond to those
used in figure 1 to denote the eigenvalue branches.

As can be seen from figure 2, the least stable eigenvalue has a very small infinity
norm of the sensitivity function, while the maximum values for GU are attained
by the eigenmodes numbered 22, for which α =0.9279 + 0.8111i, and 24, for which
α = 0.9272 + 0.8791i (the corresponding eigenvalues are encircled in figure 1). It also
appears that the modes corresponding to the first family of eigenvalues (indicated by
a ‘+’ sign) are more sensitive than those belonging to the second family, at least up to
mode 58. The higher sensitivity found for the modes belonging to the first family, and
in particular for modes 22 and 24, agrees with the result reported by Tumin (1996),
who indicates that precisely those modes are most receptive to periodic suction and
blowing through a slot at the wall.

Figure 3 illustrates the absolute value of (rGU ) as a function of the radial direction
for these two most sensitive eigenmodes and also for the least stable eigenmode.
The sensitivity functions for modes 22 and 24 have a maximum close to the wall
(around r = 0.66) and this maximum is about three orders of magnitude larger than
the maximum value of the least stable mode, which is located closer to the centreline.

3.2. The ‘optimally’ perturbed base flow

Our interest now shifts to finding ‘optimal’ deviations from the ideal base flow, which
in our case is the Hagen–Poiseuille flow and which will be called Uref from now on.
‘Optimal’ in this case means base-flow distortions which lead to exponentially growing
perturbations, but at the same time minimize the deviation from Uref. Equivalently,
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Figure 3. Absolute value of (rGU ) for mode 22 (solid line), mode 24 (dashed line)
and mode 1 multiplied by 103 (dash-dotted line).

our goal can be stated as the minimization of the imaginary part of the eigenvalue αi

of a downstream propagating mode (so that it is displaced to the lower half-plane)
by satisfying a constraint on the magnitude of the velocity deviation, 	U = U − Uref,
expressed by the norm: ∫ 1

0

r	U 2 dr = ε. (3.5)

Note that ε is, in general, taken to be small, but it does not need to be infinitesimally
small. The resulting constrained minimization problem can be reduced to an
unconstrained one, by introducing the Lagrange multiplier λ. This results in the
minimization of the functional:

I = αi − λ

[∫ 1

0

r(U − Uref)
2 dr − ε

]
,

a necessary condition of which is given by:

δI = δαi − 2λ

∫ 1

0

r	UδU dr = 0.

On the basis of (3.4), the equation above results in the following optimality condition:

δαi = 2λ

∫ 1

0

r	UδU dr =

∫ 1

0

rGUi
δU dr, (3.6)

where GUi
is the imaginary part of the sensitivity function. Since (3.6) must hold for

arbitrary variations δU , it must be that:

	U =
GUi

2λ
. (3.7)



140 M. I. Gavarini, A. Bottaro and F. T. M. Nieuwstadt

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0

0.5

1.0

1.5

2.0

αr

a

b

c

αi

 

Figure 4. Spectrum of eigenvalues for Hagen–Poiseuille flow at Re = 3000, m= 1, ω = 0.5
(circles), and for the optimally perturbed base flow with norm ε = 2.5 × 10−5, which minimizes
αi of mode 22 labelled with a (triangles). The paths with the arrow indicate the trajectories
followed by modes a and b in α-space in the course of the iterations using (3.8).

By enforcing (3.5), λ is found to be equal to:

λ = ±
[

1

4ε

∫ 1

0

rG2
Ui

dr

]1/2

,

where the minus sign corresponds to a minimization.
Since GUi

depends on the base flow U , (3.7) must be solved iteratively, i.e. by
employing the algorithm:

U (n+1) = U (n) − k

[
U (n) − Uref −

G
(n)
Ui

2λ(n)

]
, (3.8)

with superscript (n) denoting the iteration number and k, 0 <k � 1, a relaxation

parameter. We assume that convergence is reached when
∫ 1

0
r(U (n+1) − U (n))2 dr is

close to zero to machine (double) precision.
With the iterative procedure outlined above, we can compute the ‘optimal’ base-flow

deviation for any eigenvalue α. In figure 4, the spectrum of the eigenvalues for a
disturbance with m =1 and ω = 0.5, superimposed to the Hagen–Poiseuille flow at
Re = 3000, is shown again in somewhat more detail. The most receptive eigenvalues
have been labelled a and b, while the eigenvalue labelled c is the least stable. In the
same figure, we have plotted, by using open triangles, the spectrum for the optimally
perturbed base flow with norm ε = 2.5 × 10−5. As can be seen, a base-flow deviation,
even of this very small norm, but specifically targeted to minimize αi of mode a,
is able to make this eigenvalue cross the real axis to the unstable α-plane. At the
same time, mode b moves upwards, i.e. it becomes more stable, whereas mode c is
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Figure 5. Hagen–Poiseuille flow (dash-dotted line) plotted along with the optimally perturbed
base flow U which minimizes αi of mode 22 (solid line) and the derivative of the circulation
U ′/r normalized by a factor 20 (dashed line).

negligibly affected. The resulting unstable base flow is plotted in figure 5 together
with the reference Hagen–Poiseuille flow and with the function (U ′/r)′, which will be
discussed later on. The final unstable eigenvalue is equal to 1.3077 − 0.0499i. Exactly
the same value is achieved when the minimization procedure uses mode 24 as starting
point (labelled b in figure 4), suggesting the presence of a strong ‘attractor’ for the
highly sensitive modes.

Although we can give no formal proof, we argue that we have found a global
minimum of αi for ε = 2.5 × 10−5 because, when the procedure starts from a number
of other modes as initial condition, it never manages to produce a lower value of
αi . For example, when starting from the least stable mode (labelled c in figure 4)
the local minimum is found to be α = 0.5650 + 0.0126i, i.e. this mode remains stable.
Moreover, in this case, the whole spectrum changes only slightly, as illustrated by
figure 6. The corresponding optimally perturbed base flow is plotted in figure 7. As
expected from the shape of the sensitivity function for this eigenmode (shown in
figure 3), the deviation from ideal pipe Poiseuille flow is now most pronounced close
to the axis.

We conclude, therefore, that for the current parameter settings, m =1, ω =0.5,
Re = 3000, the most destabilizing mean flow deviations are localized around r � 0.66,
as shown in figure 5. This agrees qualitatively with the results obtained by Gill (1965),
according to whom, at high Reynolds numbers, base-flow deviations localized around
r � 0.7 are most effective in destabilizing (axisymmetric) periodic disturbances.

As shown in figure 5, the optimal base-flow deviation produces five points for
which (U ′/r)′ crosses the real axis, which is Rayleigh’s necessary condition of inviscid
instability to axisymmetric disturbances for a flow in a cylindrical geometry (see
Batchelor & Gill 1962). The point denoted by s1 satisfies also the modified Fjørtoft’s
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Figure 6. Spectrum of eigenvalues for Hagen–Poiseuille flow at Re = 3000, m= 1, ω = 0.5
(circles), and for the optimally perturbed base flow, which minimizes αi of the least stable
mode (triangles).
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Figure 7. Hagen–Poiseuille flow (dash-dotted line) plotted along with the optimally perturbed
base flow (solid line), which minimizes αi of the least stable mode. The function (U ′/r)′,
normalized by a factor 20, is also plotted with a dashed line.

criterion: (
U ′

r

)′

(U − Us) < 0,

with Us the velocity at the radial position corresponding to s1 (both the Rayleigh and
the Fjørtoft stability criteria are briefly reviewed in Appendix B). This suggests that
the instability process of the perturbed base flow may be related to the well-known
inflection-point mechanism. However, both criteria mentioned above are not sufficient
to guarantee instability. This is borne out by point s2 in figure 7, for which both
the Rayleigh and Fjørtoft criteria are satisfied, but the flow is nonetheless stable. A
supporting argument to the inflectional nature of the instability is given by the good
agreement between the phase speed of the unstable waves in all cases analysed, and
the streamwise velocity at the inflection point.

Note that in both figures 5 and 7, the r-derivative of the circulation, i.e. the vorticity
divided by the radius, has been scaled by a factor 20. This confirms the result of Gill
(1965) that the actual change produced in the circulation by the base-flow distortion
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Figure 8. Modulus of the eigenfunctions of the unstable mode for the optimally perturbed
base flow, which minimizes αi of mode 22; Re =3000, m= 1, ω = 0.5, ε = 2.5 × 10−5. |u| (solid
line), 5 ×|v| (dashed line), |w| (dash-dotted line), 10 × |p| (dotted line).
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Figure 9. Modulus of the eigenfunctions of the least stable mode for the optimally perturbed
base flow, which minimizes αi of mode 1 (i.e. the least stable eigenvalue); Re= 3000, m= 1,
ω = 0.5, ε = 2.5 × 10−5. Line styles are the same as in figure 8.

need only be small, but the gradient of the circulation must be finite to induce a
linear instability in the flow.

The eigenfunctions corresponding to the unstable mode of figure 4 and to the
least stable mode of figure 6 are displayed in figures 8 and 9. In both cases, we find
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that a peak in axial velocity u occurs close to the points s1 and s2 where (U ′/r)′

vanishes.
It could be argued that these newly obtained base flows, as shown in figures 5

and 7, are not solutions of the unforced Navier–Stokes equations. However, they are
solutions if, for example, a small volume force fx = − ∇2(	U )/Re or alternatively
a small pressure deviation (equal to −fxx) are applied in the axial direction. In
practice, several mechanisms could act as external forcing, allowing for solutions
to the Navier–Stokes equations different from the Hagen–Poiseuille flow, at least
locally. A few examples are the Coriolis force that Draad et al. (1998) had to deal
with in their experiments, convection due to (small) temperature differences between
the fluid in the pipe and the outside ambient, or again roughness elements or local
disturbances in the geometry, such as curvature due to small bends along the pipe or
a slightly non-circular pipe cross-section (see, for instance the work of Davey (1978)
and Kerswell & Davey (1996) on nearly circular elliptical pipes). We can also consider
non-stationary phenomena that may occur when, for instance, the pressure gradient
changes as a function of time so that the mean flow deviates from the parabolic profile
for some time. If, as a consequence of any of these mechanisms, the modified flow
can be established and can persist over a sufficiently long axial distance, transition
can be triggered by the exponential instability.

The results discussed above can be interpreted as a possible initial stage in the
transition process in cylindrical pipe flow. A slightly imperfect base flow allows
exponential growth of small disturbances. When these disturbances are allowed to
become large enough, they may trigger the nonlinear interactions characteristic of
the final stage of transition. We will return to this possible scenario for transition in
§ 4 when we discuss the numerical simulations.

3.3. Dependence on Re, ω, m and ε

In the previous section, we have considered the optimal base-flow deviation only for a
fixed setting of parameters. Let us now consider the effect of varying these parameters.

In figure 10, the growth rate, −αi , is plotted as a function of the frequency ω for a
perturbation with m =1 and for different values of the Reynolds number. Each point
in the curve represents the growth rate of the most sensitive mode for a base flow,
which (optimally) deviates from the Hagen–Poiseuille profile by a function 	U of
norm ε =10−5. Clearly, a larger band of frequencies becomes unstable as Re increases.
For the chosen values of m and ε the exponential amplification of one eigenmode
starts already at Re somewhat below 1760 with αr � 4 and ω � 3.5. In figure 11,
the corresponding values of the phase velocity, cp = ω/αr , are displayed. The waves
are dispersive and their speed of propagation increases with ω. Furthermore, as ω

increases or the Reynolds number decreases, the phase velocity tends to a value
around one, i.e. it approaches the centreline velocity. This is a consequence of the
corresponding shift of the optimal base-flow distortion towards the centreline, as
can be observed in figure 12, and is related to the fact that the phase speed of
the unstable Rayleigh wave is approximately equal to the streamwise velocity at the
inflection point.

In figure 13(a), the neutral curve is displayed in the plane (Re, ω) for the optimally
perturbed base-flow profiles with a norm of the base-flow deviation equal to ε = 10−5.
In the same figure, we also show the critical points (Rec, ωc), evaluated for different
values of ε. Clearly, for increasing ε, the critical conditions shift to lower values of
Re. In figure 13(b), the same neutral curve and corresponding symbols are plotted
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Figure 10. Growth rate as a function of frequency for m= 1, ε = 10−5, Re= 1760 (dashed
line), Re= 1800 (dotted line), Re =2300 (dash-dotted line), Re= 3000 (solid line).

0 2 4 6 8 10 12 14

0.5

1.0

cp

ω

Figure 11. Phase velocity as a function of frequency for m= 1, ε = 10−5, Re= 1760 (dashed
line), Re= 1800 (dotted line), Re =2300 (dash-dotted line), Re= 3000 (solid line).

in the plane (Re, αr ), from which we can deduce that streamwise waves of shorter
wavelengths (and higher frequencies) are preferentially excited when ε decreases.

In figure 14(a), the relation between the critical Reynolds number and the norm of
the base-flow deviation ε, as defined in (3.5), is shown for the case m = 1. The data
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Figure 12. Optimal base-flow deviations for m= 1, ε = 10−5. (a) Re = 2300; ω = 1.6 (solid line),
ω =3.2 (dashed line), ω = 6 (dash-dotted line). (b) ω = 3.2; Re= 1800 (solid line), Re= 2300
(dashed line), Re =3000 (dash-dotted line).
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Figure 13. (a) Neutral curve in the (Re, ω)-plane and (b) in the (Re, αr )-plane for m= 1 and
ε = 10−5 (solid line); symbols give respectively (Rec, ωc) and (Rec , αrc) for different values of
ε: �, ε = 10−4; �, ε = 5 × 10−5; ∗, ε = 10−5; ×, ε =5 × 10−6; �, ε = 2 × 10−6.
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Figure 14. Norm of the base-flow deviation as a function of the critical Reynolds number
(a) and of the critical streamwise wavenumber (b), for m= 1.
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Figure 15. (a) Critical Reynolds number and (b) critical frequency (�) and streamwise
wavenumbers (�), for optimally perturbed base flows with ε = 10−5, as a function of the
azimuthal wavenumber m.

points in this figure follow a relation of the kind ε = Reγ
c with γ = −2 or, equivalently,

in terms of a velocity amplitude: εa =
√

ε =Reγa

c with γa = −1. When the same kind
of analysis is performed for plane Couette flow (see Bottaro et al. 2003), an identical
value of the exponent is obtained. Moreover, a similar behaviour is found by a number
of authors for plane Poiseuille and plane Couette flows (see, for example, Trefethen
et al. 1993) for the case where εa represents the norm of a generic disturbance operator
to the Orr–Sommerfeld operator. The value of their exponent, however, turns out to
be γa = −2, i.e. twice as big as ours. This discrepancy is ascribed to the fact that the
disturbance operator in our analysis is configured in a very specific form, i.e. as a
perturbation of the base-flow velocity only (see Bottaro et al. 2003), thus leading to
a more conservative value of the minimal norm of the destabilizing perturbation. We
further note that Trefethen et al. (2000) have assembled a number of experimental,
theoretical and numerical studies based on which they deduce a value of γa for
pipe flow equal to −3/2 ± 0.3. The value of the exponent found here is reasonably
close to their estimate. The behaviour of the critical wavenumber with ε also follows
a power law, evidenced in figure 14(b), and so does the critical frequency (not
shown.)

Finally, in figure 15(a) we have plotted the critical Reynolds number as a function
of the azimuthal wavenumber m for a norm of the deviation equal to ε = 10−5. The
corresponding values of the critical frequency and streamwise wavenumber are shown
in figure 15(b). The m =1 mode appears to be the most prone to destabilization by the
mechanism discussed here. The structure of this critical mode for m =1 is displayed in
figure 16 by means of a plot of (v, w) velocity vectors in the (r, θ)-plane together with
isolines of the axial velocity u. We observe that intense disturbances are concentrated
in the proximity of the cylinder axis. For increasing values of Re, the perturbations
are found to shift towards the wall, as already discussed in the context of figure 12(b).
In figure 17, the axisymmetric critical mode is drawn over one wavelength in the axial
direction. This is a meridional mode (cf. Tumin 1996), with the azimuthal velocity
component w identically zero. This axisymmetric mode is the second most unstable
mode (cf. figure 15(a)) and it can play a role in the transition process when Re exceeds
2000.
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Figure 16. (a) Vector representation of (v,w) velocity components in the (r, θ )-plane and
(b) contours of u-component (dashed lines indicate negative values), for the neutral mode at
Re= 1746.6, m= 1, ω = 3.5775, ε =10−5.
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Figure 17. Representation in the (r, x)-plane of the velocity vectors for the neutral mode
at Re= 1918, m= 0, ω = 4.1529, ε =10−5.

4. Numerical simulations
We now study the transition scenario related to ‘optimal base-flow distortions’, by

means of direct numerical simulations: these will demonstrate how transition proceeds
after the initial stage and allow a detailed study of some transition scenarios. For the
simulations we use a code developed by Eggels et al. (1994). This code computes the
flow in a cylindrical pipe geometry with a finite-volume technique with second-order
accuracy for the spatial discretization. The time advancement uses a leap-frog scheme,
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with second-order accuracy for the discretization of the advective terms and a forward
Euler scheme over two time steps for the diffusive terms. For further details, refer to
Eggels et al. (1994). The code has been extensively checked by reproducing the results
obtained by Ma et al. (1999), who have used a spectral code. The agreement is found
to be excellent and this gives us the necessary confidence that the transition process
can be adequately simulated with the present second-order finite-volume code.

After these tests, the code has been modified to simulate the spatial development
of the disturbance velocity v = (u, v, w) evolving on top of a given axisymmetric,
not necessarily parabolic, base flow velocity distribution U (r). The resulting set of
equations reads:

∂u

∂x
+

1

r

∂ (rv)

∂r
+

1

r

∂w

∂θ
= 0, (4.1a)

∂u
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, (4.1d )

where ∇2 is again given by (2.3).
In these equations, no additional forcing term is needed to produce and maintain the

base flow U (r). At the end of the computational domain, a fringe-region technique is
implemented, following closely the method proposed by Lundbladh et al. (1994), who
apply this method in their spectral code to combine the spatial evolution of the flow
with periodic boundary conditions in the streamwise direction. In our case, the fringe
region is used to gradually damp the disturbances flowing out of the physical domain
with minimal reflection. This proves to be necessary to eliminate numerical wiggles
originating at the outflow boundary. At the inflow boundary, the unstable mode of
the optimally perturbed base flow U (r) is imposed with a prescribed amplitude.

The results of the simulations are analysed in terms of the kinetic energy of the
disturbance velocity split up in its individual Fourier components according to:

E
(m,n)
dis (x) =

∑
j=±m

∑
k=±n

1

T

τ+T∫
τ

2π∫
0

1∫
0

1

2

∣∣v̂ (r, x; j, k) ei(j θ−k ωt)
∣∣2 r dr dθ dt. (4.2)

Here, T =2π/ω and τ is an arbitrary starting time, subject to the condition that the
asymptotic temporal state has been reached. The number pair (m, n) indicates the
harmonics, where m is the wavenumber in the angular direction and n the multiple
of the non-dimensional frequency ω. At the inflow, a disturbance is prescribed with
a given value of (m, n), which is called the fundamental mode. During the transition
process, wavenumbers will be excited by nonlinear triad interactions that are multiples
of the fundamental mode and these are called higher harmonics. Equation (4.2) shows
that the spectral energy for each (m, n) is computed as the sum over the modes
(±m, ±n).

4.1. Mode m = ± 1 and n= ± 1 as inflow condition

We consider, in this case, the unstable mode illustrated in figure 8, which refers to
the optimally modified base flow shown in figure 5. The parameters for this flow are
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Figure 18. Spatial evolution of the disturbance kinetic energy for the various Fourier modes
(m, n), with ω = 0.5 fundamental frequency. The inflow condition consists of a combination of
the unstable eigenmodes with m= ± 1, n= ± 1 at Re= 3000 and for ε =2.5 × 10−5, each one
with amplitude Av = 0.002. The dotted vertical line indicates the start of the fringe region.

m =1, Re = 3000, ω = 0.5 and ε = 2.5×10−5. The computational domain that we have
used for this simulation measures 120R in the streamwise direction. By extensive tests,
it is found that an acceptable resolution is achieved by employing 64 × 32 × 768 grid
points in the radial, azimuthal and axial directions, respectively, on a uniform grid in
all directions. The inflow condition is a linear combination of the unstable eigenmodes
with (m, n) = (±1, ±1) in order to generate a real-valued velocity field, as required
by the DNS code. The flow field at x = 0 consists, therefore, of a standing azimuthal
wave. The amplitude of this wave is set equal to Av =0.002, so that the disturbance
kinetic energy at x = 0 amounts to Edis(0) � 5 × 10−5. This initial amplitude has been
chosen sufficiently small in order to observe the exponential growth of the disturbance
in the first part of the pipe, but high enough to excite transition in the downstream
portion of the computational domain.

The results of the simulation in terms of kinetic energy of the individual Fourier
components (m, n) are presented in figure 18. We note that in this case, for which the
initial disturbance is given by (m, n) = (±1, ±1), only modes with (m+n) even can be
generated by quadratic interactions.

At the inflow, only the (1, 1) mode is present. Its energy as a function of x shows
the initial exponential growth at the rate dictated by linear theory. This growth would
not have been observed if the parabolic Hagen–Poiseuille flow had been used as the
base flow. In that case, the (1, 1) mode would have started to decay immediately
as, for instance, found by Ma et al. (1999). Subsequently, the harmonic modes (0, 0)
and (2, 0) generated by the quadratic self-interaction of the fundamental modes and
indicated in the figure by dashed lines, start to grow (to a lesser extent also (0, 2)
and (2, 2) show some amplification, but this seems less important). Mode (4, 0) (thin
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Figure 19. Instantaneous streamwise disturbance velocity at r = 0.7: contour lines range
from −0.17 to 0.2668, spaced by 0.0336.

solid line) appears also to grow rapidly. The very rapid growth of the steady (2, 0) and
(4, 0) modes up to x � 30 can be associated with transient growth. In the first part of
the pipe, mode (2, 0) has the form of streamwise vortices centred at the radial position
corresponding to the inflection point s1 in the distorted mean profile (see figure 5),
i.e. quite close to the pipe wall. This allows for an effective lift-up of low-speed fluid
from the wall towards the centre of the pipe. This results further downstream in the
formation of a strong streaky structure, which is illustrated in figure 19. The axial
component of the velocity perturbation is here two orders of magnitude larger than
the other two velocity components.

Figure 19 also shows that around x � 25, a secondary subharmonic odd instability
appears. It takes the form of varicose oscillations in the low-speed streaks (drawn
with dashed lines) and sinuous oscillations in the high-speed streaks (solid lines) (see
figure 2 of Andersson et al. (2001) for further details of these subharmonic secondary
modes).

We have seen in the previous section that, for a given value of ε, the optimal base-
flow distortion moves towards the centreline for decreasing values of the Reynolds
number (see figure 12(b)). This would weaken the lift-up effect and, correspondingly,
the flow becomes more stable (to transient amplification).

The conclusion for the initial stage behaviour for this (m = ± 1, n = ± 1) case must
be that, despite the initial exponential growth, transient growth still plays an important
role in the transition process. This has already been indicated by Bottaro et al. (2003)
who, in a similar analysis for plane Couette flow, showed that the linear stability
operator of the perturbed base flow remains highly non-normal. It can be argued that
in this transition scenario there is combination rather than a competition between
the two growing mechanisms, modal and non-modal, the second being enhanced by
the first.

After this initial phase, in which linear growth mechanisms and quadratic self-
interactions of the fundamental modes dominate, the growth of the (2, 0) mode
is damped mostly by strong nonlinearities producing a mean flow modification,
i.e. (2, 0) + (−2, 0) → (0, 0). Furthermore, the coupling between different disturbance
components plays an important role in redistributing the energy in wavenumber
space. In particular, it is clear from figure 18 that low-frequency modes (for example
modes (3, 1), (4, 0), (5, 1) and (6, 0)) dominate over other nonlinearly generated
modes with higher wavenumbers, which do not possess the potential to grow by
linear mechanisms. This was already observed by Ma et al. (1999) and Henningson,
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Lundbladh & Johansson (1993), who speak, respectively, of an m-cascade in Hagen–
Poiseuille flow or a β-cascade in plane Poiseuille flow, in which the disturbance
energy is mainly transferred through a route with increasing azimuthal or spanwise
wavenumber.

Beyond the downstream position where the energy of the (2, 0) mode reaches a
peak, i.e. at x � 75, a second phase of rapid growth of higher-order modes, i.e. modes
with higher harmonics of ω, is responsible for the final breakdown to turbulence.

A sequence of events comparable with the case described above was also found
by Berlin et al. (1994) for a boundary-layer flow, in which transition was initiated
by a pair of oblique waves, which could grow transiently in the initial stage and
whose quadratic interaction resulted in the generation of streamwise vortices. These
vortices, in turn, produced streaks by the lift-up mechanism, eventually bringing the
flow to transition via a secondary instability of the streaky flow. Our case, however,
differs from that of Berlin et al. (1994), because our process starts with the primary
instability of the modified base flow, i.e. the initial energy in the streamwise vortices
is fed by the exponential growth of the unstable mode.

In a simulation with the amplitude of each unstable mode at the inflow equal to
Av = 0.001, i.e. for Edis(0) � 1.25 × 10−5, the second phase of rapid growth of the
higher-order frequency harmonics and the ensuing transition to turbulence did not
occur. Instead, a decay of the streaks after the peak in the energy of the (2, 0) mode
was observed. Therefore, in this scenario starting with the exponential growth of
small disturbances on a modified base flow, which can directly generate streamwise
vortices and streaks, the essential feature, which determines whether transition occurs
or not, is the final amplitude of the streaks. This amplitude must reach a threshold
value in order to force the final breakdown. It can thus be stated that the whole
transition process in this case is dominated by the evolution and breakdown of the
large-amplitude streaks, as shown in figure 19. Therefore, this scenario could go
under the classification of oblique transition (see Schmid & Henningson 2001), the
only difference being that here the infinitesimal oblique (in our case actually helical)
waves can initially grow exponentially. The subsequent series of events becomes then
qualitatively similar to that observed in numerical simulations initiated by the non-
modal amplification of optimal initial vortices (see O’Sullivan & Breuer 1994 b; Ma
et al. 1999).

4.2. Mode m =0 and n= ± 2 as inflow condition

Our analysis of optimal base-flow deviations has also shown that axisymmetric
disturbances can experience exponential amplification. Let us consider this case with
a superposition of modes (0, ±2) as initial condition. For such a disturbance, quadratic
self-interaction cannot produce modes such as (2, 0), which, as we have seen in the
previous section, play a central role in the oblique transition process. Therefore, we
expect, in this case, a different transition scenario and its elucidation is the objective
of our second numerical simulation.

The computational domain used in this second case measures 80R in the streamwise
direction, with a resolution of 64 × 32 × 640 grid points in the radial, azimuthal and
axial directions, respectively. We use the optimally modified base flow at Re= 3000,
and ε = 2.5 × 10−5, which destabilizes an axisymmetric disturbance with frequency
ω = 1 (note that ω = 0.5 is still used as the fundamental frequency in the Fourier
decomposition). Stability theory predicts a growth rate of the unstable mode equal to
−αi =0.07955. The inflow condition consists of a combination of the (0, ±2) Fourier
modes to obtain a real inflow velocity field and the amplitude was chosen equal to
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Figure 20. Spatial evolution of the disturbance kinetic energy for various Fourier modes
(m, n), with ω = 0.5 fundamental frequency. The inflow condition consists of a combination of
the unstable eigenmodes at Re= 3000, m= 0, n= ±2, ε =2.5×10−5, each one with Av = 0.001,
plus small-amplitude random perturbations. The dotted vertical line indicates the start of the
fringe region.

Av = 0.001, i.e. Edis(0) � 6.3 × 10−6. It was found that, in order to have transition for
this case, small random perturbations had to be added to the inflow velocity field.
The magnitude of these random perturbations was set equal to 1% of the magnitude
of the primary disturbance.

The results of the numerical simulation in terms of E
(m,n)
dis (x) are shown in figure 20.

Initially, the exponential growth of mode (0, 2) is observed in agreement with
theoretical predictions. Almost immediately, modes (0, 0) and (0, 4) are produced
by quadratic interactions. Eventually, mode (0, 2) saturates and, around x � 40, a
secondary instability appears, introducing the subharmonic mode (2, 1). In this phase
mode (3, 1) also becomes important. These modes, which allow for an azimuthal
modulation of the flow, lead to the late stages of transition and to the final breakdown
to turbulence towards x � 60.

In figure 21, we show a contour plot of the streamwise component of the disturbance
velocity at r = 0.7. The initial axisymmetric nature of the disturbance is clear in
this figure. The subharmonic instability can be identified as a transverse wave
in the initially axisymmetric disturbance pattern, leading to a staggered array of
�-vortices. Such a transition scenario is strongly reminescent of the H-type transition
initiated by two-dimensional Tollmien-Schlichting waves in a flat-plate boundary
layer.

4.3. Relaxation of the optimal base-flow distortion

Both the variational analysis and the numerical simulations discussed in the previous
sections are based on the assumption that the optimally disturbed base flow is
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Figure 21. Instantaneous streamwise disturbance velocity at r = 0.7: contour lines range
from −0.03 to 0.03, spaced by 0.005.

established and that it persists over the whole length of the domain. Given this
assumption, the numerical simulations have shown that a slightly modified base flow
can become linearly unstable and that, if the initial disturbance amplitude is large
enough, nonlinear processes can complete the transition to turbulence.

We now consider the case in which the base-flow distortion is present only over a
finite length of the pipe and it relaxes downstream because of, for instance, viscous
diffusion. The question is: does the instability mode have enough time to grow and
induce nonlinear interactions, or will it be damped because of the relaxation of the
base flow to the ideal (linearly stable) profile?

To answer this question for the case that we have considered in § 4.1, we have carried
out a numerical simulation, in which the optimal deviation from the parabolic profile
is imposed only at the inflow section and it is then allowed to diffuse downstream. This
implies that the Hagen–Poiseuille profile is used as the base flow in (4.1) throughout
the rest of the domain. In this simulation, the norm of the base-flow deviation is
2.5 × 10−5, larger than the critical distortion value at Re = 3000, which is around
3 × 10−6 (cf. figure 14(a)). Because of this relatively small initial distortion, the
exponential growth of the disturbance will be slow. In a real situation, however, the
base-flow distortion will probably be present along a finite length of the pipe, and
not only at a single cross-section as considered here. As a result of the amplification
over this region of perturbed base flow, a higher value of the unstable disturbance
energy will result at the end of the region.

The computational domain, the resolution and the inflow perturbation are the
same as those used in the simulation reported in § 4.1. If the same amplitude of the
inflow disturbance is used, i.e. Av =0.002, no transition is observed and mode (1, 1) is
only slightly amplified initially, and it decays afterwards. The amplitude Av has to be
increased up to 0.0065 in order to observe transition, which, as follows from figure 22,
occurs upstream of the transition point found in § 4.1. The growth of the (1, 1) mode
is exponential only in the first downstream positions and later it is sustained by
nonlinear interactions with higher harmonics. The (0, 0) mode starts from a finite
value at x = 0, which represents the imposed base-flow deviation. Notice again that
this is very small; indeed, it is smaller than the inflow energy of mode (±1, ±1).

In figure 23, a more detailed view of the energy of modes (1, 1), (2, 0) and (0, 0)
is shown for the two initial amplitude values, i.e. Av = 0.002 (dashed lines) and
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Figure 22. Spatial evolution of the disturbance energy for the various Fourier modes
(m, n), with ω = 0.5 fundamental frequency. The initial amplitude of each mode (±1, ±1)
is Av = 0.0065.
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Figure 23. Initial evolution of the disturbance energy for the various Fourier modes (m, n),
with ω = 0.5 fundamental frequency. The solid lines refer to an initial amplitude of each mode
(±1, ±1) equal to Av = 0.0065, the dashed lines to Av = 0.002. The thick dash-dotted line
represents the spatial evolution of the mean flow deviation only, owing to viscous diffusion.
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Av = 0.0065 (solid lines). In the figure we also show the evolution of the energy
of the mean flow distortion alone (thick dash-dotted line), and its threshold value
at Re = 3000 (dotted horizontal line), i.e. the value below which the exponential
growth of the (1, 1) mode is no longer sustained. The mean flow distortion is
observed to decay rapidly at this relatively low value of the Reynolds number.
When its energy goes below the threshold, the (2, 0) mode for the case with the
higher value of Av has an energy comparable to that of mode (1, 1). Therefore,
the streamwise vortices and the resulting streaks are strong enough to influence,
by means of nonlinear interactions with the (3, 1) mode (not shown), the evolution
of the (1, 1) mode, which thus can grow further. For the lower value of Av , when
the threshold is crossed at x close to 4, the (2, 0) mode is still very weak so that
the growth of the (1, 1) mode cannot be sustained either by linear or by nonlinear
mechanisms and consequently the initial perturbation decays. Therefore, also in
this case we can conclude that the occurrence of transition is influenced by the
amplitude of the streaks downstream of the position where the distortion has been
introduced.

A similar numerical simulation has also been performed for the axisymmetric
disturbance analysed in § 4.2. When the base-flow perturbation is applied only at the
inflow, we find that, owing to the rapid diffusion of the optimal base-flow distortion,
the exponential growth of the axisymmetric unstable mode is confined to a distance
of only a few pipe diameters. From that point on, any further growth of the initial
perturbation mode (0, 2) and of the nonlinearly generated modes (0, 0) and (0, 4)
is excluded, since non-modal effects are very weak for axisymmetric disturbances
(see Schmid & Henningson 2001). Even an increase in the value of the initial
disturbance amplitude up to Av = 0.01 was not sufficient to provoke transition in the
flow.

To find the reason for this failure to produce transition we consider the total energy
of the disturbance calculated as the sum over all modes m and n, which reads:

Edis(x) =
∑

m

∑
n

E
(m,n)
dis (x).

The behaviour of Edis as a function of x for the cases considered in § § 4.1 and 4.2,
where the base-flow distortion was imposed over the whole length of the pipe, is
presented in figure 24, in which we also show the exponential growth of Edis as a
result of linear theory.

For the case with the (±1, ±1) inflow condition, the nonlinearity is clearly
destabilizing, resulting in a faster than exponential growth of the energy, implying
that transition occurs via a subcritical bifurcation from the base state (Barkley &
Tuckerman 1999). On the other hand, for the (0, ±2) inflow condition, the nonlinearity
clearly saturates the linear instability resulting in a lower than exponential growth of
the energy and in the supercritical nature of the bifurcation.

Therefore, we conclude that for the latter scenario to be observed, the optimal
base-flow deviation must persist over a finite length of the pipe and the induced
growth (i.e. the norm of the deviation itself) must be strong enough for the late stage
to set in before the base-flow deviation is smeared out by viscosity. This is confirmed
by two additional simulations, in which the optimal base-flow distortion is forced
along a finite length of the pipe extending from the inflow section up to x = 40 and
x = 50, respectively, and it is then allowed to relax further downstream. For these
simulations, the Navier–Stokes equations are solved for the complete velocity field
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Figure 24. Spatial evolution of the total disturbance energy, for the case in which the optimal
base-flow distortion is maintained over the whole length of the pipe. (a) The inflow condition is
(±1, ±1). (b) The inflow condition is (0, ±2). The dashed lines indicate the exponential growth
predicted by linear theory for the two cases.
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Figure 25. Spatial evolution of the disturbance energy for the various Fourier modes (m, n),
with fundamental frequency ω = 0.5. The optimal base-flow distortion is forced up to x = 40 in
(a) and up to x = 50 in (b). The initial amplitude of each mode (0, ±2) is equal to Av = 0.001
in both cases.

and not only for the disturbance velocity, as it was done in (4.1). The base-flow
distortion is imposed along the prescribed length L of the pipe by adding locally
a forcing term in the u-momentum equation of the kind fx = −∇2(	U )/Re. All the
other parameters are left unchanged with respect to those described in § 4.2. The
results are presented in figures 25(a) and 25(b), for L = 40 and L = 50, respectively.
Transition is observed only when L = 50, because, in this case, the secondary instability
mode (2, 1) has grown, at x = L, to a sufficient level for transition to proceed. Clearly,
a higher level of random disturbances at the inflow would have resulted in an
earlier development of the secondary instability and would also have led to transition
under the conditions of figure 25(a). Moreover, in the case where the optimal base-
flow distortion is imposed up to x = 40, transition has also been observed after
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Figure 26. Spatial evolution of the disturbance energy for the various Fourier modes (m, n),
with fundamental frequency ω = 0.5. The optimal base-flow distortion is forced up to x = 40
and the initial amplitude of each mode (0, ±2) is Av = 0.002.

increasing the amplitude of the inflow disturbance by a factor of two, as shown in
figure 26.

Therefore, the higher the level of the periodic inflow disturbance and/or random
noise, the higher the chance of observing the second transition scenario. This chance
is also increased when higher values of the Reynolds number and/or higher values
of the amplitude of the distortion are considered. We hypothesize that these were the
conditions that probably led to the observation of this type of transition scenario
in the early experiments by Leite (1959), in which axisymmetric disturbances were
generated either by oscillating a thin sleeve adjacent to the inner wall of the pipe
or by a ring airfoil mounted within the pipe at a radial position r � 0.72 (i.e. a
very receptive position at reasonably large values of the Reynolds number). Small
disturbances introduced by the periodic motion of the sliding sleeve decayed as they
travelled downstream for all the Reynolds numbers investigated, thus confirming the
theoretical results on the linear stability of Hagen–Poiseuille flow to axisymmetric
disturbances. However, it was mentioned that ‘upon introducing the ring airfoil
disturbance amplitudes were increased appreciably and the stability characteristics of
the flow changed markedly’. More precisely, at Re = 12 000, transition was observed
even when the airfoil was held stationary, whereas at Re = 8000, transition occurred
when the airfoil oscillated with the smallest possible amplitude. These results suggest
(as was already noticed by Gill 1965) that the change in the mean velocity profile
induced by the wake downstream of the ring airfoil was sufficient to cause transition
to turbulence at high Reynolds numbers.
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4.4. Discussion

Bottin et al. (1998) have given experimental evidence for the effect that small base-
flow distortions have on the stability characteristics of subcritical shear flows. They
found that finite-amplitude solutions, in the form of streamwise vortices, bifurcate
subcritically from a plane Couette flow slightly modified (and destabilized) by a thin
spanwise wire in the zero-velocity plane (i.e. at the position that returns the greatest
effects in the destabilization of the mean flow, see Gill 1965; Bottaro et al. 2003). They
also found that this streamwise-streak state still bifurcates when the diameter of the
wire is gradually decreased to zero, i.e. when the distortion of the mean speed vanishes.
Moreover, the streamwise extent of the streaks is much larger than the region where
the profile is significantly modified by the presence of the wire, suggesting that the
flow has switched to a new state that has little to do with the modified basic state as
results also from our calculations. These results have been confirmed by numerical
simulations performed by Barkley & Tuckerman (1999), who also indicated that small
geometric perturbations destabilize plane Couette flow via a subcritical instability
and that the bifurcating solution is a three-dimensional flow with streamwise
vortices.

This method of looking for non-trivial solutions to the fully nonlinear problem,
i.e. for equilibrium states different from the basic one, by considering a modified
system with known solutions and then progressively deforming it to recover the
original problem, is known as the continuous deformation approach (Bottin et al.
1998). It has already been used in the past to identify finite-amplitude solutions in
plane Couette flow by a number of authors (see, for instance, Nagata 1990; Clever
& Busse 1992) and suggests a possible application of the present investigation for
the identification of coherent states in pipe flow. Their existence, in the form of
travelling waves, has been recently confirmed numerically by Faisst & Eckhardt
(2003) with the help of a continuation method. At low Reynolds numbers, two-
dimensional downstream elongated vortices are added to the base flow, by means of
a volume force that is increased up to the first bifurcation leading to a fully three-
dimensional travelling-wave solution (this corresponds in our case to the forcing of
the mean flow distortion, bringing about streamwise vortices and streaks). Tracking
this state in parameter space, by decreasing the body force and increasing the
Reynolds number, Faisst & Eckhardt (2003) could finally reach a finite-amplitude
three-dimensional travelling-wave state for a vanishing body force. In this way
the authors identified several families of solutions with different symmetries. By
looking at the flow fields resulting from our simulations, we could identify several
structures resembling the solutions computed by Faisst & Eckhardt (2003). For
example, from the results of the simulation reported in § 4.2, shown in figures
20 and 21, we could identify at x � 56, a structure that seems closely related to
the two-fold state of figure 3 in Faisst & Eckhardt (2003). As can be seen from
figure 27, it consists of two pairs of counter-rotating vortices that generate four
streaks of fast fluid close to the wall and two streaks of slow fluid towards the
centre. The modes that mostly contribute to this three-dimensional structure are
(2, 1), (0, 4) and (0, 0), as can be deduced from their energy levels in figure 20 at
x � 56. Notably, this state can also be observed, at about the same downstream
position, in the simulation for which the optimal base-flow distortion is imposed
up to x � 50 (cf. the results given in figure 25 where the same modes are most
relevant).
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Figure 27. Instantaneous velocity field corresponding to the simulation shown in figures 20
and 21 at x � 56. The contour lines range from −0.12 to 0.12, spaced by 0.016; the vectors
represent the secondary velocity in the pipe cross-section.

5. Conclusions
The present theoretical/computational investigation originates from experimental

observations which highlight the considerable importance of base-flow distortions
in the transition process of cylindrical pipe flow (e.g. Eliahou et al. 1998). Against
this background, we have explored the spatial growth of infinitesimal disturbances
developing on top of a distorted axially invariant pipe flow, which consists of the
parabolic Hagen–Poiseuille modified by a small axisymmetric distortion. In actual
experiments, such deviations from the theoretical velocity distribution may occur
because of surface roughness, external volume forces, flow inhomogeneities, and so
on. The limitation of the present study is that only axisymmetric axially invariant
base-flow deformations have been considered.

To investigate the sensitivity to these base-flow variations, we have analysed the
eigenvalues of the linearized Navier–Stokes operator and have identified the most
sensitive eigenmodes. They are found to coincide with the eigenvalues recognised by
Tumin (1996) as the most ‘receptive’ to periodic blowing and suction through a slot at
the wall. With these ‘sensitive’ eigenvalues as point of departure, we have computed
by means of a variational technique the so-called optimal base flow deviations for
Hagen–Poiseuille flow, i.e. those distortions which maximally destabilize the flow. As
a result, we have found that base-flow deviations of very small norm are capable of
supporting perturbations, which show exponential growth. These so-called optimal
deviations lead to inflection points in the base-flow profile suggesting an inviscid-type
instability.

With the help of the same variational technique, we have then computed the
dependence of the instability to parameters such as the Reynolds number, the
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azimuthal wavenumber and the frequency of the disturbances. The neutral curves,
obtained for fixed values of the norm of the optimal base flow deviation ε, show that
streamwise waves of shorter wavelength and higher frequencies are excited as ε is
decreased. If an experimentalist engaged in pipe-flow measurements could provide an
estimate of the expected variance of the deviation on his axial velocity, results such as
those provided in figures 13(a) and 14(a) would indicate whether or not exponential
growth of infinitesimal perturbations could be expected in the experiments.

Further conclusions of the theory are that the mode m =1 is the most prone to
destabilization by the mechanism described here and that the axisymmetric mode
m = 0 can also be excited at Reynolds numbers of the order of 2000. In order to
verify these theoretical results, the two modes with m =1 and m =0 have been used
as initial conditions in direct numerical simulations to study possible transition paths.
It is first noted that transition can be started by the amplification of either mode,
provided its initial amplitude is sufficiently large and/or the base-flow distortion is
strong enough. For the case with m =1, transition is observed even when the distortion
is allowed to diffuse immediately from x = 0 under the action of viscosity, while for
the case with m = 0, the base-flow distortion must be present for a finite length of the
pipe.

The numerical simulations show also that the path of transition resulting from the
growth of the axisymmetric mode is reminiscent of the subharmonic H -transition scen-
ario of boundary layers, with the formation of staggered patterns of �-vortices. On
the other hand, for the mode m = 1, the formation of streamwise elongated streaks is
observed, that break down through a secondary subharmonic instability. This latter
scenario seems to be the counterpart of the oblique transition scenario of Berlin et al.
(1994).

This paper has added but a brick to the building of a thorough comprehension of
pipe-flow transition, by concentrating on plausible effects that can occur when the
velocity distribution used as a reference in the initial linearization of the equations is
not exactly equal to the theoretical profile. Future work will be devoted to the study
of non-axisymmetric base-flow distortions, and to the optimal and robust control of
pipe-flow transition.

The authors wish to thank Dr B. J. Boersma and Dr M. Pourquie, for their help
with the numerical simulations. M. I.G. initiated this work in Toulouse with the
support of the EU under a Marie Curie Training Site Fellowship, contract number
HPMT-CT-2000-00079.

Appendix A. Non-zero elements of matrices C0, C1 and C2

C12
0 = 1,

C21
0 =

(m2 + 1)

r2
− iωRe; C22

0 = ReU (r); C25
0 =

2im

r2
,

C31
0 = −1

r
; C35

0 = − im

r
,

C41
0 =

U (r)

r
− dU

dr
; C42

0 = − 1

Re r
; C43

0 = iω − m2

Re r2
; C45

0 =
imU (r)

r
,

C46
0 = − im

Re r
,
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C56
0 = 1,

C61
0 = −2im

r2
; C64

0 =
imRe

r
; C65

0 = −iωRe +
(m2 + 1)

r2
; C66

0 = ReU (r),

C21
1 = −1

r
; C24

1 = Re,

C31
1 = −1,

C41
1 = U (r); C42

1 = − 1

Re
; C43

1 =
1

Re r
,

C65
1 = −1

r
,

C21
2 = −1; C43

2 =
1

Re
; C65

2 = − 1.

Appendix B. Generalized Rayleigh and Fjørtoft theorems for inviscid flows in a
cylindrical pipe geometry

In this Appendix, we shall briefly review the Rayleigh inflection point theorem and
the Fjørtoft criterion in cylindrical geometry (see also Batchelor & Gill 1962). We
restrict ourselves to axisymmetric disturbances and to their temporal evolution in the
inviscid case, with a base flow given by U (r). The equation for the shape function Φ

of the streamfunction Ψ (x, r, t) =Φ(r) expiα(x−ct) is given by:(
d2

dr2
− 1

r

d

dr
− α2

)
Φ − r

(
U ′

r

)′
Φ

U − c
= 0, (B 1)

where we have supposed that the temporal growth rate ci > 0 so that U − c �= 0. The
boundary conditions are: Φ/r and Φ ′/r bounded as r → 0, and Φ = 0 at r = 1. It is
useful to rewrite equation (B 1) as follows:[

r
d

dr

(
1

r

d

dr

)
− α2

]
Φ − r

(
U ′

r

)′
Φ

U − c
= 0. (B 2)

Multiplying each term of this equation by the complex conjugate (Φ∗/r), and
integrating between r = 0 and r = 1, we obtain:[

Φ ′

r

]
Φ∗|10 −

∫ 1

0

Φ ′Φ∗′

r
dr − α2

∫ 1

0

ΦΦ∗

r
dr −

∫ 1

0

(
U ′

r

)′
ΦΦ∗

U − c
dr = 0. (B 3)

The first term is equal to zero on account of the boundary conditions, so that (B 3)
can be rewritten as:∫ 1

0

(
U ′

r

)′ |Φ|2
U − c

dr = −
∫ 1

0

1

r

[
|Φ ′|2 + α2|Φ|2

]
dr, (B 4)

with the right-hand side purely real. By taking the imaginary part of (B 4), we obtain,

ci

∫ 1

0

(
U ′

r

)′ |Φ|2
|U − c|2 dr = 0.

Since we have assumed that ci > 0, this integral can become zero only if (U ′/r)′

changes sign at least once in the open interval (0, 1). Hence, the necessary condition
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for instability is: (
U ′

r

)′

= 0, (B 5)

which is a generalization to cylindrical coordinates of Rayleigh’s inflection-point
criterion. The quantity U ′/r can be interpreted as the circulation, which should
therefore have a maximum somewhere in the flow for instability to be possible.

A stronger criterion of inviscid instability is provided by the Fjørtoft theorem,
which can be derived by taking the real part of (B 4). This leads to:∫ 1

0

(
U ′

r

)′
U − cr

|U − c|2 |Φ|2dr = −
∫ 1

0

1

r

[
|Φ ′|2 +α2|Φ|2

]
dr < 0.

If we now add to the left-hand side the term:

(cr − Us)

∫ 1

0

(
U ′

r

)′ |Φ|2
|U − c|2 dr = 0,

where Us = U (rs) is the velocity of the base flow calculated at the radial position
where (B 5) is satisfied, we obtain,∫ 1

0

(
U ′

r

)′
U − Us

|U − c|2 |Φ|2dr < 0, (B 6)

from which it follows that a necessary condition for instability is:(
U ′

r

)′

(U − Us) < 0 (B 7)

somewhere in the flow field. Although (B 5) and (B 7) are rather straightforward
extensions of classical results for plane shear flows, we feel that it is useful to report
them here since we have been unable to find (B 7) in the literature.
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