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1. TRANSITION IN SHEAR FLOWS IS A PHENOMENON
STILL NOT FULLY UNDERSTOOQD. For the simplest parallel
or quasi-parallel flows there is poor agreement between
predictions from the classical linear stability theory (Re_) and
experimentals results (Rey,)

Poiseuille Couette ~ Hagen-Poiseuille  Blasius

Re 5772 00 0 ~ 500

crit

Re,,.. ~ 1000 ~400 ~2000 ~400



2. TRANSITION IN SHEAR FLOWS IS A PHENOMENON
STILL NOT FULLY UNDERSTOQOD.

¢ Classical theory predicts Tollmien-Schiichting waves in Poiseuille and boundary

layer flows:

¢ Except in very noise-free and controlled experiments, flow structures in transition
are more like turbulent spots and streaky boundary layers:




[ THE TRANSIENT GROWTH }

THE MECHANISM: a stationary algebraic instability exists in
the inviscid system (“lift-up” effect). In the viscous case
the growth of the streaks is hampered by diffusion =
transient growth

........

P.H. Alfredsson & ) cadKy structures in a boundary
layer. Free-stream speed: 2 [m/s], free- stream turbulence level: 6%



« Proposition:
Optimal and robust control of streaks during their initial
development phase, in pipes and boundary layers by

¢ acting at the level of the disturbances (“cancellation
control”)

¢ acting at the level of the mean flow (“laminar flow control”)



Optimal cancellation control of streaks

Cancellation Control

Known base flow U(r); disturbance O(¢) = control O(g)

Disturbance field

Control O(g) (system’s state)




Optimal laminar flow control of streaks

Laminar Flow Control

Compute base flow O(1) together with the disturbance
field O(¢) = control O(1)

Whole flow field

Control O(1) (system’s state)




OPTIMAL CONTROL.:
A PARABOLIC MODEL PROBLEM

u+tuu, =u, +S u(t,x): state of the system
u(0,x)=u,(x) u,(x): Initial condition
u(t,0)=u,(t) u,(t): boundary control
u(t,00)=0 S(t,x): volume control

Suppose u,(x) is known; we wish to find the
controls, u, and S, that minimize the functional:

I(u,u,, 8)=/ [ w2dtdx +a2/ u2dt+p? | [S*dtdx

disturbance norm  energy needed to control



I(u,uW,S)Zfofouz dtdx+a2[0uwz dt+B2/0[0 S? dt dx

o=p=0

o and/or B small

o and/or 3 large

no limitation on the cost of the control

cost of employing u,, and/or S is not
important

cost of employing u,, and/or S is
important



Optimal control

For the purpose of minimizing I, let us introduce an
augmented functional L = L(u,u,,S,a,b), with a(t,x) and b(t)
Lagrange multipliers, and let us minimize the new
objective functional

L(u, u,, S,a,b)=I+/0/0a(ut+uux—uXX—S)dtdx+

+ [ b(t) [u(t,0)-u, ()] dt

Constrained minimization of 1

J

Unconstrained minimization of L



Optimal control

Each directional derivative must independently
vanish for a relative minimum of L to exist.

For example it must be:

d—L8u=g8u+”a ou,+a u ou, +a ou u, —a ou,, dtdx+

du du

+[b u(t,0) dt=[[2u Su—a, Su—a, u Su—a,, Su dtdx+

+ f b ou(t,0) dt + boundary and initial terms



Optimal control

Since 6u is an arbitrary variation, the double integral
vanish if and only if the linear adjoint equation

a,+ua, =-a,T2u
Is satisfied, together with:

a(T,x)=0 terminal condition
a(t,0)=a(t,00)=0 boundary conditions

The vanishing of the other directional derivatives is
accomplished by letting:

dL

d—SuW =0 iff 20°u,, (t)=b(t)=a (t,0)
uW

dL

S §S =0 iff 2B°S(t,x) =a(t,x)



Optimal control

Resolution algorithm:

direct equations
convergence
for state u >

(using u,, and S) test

optimality
conditions:

u,(t)=a,(t,0)/2a < adjoint equations
S(t.x)=a(t x)/2p2 for dual state a

Optimality conditions are enforced by employing a
simple gradient or a conjugate gradient method



ROBUST CONTROL:
A PARABOLIC MODEL PROBLEM

u+tuu, =u, +S u(t,x): state of the system
u(0,x)=u,(x) u,(x): Initial condition
u(t,0)=u,(t) u,(t): boundary control
u(t,00)=0 S(t,x): volume control

Now u,(x) is not known; we wish to find the controls, u,, and
S, and the initial condition uy(x) that minimize the functional:

[,(u, uy, u,, S)=/0/0 uzdtdx+a2/0uwzdt+[32/0/0 S2 dt dx -
—yzfouozdx

l.e. we want to maximize over all u,,.



Robust control

This non-cooperative strategy consists in finding

the worst initial condition in the presence of the best
possible control.

Procedure: like previously we introduce a Lagrangian
functional, including a statement on u,

Ly(U, g Uy S, 2, b,0) =Ty + [ [ a(u,+uuy-uy, - ) dedx+

b [u(t0)-u, 01 dt+ [ () [u0x)-u5(0] dx



Robust control

L
Vanishing of :11—5110 yields: [ 27%u,(x)=2a(0,x) }

U

——> Robust control algorithm requires
alternating ascent iterations to find u, and descent

iterations to find u,, and/or S.

Convergence to a saddle point in the space of variables.



Optimal cancellation control of streaks

Optimal control of streaks in pipe flow

Spatially parabolic model for the streaks: structures
elongated in the streamwise direction x

Long scale for x: R Re
Short scale for r: R

Fast velocity scale for u: U, .
Slow velocity scale for v, w: U, /Re

Long time: R Re/U,,,.



Optimal cancellation control of streaks

Optimal control of streaks in pipe flow
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Optimal cancellation control of streaks

v = (u,v,w)

v(r,0,x,t) =V (r,x;m,w)

p(r,0,2,t) =p(r,z;m,w)

ei(mﬂ—wt)

ei(mﬂ—wt)

: dv . Op 5 U 2im
zwv+U6$— 8T—I-(V'v = 3 w),
. ou dU  _,
—zwu—l—Ua—w—l—%v—VU,
ou 19(rv) 4m
3:1;+7“ or + T'w—O,
—éww+Ua—w=—@p+ V2w—£+2z—.mv ;
ox r 72 2
th Vz—lg :,«g _m_2
Wi o or \ Or r2

~




Optimal disturbance at x=0

Initial condition for the state: optimal
perturbation, i.e. the disturbance which
maximizes the gain G in the absence

of control.

{% fol [u*u + Re™2 (v*v + w*w)] 'rd'r}

L=& fin

E'13 in
G(J?fzn) = d =

Eo {% fol [u*u + Re=2 (v*v + w*w)] 'r'd'r}
=0
1 1
—fo u*u*rd'r}
> G(Tfin) = Eu(in) = Re2 {2 2= in
Eo {% fol (v*v + wrw) *rdfr}
x=0
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Optimal disturbance at x=0

x10

GIRe®

0.6 A

04} 4

0 I L L L i
0 0.01 0.02 0.03 0.04 0,05 0L.06

T max

F1GURE 2. Envelope of the curves of gain versus x for m = 1, w = 0: elliptic system at Re=3000
(dashed), parabolic system (solid). The two solutions coincide to plotting accuracy. The growth
curve for the specific inflow condition that maximizes the energy at & = a3, is also plotted by
the dash-dotted line.

FIGURE 3. Vector field in the (r, @) plane, of the optimal perturbation with m =1, w = 0, that
maximizes the gain G at z = x%,, (left). Contour plot of the resulting streaks at z = a¥,,.
(right): continuous and dashed lines are used for positive and negative values respectively.



Optimal cancellation control of streaks

Optimal control

L fin
I(v,vy) = CE: + XEu(Tin) + @b/ E,(x)dx

1 L fin
with E. = > / Vi Uy A
&£

in

where v(x,1) = v,(x) IS the control statement



Optimal cancellation control of streaks

Order of magnitude analysis:

¢ ~O@Q), x ~ O(Re), b ~ O(Re?) Equilibrium
{ increases — Cheap

X  increases ——> Small

¥ increases > Flat



Optimal cancellation control of streaks

As usual we introduce a Lagrangian functional, we
Impose stationarity with respect to all independent
variables and recover a system of direct and adjoint
equations, coupled by transfer and optimality
conditions. The system is solved iteratively; at
convergence we have the optimal control.
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Optimal cancellation control of streaks

0.4¢

u

0.21

A%
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-0.2F

=G|

-0.6f
y

_0'80 0.01 0.02 0.03 0.04

FIGURE 7. Growth curves in presence of different control strategies, with circles indicating
the end of the control interval * = z;, (left), and corresponding wall velocity distributions
(right), for m = 1, w = 0: ‘equil’ (dotted); ‘cheap’ (solid); ‘flat’ (dash-dotted); ‘small’ (dashed);
uncontrolled (solid with triangles). For all the strategies, the control function has zero imaginary
part.
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Optimal cancellation control of streaks

x 10
4_

E

u
3,
2 o :" r” *:\}%
fl’ \\ ' II 5&\*
r/ “\ !f ,’, ‘:%%.

A A e
0= I I I I I Ig -1.5 . : !
0 0.005 0.01 0.015 0.02 x0.025 0.03 0 0.005 < 0.01 0.015

FIGURE 9. Growth curves in presence of different control strategies, with circles indicating the
end of the control interval ¥ = x ¢, (left), and corresponding wall velocity distributions (right),
for m = 1, w = 300 (line styles as in Figure 7). In the figure on the right, thick and thin lines
are used respectively for the real and imaginary parts of the control function.
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FIGURE 12. Spatial evolution of the optimal steady disturbance subject to the ‘flat’ control
strategy: (a) @ = 0, (b) & = &y /4, (€) @ = wpin/2, (d) @ = 3/4ajim, (e) @ = xyin, (f)
x = 5/4wxpin. Shown are contours of u (dashed lines are negative) and vector plots of the
cross-flow velocity components, Contour levels and vector scaling are identical in all cases.
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Optimal cancellation control of streaks

INSTITUT DE MECANIQUE
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x 107

0 001 002 003 004 0 0.005 001 0015

FIGURE 16. Transient growth curves for m = 1, w = 0 (left) and w = 300 (right), under the
action of control: comparison between the parabolic approach (thick lines) and Navier-Stokes
computations (thin lines). Solid lines: ‘cheap’ strategy; dash-dotted lines: ‘flat’ strategy.
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Robust cancellation control of streaks

10°; x 107
[ 0
3.0443522¢
Q
3.0443520¢ 0 + 0+ 0+ 0 +
O0C0CO0
4 3.0443518} 4

10 . . . . . .
[ 12 14 16 18 20 22

Cost function

++++0+0+0+0+0+0+0+

10_‘ 1 1 1
0 5 10 15 20 25 30

[teration number

19. Value of the cost Z as a function of the iteration number for the ‘cheap’ strategy.
Circles: ascent iterations, crosses: descent iterations.
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FIGURE 20. Optimal and robust growth curves
for m = 1, w = 0, in presence of different control strategies.



Optimal and robust cancellation control of streaks

* |In theory it is possible to optimally counteract disturbances
propagating downstream of an initial point
(trivial to counteract a mode)

Physics: role of buffer streaks

Robust control laws are available

Next:
« Feedback control, using the framework recently
proposed by Cathalifaud & Bewley (2004)

|s it technically feasible?



Optimal laminar flow control of streaks

Optimal control of streaks in boundary layer flow

Spatially parabolic model for the streaks: steady
structures elongated in the streamwise direction x

Long scale for x: L
Short scale for y and z: o =L/Re
Fast velocity scale for u: U

Slow velocity scale for v, w: U, /Re



Optimal laminar flow control of streaks

- N
Uy + Uy +w, = 0,
J (uw)y + (uv)y + (Uw), — Uyy — U 0, X
(uv)e + (’U’U)y + (vw). +py —Vyy — v, = 0,
(uw)g + (vw)y + (Ww), +p, — Wyy —w,, = 0,
" Wy
u=0 at y=0, u=1 for y— x
with v=1vy at y=020, w=0 for y—
w=0 at y=0, p=0 for y—+



Optimal laminar flow control of streaks

objective function :

J = a1 oyt + 2 Epmean

with the gain given by:

1
0

1 (2 [~ .
57| (|Uo|2+|w0|2)dydzl

B, () = ﬁ/zfo /|2 dy dz.

a1 Eous + a2 Emean
i

= Re

Gmean —

x=0
with



Optimal laminar flow control of streaks

Lagrangian functional:

L= J +—/ / / alug +vy +w,|drdy dz
/ [ / bluw)e -+ (u)y + (ww)s — uyy —us) de dy d
+ﬂ /_Z/O /0 cl(uv)y + (vv)y + (VW) y + py — Vyy — Vi) dedy dz

+— f / / d(’U.”(U)g; + (’U’lﬂ)y + (’?,U’U))z TPy — Wyy — 'wzz] dx dy dz
22 J_zJo Jo

+AO [Ein ('UO) - EO] + AW [EW (TJW) — EWO]!

Stationarity of £ =—=>  Optimality system
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Optimal laminar flow control of streaks
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0 0.2 0.4 0.6 0.8 1

FIGURE 1. Optimal control: comparison between two different objective functions, linear be-
haviour. E¢ =107, By =1, 8 = 0.45 for J = Eous, 3 = 0.547 for J = Emean- (2) Disturbance
energy, normalized by Ey, as a function of z. (b) Optimal suction at the wall normalized with

VEy.
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FIGURE 2. Curve of the gain as a function of the spanwise wavenumber 3 for different values
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of the control energy at the Wall E. (a) Initial energy Ey = 1; (b) initial energy Eo = 500.

Uncontrolled:

(a) Eo =1, ﬁ:0.547
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F1GURE 3. Comparison at fixed wavenuimnber 3: perturbation energy E,(x)/Eq for increasing
control energy Ey, at the wall. (a) Eog =1 and 8 = 0.547; (b) Eo = 500 and 8 = 0.413.




Optimal laminar flow control of streaks
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FIGURE 6. Eo = 500, 8 = 0.413. Velocity vectors (v,w) in the (z,y) plane at = 1. In both
figures the vectors are scaled in the same manner. (a) Uncontrolled. (b) Ew = 10.
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FIGURE 7. Eg = 500, 3 = 0.413. Streamwise velocity « isolines in the (z,%) plane at x = 1.

(a) Uncontrolled. (b) Ey = 10.

N

INSTITUT DE MECANIQUE
DES FLUIDES DE TOULOUSE



|

INSTITUT DE MECANIQUE
DES FLUIDES DE TOULOUSE

Laminar flow control creates a thin boundary layer ...

... what about the skin friction then?

(a) (b)
10 T | T T 10 T T T |
Uncontrolled Uncontrolled
8 - Optimal Control — £, = 1.0 -—--- - 8 - Optimal Control — £, = 1.0 -——-- —
Re = 500000 ------ Re = 500000 ------
] Re = 1000000 - - Re = 1000000 - -
Q%’ \ Re = 2000000 —-—-— ';‘§|c§’ Ite = 2000000 ——-
4 —\\\ Blasius +« Blasius -+ A
| 1 |— —————— 1 T —

FI1GURE 12. aa—? at the wall, in the uncontrolled, controlled (Ey = 1) and turbulent boundary

layer: (a) Eg =1 and 8 =0.547; (b) Ey = 500 and 3 = 0.413.

Prandtl low-Re turbulent correlation: 3 = 0.0296
Y* ly=o v %
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Robust laminar flow control of streaks

INSTITUT DE MECANIQUE
DES FLUIDES DE TOULOUSE

0.01 F— . . : —
o 0001 e -
& - 2
‘\ -
E *=----== o - Q== B === ==~ B == o o -
E R o
> 0.0001 E -
W :

1le-05 ' ' | 1 I

FIGURE 14. Comparison between optimal control and robust control: the mean gain is shown as
a function of the spanwise wavenumber 3 for different values of the control energy E, at Ey = 1.
Uncontrolled: i By =01 ——. — s By = 1.00 ————— : By = 5.0: -----; Optimal control (see

figure 2): -




Robust laminar flow control of streaks
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FIGURE 15. Comparison at constant wavenumber 3 = 0.547 for increasing control energy E, at
Ey = 1: (a) perturbation energy E,(x)/FEo; (b) optimal perturbation vo(y, z)/+/Eo in the plane
z = 0.

F1GURE 16. Comparison at constant wavenumber 3 = 0.547 for increasing control energy E\ .
Ey = 1, optimal suction profile at the wall Vo(x, 0)/+v/ Evw: (a) optimal control; (b) robust control.



Optimal and robust laminar flow control of streaks

Mean flow suction can be found to optimally damp the
growth of streaks in the linear and non-linear regimes

Both in the optimal and robust control case the control
laws are remarkably self-similar - Bonus for applications

No need for feedback

Technically feasible (cf. ALTTA EU project)



Conclusions

* Optimal control theory is a powerful tool

» Optimal feedback strategies underway

» Optimal control via tailored magnetic fields should be possible
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