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Accurate model reduction of transient and forced wakes
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Abstract

Some applications of a precise method to model the transient dynamics of large scale structures in the laminar flow past a bluff
body are presented. The flow is described using empirical eigenfunctions obtained by “proper orthogonal decomposition” and
the models are constructed projecting the Navier–Stokes equations onto such eigenfunctions. The linear terms in the expansion
coefficients as well as in the control inputs are adjusted to exactly mimic some reference solutions. Applications shown are relative
to the development of flow instabilities leading to vortex shedding and the dynamics of the vortex wake under external actuation.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Low-dimensional models involving a limited number of degrees of freedom can greatly simplify the analysis of
fluid flows. The dynamics can be interpreted in terms of a small number of coherent structures that evolve and interact
with one another. Low order models are also of practical interest since they can be used as “plant models” for control
purposes.

Using the proper orthogonal decomposition technique (POD) [1] one can extract from an existing database of
flow field snapshots, a set of orthogonal eigenfunctions. For a given number of these eigenfunctions, the average
L2 projection error of a flow snapshot is minimized by construction. As a consequence, when the flow energy is
concentrated in large scale vortical structures, a small number of POD eigenfunctions captures a large fraction of the
total kinetic energy of the flow. This may not always be the case since there exist applications where, even though
there are large structures present in the flow, the energy spreads over so many scales that there is little hope to obtain a
practical low dimensional representation [2]. In contrast, flows past bluff bodies seem to be well represented by O(10)

empirical eigenfunctions when the Reynolds number is O(100) [3–5], and hence are good candidates for investigations
of low dimensional models.
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Even when the flow is amenable to a low dimensional description, it is not obvious that a reliable dynamical model
can be obtained.

Low order models found in the literature give qualitatively reasonable results mainly for spatially confined, low
Reynolds number flows. Even in such cases, there is often a divergence of the model predictions compared to the
projection of the actual flow over the POD modes. In principle it should be sufficient to project the Navier–Stokes
equations onto the POD eigenfunctions by a classical Galerkin approach. This way, however, one is faced with some
typical problems of Galerkin approximations:

(i) how to account for boundary conditions (and eventually boundary controls);
(ii) how to devise a closure term that accounts for the unresolved modes;

(iii) how to provide adequate numerical stabilization.

The last two issues are related because usually dissipation of energy occurs mainly on the level of scales which are
poorly resolved. Nevertheless the two problems are distinct, because even if a model obtained from the Navier–Stokes
equations admits a bounded solution for all times, the numerical discretization could be unstable.

In the low order dynamical system of the turbulent boundary layer proposed in [6], a Heisenberg model accounted
for the unresolved scales and a dissipation coefficient was tuned in order to obtain qualitatively correct results. How-
ever, to be able to use the model results for a case not previously investigated by direct numerical simulation (DNS),
the amount of dissipation to be added should be known a priori. Along these lines it was proposed [7] to adjust the
dissipation parameter so as to balance the energy budget for each POD mode. This way it was possible to reduce
the error between the dynamical system predictions and the DNS projection over the POD modes. Nevertheless, an
exponential divergence in time between the DNS and the model results persists.

In further studies it was recognized that a straightforward POD-Galerkin approximation of a model problem –
a scalar linear advection equation – was numerically unstable [8,9]. In that case there was no question of lack of
dissipation because of missing scales; it was a pure numerical effect. Moreover, it was shown that the POD-Galerkin
projection for such a simple case is equivalent to a finite difference centered spatial discretization, and that the effect
of truncating the Galerkin expansion was at most that of enlarging the stability bounds of the POD-Galerkin scheme.
In addition, it was proved that selecting an appropriate norm in the definition of the empirical eigenfunctions as well as
in the Galerkin projection, the low order models obtained displayed better stability properties, as recently confirmed
in [10].

Clearly, low Reynolds number simulations suffer much less from numerical instabilities because of physical vis-
cosity, and hence the corresponding POD models are not affected by instabilities if a sufficient number of POD modes
are taken into account [3,4]. Even for such cases, though, the long term dynamics predicted by the low order model
may deviate significantly from reference DNS results as shown in [11]. As a remedy a dissipative model based on
spectral viscosity was proposed therein. The cut-off parameters were selected based on bifurcation analysis, i.e., by
matching the attractor of the low order model to that predicted by DNS.

The idea of fitting the POD model results to those of DNS is attractive since it may solve some of the physical
modeling issues as well as the problem of numerical drifts. In this sense in [12] it was proposed to calibrate the linear
term in the Galerkin model resulting from projecting the Navier–Stokes equations over the POD modes, in order
to achieve a best fit for a number of reference time-dependent flow solutions. In particular, it was shown that such
calibration leads to a model that correctly reproduced the main flow features for Reynolds numbers other than those
from which the model was derived. Similar approaches have been recently undertaken for moderately to complex
flows [13–15].

The purpose of this paper is to improve the calibration procedure presented in [12] and extend it in order to model
the transient dynamics of coherent structures. Two test cases are considered: the development of a flow instability
leading to vortex shedding and the dynamics of a vortex wake under the effect of transverse flow due to wall-mounted
actuators.

2. Model reduction

We consider the flow around a square cylinder symmetrically placed between semi-infinite parallel walls (Fig. 1).
The inlet velocity profile is parabolic. For a blockage ratio L/H of 0.125, this flow is believed to be two-dimensional
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Fig. 1. Definition of the geometry and streamlines of the unstable, steady solution ū(x) at Re = 66.

and laminar as long as the Reynolds number based on the square side L is below 255 [16–19]. The flow field data are
obtained by numerical integration of the incompressible Navier–Stokes equations. The integration scheme as well as
the computational parameters, like channel length and cylinder position, are the same as in [12]. We refer the reader
to that study for the computational details and for the validation of the numerical results. Unless otherwise stated, all
the quantities considered are non-dimensional: the reference values for the normalization are the length L of the side
of the square cylinder, the centerline velocity at the inlet section U , the dynamic pressure ρU2 and the time scale
Tref = L/U .

The velocity field database is arranged as a set of N vectors {U(1), U(2), . . . , U(N)}, where each vector represents a
snapshot of the velocity field at a given time. Let us subtract the steady, unstable solution1 U from each snapshot and
consider the new set of snapshots W(n) = U(n) − U, n = 1, . . . ,N . The aim is to find a low dimensional subspace of
L = span{W(1), W(2), . . . , W(N)} that gives the best approximation of L. To this end we define a unit norm vector φ

that has the same structure of the snapshots and the largest mean square projection on the elements of L. Following
Sirovich’s ideas [20] φ is expressed as a linear combination of the snapshots, φ =

∑N
n=1 bnW(n), leading to the

eigenproblem Rb = λb, where Rks = W(k)T
W(s) and b = [b1,b2, . . . ,bN ]T. The solution of the eigenproblem yields

N eigenvectors φn (the discrete POD modes) that form a complete orthonormal set for L. The discrete instantaneous
velocity can be expanded in terms of the discrete POD eigenmodes: u(x, t) = ū(x) +

∑Nm

n=1 an(t)φn(x). The main
property of this basis is that most of the flow energy is captured using a number Nm � N of functions φn.

2.1. POD-Galerkin model

An accurate model of the developing instability is obtained by a Galerkin projection of the incompressible Navier–
Stokes equations over the POD modes. The resulting low order model is

ȧr (t) =
(
A′

r + A′′
r

)
+

(
C′

kr + C′′
kr

)
ak(t) − Bksrak(t)as(t),

ar(0) =
(
u(x, 0) − ū(x),φr

)
,

(1)

where the Einstein summation convention is used and all the subscripts run from 1 to Nm. The coefficients A′′
r , Bksr

and C′′
kr derive directly from the Galerkin projection of the Navier–Stokes equations onto the POD modes and are

defined by

Bksr = (φk · ∇φs ,φr ),

C′′
kr = −(ū · ∇φk ,φr ) − (φk · ∇ū,φr ) + (Δφk ,φr )/Re,

A′′
r = −(ū · ∇ū,φr ) + (Δū,φr )/Re,

where (· , ·) is the canonical L2 inner product; the terms A′
r and C′

kr ak(t) are added in order to model the interaction
of the unresolved modes with the resolved ones. They also take into account the effect of the pressure drop along the
channel (∇p,φr), as argued in the following.

1 A description of how this base flow is obtained is given in Section 3.
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Let us consider the projection of the pressure term: thanks to the fact that the POD modes are divergence free by
construction and that they vanish on the walls, we have

(∇p,φr) =
∫

out

pφu
r ds −

∫
in

pφu
r ds,

where out is the outlet and in is the inlet of the channel and φu
r is the first component of the POD mode φr . In general

we subtract from the flow snapshots a reference solution that verifies the same boundary conditions as the actual flow
we consider. Hence, the POD modes are 0 at the inlet and therefore the second integral on the right hand side of the
expression above is 0. If the channel is long enough, diffusion will smooth the flow past the cylinder until we finally
get a steady velocity profile identical to that of the steady unstable solution, meaning that the POD modes will vanish
at the outlet as well. As a consequence, the first integral above is also 0. Of course, in our computations this is only
approximately true. Furthermore, since we limit our Galerkin expansion to a finite number of modes, we miss the
feedback of those unresolved modes onto the resolved ones. However, we could in principle write the solution of the
equation for the unresolved modes as a function of the resolved ones and then inject this solution in the equation for
the resolved modes. Of course we do not have such an explicit solution, but we can write its MacLaurin expansion
up to the linear term. The calibration terms that we add to the equation can be interpreted as the coefficients of such
expansion.

By setting A′
r = Ar − A′′

r and C′
kr = Ckr − C′′

kr system (1) reads

ȧr (t) = fr(a1, . . . ,aNm ,Ar ,Ckr) = Ar + Ckrak(t) − Bksrak(t)as(t),

ar(0) =
(
u(x, 0) − ū(x),φr

)
.

(2)

In view of the orthogonality of the POD modes, the inner product of the i-th snapshot and the r-th mode represents
the reference value of coefficient ar(t) computed at the time ti , that is âr (ti ) = (W(i),φr ). Since the snapshots of
the flow are N , there will be a discrete set of N reference values for each amplitude ar(t). We can pass from the
discrete to the continuous setting in the time variable by defining âr (t) as the spline interpolating the set of points
{[t1, âr (t1)], . . . , [tN , âr (tN )]}.

At this point the coefficients Ar , Ckr can be found so that the amplitude coefficients ar(t), computed by solving (2),
are as close as possible to the corresponding reference amplitudes âr (t). Recalling that T = tN , this objective is
reached by minimizing the functional

T∫
0

Nm∑
r=1

(
ar(t) − âr (t)

)2 dt

under the constraints (2). The previous problem is equivalent to finding the unconstrained extremum of the functional:

J =

T∫
0

Nm∑
r=1

(
ar(t) − âr (t)

)2 dt +

T∫
0

bk

[
ȧk(t) − Ak − Clkal(t) + Blskal(t)as(t)

]
dt ,

where bk is the appropriate Lagrange multiplier. To this end the vanishing of the Fréchet derivatives of J (ar (t),br(t),
Ar ,Ckr) with respect to all of its arguments must be imposed. This leads to the following optimality problem{

ȧr (t) = Ar + Ckrak(t) − Bksrak(t)as(t),

ar(0) =
(
u(x, 0) − ū(x),φr

)
,

direct problem, (3)

{−ḃr (t) =
[
Crk − (Blrk + Brlk)al(t)

]
bk(t) − 2

[
ar(t) − âr (t)

]
,

br(T ) = 0,
adjoint problem, (4)

{∫ T

0 br(t)dt = 0,∫ T

0 ak(t)br (t)dt = 0,
optimality conditions, (5)

where all of the subscripts go from 1 to Nm. These equations are discretized with a pseudo–spectral collocation method
along the t axis. The functions ar(t),br(t) and âr (t) are sampled at the Nt Gauss–Lobatto points ti = T/2(1 − ξi)
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with ξi = cosπ(i − 1)/(Nt − 1) and i = 1, . . . ,Nt , that is air = ar(ti),bir = br(ti) and âir = âr (ti ). An interpolation
is performed to retrieve the values of the functions away from the nodal points ti , more precisely

ar(t) ≈
Nt∑

j=1

ψj

(
1 − 2

T
t

)
ajr ,

br(t) ≈
Nt∑

j=1

ψj

(
1 − 2

T
t

)
bjr ,

âr (t) ≈
Nt∑

j=1

ψj

(
1 − 2

T
t

)
âjr ,

where ξ = 1−2 t/T and ψj (ξ) are the Lagrange interpolating polynomials based on the nodes ξi . The time derivatives
of the first two interpolated functions at the nodal values are then

ȧr (ti ) ≈ − 2

T

Nt∑
j=1

dψj

dξ

∣∣∣∣
ξi

ajr =
Nt∑

j=1

Dij ajr ,

ḃr (ti ) ≈ − 2

T

Nt∑
j=1

dψj

dξ

∣∣∣∣
ξi

bjr =
Nt∑

j=1

Dij bjr .

(6)

The differentiation matrix can be found in [21] and is equal to

Dij = − 2

T

dψj

dξ

∣∣∣∣
ξi

= − 2

T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ci

cj

(−1)j+i

ξi − ξj

, j �= i,

−1

2

ξi

1 − ξ2
i

, j = i �= 1,Nt ,

2(Nt − 1)2 + 1

6
, j = i = 1,

−2(Nt − 1)2 + 1

6
, j = i = Nt

with c1 = cNt = 2 and c2 = · · · = cNt−1 = 1.
The optimality condition can be rewritten in terms of the interpolated functions as follows

T∫
0

ak(t)br (t)dt ≈
Nt∑
i=1

Nt∑
j=1

aikIij bjr , (7)

where the integrals

Iij =

T∫
0

ψi(ξ)ψj (ξ)dξ with i, j = 1, . . . ,Nt

are calculated by means of Legendre quadrature. Finally, by virtue of (6) and (7), Eqs. (3)–(5) are discretized as
follows

a1r = ar(0), r = 1, . . . ,Nm,

Dijajr − Ar − Clrail + Blsrailais = 0, i = 2, . . . ,Nt , r = 1, . . . ,Nm,

Dijbjr + Crsbis − (Blrs + Brls)ailbis − 2[air − âir ] = 0, i = 1, . . . ,Nt − 1, r = 1, . . . ,Nm,

bNt r = 0, r = 1, . . . ,Nm,
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1iIij bjr = 0, r = 1, . . . ,Nm,

aikIij bjr = 0, k = 1, . . . ,Nm, r = 1, . . . ,Nm,

where 1 is a Nt -dimensional array of ones. These are 2NtNm+Nm+N2
m algebraic equations in the 2NtNm+Nm+N2

m

unknowns and are solved with a Newton method which converges rapidly. The number Nt must be large enough to
produce a good description of the high frequency behavior of the amplitude coefficients, consequently it should be
increased with the increase of Nm. The reason why we choose to apply a spectral approximation, taking care to
respect such approximation in integrals and derivatives, is that it allows an exponential accuracy in approximating the
dynamics of the reference data.

The former procedures can be interpreted as a calibration of the model on the given database. Compared to the
method used in [12], this approach is more efficient and accurate. It is more efficient because the solution is obtained
by solving the direct and adjoint problem in one shot. This approach is useful because it allows the solution of
problems which would normally be out of reach using a direct/adjoint iteration and a gradient method. The fact of
using a spectral method to solve the calibration problem is important because of the exponential accuracy of the
reference solution that can be achieved, allowing for example the analyses reported in the next sections.

3. Low dimensional modeling of the developing instability

The frequency and amplitude of the oscillations of the flow in the wake are computed at several values of the
Reynolds number between 60 and 70. Extrapolating to 0 the oscillation amplitude of the lift coefficient as a function
of the Reynolds number, it is found that – in the present configuration – the critical value for the onset of periodic flow
is approximately Re = 57.

We consider a numerical database of the flow developing out of the unstable, steady solution at Re = 66. For
such low Reynold numbers, the vortex shedding transient is very long. For this reason, after impulsive start, the
flow solution settles down to an almost steady state from which it departs very slowly. We select as steady unstable
solution the flow snapshots that has minimal time residual before the vortex shedding takes place. This snapshot
is indeed symmetrical, see Fig. 1. From there on, the DNS indicates that the transient lasts about 95 units of time
(non-dimensional time multiplied by Tref), until the limit cycle solution is attained.

Our intent is to simulate the initial part of the transient originating from the steady, unstable solution at Re = 66.
Beginning from such a solution a simulation lasting 40 units of time was performed. A model like the one of Eq. (2)
can be deduced from such a database, with the unknowns Ar ,Ckr calculated according to the procedure described
above.

The 4 POD modes depicted in Fig. 2 are used for the model. The first two modes basically capture the wake
oscillation, whereas the last two modes are shift modes [5] that take into account the evolution in time of the base flow
from the steady unstable solution. With Nm = 4, we have the following error in terms of reconstructed flow energy:

1

N

N∑
i=1

‖W(i) − ∑Nm

n=1(W
(i),φn)φn‖

‖U(i)‖ = 5.0 × 10−5

hence the retained modes represent basically all of the energy in the flow database. Using more modes is of no benefit
because the corresponding POD modes fall into numerical noise. Using less modes does not allow to take into account
shift modes. In Fig. 3 (left and middle) the solution of the model in terms of the time evolution of the coefficients ai(t)

is compared to the reference Navier–Stokes solution projected onto the POD modes. The model is able to exactly
reproduce the dynamics of the considered part of the transient. Without properly accounting for unresolved modes,
boundary conditions or numerical stabilization, the model simply diverges after a few time steps within the snapshot
sampling region.

In perfect analogy with what one would do in a stability study using a full order model, we compute the growth rate
of the instability using Eq. (2). The equation is linearized about the equilibrium state ar(0) = 0 with r = 1, . . . ,Nm

which corresponds to the unstable solution of the steady Navier–Stokes equations for Re = 66. Expanding fr as a
power series about this equilibrium point and neglecting the second order terms one obtains: ȧr (t) = fr(0,Ar ,Ckr) +
Jrj aj (t) where Jrj = (∂fr/∂aj )0 = Cjr . From ȧr (0) 	 0 it follows that Ar 	 0; this fact is confirmed numerically
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Fig. 2. Modes used for the model. The stream function (for given x, the integral of the first component of φ vs. y) pertinent to each mode is depicted.

Fig. 3. Left and middle pictures: prediction of the model calibrated between 0 and 40 time units of the transient. Comparison between the mode
amplitudes of model integration (solid lines) and the projection of the numerical simulation over the corresponding modes (circles). Right picture:
logarithm of the absolute value of the lift in the transient regime (solid line) and a line (dashed) of slope Re(λ1)/Tref.
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since the coefficients Ar found are of order 10−4. As a result fr(0,Ar ,Ckr) 	 0, so that the linearized state equation
reads

at (t) = Ja(t). (8)

The solution is

a(t) = Q exp (Λt)Q−1a(0) (9)

with a(t) = [a1(t), . . . ,aNm(t)]T, Λ the Nm × Nm diagonal matrix corresponding to the eigenvalues of J =
{Jrj }1�r ,j�Nm

and Q the Nm × Nm matrix whose columns are the corresponding right eigenvectors. The numeri-
cal values rounded off to two decimal places are λ1 = 0.03 + 0.74i, λ2 = 0.03 − 0.74i, λ3 = −0.16, λ4 = −0.09 and

Q =

⎡
⎢⎣

0.71 0.71 −0.10 −0.02
−0.00 + 0.70i −0.00 − 0.70i −0.03 −0.10
−0.00 − 0.00i −0.00 + 0.00i −0.32 −0.92
−0.00 − 0.00i −0.00 + 0.00i −0.94 −0.37

⎤
⎥⎦ .

There are two complex conjugate eigenvalues with positive real part, λ1 and λ2. The eigenvectors pertinent to λ1 and
λ2 are just the first two POD modes (with a phase shift of π/4). We conclude that the only unstable modes relative
to this flow are represented by the first and second POD modes. The imaginary parts of λ1 and λ2 correspond to a
non-dimensional frequency of Im(λ1)/(2π) = 0.119 whereas the non-dimensional vortex shedding frequency of the
fully developed flow is 0.124. Unsurprisingly, the growth rate of the instability is very close to that predicted by the
real part of λ1, as illustrated in Fig. 3 (right). We conclude that the most energetic unsteady POD modes, extracted
from a DNS of the transient state, give a reliable representation of the instability of this flow.

In order to assess the capability of the POD-Galerkin model to give good predictions for times longer than those
upon which the model was built, a time integration of the model itself has been performed beyond t = 40 and up to
a time of 100, corresponding to the fully developed flow. The amplitudes so-computed have been compared to the
projections of the flow snapshots taken from the integration range onto the given POD modes. The snapshots between
the time units 40 and 100 are reconstructed by the POD modes relevant to the interval 0–40 with an average error
of about 5%. In Fig. 4(a) a comparison is shown between the amplitude coefficient resulting from model integration
and the corresponding reference amplitude obtained by projection. The solution is accurately extrapolated for several
shedding cycles, but for larger times a slight phase drift as well as an error in the oscillation amplitude prediction is
remarked. A possible remedy for this problem was proposed in [22]. One can notice, however, that the model is able
to predict the length of the transient, as both the computed and the projected amplitudes saturate in approximately
the same time. The above procedure has been repeated by extracting a POD base from a database of 145 snapshots
between the time instants 28.4 and 35.6, and by calibrating a four dimensional POD-Galerkin model over the same
time interval. The results depicted in Fig. 4(b) are quite similar to the previous ones, showing that the same amount of
information can be captured by taking snapshots from a narrow time interval in the first part of the transient.

3.1. Unstable mode estimation

Let us now compare the most unstable mode obtained by the above reduced model to the one obtained by the
method proposed in [23], where the full order problem, i.e. the incompressible Navier–Stokes equations, linearized
about the steady unstable solution U, is used. To this end let L denote the linearization of the Navier–Stokes discretiza-
tion operator in space, once the incompressibility constraint is satisfied. The resulting semidiscretization valid in the
vicinity of U can be written as

ψ t = Lψ , (10)

where ψ(t) = U(t) − U is a column vector which contains the grid values of the velocity components arranged with
the same rules as they are organized in the snapshots vectors. The dimensions of ψ and L are 2M × 1 and 2M × 2M

respectively, with M the number of grid points. The solution of Eq. (10) can be written as

ψ(t) = P exp (Σ t)P−1ψ0, (11)

where ψ0 is the initial condition corresponding to the steady unstable solution, Σ is the diagonal matrix containing
the eigenvalues of L and P is the matrix whose columns are the corresponding eigenvectors such that LP = PΣ .
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(a)

(b)

Fig. 4. (a) Prediction over the whole transient of the model calibrated on the time range 0–40: comparison between the second mode amplitude
from model integration a2(t) (thick line) and numerical simulation â2(t) (circles). (b) Prediction over the whole transient of the model calibrated
on the time range 28.4–35.6: comparison between the mode amplitude from model integration a2(t) (thick line) and numerical simulation â2(t)

(circles).

Denote by Φ the matrix whose columns are the POD modes retained in the model, arranged in vectors with the same
rules as those by which the Navier–Stokes solution is arranged in ψ . We have ΦTΦ = I for the orthonormality of the
POD modes. Let a(t) = [a1(t), . . . ,aNm(t)]T and ψ̃(t) = Φa(t), then Eq. (8) premultiplied by Φ reads ψ̃ t 	 ΦJΦTψ̃ ;
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by comparing this equation with (10) the estimate L̃ = ΦJΦT for the linearized Navier–Stokes operator L is found.
On the other hand, by construction, we have that J = ΦTLΦ .

The solution of the linearized low-order model equation (9) matches exactly the projection of the Navier–Stokes
data over the POD modes (Fig. 3). Hence, it can be used to estimate the solution in the physical space by writing

ψ̃(t) = Φa = ΦQ exp (Λt)Q−1ΦTψ0. (12)

We recall that λ1 and λ2 have positive real part and the corresponding unstable eigenvectors occupy the first two
columns of Q. Accordingly, we assume that the eigenvalues which correspond to the physical unstable mode are σ1

and σ2 (Re(σ1,2) > 0) with the physical unstable eigenvectors arranged in the first two columns of P.
Let us denote with P and P
 the submatrices formed by the first two columns of P and by the first two rows of

P−1 respectively. Similarly, let us denote with Q and Q
 the submatrices formed by the first two columns of Q and
by the first two rows of Q−1, respectively.

Then, by equating the physical solution (11) to its reconstruction (12), after having neglected the decreasing expo-
nentials, it follows that

P
[

eσ1t 0
0 eσ2t

]
P
ψ0 = ΦQ

[
eλ1t 0

0 eλ2t

]
Q
ΦTψ0.

Since σ1,2 ≈ λ1,2 to an high degree of accuracy, we obtain P ≈ ΦQ and P
 ≈ Q
ΦT. In order to give a graphical
representation of the reconstructed physical unstable eigenvector we have drawn in Fig. 5(b) the modulus of the
first column of P . It is interesting to make a comparison with the real unstable eigenvector obtained by solving the
eigenproblem associated to the full linearized Navier–Stokes operator L. The numerical value for the latter depicted
in Fig. 5(a), have been kindly provided by Flavio Giannetti who has repeated for the current geometry the same kind
of calculation performed in his work with Paolo Luchini for the case of the circular cylinder [23]. The agreement is
satisfactory, confirming the validity of the POD-Galerkin approach in the study of the stability.

Fig. 5. (a) Spatial distribution of the modulus of the unstable eigenvector (data courtesy of Flavio Giannetti). (b) Spatial distribution of the modulus
of the reconstructed unstable eigenvector.
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Fig. 6. Actuation scheme.

4. Low dimensional modeling of transversely forced flow

In this section we focus on the changes to be made in the POD-Galerkin model in order to obtain a proper simulation
of the flow around the square cylinder when blowing/suction is performed along the channel walls. The velocity along
the walls is everywhere zero except for two opposite segments next to the square where its transverse component varies
in time, while remaining constant along the streamwise direction, that is u(x, t) = c(t)j with x ∈ Γc (see Fig. 6). The
actuators are driven in opposite phases, i.e. at any time the velocity vector of the top actuator is equal in amplitude to
that of the bottom actuator, so that the flow rate through the channel does not change.

Let us define with ū′(x) our base state when c(t) = c
 = 0.1, obtained just like in the unforced case when the
numerical simulation reaches a minimum value in the time residual. It can be observed that the solution uc(x) =
ū′(x) − ū(x) is such that u = 0 on Γin,Γw − Γc and u = c
j on Γc . The velocity field of the system which has been
forced with a generic control law c(t), is expressed as in [24] according to the following expansion

u(x, t) = ū(x) +
c(t)

c

uc(x) +

Nm∑
n=1

an(t)φn(x).

It turns out that the velocity is zero on Γin,Γw for the filtered snapshots u(x, ti ) − ū(x) − c(ti)uc(x), where for ease
of notation we have renamed c(t)/c
 as c(t). By substituting the former expansion into the Navier–Stokes equations
and projecting onto the POD modes one obtains:

ȧr (t) = −(∇p,φr ) + A′′
r + C′′

krak(t) − Bksrak(t)as(t) − E′′
r ċ − F ′′

r c2 +
(
G′′

r − H ′′
krak

)
c,

ar(0) =
(
u(x, 0) − ū(x) − c(t)uc(x),φr

)
,

where all the subscripts run from 1 to Nm and

E′′
r = (uc,φr ),

F ′′
r = (uc · ∇uc,φr ),

G′′
r = (Δuc,φr )/Re − (ū · ∇uc,φr ),−(uc · ∇ū,φr ),

H ′′
kr = (uc · ∇φk ,φr ) + (φk · ∇uc,φr ).

We choose to model the projection term relevant to the pressure and the unresolved scales by assuming that

−(∇p,φr ) = A′
r + C′

krak(t) − E′
r ċ − F ′

rc
2 +

(
G′

r − H ′
krak

)
c,

where the primed quantities are unknown. By setting A′
r = Ar −A′′

r , C′
kr = Ckr −C′′

kr , E′
r = Er −E′′

r , F ′
r = Fr −F ′′

r ,
G′

r = Gr − G′′
r and H ′

kr = Hkr − H ′′
kr , the former system can be rewritten

ȧr (t) = Ar + Ckrak(t) − Bksrak(t)as(t) − Er ċ − Frc
2 + (Gr − Hkrak)c,

ar(0) =
(
u(x, 0) − ū(x) − c(t)uc(x),φr

)
.
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Fig. 7. (a) Lift versus time (“+”) and forcing law (dashed line); (b) coefficient a1 and (c) coefficient a2: model integration (solid lines) and
projection of the full numerical simulation (circles) versus time.

In other words the calibration procedure is performed for every projection term except for Bksr .
We considered a numerical simulation at a Reynolds number of Re = 60, which is slightly greater than the critical

value of 57. In this case the lift oscillates between −0.02 and 0.02 for the fully developed flow. Once the limit
cycle has been reached, we set t = 0 for the instant corresponding to zero lift and apply the following forcing law
c(t) = −2/π sin(2πtTref/TS) arctan(tTref), where TS denotes the dimensional period of the limit cycle oscillations.
The forcing is chosen such that its amplitude reaches gradually the asymptotic value. In Fig. 7(a) both the lift and the
forcing are shown as a function of the dimensional time.

A numerical database has been built by sampling the time span between 0 and 19.45 with 222 snapshots (see ’plus’
markers in Fig. 7(a)) and a POD base of Nm = 5 modes has been extracted from it with a reconstruction error of
about 1.3%. The unknown Ar , Ckr , Er , Fr , Gr and Hkr are determined according to the same procedure followed
above for the modeling of the transient. The resulting direct-adjoint problem is then{

ȧr (t) = Ar + Ckrak(t) − Bksrak(t)as(t) − Er ċ − Frc
2 + (Gr − Hkrak)c,

ar(0) = (u(x, 0) − ū(x),φr ),
direct problem,{−ḃr (t) =

[
Crk − Hrkc(t) − (Blrk + Brlk)al(t)

]
bk(t) − 2

[
ar(t) − âr (t)

]
,

br(T ) = 0,
adjoint problem,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0 br(t)dt = 0,∫ T

0 ak(t)br (t)dt = 0,∫ T

0 bk(t)ċ(t)dt = 0,∫ T

0 bk(t)c
2(t)dt = 0,∫ T

0 bk(t)c(t)dt = 0,∫ T

0 ak(t)br (t)c(t)dt = 0,

optimality conditions,

that can be solved by means of the pseudo–spectral techniques employed previously. Typical results are depicted in
Fig. 7 (b) and (c), where the first two computed coefficient are compared successfully to the corresponding projections.
For a completely different control law, the prediction of the forced flow provided by the low order model might be
poor. However, this is not crucial for control purposes. As a matter of fact, if a control law is obtained from the model
and employed in a Navier–Stokes simulation yielding results different from predictions, a new model can be built
from these new data and a new control law can be recomputed. This loop converges as it was shown in [13] and [24].
What is crucial in this iterative procedure, is to get a model that exactly reproduces the application of the control for
a given case.

5. Conclusions

In this paper a pseudo-spectral method to obtain accurate low order models of transient phenomena has been
described. The idea is to augment the POD-Galerkin model by a linear term whose coefficients are computed in order
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to fit a reference solution. The accuracy of the fitting is attained by a spectral representation of the low order model
solution. This approach guarantees a virtually exact dynamical representation of the large scale structures. It has been
shown how the method can be employed to obtain a reasonably reliable surrogate to a full eigenmode analysis of the
Navier–Stokes equations, when looking for the most unstable mode of a developing instability. An extension of this
approach has been devised so as to encompass the modeling of flows under external actuation, providing a cheap and
reliable plant model for control purposes. One of the main issues left open for investigation is how to take advantage
of the perturbation analysis to efficiently modify the POD modes for flow regimes that are only slightly different from
those used to generate the POD modes themselves. By doing so one would obtain a dramatic speed up in convergence
to the optimal control when using for example the adaptive iterative procedure proposed in [24].
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