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Abstract

A numerical approach is developed to study the effect on a fluid of the regular oscillations of an array of flexible cilia

which hinge around points on a wall. The specific application studied concerns the ctenophore Pleurobrachia pileus, a

small marine invertebrate of quasi-spherical shape and diameter of the order of the centimeter which swims in

water thanks to the rhythmic beating of eight rows of hair-like cilia aligned along its body. Only one row of cilia is

studied here, in a three-dimensional setting. The technique presented is general enough to allow its application to a

variety of fluid–structure interaction problems. The physical mechanisms of the propulsion are highlighted, by

analysing the results of three-dimensional simulations. A parametric study involving natural and non-natural

parameters leads to a better understanding of the propulsive characteristics of ctenophores; results show that the

specific power expended increases with the increase of the beating frequency of the row of cilia, in agreement with

experiments.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. General scope

Cilia and flagella are little-noticed but pervasive features of animals and plants, accomplishing—through their

movement or simply through their presence—a large variety of tasks (Lodish et al., 2000). Motile cilia are whip-like

appendages extending from the surface of many types of cells, and designed to move either the cell itself or the fluid

around it. Their behaviour is a consequence of their complex internal structure, which is essentially the same in both

eukaryotic flagella and cilia, and is based on the interaction of a set of microtubules. These can bend under the action of

dynein arms, powered by ATP, thus generating typical oscillations. Progress in the computational modelling of the

internal axoneme of a flagellum has been recently reviewed by Fauci and Dillon (2006). From the ‘‘external’’ point of

view, the major differences between motile cilia and flagella can be seen (i) in their length, (ii) in the fact that cilia appear

in densely packed arrays, whereas flagella act mostly individually or in couples, and (iii) in the characteristics of their

beating which determines the direction of the induced thrust.
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Though this paper will be devoted to a very specific kind of ciliary motion, it is not useless to briefly outline a few of

the functions played by such organelles, to provide an idea of their usefulness and broad range of applications:
�
 a single flagellum is used by sperm cells to move forward;
�
 in all female mammals, the beating of cilia in the Fallopian tubes moves the ovum from the ovary to the uterus;
�
 about 80% of the epithelial cells in the human trachea are ciliated. Cilia sweep mucus and trapped particles into the

throat where they are usually swallowed and expelled;
�
 the cochlea in the inner ear is lined with cilia, which oscillate after sensing vibrations transferred from the middle ear

thus triggering the generation of nerve impulses, conveyed to the brain as bursts of acoustic information;
�
 the asymmetric motion of embryonic fluid produced by beating cilia affects the expression of genes located on the

left-hand side of the embryo of many vertebrates. The same genes remain inactive on the right-hand side of the body,

thus apparently determining inner organ placement and the left–right asymmetry in the body axis (Tabin, 2006);
�
 ciliary defects can lead to several human diseases (Gardiner, 2005).

The interaction between cilia and flagella with their environment has attracted in the last half century the interest of

physicists and engineers, motivated also by the possible use of cilia-based actuators as micromixers, for flow control in

tiny biosensors, or as micropumps for drug-delivery systems.

The study of the hydrodynamics of a beating flagellum was initiated in 1951 by G.I. Taylor, who analysed the

locomotion induced on a body by a tail beating in a regular manner, and found an approximate relation linking the

velocity of the organism to the propagation speed of the tail wave. Other studies followed in which many cilia, covering

flat or curved surfaces and oscillating synchronously, were considered and for which local models of the hydrodynamic

interaction between cilia and the surrounding fluid were needed. These research activities were initiated with the

observation that organisms appear to benefit from adjusting the phase relationship of the beat patterns of neighbouring

cilia, and that metachronal waves are common in the oscillations of cilia and flagella. The early activity is

comprehensively reviewed by Brennen and Winet (1977), and is mostly focussed on isolating and understanding aspects

of the self-propelling behaviour. To simplify things, inertial effects were neglected, because of the small dimensions and

low velocities at play. The more or less densely packed arrays of cilia were treated by local interaction models which,

despite the approximations made, were quite successful at reproducing features of the motion. They can be grouped

into two categories: the envelope model (Taylor, 1951; Reynolds, 1965; Tuck, 1968; Blake, 1971a, b; Brennen, 1974) and

the sublayer model (Blake, 1971a, b; Keller et al., 1975; Lighthill, 1976; Phan-Thien et al., 1987). In the envelope model

the cilia are assumed to be closely packed together so that the fluid effectively sees a waving material surface enveloping

the top of the layer. The principal limitations of this approach lie in the small amplitude approximation for the

oscillations of the material surface and in the impermeability and no-slip condition imposed at the envelope sheet. The

sublayer approach is not limited to small amplitudes, and models the distribution of Stokes flow force singularities

along each cilium with an equivalent body force. The key assumption here is in how the interaction among individual

cilia is modelled: in the formulation by Blake (1971b) such an interaction force is steady, whereas Keller et al. (1975)

improved the model by including unsteadiness. Both the envelope and the sublayer approach yield results in qualitative

agreement with observations in their respective ranges of applicability. Clearly the details of the hydrodynamics within

the cilia array and the effect of possibly non-negligible inertial terms posed problems which, until recently, were

overwhelming.

In more recent times, advances in experimental techniques have rendered the problem amenable to laboratory

investigation and some papers appeared which questioned the hydrodynamic results of the proposed models

(Matsumoto, 1991; Barlow et al., 1993). Progress in computational fluid dynamics and in the available hardware make

the problem tractable also by a numerical approach.

1.2. Configuration studied

To fix things we have considered a very specific case, the locomotion characteristics of the ctenophore Pleurobrachia

pileus (commonly known as the ‘‘sea gooseberry’’) which, as we will see below, is outside the range of approximation of

former models. In such a small organism (cf. Fig. 1) the thickness of the layer of cilia is much smaller than the body

characteristic dimension, so that it is acceptable to consider a flat layer of cilia exhibiting planar beat patterns.

Propulsion is produced by the oscillations, at a particular frequency, of eight rows of cilia, disposed around the body

and aligned with it, each one of which is composed by hundred thousands or more cilia. The beating pattern exhibits an

antiplectic metachronism, i.e. each individual cilium presents a definite phase relationship with its neighbours, and the

wave propagates in a direction opposite to the effective stroke.
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Fig. 1. Propulsive row of cilia on a Pleurobrachia.

Fig. 2. Beating pattern on a Pleurobrachia. (a) Successive images of a beating cilium in a periodic domain, equally spaced within a

period in time, must be seen as in a comic strip. In the symmetry plane of a three-dimensional simulation (cf. Section 2), the velocity

amplitude is represented with grey-scale contours with spacing of 20mm/s; the velocity direction is given by constant-length arrows.

(b) One wave of beating cilia observed on a real Pleurobrachia. Time increases from top to bottom; the organism is propelled towards

the right, in the same direction as the metachronal wave.
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Fig. 2(a) shows the positions occupied by a cilium within one beating period. During the effective stroke (towards the

left) the cilium is straight and a high-velocity region is created behind the cilium, near its tip. In the recovery phase the

high-velocity patch is released towards the left, while the cilium bends and moves to the right. This kind of behaviour

lies at the heart of the propulsive efficiency of the Pleurobrachia.

Considering an array of cilia of the Pleurobrachia, when metachronal strokes are brought towards the left,

a right-propagating wave is produced and the body is propelled to the right (cf. Fig. 2(b)). The aim of this paper is to

focus on this propulsive mechanism, by looking at the action of a row of cilia on the surrounding fluid; different beating

parameters will be tested to assess their effect on the power output.
2. Numerical procedure

Cilia position and velocity are digitized from stroboscopic recording of the movement of a real Pleurobrachia

performed by Barlow et al. (1993) and Barlow and Sleigh (1993). These data are then imposed in the fluid solver by
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using an immersed boundary method (IBM) (Fadlun et al., 2000; Peskin, 2002; Mittal and Iaccarino, 2005; Zhang and

Gay, 2007).

The Reynolds number, based on tip speed of the cilium, its length L and the kinematic viscosity of water, ranges from

50 to 200; since the Stokes approximation is not tenable, a Navier–Stokes code is used to solve the incompressible

laminar flow problem in three dimensions. The technique employs a staggered grid with a second order scheme in space

and time, based on a classical predictor–corrector method for the pressure coupling (Yang et al., 2008).

The numerical resolution of this one-way-coupling problem (with the structures, i.e. the cilia, forcing the fluid) is

performed by decomposing the main problem into three subproblems (extraction of position and velocity of cilia, IBM,

fluid problem) that are controlled by a coupler, PALM (Buis et al., 2005), to ensure a straightforward development

towards more general applications for fluid–structure interaction problems. We use this partitioned approach in order

to have good control on each component of the process, independently from the others. The PALM software allows

easy manipulation of global objects (fluid solver, structure solver, post-processing, etc.) and their mutual interaction via

a graphical user-friendly interface. Another advantage of PALM is that any of the constitutive elements of the system

(the fluid solver for example) can be easily replaced without modifying the global framework. PALM is conceived so

that the communications between individual modules are handled by a convenient and optimized memory buffer

management.

The accuracy of imposing a prescribed time-dependent velocity field within the continuum has been tested for a few

different implementations of the IBM in Dauptain et al. (2007), where different impositions of immersed boundary

conditions are compared. To match the cilium velocity distribution V to that on the boundary S of the cilium, a volume

force field f is introduced in the computational domain. The incompressible Navier–Stokes and continuity equations are

qu
qt
þ ðu � rÞu ¼ �

1

r
rpþ nr2uþ f; r � u ¼ 0.

In this study we use the feedback forcing technique (Peskin, 2002) in which the volume force f, for a solid boundary

located in xs at time t and moving at speed V, is defined as

fðxs; t
0Þ ¼ af

Z t

0

½uðxs; t
0Þ � Vðxs; t

0Þ�dt0 þ bf ½uðxs; tÞ � Vðxs; tÞ�.

In this expression af and bf are negative constants, heuristically determined so that a measure of the difference

uðxs; tÞ � Vðxs; tÞ is minimized. The time-dependent feedback is neglected ðaf ¼ 0Þ because the needed volume force

varies much in amplitude and direction; the optimal instantaneous feedback is found for jbf j ’ 6400 s�1 in a typical

simulation. For larger jbf j the volume force displays spurious oscillations.

A second crucial step in the IBM is the interpolation strategy. This is even more delicate in the present setting,

because of the rapidly moving boundary, and the small dimensions of the moving bodies. Indeed, the position of each

cilium is specified in the continuum and in the feedback forcing technique the volume force fðxs; tÞ must be distributed

among the grid points surrounding the bodies in motion. A comparison with other approaches is presented by

Dauptain et al. (2007).

We start by observing that on the two-dimensional beating plane each cilium is made up by M points, and moves in a

computational domain containing about N2 cells, with M4N (for example M ¼ 40 and N ¼ 16). For each of the

M points within a cilium xs, the closest cells Xi;j in the grid are searched for. The indices i and j indicate, respectively, the

discretization nodes along the wall-parallel direction, x, and the wall-normal direction, y; the corresponding velocity

components are called u and v. The properties of the cilium are spread among the 24 grid points Xi;j by multiplying the
Fig. 3. Interpolation strategy.
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Fig. 4. Velocity at different points within a realistically beating cilium.
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discrete forcing function by a filter function hði; j; xsÞ (cf. Fig. 3 where all the grid points in the discretization stencil are

represented with open circles). When a grid point Xi;j is influenced by more than one xs an averaging procedure is

performed. The chosen filter function in two dimensions is

hði; j; xsÞ ¼

1� tanh
r� 1

0:5

� �
2

; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs � X i;j

Dx

� �2

þ
ys � Y i;j

Dy

� �2

:

s

The volume force fðxs; tÞ is then applied to all the points in the discretization stencil and is zero elsewhere. The large

variations in the amplitude of the velocity and in the direction of the different segments which compose a cilium—and

the way the exact movement of the body is discretized in the available grid—can be represented in several manners; we

have chosen to display them plotting the u-velocity component against the v-component of different points on the

cilium in the course of time.

Fig. 4 illustrates the prediction obtained for the realistic beating of the single flexible cilium, such as that in Fig. 2(a).

From the hodograph plane representation it appears that the largest errors with respect to the target velocity occur

approximately halfway through the effective stroke phase of the cilium, when the horizontal velocity attains its

minimum value. The maximum errors in velocity amplitude, less than 6%, are due to the interpolation procedure and

occur at the cilium tip and at 1
4L, during strong acceleration and deceleration phases.

We consider this method sufficiently accurate to analyse the flow field around bodies moving at relatively high

frequencies within a fluid; we thus proceed with a parametric study of the motion of arrays of cilia executing an

antiplectic metachronal wave, with the goal of identifying efficient beating parameters.
3. Results

3.1. Flow topology

A snapshot of the flow is shown in Fig. 5 for the case of eight cilia beating at 10Hz, displaying colour contours of the

velocity amplitude in a plane of symmetry, together with grey scale contours of the relative pressure field P� Pref on the

ground plane (Pref is the reference pressure at ðx; y; zÞ ¼ ð0; 4L; 2LÞ, with x the streamwise direction, y the normal-to-

the-wall direction and z the spanwise direction).

The computational box in the spanwise and normal directions runs from z ¼ 0 (the cilia are cut into two,

and a symmetry condition is enforced) to z ¼ 2L (L is the characteristic cilium length, taken here equal to 1mm).

Along y the domain runs from y ¼ 0 to 4L. The boundary conditions of the 64� 64� 32 computational cartesian

grid are: periodic for inflow and outflow along x, no-slip bottom wall and slip top wall, plus symmetry conditions

on the sides.

In the velocity field in Fig. 5, three high-velocity regions are visible close to y ¼ L. The high-speed patch on the right-

hand side is generated by a paddling effect at the tip of the corresponding cilium, during the maximum acceleration of
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Fig. 5. Three-dimensional result for n ¼ 8 cilia and f ¼ 10Hz. Cilia are beating towards the left and the metachronal wave goes

toward the right (antiplectic motion). Black arrows represent the velocity vectors. Pressure contours on the horizontal plane are spaced

0:1Pa apart. The cilia are represented by isosurfaces of the distribution function of the volume force used in the immersed boundary

method.

Fig. 6. Comparison of a simulated flow field with an experimental micro-PIV velocity field. The contours show the speed of water in

mm/s and the arrows show the direction of the velocity field. The physical size of the image is about 3mm� 2mm. (a) Present

numerical simulations. (b) Experiments (Barlow and Sleigh, 1993).

A. Dauptain et al. / Journal of Fluids and Structures 24 (2008) 1156–1165 1161
the stroke phase. The neighbouring patches, more to the left, are fed by a blowing effect which takes place when the cilia

move close to one another. The pressure field shows low and high pressure regions, corresponding, respectively, to the

beginning (aspiration effect) and the end (blowing effect) of the effective stroke phase.

For this same case, a comparison is possible with PIV data (Barlow and Sleigh, 1993) in the symmetry plane ðz ¼ 0Þ

of the ctene rows. Fig. 6 attests to a satisfactory agreement; for instance, the positions of four identifiable high-speed

patches (noted from A to D in the figure), correspond roughly to the measured ones. The velocity peak in zone A is
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underestimated by the simulations (about 25mm/s instead of 35mm/s). Conversely, regions B, C and D are

overestimated by close to 10mm/s. It is possible that these discrepancies are attenuated when proper account is given to

the curvature of the body.
3.2. Velocity fields

The wavelength l of the metachronal wave is always linked to the number of cilia n present through the relation:

l ¼ nL=2, i.e. the spacing between any two neighbouring cilia along the wall is generally fixed at L=2, which

corresponds to the normal spacing for the Pleurobrachia. The mean streamwise velocity profile is given in Fig. 7(a),

showing a boundary layer-like profile lifted from the wall by L=2, in qualitative agreement with analytical results by

Keller et al. (1975).

Fig. 7(b) shows the juj and v phase-averaged velocity profiles at y ¼ L as function of x=l. The interval 0ox=lo0:7
corresponds to the stroke phase, and 0:7ox=lo1 to the recovery phase. Inside the stroke phase, aspiration, paddling

and blowing effects are located, respectively, at ½0; 0:25�, ½0:25; 0:35� and ½0:35; 0:7�. Indeed, juj and v display

simultaneously their maximum values during the paddling phase, the minimum of juj occurs during the recovery phase,

and v becomes negative during the aspiration phase.

The fact that v shows positive and negative values over one period suggests a blowing and suction-like behaviour

through a fictitious wall; this indicates that the assumptions inherent to the analytical envelope model (Blake, 1971a;

Brennen, 1974) would be poorly satisfied in this case.

Integrating along x for y ¼ L, a positive average vmean of 6.14mm/s is found. This output of fluid from the

top row of cilia implies an influx of fluid through the sides. Hence, three-dimensional suction occurs mainly on

the sides of the cilia, while blowing essentially takes place through the top surface. The phase-averaged value

of the longitudinal velocity umean at y ¼ L is 74.1mm/s, so that the field is dominated by a streamwise-oriented

motion.
3.3. Energy budget

It is simple to derive the energy equation, and to find the terms which contribute the most to an increase of the kinetic

energy of the flow. By taking the integral over a volume V (limited in y between 0 and L and running through a

wavelength in x) of the scalar product of the Navier–Stokes equations with u, it is easy to find

d

dt

Z
V

1

2
u � u

� �
dV ¼ PþDþ S,
Fig. 7. Velocity profiles on the symmetry plane (z ¼ 0, i.e. in the mid-plane of each cilium) for f ¼ 15Hz and n ¼ 12 cilia. (a) Velocity

profile averaged over time and streamwise direction x. (b) Phase-averaged velocity profiles over time shown along a wavelength at

y ¼ L. Longitudinal profile at y ¼ L and z ¼ 0.
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where P is a production term, D is a negative-definite dissipation term, and S is a source term related to the presence of

a volume force f, with

P ¼

Z
V

ð�u vÞ ðuy þ vxÞdV ,

D ¼ �n
Z

V

½ðuxÞ
2
þ ðvxÞ

2
þ ðuyÞ

2
þ ðvyÞ

2
�dV ,

S ¼

Z
V

u � f dV ,

and subscripts denote partial derivatives. It is found that in all cases considered, the source term, linked to the beating

power expended by the Pleurobrachia to move in water, is completely balanced by the action of viscosity. The

propulsive performances of the Pleurobrachia are related to the blowing/suction effect previously described and are

direct functions of the beating parameters. A study is thus called for to identify optimal parameters and to verify

whether they match the swimming characteristics of the animal. The ability to associate the beating parameters

to specific physical events is a prerequisite to the conception and realization of a technology capable of exploiting

well-defined flow features and mimicking the motion of the Pleurobrachia.

3.4. Parametric study and discussion

Barlow and Sleigh (1993) observed that the Pleurobrachia uses a combination of beating frequency and number of

cilia per wave specific for each speed: 5Hz and 25 cilia for low speed, 15Hz and 12 cilia for cruise speed, 25Hz and

9 cilia for escape/hunting speed (short bursts).

To understand this natural optimization process, the propulsive performances of ctenophores are studied, the

frequency varying from 5 to 25Hz and the number of cilia in a wavelength varying from 9 to 25. In Table 1 the

performances per cilium are reported and the sets of parameters corresponding to natural performances are highlighted

in bold. The power output is defined by the energy transfer from the organelle to the flow, and the propulsive velocity U

by the longitudinal fluid speed observed far from the body surface. The velocity U is normalized by the largest

longitudinal velocity at the tip of the cilium U tip. On the right side of Table 1, the parameter R, defined as the ratio of

propulsive velocity to the power output per cilium, is reported.

The power output strongly increases with the frequency and decreases slowly with the number of cilia ðP�f 2:5n�0:3Þ,

and so does the velocity ratio ðU=U tip�f 1:13n�0:25Þ. As expected, large values of the power output are found in the case

of long waves and high beating frequencies. Such conditions are, however, very demanding on the side of the animal.

They could only be produced in very short bursts, if at all. The ratio R of propulsive speed to expended power is not

maximized by the natural beating parameters of the Pleurobrachia, indicating that such a simple functional is not

sufficient to capture all the features involved in the propulsion of ctenophores.
Table 1

Comparative influence of beating parameters, number of cilia n and frequency f, on the performances (power output, velocity ratio

U=U tip and performances index R)

n ¼ 9 n ¼ 12 n ¼ 25

Power output (nW/cilium)

f ¼ 5Hz 1.83 1.69 1.51

f ¼ 15Hz 39.3 36 32.7

f ¼ 25Hz 144 136 128

U=U tip

f ¼ 5Hz 0.35 0.32 0.25

f ¼ 15Hz 0.69 0.65 0.65

f ¼ 25Hz 0.78 0.76 0.76

R ¼ U=Pp:c: � 100 ðms�1 nW�1Þ

f ¼ 5Hz 0.69 0.67 0.83

f ¼ 15Hz 0.19 0.21 0.23

f ¼ 25Hz 0.10 0.12 0.12
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Fig. 8. Comparison of power outputs per cilium as function of the beating frequency. Dots: experiments by Barlow and Sleigh (1993);

crosses: present numerical results for the natural beating cases.

Fig. 9. Effect of non-natural spacing among neighbouring cilia. The results refer to two-dimensional simulations, but few calculations

carried out in three dimensions support the trends in the figures. (a) R ¼ U=Pp:c:. (b) Velocity ratio U=U tip.
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The results are then compared to those obtained experimentally by Barlow and Sleigh (1993), although the latter

authors approximate the power output in a crude manner, mainly because of the difficulty to gather experimental

data on a real Pleurobrachia. The observed trends are in rough agreement (cf. Fig. 8). We emphasize the fact that

three-dimensional simulations are necessary in this case to model correctly this flow configuration. Indeed in the

two-dimensional case which was tested previously (Dauptain et al., 2007), an overestimation of the power output was

observed, compared to experimental data, mainly linked to the blowing effect which was larger than expected. A more

realistic three-dimensional simulation allows fluid to escape from the sides of cilia, while in the two-dimensional case the

fluid can only be ejected via the top surface.

Another feature which is interesting to examine, while maintaining the beating motion unaltered, is the variation in the

spacing between neighbouring cilia. We have thus considered the case of a wave of period 6L (i.e. l ¼ 6mm), for a varying

number of beating cilia within the wavelength, at the fixed frequency of 15Hz. The effect of cilia interspace Dx, normalized

by L, is reported in Fig. 9(a). A maximum of R is encountered for Dx=L ¼ 0:5 (which is the natural spacing of the cilia)

while the velocity ratio decreases linearly and slowly when the cilia interspace Dx=L increases towards 1 (Fig. 9(b)).
4. Concluding remarks

The numerical procedure developed, based on the use of a coupling software (PALM) and an immersed boundary

procedure, is efficient and capable to model the influence of a flexible beating structure on the near-wall surrounding
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fluid. The specific application considered focuses on the propulsive characteristics of a small ctenophore: it is shown

that beating patterns constituted by long waves oscillating at high frequencies yield very large propulsive velocities

(a mechanism possibly exploited by the Pleurobrachia when in need of short bursts), and that the power output per

cilium increases with the frequency as f 2:5 during swim at natural conditions, in rough agreement with laboratory data.

During its normal swimming phases, the animal does not simply maximize the ratio of longitudinal propulsion velocity

to power expended. Perspectives concern the two-way interaction between freely beating cilia and the fluid (Yang et al.,

2008).
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