

Erratum: "Instabilities in the boundary layer over a permeable, compliant wall" [Phys. Fluids 26, 084103 (2014)]

Franck Pluvinage,^{1,a)} Azeddine Kourta,¹ and Alessandro Bottaro² ¹Univ. Orléans, INSA-CVL, PRISME, EA 4229, F45072 Orléans, France ²DICCA, Scuola Politecnica, Università di Genova, 1 via Montallegro, 16145 Genova, Italy

(Received 5 November 2015; accepted 5 November 2015; published online 22 December 2015)

[http://dx.doi.org/10.1063/1.4936964]

(1) Equation (14),

$$u + \eta U' = 0$$
, $v = \sigma \eta - ap$, $w = 0$,

should be read as

$$u + \eta U' = 0$$
, $v = \sigma \eta - ap$, $w + \eta W' = 0$.

(2) Equation (17),

w = 0,

should be read as

 $\sigma w + W'(v + ap) = 0.$

(3) Page 5, paragraph:

To place the numerical boundary at y = 0, we use a first order Taylor expansion in η , thus replacing the first condition above with $u + \eta U' = 0$, the other two remaining unchanged. The boundary conditions and the plate's equation can be rendered dimensionless by adopting appropriate scale.

Becomes:

To place the numerical boundary at y = 0 we use a first order Taylor expansion in η , thus replacing the first condition above with $u + \eta U' = 0$, and the third one with $w + \eta W' = 0$. The boundary conditions and the plate's equation can be rendered dimensionless by adopting appropriate scale.

a)Electronic mail: franck.pluvinage@univ-orleans.fr

1070-6631/2015/27(12)/129901/2/\$30.00

27, 129901-1

©2015 AIP Publishing LLC

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 130.251.56.122 On: Wed, 23 Dec 2015 13:07:11

(4) New Figure 7 is:

(b)CF mode; Plain line : a = 0, Re = 242 and $\alpha = 0.038$; Dashed line: a = 1, Re = 231 and $\alpha = 0.058$

(a) CF mode at Re=242 and $\alpha=0.04$; Plain line : a=0, ; Dashed line: a=1

(b) TWF mode at Re = 140 and $\alpha = 0.25$; Plain line : a = 0; Dashed line: a = 1