Erratum: “Instabilities in the boundary layer over a permeable, compliant wall” [Phys. Fluids 26, 084103 (2014)]

Franck Pluvinage,1,a) Azeddine Kourta,1 and Alessandro Bottaro2
1Univ. Orléans, INSA-CVL, PRISME, EA 4229, F45072 Orléans, France
2DICCA, Scuola Politecnica, Università di Genova, 1 via Montallegro, 16145 Genova, Italy

(Received 5 November 2015; accepted 5 November 2015; published online 22 December 2015)

[http://dx.doi.org/10.1063/1.4936964]

(1) Equation (14),

\[u + \eta U' = 0, \quad v = \sigma \eta - ap, \quad w = 0, \]

should be read as

\[u + \eta U' = 0, \quad v = \sigma \eta - ap, \quad w + \eta W' = 0. \]

(2) Equation (17),

\[w = 0, \]

should be read as

\[\sigma w + W'(v + ap) = 0. \]

(3) Page 5, paragraph:

To place the numerical boundary at \(y = 0 \), we use a first order Taylor expansion in \(\eta \), thus replacing the first condition above with \(u + \eta U' = 0 \), the other two remaining unchanged. The boundary conditions and the plate’s equation can be rendered dimensionless by adopting appropriate scale.

Becomes:

To place the numerical boundary at \(y = 0 \) we use a first order Taylor expansion in \(\eta \), thus replacing the first condition above with \(u + \eta U' = 0 \), and the third one with \(w + \eta W' = 0 \). The boundary conditions and the plate’s equation can be rendered dimensionless by adopting appropriate scale.

a)Electronic mail: franck.pluvinage@univ-orleans.fr
(4) New Figure 7 is:

(a) TS mode; Plain line: \(a = 0, Re = 1520\) and \(\alpha = 0.169\); Dashed line: \(a = 0.1, Re = 450\) and \(\alpha = 0.191\)

(b) CF mode; Plain line: \(a = 0, Re = 242\) and \(\alpha = 0.038\); Dashed line: \(a = 1, Re = 231\) and \(\alpha = 0.058\)

(5) New Figure 12 is:

(a) CF mode at \(Re = 242\) and \(\alpha = 0.04\); Plain line: \(a = 0\); Dashed line: \(a = 1\)

(b) TWF mode at \(Re = 140\) and \(\alpha = 0.25\); Plain line: \(a = 0\); Dashed line: \(a = 1\)