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1. TRANSITION IN SHEAR FLOWS IS A PHENOMENON 
STILL NOT FULLY UNDERSTOOD.  For the simplest parallel 
or quasi-parallel flows  there is poor agreement between 
predictions from the classical linear stability theory (Recrit) and 
experimentals results (Retrans)

Poiseuille Couette       Hagen-Poiseuille       Blasius
Recrit 5772 ∞ ∞ ~ 500

Retrans ~ 1000 ~400 ~2000 ~400



2. TRANSITION IN SHEAR FLOWS IS A PHENOMENON 
STILL NOT FULLY UNDERSTOOD.  



THE TRANSIENT GROWTH

THE MECHANISM: a stationary algebraic instability exists in 
the inviscid system (“lift-up” effect).  In the viscous case 
the growth of the streaks is hampered by diffusion  ⇒
transient growth

P.H. Alfredsson and M. Matsubara (1996); streaky structures in a boundary
layer.  Free-stream speed:  2 [m/s], free-stream turbulence level: 6%



Proposition:
Optimal  and robust control of streaks during their initial 
development phase, in pipes and boundary layers by

acting at the level of the disturbances (“cancellation 
control”)      
acting at the level of the mean flow (“laminar flow control”)     



Optimal cancellation control of streaks

Cancellation Control

Known base flow U(r); disturbance O(ε)            control O(ε)

Disturbance field
(system’s state)Control O(ε)



Optimal laminar flow control of streaks

Laminar Flow Control

Compute base flow O(1) together with the disturbance 
field O(ε)           control O(1)

Whole flow field
(system’s state)Control O(1)



OPTIMAL CONTROL: 
A PARABOLIC MODEL PROBLEM

ut + uux = uxx + S u(t,x): state of the system
u(0,x)=u0(x) u0(x): initial condition
u(t,0)=uw(t) uw(t): boundary control
u(t,∞)=0 S(t,x): volume control

Suppose u0(x) is known; we wish to find the
controls, uw and S, that minimize the functional:

I(u, uw, S) = u2 dt dx   + α2 uw
2 dt + β2 S2 dt dx

disturbance norm      energy needed to control



I(u,uw,S) = u2 dt dx + α2 uw
2 dt + β2 S2 dt dx

α=β=0 no limitation on the cost of the control

α and/or β small cost of employing uw and/or S is not 
important

α and/or β large cost of employing uw and/or S is 
important



Optimal control

For the purpose of minimizing I, let us introduce an 
augmented functional L = L(u,uw,S,a,b), with a(t,x) and b(t)
Lagrange multipliers, and let us minimize the new 
objective functional

L(u, uw, S, a, b) = I + a (ut + uux - uxx - S) dt dx +

+ b(t) [u(t,0)-uw(t)] dt

Constrained minimization of I 

Unconstrained minimization of L



Optimal control

Each directional derivative must independently
vanish for a relative minimum of L to exist.  

For example it must be:
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Optimal control

Since δu is an arbitrary variation, the double integral
vanish if and only if the linear adjoint equation

at + uax = - axx + 2u

is satisfied, together with:
a(T,x)=0 terminal condition
a(t,0)=a(t,∞)=0 boundary conditions

The vanishing of the other directional derivatives is 
accomplished by letting:
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Optimal control

Resolution algorithm:

adjoint equations
for dual state a

direct equations
for state u

(using uw and S)

optimality
conditions:

uw(t)=ax(t,0)/2α2

S(t,x)=a(t,x)/2β2

convergence
test

Optimality conditions are enforced by employing a 
simple gradient or a conjugate gradient method



ROBUST CONTROL: 
A PARABOLIC MODEL PROBLEM

ut + uux = uxx + S u(t,x): state of the system
u(0,x)=u0(x) u0(x): initial condition
u(t,0)=uw(t) uw(t): boundary control
u(t,∞)=0 S(t,x): volume control

Now  u0(x) is not known; we wish to find the controls, uw and 
S, and the initial condition u0(x) that minimize the functional:

I1(u, u0, uw, S) = u2 dt dx + α2 uw
2 dt + β2 S2 dt dx -

- γ2 u0
2 dx 

i.e. we want to maximize over all u0.



Robust control

This non-cooperative strategy consists in finding 
the worst initial condition in the presence of the best
possible control.                  

Procedure: like previously we introduce a Lagrangian
functional, including a statement on u0

L1(u, u0, uw, S, a, b, c) = I1 +        a (ut + uux - uxx - S) dt dx +

b(t) [u(t,0)-uw(t)] dt + c(x) [u(0,x)-u0(x)] dx



Robust control

Vanishing of              yields:     2γ2u0(x)=a(0,x)

Robust control algorithm requires 

alternating ascent iterations to find u0 and descent

iterations to find uw and/or S.  

Convergence to a saddle point in the space of variables.

0
0
δu

du
dL

2γ2u0(x)=a(0,x)



Optimal cancellation control of streaks

Optimal control of streaks in pipe flow

Spatially parabolic model for the streaks: structures 
elongated in the streamwise direction x

Long scale for x: R Re
Short scale for r: R

Fast velocity scale for u: Umax
Slow velocity scale for v, w: Umax/Re

Long time: R Re/Umax



Optimal cancellation control of streaks

Optimal control of streaks in pipe flow

with



withwith

Optimal cancellation control of streaks



Optimal disturbance at x=0

Initial condition for the state: optimal 
perturbation, i.e. the disturbance which 
maximizes the gain G in the absence 
of control.



Optimal disturbance at x=0



Optimal cancellation control of streaks

Optimal control

with

where   is the control statement=



Optimal cancellation control of streaks

Order of magnitude analysis:

increases                                                  Small

increases                                                  Flat

Equilibrium

increases                   Cheap



Optimal cancellation control of streaks

As usual we introduce a Lagrangian functional, we
impose stationarity with respect to all independent
variables and recover a system of direct and adjoint
equations, coupled by transfer and optimality 
conditions.  The system is solved iteratively; at 
convergence we have the optimal control.



Optimal cancellation control of streaks



Optimal cancellation control of streaks



Optimal cancellation control of streaks



Optimal cancellation control of streaks



Robust cancellation control of streaks



Robust cancellation control of streaks



Optimal and robust cancellation control of streaks

• In theory it is possible to optimally counteract disturbances
propagating downstream of an initial point
(trivial to counteract a mode) 

• Physics: role of buffer streaks

• Robust control laws are available 

• Next:
• Feedback control, using the framework recently  

proposed by Cathalifaud & Bewley (2004)

• Is it technically feasible?



Optimal laminar flow control of streaks

Optimal control of streaks in boundary layer flow

Spatially parabolic model for the streaks: steady 
structures elongated in the streamwise direction x

Long scale for x: L
Short scale for y and z: δ = L/Re

Fast velocity scale for u: U∞
Slow velocity scale for v, w: U∞ /Re



Optimal laminar flow control of streaks

Optimal control of streaks in boundary layer flow

with



Optimal laminar flow control of streaks

::

with the gain given by:



Optimal laminar flow control of streaks

Lagrangian functional:

Stationarity of Optimality system



Optimal laminar flow control of streaks

__________



Optimal laminar flow control of streaks



Optimal laminar flow control of streaks



Laminar flow control creates a thin boundary layer …

… what about the skin friction then?

Prandtl low-Re turbulent correlation:



Robust laminar flow control of streaks



Robust laminar flow control of streaks



Optimal and robust laminar flow control of streaks

• Mean flow suction can be found to optimally damp the
growth of streaks in the linear and non-linear regimes

• Both in the optimal and robust control case the control
laws are remarkably self-similar Bonus for applications

• No need for feedback

• Technically feasible (cf. ALTTA EU project)



• Optimal control theory is a powerful tool

• Optimal feedback strategies underway 

• Optimal control via tailored magnetic fields should be possible
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