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The motion of a flapping NACA0012 airfoil is optimized by means of numerical simulations for a Reynolds
number equal to 1100. The control parameters are the amplitudes and the phase angles of the flapping
motion in addition to the mean angle of attack. Sensitivity functions are used to compute the gradient
of a cost functional related to the propulsive efficiency of the airfoil and a quasi-Newton method is
adopted to drive the control parameters towards their optimal values. The ability of a flapping airfoil
to produce sufficient lift and thrust forces for appropriate kinematics is demonstrated. Furthermore, a lin-
ear dependence between heaving and pitching amplitudes is found for optimal configurations leading to
a constant value of the maximum effective angle of attack roughly equal to 11�. This value corresponds to
the angle yielding the maximal lift-to-drag ratio for this Reynolds number when the NACA0012 airfoil
does not flap. Previous results such as the high propulsive efficiency when a 90� phase angle exists
between heaving and pitching, or the reversal of the von Karman street for a Strouhal number close to
0.2, are confirmed here with a new methodology. Finally, optimal kinematics for various types of mis-
sions are given and the corresponding flows are described.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Human craving for flight has historically been related to the
observation of birds, leading in the past to postulate that flapping
wings were required to fly. This assumption was widespread until
Cayley bypassed it in 1799 with his concept of fixed wings air-
planes equipped with a propulsive system. Thus, and for almost
two centuries, flapping-wing flight was largely neglected due to
the impossibility of building mobile-wing aircrafts at the human
scale. However, in the last two decades, the progress in miniaturi-
zation of mechanical and electronic devices, on the one hand, and
studies showing better performances of mobile wings configura-
tions at the birds’ scale [18,15] on the other, brought the attention
back to flapping-wing configurations, allowing the realization of a
large number of small autonomous aircrafts, usually referred to as
MAVs (micro-aerial vehicles). Today, MAVs of roughly 20 cm wing-
span and 10 m/s forward speed are widely used in military and
civil missions including spying, surveillance, detection of chemical
or biological elements, atmospheric studies and weather forecast,
due to some of their features which include stealth, easy and fast
deployment, low cost and real-time data acquisition [13,6].
ll rights reserved.
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Early attempts at designing fixed wings MAVs as small air-
planes met with problems, the main one being that of finding a
suitable light propulsive system (motor and batteries) able to pro-
vide the requested power during the whole duration of the mis-
sion. Despite progress in this field, the propulsive system still
represents more than half the total mass of an MAV [8] allowing
missions of typical duration between 30 and 60 min. A way of
improving this consists in increasing the propulsive efficiency of
flight, reducing the required power and optimizing the thrust.
Therefore, a large number of authors studied the mechanisms used
by birds and fish in order to reduce drag, delay stall, and increase
maneuverability [22,26].

Lately, attention has been focused on the study of the space of
relevant parameters for flapping wings, which represent the pri-
mary element of the propulsive kinematics in fish and birds,
including the Strouhal number, the oscillations amplitudes and
the Reynolds number [29,16,11]. The aim was to find the optimal
parameters yielding good performances, like, for instance, the high
propulsive efficiency (defined as the ratio of the useful to the total
required power) of fish found by Lighthill [17]. In the present work,
we address the optimal motion of a two-dimensional flapping air-
foil by means of a sensitivity approach which directly controls the
foil kinematics and minimizes a functional related to a given per-
formance of flight. A two-dimensional approach is well known to
overestimate the propulsive efficiency since it does not account
properly for the trailing vorticity. However, it is still interesting
to analyze the dynamics and the forces acting on the airfoil and
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to validate a new optimization strategy. On the other hand, even
three-dimensional published numerical simulations failed to
appropriately quantify the effective efficiency of thrust-produc-
ing-foils as argued by Pedro et al. [20] due to overestimation of
the viscous forces. Here, the small Reynolds number Re used in
the numerical simulations is supposed to more than counterbal-
ance the limitation of two-dimensionality. The conjecture is that
optimal values of control parameters for small Re remain optimal
when Re increases despite different values of efficiency and differ-
ent aerodynamics. The thrust force, related to the distribution of
pressure, is quite similar for the Reynolds numbers of this study
and MAVs whereas propulsive efficiency is related to the viscous
effects and hence depends directly on the value of the Reynolds
number [2,23].

The originality here is the optimization approach built for an
automatic identification of the optimal parameters. Starting from
a given initial value of the control parameter, the optimal configu-
ration is numerically found with a reduced computational cost
with respect to sweeping the whole space of parameter. This has
allowed to carry out a large number of simulations for different
versions of the cost functional, with emphasis on various aerody-
namic measures of performance. Furthermore, the approach
adopted gives rise to a multi-parameter optimization, impossible
or very long to achieve with a classical variation of the control
parameter. Finally, the application of the sensitivity technique to
the flapping foil problem is rather innovative.

Results show the ability of the method of carrying out an effi-
cient optimization in a wide space of parameters. They confirm
some expected conclusions such that for a Strouhal number
close to 0.2 the Karman street reverses, thus leading to the pro-
duction of thrust, as shown by Anderson [1], and the advantage
on propulsive efficiency of considering a Strouhal number close
to 0.3, a value used by a large panoply of animals [29,3]. Results
also confirm the conclusion reached for a higher Reynolds num-
ber compressible flow by Isogai et al. [14] about the advantage
of having pitching oscillations which lead heaving oscillations
by a phase angle close to 90�. Moreover, lift production was
investigated and results have shown the ability of a flapping foil
to produce simultaneously sufficient lift and thrust forces for an
appropriate set of control parameters. Finally, inspection of the
sensitivity fields yields clues on the regions of space where flow
control is more efficient, highlighting the important role played
by the airfoil’s tips.
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Fig. 1. Definition of the flapping motion (left) and comparison of the
2. Flapping airfoil problem

2.1. The geometry

The flapping motion is defined as a combination of transla-
tional and angular oscillations denoted heaving and pitching,
respectively. Thus, a pitching center, the point around which
the angular oscillations occur, is chosen and the vertical position
of this point, hðtÞ, is varied in time. In this work, the airfoil
pitches around a point located at one third of the chord length
as shown in Fig. 1. Classically, harmonic oscillations of same fre-
quency for heaving and pitching are considered to mimic the
motion of birds’ wings and fish fins. The two-dimensional airfoil
considered in this work is very similar to a NACA0012 airfoil,
except near the trailing edge. This airfoil is constructed by
means of a Joukowski transformation, which allows to map
the field external to the airfoil into the field external to a circle.
A plot of the foil, zoomed in the vertical direction, is displayed
in Fig. 1.

The flapping-wing problem can be solved in the laboratory
fixed reference ðx; yÞ, where x and y are, respectively, the hor-
izontal and vertical directions. However, such a choice requires
to locate the position of the foil in the grid instantaneously in
order to impose the unsteady boundary conditions. This would
lead to a model characterized by relatively simple equations
but requiring a moving mesh algorithm [21,20,25,4]. Here, we
write the governing equations in a reference frame ðX;YÞ
which moves with the airfoil, such that X is in the direction
of the airfoil’s chord and Y is directly orthogonal to it (cf.
Fig. 1 left). Then, the mobile reference is mapped by means
of the Joukowski transformation into the plane ðn;vÞ, where
a polar coordinates system ðr; hÞ is defined. A logarithmic
transformation is used to stretch the computational grid in
the radial direction and improve boundary layer resolution
[5]. This approach leads to relatively complicated equations
but offers the advantage of easy imposition of the boundary
conditions. A plot of a coarse grid in the plane ðx; yÞ is given
in Fig. 2 to illustrate the computational domain used. The ef-
fect of the different parameters of the grid will be discussed
in Section 4.2. Finally, the velocity at infinity is inclined of
an angle a0 with respect to the horizontal direction, i.e. a0 is
the mean angle of attack of the airfoil over one period of
oscillation.
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Fig. 2. Plot of a coarse grid showing the geometry of the computational domain and
the effect of the logarithmic refinement near the airfoil.
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2.2. The scaling

The equations of a two-dimensional incompressible flow can be
reduced to two equations written in terms of the vorticity x� and
the stream function w� which are related to the velocity compo-
nents ðu�;v�Þ in the ðx; yÞ reference frame by the relations:

x� ¼ @v�
@x�
� @u�

@y�
; u� ¼ @w

�

@y�
; v� ¼ � @w

�

@x�

The superscript * denotes a dimensional quantity. For the flap-
ping airfoil problem, two time scales can be adopted. The first is
the ratio between the length scale and the velocity at infinity U�1,
the second is the inverse of the angular frequency of flapping r�
measured in radians/s. The advantage of the first choice is that it
allows to recover the classical Reynolds number for fixed airfoils
Rec ¼ U�1c�

m� , where c� is the chord length and m� the kinematic viscos-
ity of the fluid. However, in a flapping foil problem this first choice
prevents the study of a hovering configuration in which the veloc-
ity at infinity vanishes. Moreover, U�1 represents, from a physical
point of view, the forward velocity of the animal and hence, de-
pends on the flapping characteristics. Therefore, r� is the scaling
time for the equations in the present work. Nonetheless, the clas-
sical Reynolds number may be recovered and its value will be gi-
ven in the following. We consider the parameter k� with
k� ¼ 0:248c�, as the length scale; it corresponds roughly to the po-
sition of the aerodynamic center. Some authors use the heaving
amplitude as length scale but this choice cannot be adopted here
since the heaving amplitude will be considered as a control param-
eter and hence will be variable. This is also the reason why we pre-
fer to fix the reduced frequency fr rather than the Strouhal number
St, defined, respectively, by fr ¼ k�r�

U�1
and St ¼ r�A�

2pU�1
, with A� the width

of the wake usually approximated by the double of the heaving
amplitude kh�ðtÞk (cf. Eq. (2)). A summary of the scales is given
in Table 1.
Table 1
Reference quantities.

t� v�r ;v�h;U �
1 r�; h� p�

1
r� k�r� k� q�ðk�r�Þ2
In the table, t� is time, v�r and v�h the velocities in the radial and
circumferential directions, p� pressure and q� the fluid density. Un-
der these conditions, we can deduce that Rec ¼ 4Re

fr
and St ¼ khðtÞkfrp ,

where khðtÞk ¼ kh
�ðtÞk
k� and khðtÞk ¼maxt2½0;T�hðtÞ. All the results

which will be presented in the following, have been obtained
for fr ¼ 0:3665 (for monochromatic oscillation, St ¼ 0:117h1,
where h1 is the heave amplitude when N ¼ 1, cf. Eq. (2)) and
Rec ¼ 1100 except in Section 7.4. The choice of such a low value
of the Reynolds number allows direct numerical simulations
without heavy computational costs and an easy comparison with
the literature [2,21,20,11], while preserving a flow configuration
with exploitable mechanisms and results. Furthermore, the sec-
ondary role played by the value of the Reynolds number has al-
ready been mentioned in Section 1 [19]. In fact, the same
dependence of the thrust forces on the parameters and quantita-
tively comparable values of the thrust coefficients have been ob-
served at high and low Reynolds numbers [2,23] with the
counterpart of lower efficiency at low Reynolds number because
of larger viscous effects. On the other hand, fr is chosen in a
way that the Strouhal number remains close to its ‘‘optimal”
interval for propulsive efficiency, i.e. in the range [0.25, 0.35].
An analysis of fish swimming [29] has shown that carangiform
swimmers move their tails in such a way that their Strouhal
number is in this same range. In the same way, flying and run-
ning animals tune their motion to remain within this range
[28,3]. A plausible value of the heaving amplitude kh�ðtÞk is often
between 0:5c� and c� leading to khðtÞk between 2 and 4.

2.3. The flow equations

The flow is governed by the system (1) which expresses the
continuity and Navier–Stokes equations in the ðw�xÞ formulation
in the polar coordinate system ðr; hÞ:

@x
@t þ 1 ffiffi

J
p v r

@x
@r þ

vh
r
@x
@h

� �
¼ 1

ReJ
@2x
@r2 þ 1

r
@x
@r þ 1

r2
@2x
@h2

h i
;

@2w
@r2 þ 1

r
@w
@r þ 1

r2
@2w
@h2 ¼ �Jx;

8><
>: ð1Þ

where

v r ¼ 1 ffiffi
J
p 1

r
@w
@h � _hðtÞ sinðaðtÞÞ � _aðtÞY

� �
@X
@n cos hþ @X

@v sin h
� �h

� _hðtÞ cosðaðtÞÞ þ _aðtÞX
� �

@Y
@n cos hþ @Y

@v sin h
� �i

;

vh ¼ 1 ffiffi
J
p � @w

@r � _hðtÞ sinðaðtÞÞ � _aðtÞY
� �

@X
@v cos h� @X

@n sin h
� �h

� _hðtÞ cosðaðtÞÞ þ _aðtÞX
� �

@Y
@v cos h� @Y

@n sin h
� �i

:

Dots denote derivation with respect to time t and J is the Jaco-
bian of the Joukowski transformation which maps the coordinates
of the Cartesian plane ðX;YÞ into the plane ðn;vÞ. The numerical
resolution of system (1) is addressed in Section 4.1.

The x equation is solved with the value of w for the previous
temporal step. An alternate-direction implicit (ADI) method is
applied first to h and then to r, in each case leading to a tridiag-
onal system solved with periodic conditions for h and Dirichlet
condition on the airfoil and Neumann condition ð@x

@r ¼ 0Þ on the
outflow boundary [10]. Once x is computed, it is injected in
the w Poisson-like equation solved expanding both w and Jx as
Fourier series in the h direction. The coefficient of these series
x� w� Re fr St

r� r�k2� r�k2�

m�
k�r�
U�1

r�kh�ðtÞk
pU�1
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are determined by means of a forward fast Fourier transform
algorithm. The associated boundary conditions express a vanish-
ing velocity on the airfoil and a non-perturbed velocity at the
outflow boundary. The latter condition requires a large domain
to be valid and this fact increases the computational time. Final-
ly, the system is advanced in time starting from an initial condi-
tion of zero vorticity and stream function in the whole
computational domain.

2.4. The direct variables

We denote by direct any variable computed through the resolu-
tion of the flow equations, as opposed to sensitivity variables,
which are obtained by solving the sensitivity equations. The mean
values of the direct variables are obtained by averaging over T (one
temporal period of oscillations in the established regime). The
main direct variables are:

– The mean power required to sustain the motion of the airfoil
defined as:

�P ¼ �1
T

Z T

0
FyðtÞ _hðtÞ þMzðtÞ _aðtÞ
h i

dt:

– The mean horizontal force �F indicating whether the airfoil is
dominantly producing drag (�F > 0) or thrust (�F < 0):

�F ¼ 1
T

Z T

0
F==ðtÞdt:

– The mean vertical force �L indicating whether the airfoil is
producing lift (�L > 0) or not:

�L ¼ 1
T

Z T

0
F?ðtÞdt:

F== and F? are, respectively, the parallel and perpendicular forces
with respect to the velocity at infinity. Obviously, when a0 ¼ 0,
they correspond to the horizontal and vertical forces Fx and Fy in
the fixed reference ðx; yÞ. Mz is the pitching torque acting on the
airfoil. We associate to these mean quantities the mean power,
thrust and lift coefficients:

CP ¼
�P�

1
2 q�c�U�31

¼
�P

2U3
0

; CT ¼ �
�T�

1
2 q�c�U�21

¼ �
�F

2U2
0

;

CL ¼
�L�

1
2 q�c�U�21

¼
�L

2U2
0

;

where U0 ¼ U�1
r�k� is the non-dimensional velocity at infinity. Final-

ly, we introduce the propulsive efficiency as the ratio of the use-
ful power (used to fly straightforward) to the total required
power:

g ¼ �
�FU0

�P
¼ CT

CP
:

The definition of a propulsive efficiency loses interest when the
airfoil is mostly producing drag (g < 0).
t=0t=0
t=T/2

t=5T/8

t=3T/4

t=7T/8

Fig. 3. Different positions of the airfoil at uniform intervals over one period for
N ¼ 1; h1 ¼ 4;s1 ¼ 0�;a0 ¼ 0�;a1 ¼ �35� and /1 ¼ 90� .
3. The optimization approach

3.1. Kinematics and control

The flapping motion of the airfoil is chosen by imposing an ana-
lytical expression to the heaving and pitching motions, hðtÞ and
aðtÞ. In the present work, we formally generalize the classical
assumption which considers a monochromatic oscillation, by
writing:
hðtÞ ¼
PN
k¼1

hk sinðkt þ skÞ;

a tð Þ ¼
PN
k¼1

ak sinðkt þ /kÞ;

8>>><
>>>: ð2Þ

where hk, ak, sk and /k are heaving and pitching amplitudes and
phases, respectively, and N is the number of modes considered.
We note that, since the average over one period of aðtÞ vanishes,
a0 is the value of the angle of attack of the airfoil averaged over
a period of flapping. Regardless of the value of N, the flapping
motion is periodic in time with a dimensionless period equal
to 2p. Thus, the numerical simulations will be carried out for a
non-dimensional time multiple of 2p, representing an integer
number of periods. An illustration of such a motion is given in
Fig. 3 for N ¼ 1, h1 ¼ 4, a0 ¼ 0�, s1 ¼ 0�, a1 ¼ �35� and
/1 ¼ 90�. Historically, birds’ flight and fish swimming were mod-
eled by means of simple heaving. The poor thrust developed in
these conditions and its absence in hovering conditions
[31,16,11] suggested the inclusion of pitching. This allows a high-
er thrust production via the control of leading edge vortex for-
mation and development.

The variables hk, a0, ak, /k and sk for k ¼ 1;N are the param-
eters for which the sensitivity of the flow will be computed.
Amplitudes and phases have a crucial impact on propulsion per-
formances since they pilot the timing of the vortex shedding and
propagation in the wake, whereas the average angle of attack is
important for the generation of lift. The letter g will denote in
the following any generic control parameter among the 4N þ 1
possible ones. The flapping airfoil configuration is known to de-
pend on a set of 7 relevant parameters, i.e. the Strouhal number
(related the flapping frequency), the heaving and pitching ampli-
tudes, the phase between these two oscillations, the position of
the pitching center, the mean angle of attack of the airfoil, and
the Reynolds number based on the velocity at infinity. According
to our choice of control parameters, only the position of the
pitching center and the Reynolds number at infinity are constant
since, in all simulations, the airfoil pitches around a point lo-
cated at one third the chord length, for a Reynolds number
Rec ¼ 1100 (except in Section 7.4 where frequency and Reynolds
number effects are briefly considered). Guglielmini [10] has
shown the positive impact of considering a pitching center in
this position. This configuration is also adopted in Anderson
et al. [2], where a propulsive efficiency as high as 87% is
achieved. Fixing the reduced frequency and modifying the heave
amplitude allow to change the Strouhal number and thus to ana-
lyze its effect.
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3.2. The cost functional

The optimization process aims at improving a measure of the
performances of MAVs based on flapping wings. The choice of
the measure depends on the mission of the vehicle and its con-
straints. Hence, for a long-term mission in hostile territories, a high
propulsive efficiency would be privileged, in order to increase the
vehicle autonomy, whereas a mission in harsh atmospheric condi-
tions may require high lift coefficients and/or high thrust for
maneuvering. However, considering the propulsive efficiency g as
the cost functional is neither indispensable nor convenient, since
a peak of efficiency may be found in correspondence of insignifi-
cant thrust forces. Therefore, designers usually tune their proto-
types to have a sufficient thrust with acceptable propulsive
efficiency exploiting the slow decay of this latter after the peak va-
lue. Consequently, in the present work, the cost functional is writ-
ten as:

! ¼ b2�P þ c2�FU0 þ d2 �a2ðtÞ þ �2 �h2ðtÞ; ð3Þ

where b2, c2, d2 and �2 are positive coefficients giving different
weights to the different components of the cost functional, and
the bar denotes time-averaging over one period of oscillation
ð �ð:Þ ¼ 1

2p

R 2p
0 ð:ÞdtÞ. The first two terms provide a balance between

the required and the useful powers. A quadratic functional is
not considered to properly take into account the sign of the hor-
izontal force (�F < 0 when thrust is produced) avoiding optimal
solutions corresponding to drag-producing kinematics. Exception-
ally, for the study of the critical Strouhal number a quadratic
form of the second term can be considered together with vanish-
ing values of b2, d2 and �2. On the other hand, a higher weight is
given to thrust, with respect to power, in order to prevent the
optimization process to be directed towards the trivial solution
of a fixed airfoil with vanishing power and positive drag. The
third and fourth terms are added to ensure a limited cost of
the control and to avoid optimal solution in which the motion
of the airfoil diverges. The values of d2 and �2 are chosen so that
equivalent importance is given to the last two terms. The present
functional is to be minimized leading to acceptable kinematics of
the airfoil. The lift force is not included in the functional because
it mainly depends on the mean angle of attack a0. In Section 6,
lift is studied independently and an alternative cost functional
is introduced.

In the configuration studied, the velocity at infinity U0 is con-
stant as if the optimal performance is sought for a given transla-
tional velocity of the vehicle. Therefore, U0 does not admit
variations and its presence ensures a balance between two pow-
ers. The physical configuration in which the velocity of the airfoil
depends on its kinematics would be hard to simulate since it re-
quires an analytical relationship of the type: U0 ¼ U0ða0;hðtÞ;
aðtÞ; . . .Þ.

3.3. Sensitivity technique and equations

The term sensitivity denotes the derivative of a flow variable
(here x and w) with respect to a control parameter g. They will
be referred by x;g and w;g . Sensitivity functions satisfy equations
which are obtained by deriving the flow Eq. (1) with respect to
the control parameter(s). The solution of these equations provide
a map of the hot-spots in the computational field where the flow
control is most efficient. Once evaluated, sensitivities are used in
the computation of the cost functional gradient. The formal expres-
sion of this gradient is:

d!
dg
¼ @!
@x

dx
dg
þ @!
@w

dw
dg
þ @!
@g

: ð4Þ
The last term is the partial derivative of the cost functional with
respect to the control parameter whereas the first two terms are
determined by isolating the parts of ! that depend upon the flow
variables and replacing x and w by their sensitivities. A description
of the method can be found in Gunzburger [12].

The sensitivity equations are written for a generic control
parameter as:

@x;g

@t þ 1 ffiffi
J
p v r

@x;g

@r þ
vh
r
@x;g

@h þ
@v r

@g
@x
@r
þ 1

r
@vh

@g
@x
@h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2
4

3
5

¼ 1
ReJ

@2x;g

@r2 þ 1
r
@x;g

@r þ 1
r2

@2x;g

@h2

h i
;

@2w;g
@r2 þ 1

r
@w;g
@r þ 1

r2
@2w;g
@h2 ¼ �Jx;g ;

8>>>>>>><
>>>>>>>:

ð5Þ

where

@vr
@g ¼ 1 ffiffi

J
p 1

r
@w;g
@h � @

@g
_hðtÞ sinðaðtÞÞ � _aðtÞY
� �

@X
@n cos hþ @X

@v sin h
� �h

� @
@g

_hðtÞ cosðaðtÞÞ þ _aðtÞX
� �

@Y
@n cos hþ @Y

@v sin h
� �i

;

@vh
@g ¼ 1 ffiffi

J
p � @w;g

@r � @
@g

_hðtÞ sinðaðtÞÞ � _aðtÞY
� �

@X
@v cos h� @X

@n sin h
� �h

� @
@g

_hðtÞ cosðaðtÞÞ þ _aðtÞX
� �

@Y
@v cos h� @Y

@n sin h
� �i

:

Compared to the flow equations, the sensitivity equations pres-
ent a source term (under-braced in Eq. (5) above) which depends
on the choice of the control parameter and on the flow variables.
They require a prior resolution of system (1), and can be solved
by the same ADI method used for the flow equations, described
earlier. The associated boundary conditions are obtained through
the derivation of the boundary conditions for x and w with respect
to g. The evolution in time occurs starting from vanishing sensitiv-
ities as initial conditions. This choice does not affect the final solu-
tion in the régime state since starting from various initial
conditions has always led to the same value of the gradient. This
is coherent with the fact that the value and the sign of the cost
functional gradient with respect to a control parameter are inde-
pendent from the means of evaluation and specifically the initial
conditions.

3.4. The gradients and the optimization process

For the cases of propulsion and lift optimization, the gradients
of the cost functional are, respectively:
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Hence, the resolution of the sensitivity equations yields the val-
ues of the different derivatives which permit the estimation of the
gradient. The relations which allow to compute the derivatives in-
volved in the gradient starting from sensitivities are given in
Appendix B.

Starting from a given set of values of the control parameters, the
gradient of the cost functional is estimated for each parameter inde-
pendently, and in succession. The control can be applied on one or
more parameters at the same time, offering the opportunity to per-
form a multi-parameter optimization. Thus, the algorithm of optimi-
zation starts with a first iteration where a value of the parameters is
imposed, gð0Þ. Flow and sensitivity equations are solved for this value
and the gradient with respect to g denotedr!ð0Þg is evaluated. Two
update techniques have been tested:

– The steepest descent method: gðnþ1Þ ¼ gðnÞ � sr!ðnÞg , where s is
a relaxation parameter which must be optimized. The princi-
ple of this method is to perform a small variation of the param-
eter when the gradient is small i.e, when a relative optimum is
being reached. An example of the application of this method to
flapping foil optimization with an optimal step can be found in
[30].

– The quasi-Newton algorithm: gðnþ1Þ ¼ gðnÞ� gðnÞ�gðn�1Þ

r!ðnÞg �r!ðn�1Þ
g
r!ðnÞg .

In this case, a first order finite difference approximation of

the second derivative is used to enrich the search of the opti-

mal direction of update.

The negative signs in the expressions above ensure that a min-
imum of the functional is being pursued. The quasi-Newton meth-
od is very efficient, whereas the steepest descent method requires
sub-iterations for the determination of the optimal step. Alterna-
tively, it is possible to use a small constant step, albeit with consid-
erable increase of the number of iterations.
4. Numerical aspects

4.1. Discretization schemes

The governing equations are discretized with a second-order
scheme in space. A centered scheme is applied in the core of the
computational domain, whereas second order upwind and back-
ward schemes are used near the airfoil and the outflow boundaries,
respectively, for computing first and second-order derivatives.
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Time advancement is accomplished with a first order upwind
scheme applied in the two sub-steps of the ADI method. Time aver-
aging is done with a trapezoidal integration on the last (useful)
temporal period of the simulations.

4.2. Adequacy of grid and time step

Before initiating the parametric study, it is important to verify
the independence of the results upon the grid. The numerical dis-
cretization depends on five parameters:

– Rmax, the size of the circular computational domain, which
results from a compromise between the computational cost
and a proper application of the boundary conditions at the
outflow boundary;

– Nr , the number of points in the radial direction;
– Nh, the number of points in the circumferential direction;
– Rint , an internal radius related to the logarithmic refinement,

with half the points in the radial direction located between
the airfoil and this radius. The choice of this parameter for a fixed
number of points is a compromise between a good resolution of
the boundary layer and a good resolution of the far wake;

– NT , the number of temporal steps in a period of oscillations,
with Dt ¼ 2p

NT
.

We have computed for several different grids the error in
percentage with respect to a very refined grid, for direct variables
and for gradients. Results have shown that the grid defined by
ðRmax ¼ 45;Rint ¼ 12;Nh ¼ 512;Nr ¼ 500;NT ¼ 10;000Þ gives the
best computational cost-to-accuracy ratio. Hence, this grid has
been adopted in the following. The temporal step was further
decreased in some configurations with large heaving amplitudes
where large patches of vorticity are shed, or when the pitching
angle is close to zero, a configuration characterized by a thin
boundary layer.

An example of simulation is provided in Fig. 4, which shows
that the initial transient lasts about one period of time.

4.3. Optimization update

To illustrate the difference between the steepest descent and
the quasi-Newton methods, we minimize with respect to h1 a cost
functional defined as:

! ¼ �P þ �F þ �a2ðtÞ þ �h2ðtÞ:
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We consider the case N ¼ 1;hð0Þ1 ¼ 4:25;a0 ¼ s1 ¼ 0;a1 ¼ �25�;
/1 ¼ 90�. For the steepest descent method, the update algorithm
employs a relaxation step s ¼ 0:01, whereas for the quasi-Newton
method we use:

gð1Þ ¼ gð0Þ � 0:25signðr!ð0Þg Þ;

gðnþ1Þ ¼ gðnÞ � gðnÞ�gðn�1Þ

r!ðnÞg �r!ðn�1Þ
g
rgðnÞ; for n P 1:

8<
:

The same minimum for h1 ¼ 0:748 ðSt ¼ 0:087Þ is reached
after 8 iterations with the quasi-Newton methods versus 37 iter-
ations for the steepest descent method (Fig. 5). This discrepancy
in performance could be reduced through a better choice of the
update step s, but the speed of the quasi-Newton method is
such that it has been the method of choice for all further
calculations.

4.4. Validation

The flow solver has been previously validated [11] by com-
parison to similar numerical and experimental configurations
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Fig. 5. Comparison of the update methods by showing the values of the cost functional
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Fig. 6. Validation of the gradient computation. Left: the cost functional, in Eq. (3), right
dashed lines its gradient computed with sensitivity method in comparison to the secon
[7,2,31]. The validation of the sensitivity equations can be done
by verifying the condition of vanishing gradient at the mini-
mum of the cost functional. On the other hand, the resolution
of the flow equations allows to recover the direct variables
ð�P; �FÞ for different values of the control parameter. Then, a ‘‘the-
oretical” gradient can be computed by a simple second order
finite differences scheme and compared to the gradient com-
puted with Eq. (7). Such a gradient is, however, poorly suited
for a multi-parameter configurations. Besides, its accuracy is
related to the control parameter step size, and hence, is gener-
ally less accurate than the computed gradient. Therefore, the
cost functional in Eq. (3) with the weights ðb2; c2; d2; �2Þ ¼
ð1;2;1;1Þ is considered and control is carried out with respect
to the heaving amplitude in one modal harmonic oscillation
with a1 ¼ �25� and /1 ¼ 90�.

The agreement between the minimum of the cost functional
and the vanishing of the gradient, and between the ‘‘theoretical”
and real gradients, are very satisfactory when controlling the heav-
ing amplitude, as shown in Fig. 6. Similar results are obtained
when other control parameters are considered.
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4.5. Sensitivity fields

Exploring the fields x;g and w;g allows to identify the most sen-
sitive areas where controlling vorticity and stream function has the
major effect. Sensitivity fields of the vorticity with respect to vari-
ous control parameters have roughly the same topology: an ex-
pected vanishing sensitivity where vorticity vanishes and a high
sensitivity near the airfoil and in the wake. The main difference
when controlling different parameters lies in the numerical values
of the sensitivities. Looking at the color scale in Figs. 7 and 8, we
note that the pitching angle sensitivity field is characterized by
higher values than the sensitivity field with respect to the phase
angle, which is, itself, larger than the sensitivity with respect to
the heaving amplitude. However, the regions of large sensitivity
have roughly the same location for the two fields. As for vorticity,
the maximal and minimal values of the sensitivity with respect to
the control parameters are located near the tips of the airfoil (lead-
ing and trailing edges) confirming the crucial role of the airfoil’s
tips in the generation and shedding of vorticity. Similar conclu-
Fig. 7. Zoom near the airfoil of the vorticity field (left) and its sensitivity with respect
/1 ¼ 90� at t ¼ 9T

8 .

Fig. 8. Sensitivity fields of the vorticity with respect to the pitching amplitude a1 (left) an
and /1 ¼ 0� at t ¼ 9T

8 .
sions can be drawn when looking at a different instant during
the oscillation.

5. Propulsion optimization

5.1. Critical Strouhal number

Before studying the effect of each control parameter on the cost
functional, the critical value of the Strouhal number for different
pitching angles is sought. This critical value indicates the threshold
for which the reversed von Karman street occurs, leading to thrust
production. For a two-dimensional airfoil which oscillates exactly
at this critical value, a neutral wake, defined as an alternation of
clockwise and counterclockwise rotating aligned vortices, is ob-
served. The weights are set to b2 ¼ d2 ¼ �2 ¼ 0 and the gradient,
with respect to the heaving amplitude h1, of the quadratic function
�F2, is 2 �Fr�F.

For the reduced frequency used here, results in Fig. 9 indicate
that for a purely pitching airfoil, thrust production requires a
to the heaving amplitude h1 (right) for N ¼ 1, h1 ¼ 2, a0 ¼ s0 ¼ 0� , a1 ¼ �25� and

d with respect to the phase angle /1 (right) for N ¼ 1, h1 ¼ 2, a0 ¼ s0 ¼ 0� , a1 ¼ �25�
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Strouhal number greater than 0.152, value close to that found
experimentally by Anderson [1] (roughly 0.2). For a flapping airfoil,
thrust production is less constraining in terms of Strouhal number
for small pitching angles, since a minimal critical Strouhal number
of 0.133 is observed for a pitching angle close to �7.5� when a 90�
phase difference between heaving and pitching is considered.
Large values of the pitching angle require larger heaving ampli-
tudes and hence a higher Strouhal number at constant frequency
in order to reverse the von Karman street. The critical values in-
crease when the phase /1 decreases from 90� towards 0�. The
interest of considering a phase close to 90� has been highlighted
by Streitlien et al. [27] and Isogai et al. 14]; this configuration sup-
ports the reduction of flow separation and increases flight effi-
ciency by piloting the timing of vortex shedding from airfoil tips
so that leading edge vortices interact constructively with the trail-
ing edge vortex leading to two vortices deposited per flap [2,16].

In conclusion, for acceptable pitching angles no thrust produc-
tion can be observed for h1 < 1 which corresponds to an airfoil
with a heaving amplitude smaller than a quarter of its chord. If a
vanishing phase angle has to be studied, a pitching amplitude in
the interval ½�20�;0�� must be considered. Beyond this range, no
thrust production has been observed. In the same way, and for
/1 ¼ 45�, there is no possible thrust production for a1 < �35�. In
the remainder of this work, we will focus on control parameters
within favorable ranges for thrust production.

5.2. Effect of heaving and pitching amplitudes

We start by controlling the first mode of oscillation focusing,
respectively, on the effect of the heaving and pitching amplitudes.
First, for different values of the pitching amplitude, the minimum
of the propulsive-related cost functional is sought, then, the meth-
od is inverted and for some plausible values of the heaving ampli-
tude, the optimal value of the pitching amplitude is found. The
computations are done for a configuration with a constant phase
/1 equal to 90�. The results in Fig. 10 show a linear dependence be-
tween the optimal heaving amplitudes and the optimal pitching
angles. We note that for a vanishing pitching angle, the optimal
solution is a vanishing heaving amplitude corresponding to a still
airfoil. However, with the selected cost functional this trivial solu-
tion is not the global optimal solution since lower values of the cost
functional can be reached for different pitching amplitudes as
shown Fig. 11.
For heaving amplitude control, the optimal solutions for a1 >

�20� correspond to dominantly drag-producing configurations.
The global minimum is obtained for h1 ¼ 2:321 and a1 ¼ �30�

which gives rise to CT ¼ 0:229 and g ¼ 0:398. Higher efficiencies
and/or thrust forces are achieved for a1 < �30� since for a1 ¼
�45�, we have an optimal heaving amplitude h1 ¼ 3:651 yielding
CT ¼ 0:601 and g ¼ 0:466. The latter result highlights the impor-
tance of the choice of the cost functional; it is important, however,
to keep in mind that in the present section only one parameter is
controlled. Furthermore, large amplitude heaving oscillations are
not desirable because of the structural constraints related to such
a configuration. This result illustrates the significance of including
the last term (the cost of the control) in the global cost functional.

For pitching amplitude control, the global optimal solution can
be found for h1 ¼ 2:5 and a1 ¼ �31:91� confirming the advantage
of being close to this range of control parameters. The associated
performances are CT ¼ 0:28 and g ¼ 0:423. Better values can be
found for higher heaving amplitudes (for example, for h1 ¼ 4 and
a1 ¼ �45:34� we have CT ¼ 0:90 and g ¼ 0:485) but, as mentioned
before, such solutions do not account for the cost of performing the
control. The optimal solutions obtained for h1 < 1:5 correspond to
dominantly drag-producing flapping airfoil.

The effect of both heaving and pitching amplitudes can be stud-
ied when considering the real angle of attack seen by the airfoil de-
fined as:

C�ðt�Þ ¼ a0 þ arctan
_h�ðt�Þ
U�1

 !
þ aðt�Þ

or, in non-dimensional form:

CðtÞ ¼ a0 þ arctan
_hðtÞ
U0

 !
þ aðtÞ;

which is the effective angle between the axis of the airfoil in motion
and the direction of velocity at infinity.

The maximum value of this angle plays a crucial role for the
propulsive efficiency [1,23]. For N ¼ 1 and for harmonic heaving
and pitching oscillations, we can write that Cmax 6 a0þ
arctanðh1

U0
Þ þ a1. The main observation to be made here is that for

all optimal couples ðh1;a1Þ corresponding to mainly thrust-produc-
ing configurations, the maximum angle of attack is roughly con-
stant in the interval [10�, 12.25�] (cf. Fig. 12). This range of
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angles of attack corresponds to a good lift-to-drag ratio range for a
fixed NACA0012 airfoil and within the stall angle for the Reynolds
number considered here (cf. Section 6).

5.3. Effect of the phase angles /1 and s1

Here, the effect of the relative phase angle /1 between heaving
and pitching oscillations is analyzed. Hence, for different pitching
amplitudes a1, the optimal /1 is computed for h1 ¼ 2 and h1 ¼ 3.
The evolution is not linear, but the main conclusion is that for
any plausible pitching and heaving amplitudes, the optimal phase
remains roughly in the interval [70�, 90�]. This result can be related
to the difficulty of generating thrust for small values of / (Section
5.1) without considering very large oscillations.

Previous contributions [27,14] highlighted the advantage of
considering a flapping motion in which pitching oscillations lead
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heaving oscillations by an angle in the interval [80�, 100�]. It can be
shown that for such a phase, leading edge vortices interact con-
structively with the trailing edge vortex enhancing thrust produc-
tion and improving efficiency. This result, already presented in the
works of Anderson et al. [2] and Lewin and Haj-Hariri 16], is ob-
tained here by means of sensitivity optimization. Obviously, no
optimal phase angle is sought for a vanishing pitching amplitude.
The minimum of the cost functional for the values considered is
obtained for h1 ¼ 3, a1 ¼ �35� and /1 ¼ 80:5� leading to CT ¼
0:526 and g ¼ 0:481.

On the other hand, for N ¼ 1, one angle /1 or s1 is enough to
describe the phase between heaving and pitching. Therefore, the
values of optimal s1 for a1 2 ½�45�;0�� and h1 ¼ 2 or h1 ¼ 3 can
be deduced from optimal values of /1 present in Fig. 13. The
demonstration relies on a simple change of variables since we
can move from:

hðtÞ ¼ h1 sinðtÞ to hðtÞ ¼ h1 sinðt þ s1Þ
aðtÞ ¼ a1 sinðt þ /1Þ aðtÞ ¼ a1 sinðtÞ

by introducing t0 ¼ t þ /1, which implies that s1opt ¼ �/1opt .
2 http://www.fluent.com
3 http://www.llnl.gov/casc/Overture/
6. Lift optimization

In the present section, attention shifts on the lift produced by
flapping airfoils. The results previously described (cf. Section 5)
were obtained for a vanishing value of the mean angle of attack
a0, so that both the foil motion and the flow field turn out to be
symmetric with respect to the x-axis. Consequently, the mean lift
force averaged over one period of oscillations vanishes: during
the up-stroke a high pressure zone is observed on the upper side
of the airfoil and inversely a low pressure zone is created on the
bottom surface leading to a negative lift force. The mechanism is
inverted during the down-stroke and an equivalent positive lift
force is generated compensating the latter one. An illustration of
this sequence of positive and negative values is given in Fig. 4 (left).

Lift optimization is carried out considering �L or (equivalently CL)
as the cost function and the angle a0 as the only control parameter
with the other parameters maintained constant. The case of a
flapping airfoil is very different from the case of the classical fixed
airfoil where lift increases proportionally to the angle of attack
before reaching stall. Here, due to pitching oscillation, flow
separation occurs at different instants of the flapping motion so
that the classical notion of stall cannot be invoked.

A first important conclusion is related to the presence of lift in-
crease after the first downshoot (‘‘stall”) (cf. Fig. 14), behavior
which is recovered for different combinations of heaving and
pitching amplitudes. Furthermore, if the mean angle of attack is
further increased, the lift coefficient tends to saturate to an asymp-
totic value slightly smaller than the second peak value for certain
values of h1 and a1. This asymptotic behavior was also observed
by Silin et al. [24] who varied the angle of attack of a flexible flap-
ping wing between 0� and 90�. In that work, it was not possible to
clearly identify stall, since the lift coefficient, after having reached
a peak value, slightly decreased and then reached a roughly con-
stant value upon increase of the angle of attack.

The second main result is the possibility to reach lift coefficients
of the order of CL ¼ 3 with a flapping airfoil by a judicious choice of
the angle of attack. We point out that for flapping MAVs flying at
low speeds and facing gust or harsh conditions, having a large lift
coefficient is indispensable for remaining airborne and maneuver-
ing. However, and unfortunately, the maximum of lift usually cor-
responds to a dominantly drag-producing configuration. Therefore,
it is preferable to tune the kinematics to ensure sufficient lift while
thrust still can be produced maintaining angles of attack roughly
<20�.

The high values of CL and the absence of pronounced stall seem
to depend more on the low value of the Reynolds number than on
the motion of the airfoil. That is the reason why we plot the lift
coefficient for the same NACA0012 airfoil when it is fixed and for
the same Reynolds number for various values of the mean angle
of attack a0. For comparison, we compute the lift coefficient for
the same airfoil and for the same number of Reynolds using Fluent2

and Overture3 in the laminar unsteady viscous configuration. Over-
ture has been also applied for flapping airfoil configurations and
yielded very good agreement with the present results in terms of
magnitude of the forces and wake topology [9].

The angle of attack for maximum lift is equal to 45� which is
very large compared to the stall angle of NACA airfoils for typical
flight Reynolds number of order 106. However, and as soon as a0

exceeds 20� the drag force becomes so important and the flow so

http://www.fluent.com
http://www.llnl.gov/casc/Overture/
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unsteady that it may prevent the use of such large angles of attack.
Actually, the maximum lift-to-drag ratio is equal to 2.43 and it is
obtained for a0 ¼ 11�. This result is interesting since it was found
that the optimal ðh1;a1Þ yielded an effective maximal angle of at-
tack Cmax in the range [10�, 12�].

Finally, we highlight the fact that if we fix all the control param-
eters except a0, which we increase starting from 0�, the propulsive
efficiency g decreases until the airfoil starts to dominantly produce
drag. This justifies the choice to accomplish the control in the pre-
vious section (Section 5) for a vanishing angle of attack.
7. Multi-parameter optimization

After having optimized separately each one of the control
parameters, we seek now the optimal combination of the parame-
ters for a given measure of performance of the airfoil. Therefore, we
consider three different cases. The first two cases correspond to
non-lifting airfoils, such as the fin of fish, whereas the third case
corresponds to a bird or MAV configuration. The choice of consid-
ering cases where a0 vanishes is motivated by the fact that for all
combinations of amplitudes and phases ðh1;a1;/1 and s1Þ, the cost
functional is larger when a0 is not equal to zero. In other words, if
we control the five parameters at the same time, the optimal solu-
tion will be for a0 ¼ 0. Therefore, we fix a0 ¼ 0 in the first two
cases and we control the other parameters, then, we fix a0 to a po-
sitive value ensuring a sufficient lift and we control the amplitudes
and phases for this value of the mean angle of attack.

7.1. The ‘‘basic” solution

In this case, we seek a configuration in which the airfoil pro-
duces thrust with acceptable efficiency and without very large
oscillations to limit structural dynamics constraints. Hence, we
minimize the following cost functional:

! ¼ �P þ 2�FU0 þ 15:14�a2ðtÞ þ �h2ðtÞ;

where d2, the weight for �a2, is chosen in a way to give equivalent
importance to the two terms related to cost of the control. In this
case, a0 and s1 are not controlled and chosen equal to zero. The
optimal triplet reached here is ðh1;a1;/1Þ ¼ ð2:82;�32:15�;85:45�Þ
leading to CT ¼ 0:512, Cmax ¼ 15:47� and g ¼ 0:502.
7.2. The ‘‘thrust” solution

Here, we seek a solution where the airfoil produces a large
thrust force with acceptable efficiency without worrying about
the cost of control. Thus, we minimize the following cost
functional:

! ¼ CT � 2ð Þ2:

The optimal triplet reached in this case is ðh1;a1;/1Þ ¼ ð4:512;
� 33:45�;89:68�Þ leading to CT ¼ 2, Cmax ¼ 26:27� and g ¼ 0:381.

7.3. The ‘‘practical” solution

Finally, we consider the ‘‘practical” case of requiring that the
airfoil produces both lift and thrust with acceptable propulsive
efficiency. Therefore, we fix a0 ¼ 8�. This value is chosen because
it gives rise to sufficient lift force (cf. Section 6) without a large
recirculation region. Then, we minimize:

! ¼ �P þ 2�FU0 þ 15:14�a2ðtÞ þ �h2ðtÞ:

The optimal solution is ðh1;a1;/1Þ ¼ ð3:85;�44:15�;86:52�Þ,
corresponding to CT ¼ 0:892, Cmax ¼ 23:94� and g ¼ 0:417.

A summary of all optimal results is given in Table 2 for N ¼ 1,
s1 ¼ 0�, Rec ¼ 1100 and fr ¼ 0:3665.

The plot of vorticity fields for the basic solution, on the one
hand, and for the low efficiency configuration, on the other,
showed that high efficiency is related to a flow which remains at-
tached to the airfoil for the whole period of oscillations, i.e. to the
absence of large separation bubbles.
7.4. A note frequency and Reynolds number effect

The values of thrust coefficient and, especially, efficiency are
quite low for optimal values. As the Reynolds number Rec is in-
creased between 1100 and 4000, an increase of roughly 7% of
the efficiency is observed (cf. Fig. 15). On the other hand, the
increase of the reduced frequency maintaining constant the
heaving amplitude has the effect of enhancing the Strouhal
number, thus further increasing the thrust coefficient. This is
confirmed by the high Strouhal number needed in the ‘‘thrust”
solution.
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Fig. 15. Evolution of propulsive efficiency g with the Reynolds number Rec for
N ¼ 1;a0 ¼ 0� ;h1 ¼ 3; s1 ¼ 0�;a1 ¼ �35�;/1 ¼ 90� and fr ¼ 0:3665:

Table 2
Summary of optimal configurations.

Case a0 (�) h1 a1 (�) /1 (�) St Cmax (�) g CT CL CP

h1 control 0 2.321 �30 90 0.271 10.45 0.398 0.229 0 0.575
a1 control 0 2.500 �31.91 90 0.29 10.80 0.423 0.280 0 0.662
/1 control 0 3.000 �35 80.50 0.35 17.55 0.481 0.526 0 1.06
Basic 0 2.820 �32.15 85.45 0.33 15.47 0.502 0.512 0 1.02
Thrust 0 4.512 �33.45 89.68 0.53 26.27 0.381 2 0 5.25
Practical 8 3.85 �44.15 86.52 0.45 23.94 0.417 0.892 0.888 2.14
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8. Conclusions and perspectives

The optimization of the kinematics of a flapping airfoil is carried
out controlling the airfoil’s motion parameters. The approach used
is numerical and two-dimensional for a low Reynolds number con-
figuration. Sensitivity functions are applied and allow to compute
the gradient of a functional related to the propulsive efficiency
with respect to the control. A quasi-Newton update method is em-
ployed to drive the parameters towards their optimal values. The
present study shows that a flapping airfoil requires a smaller
Strouhal number than a heaving airfoil in order to reverse the
von Karman street (St is of order 0.13). The heaving and pitching
amplitudes have been optimized independently showing a linear
relation between optimal h1 and optimal a1, and yielding a con-
stant maximum effective angle of attack in the range [10�, 12�].
This range is close to the maximum lift-to-drag ratio angle at the
same value of the Reynolds number when the airfoil does not flap.
The optimization of the phase angle between heaving and pitching
confirms the interest of having pitching oscillations leading by an
angle close to 90�. Finally, many parameters were controlled
simultaneously in order to reach a combination allowing good effi-
ciency, with large thrust and lift forces. The optimal efficiency
found here is roughly equal to 50% which might seem at first sight
as a low value; however, it is not so low after consideration is given
of the viscous forces at play in this configuration. Increasing the
Reynolds number results in better efficiency, and high efficiency
is linked to attached flow for the whole period of the oscillations.

The next step of this work is to carry out an in-depth investiga-
tion of the Strouhal number, controlling both the physical fre-
quency and the wake width, and to perform higher Reynolds
number simulations. Furthermore, the tools are now in place to
handle the general case N > 1, and to confirm the preliminary
observations by Read et al. [23] that the presence of higher
harmonics might yield larger thrust coefficients without loss in
efficiency.
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Appendix A. The flow equations

The dependence of the direct variables upon the control param-
eters can be written explicitly when expressing these variables in
the airfoil-related reference frame ðX;YÞ. We write the direct vari-
ables as follows:

– Mean power:

�P¼�1
T

�
Z T

0
FXðtÞsin aðtÞð Þ _hðtÞþFYðtÞcos aðtÞð Þ _hðtÞþMzðtÞ _aðtÞ
h i

dt;

– Mean horizontal force:

�F ¼ 1
T

Z T

0
½FXðtÞ cosðaðtÞ � a0Þ � FY ðtÞ sinðaðtÞ � a0Þ�dt;

– Mean vertical force:

�L ¼ 1
T

Z T

0
½FXðtÞ sinðaðtÞ � a0Þ þ FYðtÞ cosðaðtÞ � a0Þ�dt;

where FX , FY and Mz are, respectively, the horizontal and vertical
forces in the airfoil related frame ðX;YÞ and the torque acting on
the airfoil. These quantities depend on the pressure and velocity
gradients at the foil surface through the relations:
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R 2p
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8>>>>><
>>>>>:
where U and V are the velocity components in the X and Y direc-
tions. The resolution of the flow equations (1) allows to determine
the vorticity and stream function fields and consequently the veloc-
ity and pressure fields. The pressure is recovered from the equation:

pðhÞ ¼ p0 þ
Z h

0

@p
@X

@X
@h
þ @p
@Y

@Y
@h


 �
dh;

where p0 is a reference pressure and

@p
@X ¼ €aðtÞY þ _a2ðtÞX � €hðtÞ sinðaðtÞÞ

h i
þ 1

Re
@2U
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h i
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h i
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Re
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h i
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8>>><
>>>:
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Derivatives of the velocity components can be expressed in
terms of the stream function as:
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� 

@2w
@r2 ;

8><
>:
whereas the Laplacian of U and V are written in terms of the vortic-
ity as:
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Appendix B. The gradient relations

The derivatives included in the gradient are computed through
the following relations:
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