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It has been recently shown that the flow of a Bingham fluid in a channel is always
linearly stable (Nouar et al., J. Fluid Mech., vol. 577, 2007, p. 211). To identify possible
paths of transition we revisit the problem for the case in which the idealized base flow
is slightly perturbed. No attempt is made to reproduce or model the perturbations
arising in experimental environments – which may be due to the improper alignment
of the channel walls or to imperfect inflow conditions – rather a general formulation
is given which yields the transfer function (the sensitivity) for each eigenmode of
the spectrum to arbitrary defects in the base flow. It is first established that such a
function, for the case of the most sensitive eigenmode, displays a very weak selectivity
to variations in the spanwise wavenumber of the disturbance mode. This justifies a
further look into the class of spanwise homogeneous modes. A variational procedure
is set up to identify the base flow defect of minimal norm capable of optimally
destabilizing an otherwise stable flow; it is found that very weak defects are indeed
capable to excite exponentially amplified streamwise travelling waves. The associated
variations in viscosity are situated mostly near the critical layer of the inviscid
problem. Neutrally stable conditions are found as function of the Reynolds number
and the Bingham number, providing scalings of critical values with the amplitude
of the defect consistent with previous experimental and numerical studies. Finally, a
structured pseudospectrum analysis is performed; it is argued that such a class of
pseudospectra provides information well suited to hydrodynamic stability purposes.
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1. Introduction
Viscoplastic materials exhibit solid-like behaviour when the applied stress is ‘low’,

and liquid-like behaviour at ‘high’ stresses. They are also called yield-stress materials
since it is common in engineering applications to model them by introducing a yield
stress τ0, above which the material strains continuously, without recovery of strain
upon removal of the applied stress. Below the threshold value τ0 the material will not
deform, however long the stress is maintained. The solid-like behaviour is associated
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with elasticity, whereby the continuum deforms when subject to a given stress and
there is complete strain recovery when the forcing is removed. In many cases, it is
acceptable to neglect the elastic behaviour, by considering that the strain rate vanishes
when the stress is below τ0 (Coussot 1999). In this paper we follow this assumption,
with all the caveats implicit in the physical concept of a yield stress (see the paper by
Barnes 1999 for an exhaustive discussion of the debatable, but useful, concept of yield
stress), and consider fluids without thixotropy, i.e. without time-dependent decrease
of fluid viscosity under shear.

There are many classes of materials exhibiting a yield stress (Bird, Dai & Yarusso
1983), like slurries, pastes and suspensions, which contain a relatively high volume
concentration of solid particles dispersed in a liquid. Examples include drilling muds
in the oil industry, clays, cements, paints, printing inks, thickened hydrocarbon
greases, certain asphalts and bitumens, cosmetical and pharmaceutical preparations,
blood, plastic rocket propellant and a large variety of food products. The range of
applications of viscoplastic materials, and their commercial relevance, is so large
that it is essential to characterize these materials properly and understand their flow
behaviour.

The Bingham model is used in this work to describe the continuum; the model
is simple, but it contains all the ingredients of viscoplastic materials, namely a yield
stress and a nonlinear variation of the effective viscosity. Two kinds of difficulties
can be encountered when working with Bingham fluids (and even with more complex
rheological models, such as the Casson, the Herschel–Bulkley or the Robertson–Stiff
model). The first is that the yield stress of a given material is very difficult to define
and measure in practice; usually rheometers are used either extrapolating shear stress–
shear rate data to zero shear rate or by direct measurements of the creep/recovery
type or with stress relaxation and stress growth techniques (cf. the review paper
by Nguyen & Boger 1992). Other techniques exist, but the value of τ0 provided is
consistently just an estimate of the ‘true’ value. Part of the difficulty stems from the
fact that typical laboratory viscometers do not work in the very low shear rate range,
where data points deviate from the linear behaviour characteristic of larger strains;
this is compounded by the realization that, when the applied stress slightly exceeds
τ0, the minimum time required for flow to be observed can be very large, to the
point that the yield stress has been defined as ‘a measurement of the experimenter’s
patience’ (De Kee & Chan Man Fong 1993).

The second difficulty is that even when the yield stress is considered known, it is
often not easy to determine the precise position of the yield surface (the interface
between the sheared zone and the plug zone) since the problem is singular when the
shear rate vanishes. Some form of smoothing of the effective viscosity of the Bingham
model has been found necessary in several numerical applications (Bercovier &
Engelman 1980; Lips & Denn 1984; Papanastasiou 1987; Beverly & Tanner 1992). A
practical guidance on using different types of viscosity regularization and what one
can expect by comparing with the exact model is provided in the paper by Frigaard &
Nouar (2005).

Perhaps due to the factors above, the experimental and theoretical studies
documenting the laminar–turbulent transition of yield-stress fluids in channels or
ducts have produced contradictory and sometime confusing conclusions. Many early
theories relied on the analysis of laboratory data, and led to empirical correlations
for the onset of transition. Three configuration were investigated the most, the plane
channel, the pipe and the concentric annulus, for their relevance to the chemical
process industry (Hedström 1952; Metzner & Reed 1955; Dodge & Metzner 1959;
Ryan & Johnson 1959; Shaver & Merrill 1959; Hanks & Christiansen 1962; Hanks
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1963; Metzner & Park 1964; Meyer 1966; Hanks & Pratt 1967; Mishra & Tripathi
1971; Slatter 1999; Guzel, Frigaard & Martinez 2009a). The general approach relies
on forming a parametric ratio of various flow quantities expected to affect the stability
of the flow. For Newtonian fluids, the value of the parametric ratio at which the flow
leaves the laminar regime is known or can be determined. The same value is then
assumed to be valid for transition prediction in any purely viscous non-Newtonian
fluid. However, when the rheological properties of the fluid depart significantly from
Newtonian, the predictions provided by making such an assumption diverge (Nouar &
Frigaard 2001), and there is no way to decide which criterion is preferable. It was
observed that the critical Reynolds number determined using Hanks criterion (Hanks
1963) is the lowest one, with a behaviour like B1/2 for large Bingham numbers B (the
Bingham number is the non-dimensional ratio of yield stress to viscous stress). This
scaling arises from the fact that the Bingham number effect was taken into account
only through the width of the yielded region and the ensuing modification of the
velocity gradient. Besides this, it was shown by Peixinho et al. (2005) and Esmael &
Nouar (2008) for yield stress and shear-thinning fluids that transition occurs in two
phases. At the end of the first phase, the mean flow profile is strongly deformed
compared to that in the laminar regime. During the second phase there is a sharp
increase of pressure drop, accompanied by the formation of turbulent spots. Clearly,
using laminar flow solutions to generate transition criteria has severe shortcomings,
although this has been done in several instances. Only a few papers (Abbas & Crowe
1987; Park et al. 1989; Escudier & Presti 1996; Escudier et al. 2005; Peixinho et al.
2005; Guzel et al. 2009a ,b) have provided physical details of the transitional flow,
through careful laser Doppler velocimetry (LDV) measurements of the axial and
transverse velocity components. The latter three cited publications have highlighted
the presence of low frequency oscillations near the pipe walls and asymmetric flow
patterns close to the onset of transition; these observations are the most exciting fluid
dynamical results so far, for the pipe flow case.

Among the geometrical configurations treated by Hanks & Pratt (1967) there was
also the plane channel case; by defining a Reynolds and a Bingham number with the
maximum fluid velocity, the density, the plastic viscosity, the yield stress and half the
channel thickness, they reported an increase in transitional Reynolds number (Re from
about 1.3 × 103 to about 2.9 × 104) with the increase of the Bingham number (B from
about 0.5–300). On account of the fact that the viscosity of the Bingham fluid varies
with the strain rate (whereas the plastic viscosity used in the dimensionless parameters
above is constant), the transition correlation proposed in Hanks & Pratt (1967) has
been much criticized, and several alternatives, based on the ‘apparent’ Newtonian
viscosity evaluated at the wall and/or on the ‘effective’ hydraulic diameter, have been
proposed. Although these debates have some importance, they cloud the real issue:
a mechanistic explanation of transition is missing. In recent years, attention has thus
turned to linear and nonlinear stability theories.

The first article on the linear stability of Bingham fluids in a plane channel is due
to Frigaard, Howison & Sobey (1994). They focused on the asymptotic stability to
two-dimensional travelling wave disturbances and found linearly increasing critical
Reynolds numbers (Rec) when the yield stress increased from zero. The complete
formulation, equations and boundary conditions, was correctly given for the first
time and it was shown in particular that the plug region remains unaffected by
the disturbance field. However, the authors imposed even symmetry for the vertical
velocity eigenfunction across the channel width, in analogy to the Newtonian case,
and the results are consequently incomplete. Gupta (1999) made the same assumption
for the channel flow linear stability of a general class of electrorheological fluids.
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A few years later, Nouar & Frigaard (2001) carried out the first nonlinear stability
analysis of a yield stress fluid, determining in particular the asymptotic behaviour of
the energy Reynolds number ReE (below which there is monotonic decay in time of
the disturbance kinetic energy) in the limit of large B , finding that ReE = O(B1/2).
The bounds imposed were not sharp because of the difficulties involved in dealing
with dissipative terms. Such difficulties can be relaxed if the energy is calculated
from the linear modal equations; this was the object of the paper by Frigaard &
Nouar (2003), where it was reported that the most dangerous disturbance is a short
wave with ReE =O(B3/4), for B → ∞. Recently, Nouar et al. (2007) extended this
energy bound to the case of small and moderate values of B and, perhaps more
importantly, provided extensive modal and non-modal results on the growth of
two- and three-dimensional perturbations. Computations were extended to very large
values of Re and B , always without any hint of asymptotic instability. In hindsight
this was justified by the analogy of this case with the Newtonian Couette–Poiseuille
flow (Potter 1966), account being taken of the fact that the Bingham terms are
always dissipative. The short-time stability analysis was conducted to verify whether
non-modal disturbances were capable to extract much energy from the mean flow, at
least transiently. The results by Nouar et al. (2007) reveal that in the small B limit
the Newtonian Couette–Poiseuille case (characterized by optimal disturbances in the
form of longitudinal vortices) is recovered (Bergström 2005); as B becomes of order
one the most amplified initial disturbance becomes three dimensional. Significantly,
smaller transient amplifications occur for increasing values of B , a trend consistent
with experimental observations by Hanks & Pratt (1967).

The results given by Nouar et al. (2007) represent the premises on which the present
contribution builds. Despite the importance of the transient growth mechanism, it is
felt that knowledge of so-called optimal perturbations is still insufficient to explain
the breakdown of the Bingham-fluid flow in a channel. This belief is corroborated
by recent direct numerical simulations by Biau, Soueid & Bottaro (2008) for the flow
of a Newtonian fluid in a duct of square cross-section, demonstrating that optimal
disturbances fail to elicit a significant response from the flow in the nonlinear regime,
whilst suboptimal disturbances can be very effective. Biau et al. (2008) report that
transition is eventually triggered when the base flow of this otherwise linearly stable
case is deformed sufficiently to withstand the exponential amplification of secondary
disturbances.

In the present flow case the role of small base flow defects – and the ensuing
viscosity variations – on the growth rate of instability modes is unknown. The issue is
related to the non-normality and the pseudospectrum of the linear stability operator.
The large transient growth that well-configured initial disturbances can express in this
flow problem (Nouar et al. 2007) is already an effect of non-normality, and the relation
between this concept and that of the ε-pseudospectrum has been clearly illustrated by
Trefethen et al. (1993). Non-normality manifests itself through the extreme sensitivity
of the stability operator to dynamical uncertainties of the system, which can be
quantified by a disturbance operator (or matrix, in finite-dimensional space) � of
norm ε. When all entries of the matrix � can be filled, we speak of ‘unstructured
perturbation analysis’ and the conventional definition of the ε-pseudospectrum arises.
On the other hand, it is perfectly conceivable that only a well-defined subset of the
entries of the disturbance matrix � has non-zero terms, leading to a concept known
as ‘structured perturbation analysis’ (Balas et al. 2001). The latter concept has not
yet been exploited adequately in the stability analysis of fluid flows, while its use is
becoming common in applications of optimal and robust control theory.
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It will be shown here that minor base flow and viscosity differences with respect to
the idealized model, positioned within the yielded region and optimally configured,
are sufficient to cause exponential amplification of disturbances. This result brings
up the receptivity issue: if small exogeneous disturbances, imperfect inlet conditions,
or a slightly distorted base flow occur, the effect on the instability modes might be
major. Whereas the ε-pseudospectrum lumps all these external effects under a unique
definition, the �U -structured pseudospectrum (Bottaro, Corbett & Luchini 2003;
Biau & Bottaro 2004) focuses on the effects of a single cause of deviation between
the real and the ideal configurations.

The paper is organized as follows. Section 2 provides the equations and the base
flow around which linearization is performed. Section 3 gives a detailed formulation
of the disturbance equations for the general case of three-dimensional disturbances.
In § 4 the sensitivity functions are obtained for structured operator’s perturbations
related to the presence of base flow and viscosity defects. Section 5 presents the
formulation of the variational problem leading to the concept of minimal defects
and discusses the results. In § 6 examples of �U -structured pseudospectra are given.
Section 7 reports a parametric study of the neutral stability conditions by varying the
norm of the defect and the yield stress; scaling laws are recovered and compared to
literature results. Concluding remarks and perspectives are left for the last section.

2. Poiseuille flow of a Bingham fluid
We consider the flow of an incompressible Bingham fluid with a yield stress τ0 and

a plastic viscosity μp in a plane channel bounded by two solid walls in y = ± H ∗.
The governing equations in dimensionless form are :

∇ · U = 0, (2.1)

∂U
∂t

+ (U · ∇) U = −∇p + ∇ · τ (U) , (2.2)

where U is the velocity, p is the pressure and τ is the deviatoric extra-stress tensor.
The velocity vector is of the form U = U ex +V ey +W ez, where U, V, W are the velocity
components, and ex, ey, ez are unit vectors in the streamwise x, normal to wall y and
spanwise z directions, respectively. The above equations are rendered dimensionless
using half the channel height H ∗ as length scale, the maximum velocity U ∗

0 of the

basic flow as velocity scale, and ρU ∗
0

2
to normalize stress and pressure. Using von

Mises yield criterion, the dimensionless constitutive equations for Bingham fluids are

τ = μ γ̇ ⇔ τ >
B

Re
, (2.3)

γ̇ = 0 ⇔ τ �
B

Re
(2.4)

with

μ =
1

Re

(
1 +

B

γ̇

)
. (2.5)

Here γ̇ and τ are respectively the second invariant of the strain rate γ̇ and of the
deviatoric stress tensor τ and μ is a dimensionless effective viscosity. The parameters
B and Re are, respectively, the Bingham and Reynolds number, defined as

B =
τ0 H ∗

μp U ∗
0

, Re =
ρ U ∗

0 H ∗

μp

. (2.6)
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Figure 1. Poiseuille flow of Bingham fluid.

In the regions where the yield stress is not exceeded, the rate of strain tensor
is identically zero and the stress tensor is undeterminate. The fluid within these
unyielded (or plug) zones is constrained to move as a rigid body. The location of the
yield surface is determined by enforcing τ = B/Re, so that the motion of the yield
surface is governed by the stress field in the yielded zone.

For one-dimensional shear flow, the expression of the axial velocity profile Ub(y) is

Ub(y) =

⎧⎨
⎩

1, 0 � |y| < y0,

1 −
(

|y| − y0

1 − y0

)2

, y0 � |y| � 1,
(2.7)

sketched in figure 1. Using the relations : |τw| =B/(Rey0) and |τw| = B
Re

[1 + 2
B (1−y0)

],

where τw is the wall shear stress, it can be shown that the position y0 of the yield
surface is solution of the equation

B(1 − y0)
2 − 2y0 = 0. (2.8)

For small and large B the following asymptotic relations for y0 are easily found:

y0 ∼ B

2
− B2

2
as B → 0 , (2.9)

y0 ∼ 1 −
√

2

B
+

1

B
as B → ∞. (2.10)

It is clear that when B → 0 the plug zone is reduced to the centreline, and the velocity
profile approaches the Newtonian fluid profile. On the other hand, when B → ∞ the
plug zone fills almost the whole channel width, and the velocity profile is practically
flat with a strong velocity gradient at the walls.

3. Linear stability approach
3.1. Perturbation equations

An infinitesimal perturbation (εu′, εp′) (with ε 	 1) is imposed on the basic flow
(U, P ), so that the following equations are satisfied:

∇ · [U + ε u′] = 0, (3.1)

ε u′
t + [(U + ε u′) · ∇][U + ε u′] = −∇

(
P + εp′) + ∇ · τ (U + ε u′). (3.2)
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Wherever the yield stress is exceeded, the effective viscosity of the perturbed flow is
expanded about the basic flow:

μ
(
U + εu′) =

1

Re

[
1 +

B

|DU | − ε

(
∂u′

∂y
+

∂v′

∂x

)
· B

DU |DU | + O
(
ε2

) ]
, (3.3)

with D ≡ d/dy. Using (2.3) and (3.3), it is clear that |τ (U + εu′) − τ (U)| =O(ε). This
means that the disturbance field can only linearly perturb the yield surface from its
initial position:

y±
y (U + εu′) = ± y0 ± εh±(x, z, t). (3.4)

Disturbances are assumed to have the form

(u′, v′, w′, p′, h±) = [u(y, t), v(y, t), w(y, t), p(y, t), h±(t)] ei(αx+βz) , (3.5)

where α and β are the wavenumbers in the streamwise and spanwise directions. After
some algebra (for details see Frigaard et al. 1994 and Nouar et al. 2007) it is obtained:

i[αu + βw] + Dv = 0, (3.6)

ut = −i α U u − vDU − iαp +
1

Re
Fu +

B

Re

[
−(α2 + β2)u − iαDv

|DU |

]
, (3.7)

vt = −iα U v − Dp +
1

Re
Fv +

B

Re

[
D

(
2 D v

|DU |

)
+

−β2 v + iβD w

|DU |

]
, (3.8)

wt = −iα U w − iβp +
1

Re
Fw +

B

Re

[
D

(
iβv + D w

|DU |

)
− (α2 + β2) w + iβD v

|DU |

]
(3.9)

with F ≡ D2 − k2, k2 = α2 + β2. The boundary conditions at the wall y = 1 and at
the interface y = y0 are

u(1) = v(1) = w(1) = 0, (3.10)

u(y0) = v(y0) = w(y0) = 0, (3.11)

Dv(y0) = Dw(y0) = 0, Du(y0) = −h+ D2U (y0). (3.12)

The system of equations (3.6)–(3.9) can be expressed in terms of u and v if α �= 0,
or in terms of v and w if β �= 0 (Nouar et al. 2007).

The case α = 0 can be dealt with by inspection observing that all modes are purely
imaginary and always damped, for whatever base flow U . This fact, pointed out by
Nouar et al. (2007), implies that whatever variation �U (y) in base flow is unable to
trigger an instability in the form of longitudinal vortices. As a consequence the �U -
structured pseudospectrum will never protrude into the unstable half-plane, unlike the
unstructured pseudospectrum. The difference is due to the fact that the unstructured
pseudospectrum allows a two-way coupling between the u and v equations, whereas
it is easy to see that in the original system the u equation is forced by the vertical
velocity v, whereas the v equation is homogeneous.

The (v, w) formulation of the problem, needed to treat the stability of streamwise-
travelling modes and three-dimensional modes, reads

−i

(
L1 L2

L3 L4

) (
v

w

)
=

∂

∂t

(
−iRe

(
D2 − α2

)
β Re D

−iβ Re D Re k2

) (
v

w

)
(3.13)
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and, in space state form, common in control theory, communication and signal
processing, it can be written as

∂q
∂t

= −iM−1Lq, (3.14)

with q = (v, w)T the vector of state variables. The elements of the matrix L are

L1 = F2 + β2 F − iαReU (D2 − α2) + iαRe(D2U ) + (3.15)

B

[
α2 β2

|DU | − (4α2 + β2) D

(
D

|DU |

)]
, (3.16)

L2 = i β DF + α βRe (UD + DU ) − iβB

[
k2 D

(
1

|DU |

)
+

(k2 + α2)D

|DU |

]
, (3.17)

L3 = β DF − iα β Re (U D − DU ) − B β

[(
k2 + α2

)
D

|DU | + α2D

(
1

|DU |

)]
, (3.18)

L4 = ik2F + αReUk2 + iB

[
α2 D2 − k4

|DU | + α2 D

(
1

|DU |

)
D

]
. (3.19)

The boundary conditions are v = Dv =w = 0 at the wall and at the yield surface.

3.2. Eigenvalue problem

Assuming solutions of the form q = q̃ exp(−i ω t), where ω is the complex frequency,
the initial value problem (3.14) is transformed into the following generalized
eigenproblem for ω:

M−1L (ṽ, w̃)T = ω (ṽ, w̃)T . (3.20)

The amplification of a given mode is given by ωi , the imaginary part of the eigenvalue
ω. The ratio ωr/(α

2 + β2)0.5, with ωr the real part of ω, corresponds to the phase
speed of the wave travelling in the direction (α, 0, β).

3.3. Domain mapping

Since the width (1 − y0) of the yielded zone varies with B , it is useful to map the
domain [y0, 1] into [0, 1], by introducing the following reduced parameters:

x = x̃(1 − y0), y = ỹ(1 − y0) + y0, z = z̃(1 − y0), (3.21)

α̃ = α (1 − y0) , β̃ = β (1 − y0) , ω̃ = ω (1 − y0) , (3.22)

R̃e = Re (1 − y0) , B̃ = B (1 − y0) . (3.23)

Of course k̃2 = α̃2 + β̃2, D̃ ≡ d/dỹ and F̃2 ≡ D̃2 − k̃2. The use of (̃.) variables
does not modify the expressions of the initial value problem (3.14) nor the ensuing
eigenproblem (3.20), but the base flow now reads

U = 1 − ỹ2 for ỹ ∈ [0, 1] . (3.24)

In the following, the (̃.) notation will be dropped with no ambiguity, lest it to be
remarked that from now on Re, B and α are scaled with a length scale which
characterizes the shear zone, except in figure 11 where unscaled parameters are
represented as also indicated in the caption.

4. Sensitivity functions for structured operator’s perturbations
It has recently been shown by Nouar et al. (2007) that the matrix M−1L is highly non-

normal, reflecting a strong sensitivity of the normal modes to operators’ perturbations.
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Here we focus on a structured set of such perturbations, assuming infinitesimal
variations in the base flow profile δU . These variations cause corresponding variations
in the eigenvalues and eigenfunctions of the operator M−1L:

U → U + δU ⇒

⎧⎨
⎩

ω → ω + δω,

v → v + δv,

w → w + δw.

(4.1)

Introducing (4.1) into (3.20) it is found

δM−1L q + M−1δLq + M−1 Lδq = δωq + ωδq, (4.2)

with δL = (∂L/ ∂U )δU , δM−1 the zero matrix, and δq = (δv, δw)T . We now project
(4.2) onto the adjoint subspace, with the eigenvector a(y) = (a, b)T solution of the
adjoint problem M+−1L+a = ωa, to find the resulting eigenvalue variation:

δω =
(a, M−1δLq)

(a, q)
= (GU , δU ). (4.3)

The sensitivity function GU quantifies the effect of an infinitesimal modification of
the base flow δU on a given eigenvalue ω. The expression of the sensitivity functions
for three-dimensional modes is

GU =
I1 + B I2∫ 1

0
I3 dy

(4.4)

with I1, I2 and I3 given in the Appendix. The adjoint variables introduced above

rely on the following definition of inner product: (f, g)≡
∫ 1

0
f g dy, and the matrices

L+ and M+ of the adjoint eigenproblem are

L+ ≡
(

L+
1 L+

2

L+
3 L+

4

)
(4.5)

and

M+ ≡
(

−iRe
(
D2 − α2

)
iβ Re D

−β Re D Re k2

)
(4.6)

with

L+
1 = F2 + β2 F − iα Re U (D2 − α2) − 2 iα Re DU D + (4.7)

B

[
α2 β2

|DU | −
(
4 α2 + β2

)
D

(
D

|DU |

)]
(4.8)

L+
2 = −β D F + iα β Re [U D + 2 DU ] + (4.9)

β B

[
(k2 + α2)

D

|DU | + k2 D

(
1

|DU |

)]
(4.10)

L+
3 = −iβ DF − α β Re U D + iβ B

[
α2 D

(
1

|DU |

)
+

k2 + α2

|DU | D

]
(4.11)

L+
4 = i k2 F + α Re U k2 + iB

[
α2 D2 − k4

|DU | + α2 D

(
1

|DU |

)
D

]
. (4.12)

The two-dimensional β = 0 case appears to be very relevant on account of a theorem
demonstrated by Georgievskii (1993) for viscoplastic fluids which holds that ‘among
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Figure 2. Logarithm of the infinity norm of [Im(GU )]/ωi of the most sensitive mode versus α

at Re = 5 × 103. The continuous line (1) and the dashed line (2) correspond to the Newtonian
Couette–Poiseuille situation, i.e. B =0, and, respectively, β = 0 and β = 8. The dotted curve (3)
and the dashed-dotted curve (4) correspond to the Bingham–Poiseuille flow with B = 18 and,
respectively, β = 0 and β = 8.

all amplified three-dimensional disturbances that satisfy the condition γ̇yz = 0 we can
always find a two-dimensional disturbance (in the plane of the basic motion) that
grows at the same rate, for the same value of B and smaller Re number’. Although the
condition on γ̇yz = iβv + Dw is sufficient to guarantee the validity of this Squire-like
theorem, it greatly narrows the class of perturbations under consideration. It seems
thus appropriate to assess right away the sensitivity of two- and three-dimensional
disturbances to variations in the base flows, to decide whether a particular class of
disturbances appears to be preferentially selected by environmental conditions.

From (4.3), assuming that δU is a properly normalized Dirac distribution centred
on the position where the modulus of Im(GU ) is maximum, it is easy to see that the
relative displacement (along the imaginary axis) of each eigenmode from its reference
position is proportional to max[Im(GU )]/ωi . In such a function, the large value of
the ∞-norm of Im(GU ) for large α is compensated by the large absolute value of the
growth rate of the corresponding stable mode. We have thus plotted this quantity
against α in figure 2, for the most sensitive eigenmode, for two values of β and two
Bingham numbers, B = 0 and B = 18 (this latter value corresponds to a base flow
in which the unyielded zone of figure 1 occupies 90 % of the available space). The
results show that at B = 0 (which corresponds to the Newtonian Couette–Poiseuille
flow) there is a mild variation of the sensitivity with the spanwise wavenumber β;
the sensitivity grows until a value of α approximately equal to 4, and then its value
saturates. The lack of smoothness of the lines is related to the less-than-perfect
identification of the eigenvalues for large αs, particulary at the intersection of the A,
P and S branches. The behaviour is similar for the larger B case, although now there
is a slightly larger difference in the sensitivity between the two values of β plotted.
Despite this, it seems fair to state that the effect of β is secondary and the statement
is confirmed by many more cases (not shown) tested for varying B and β . We thus
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decided to limit the investigation to the simpler situation of z-independent instability
modes.

4.1. Spanwise homogeneous disturbances, β = 0

For the case of spanwise homogeneous disturbances the matrices L and M are
diagonal, and the normal v and longitudinal w components of the velocity are
decoupled, and likewise for their adjoints. Furthermore, the eigenproblem for w is
Hermitian, and its spectrum is formed by modes which are always stable, so that in
the sensitivity problem only v modes are important. The v eigenproblem is described
by an Orr–Sommerfeld-like equation

Losv = −iω Re (D2 − α2)v, (4.13)

where

Los = (D2 − α2)2 − iαReU (D2 − α2) + iαRe D2U + B

[
−4α2D

(
D

|DU |

)]
(4.14)

with boundary conditions

y = 0; v = Dv = 0; (4.15)

y = 1; v = Dv = 0. (4.16)

The additional condition D2v(0) = iαh+D2U (0) can be used to recover the amplitude
of the yield surface deformation. The adjoint eigenvalue problem is

L+
osa = −iω Re (D2 − α2)a (4.17)

with

L+
os ≡ (D2 − α2)2 − iαReU (D2 − α2) − 2iαReDUD + B

[
−4α2D

(
D

|DU |

)]
, (4.18)

and same boundary conditions as for the direct equation. The terms proportional
to B in (4.14) and (4.18) are the same, indicating that non-normality of Los arises
uniquely from the inertial terms, like in the Newtonian case.

An example of the eigenvalues spectrum for α = 1, Re = 5000 and B = 2 is shown
in the left frame of figure 3 and, in analogy to the Newtonian case (Mack 1976), the
branches have been labelled as ‘A’, ‘P’ and ‘S’. We have verified that the spectrum is
identical for the direct and the adjoint problems. The effect of the yield stress is to
produce a misalignment of wall modes (branch A) and yield surface modes (branch
P). For each mode, the sensitivity function is defined by

GU =

iα (α2av + vD2a + 2DaDv) + sign(DU )

(
B

Re

)[
(4α2)D

(
Da Dv

(DU )2

)]
∫ 1

0
i(α2av + DaDv)dy,

(4.19)

where the parameter sign(DU ) is +1 for positive DU , −1 otherwise. In the Newtonian
limit the expression of GU of (4.19) coincides with that given by Bottaro et al. (2003).
The yield stress introduces a shear thinning behaviour which appears in the function
GU through the term proportional to B/Re; this term is not singular when DU → 0
(as a simple application of l’Hôpital rule can show), although it could cause numerical
difficulties. The right frame of figure 3 displays the infinity norm of GU for the first
30 eigenvalues: modes near the crossing of branches, labelled with the numbers 12,
13 and 14 in the left frame of the figure, display the largest norm, coherently with
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B = 2 (continuous line) and B =20 (dashed line), at Re =5000 and α = 1.

ε-pseudospectra drawn by Nouar et al. (2007). Mode 13 responds the most to an
infinitesimal deformation of the base flow, whereas all the near-wall modes (1, 5, 8
and 11) displays very weak sensitivity to variations in U . These trends (and the order
of magnitude of the sensitivity functions) are consistent with those that we have
found for the case of the Couette–Poiseuille flow of a Newtonian fluid.

In figure 4 the real and imaginary parts of the sensitivity function for the most
sensitive modes at two values of the Bingham number, B = 2 and B = 20, are shown.
The eigen-spectra are very similar with varying B , and so are the plots of real
and imaginary parts of GU . The base flow variations which affects growth rate and
frequency the most are localized near the centre of the yielded region, with a support
of about half a unit of length. The ∞ norm of the most sensitive eigenmode remains
always of the same order as that of the Couette–Poiseuille flow of a Newtonian fluid
(B = 0) as it is shown in figure 5, where the ratio between the maximum value of
|GU |∞ and the maximum value of |GU |∞ when B = 0 is drawn as function of B for
different Re. One can note that the dependency on Re is not monotonic.
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5. Minimal defects
We now set to analyse how small defects can alter the stability characteristics of

the Bingham–Poiseuille flow and focus, in particular, on ‘minimal defects’ (Bottaro
et al. 2003; Biau & Bottaro 2004; Gavarini, Bottaro & Nieuwstadt 2004; Ben Dov &
Cohen 2007a ,b), i.e. on the base flow deviations of minimal norm capable of yielding
the largest amplification of instability modes. Small defects or deviations in the base
velocity profile can arise because of geometrical imperfections in an experimental
apparatus, or from fluctuations in the inflow conditions, or from the presence of
roughness elements, gaps, junctions, etc., and can be responsible for the unexpected
breakdown of the flow. Furthermore, it has been recently shown that minimal defects
have a resemblance to edge states (Biau & Bottaro 2009), i.e. to those flow states
which mediate the laminar–turbulent transition (Eckhardt et al. 2007). Whether this
resemblance is just a coincidence or a matter of physical principles remains to be
established.

5.1. On the issue of regularization

The velocity profile that we wish to slightly modify to assess the effect on the stability
is Uref = 1 − y2; some constraint needs to be placed on the norm of the allowable
variation, to prevent the solution from differing too much from the reference. In the
disturbance energy equations the only term proportional to the Bingham number is
negative definite (Nouar et al. 2007), i.e. it causes only dissipation of the perturbation
energy; it can thus be anticipated that only base flow variations occurring in the low-
viscosity near-wall region might have a significant destabilizing effect, while fluid layers
near the plug zone (where DU approaches zero and μ → ∞) play mostly a passive
role. This is suggested also by the fact that the sensitivity functions invariably tend to
zero smoothly as the yield surface is approached. Furthermore, when modifying the
base flow profile we need to ensure that DU does not change sign locally (cf. (2.5)),
otherwise islands of unyielded material (with μ → ∞) would appear within the fluid
domain. These requirements are dealt with by imposing that the allowable defect is
of sufficiently small amplitude and confined to a zone away from the plug; this zone
occupies more than 90 % of the whole yielded region. Thus, we constrain the velocity
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variation to be of the form f (y) δU , so that (4.3) now reads

δω = (GU , f δU ) = (f GU , δU ), (5.1)

and write a formal constraint on the allowable defect as∫ 1

0

[f (y)(U − Uref )]2dy = ζ ; (5.2)

f (y) is a filter whose exact form is

f (y) =

[
1 + tanh

(
(2y − 1) + c1

c2

)]2

; (5.3)

by choosing c1 = 0.02 and c2 = 0.9 the filter is centred in y = 0.054 and has a
support equal to approximately 0.08 units of length. It is displayed in figure 6.
We have tested several other regularization functions and have observed that the
final result is independent of the details of the filter, provided the support remains
sufficiently narrow and f (y) = 1 to within 10−4 for y > 0.1. It is important to emphasize
that the regularization procedure adopted has uniquely the scope of circumventing
numerical difficulties associated with the vanishing value of DU as the yield surface
is approached. Furthermore it is clear that through this regularization we exclude the
possible breaking of the plug region and its replacement by an extensional region;
the reader is referred to Balmforth & Craster (1999) for an asymptotic study of a
thin-film Bingham-fluid flow characterized by extensional pseudoplug behaviour. The
issue is worthy of future investigations.

5.2. The gradient procedure

To pursue the goal of finding a new base velocity profile U (y) with the largest possible
ωi , under (5.2), we optimize the augmented functional C defined as

C = ωi +
λ

2

{∫ 1

0

[f (y)(U − Uref )]2dy − ζ

}
, (5.4)
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with λ a Lagrange multiplier. Setting the variation of C to zero, and using (5.1), it is
found that (

∂C
∂U

, δU

)
= 0, (5.5)

with ∂C/∂U the gradient of the functional, given by

∂C
∂U

= f (y){ Im[GU ] + λ f (y) (U − Uref )}, (5.6)

and with the Lagrange multiplier equal to

λ = ±

√∫ 1

0

[Im(GU )]2

ζ
dy, (5.7)

whenever ∂C/∂U has been driven to zero. The negative root of λ is of interest in
(5.7) above, since it leads to a maximization of the functional; conversely, in control
problems it might be interesting to minimize ωi , for example, stabilizing an otherwise
unstable mode by acting on the shape of the base velocity profile (Hwang & Choi
2006).

A gradient algorithm is set up to proceed towards the maximum value of ωi for each
eigenmode, requiring the repeated evaluation of direct and adjoint eigenfunctions.
Assuming that the velocity profile has been estimated at iteration (n), the successive
step reads simply:

U (n+1) = U (n) − φ

[
∂C
∂U

](n)

, (5.8)

with φ a positive relaxation parameter. This iterative procedure is extremely slow in
attaining convergence since φ is kept very small to ensure that a given mode is always
followed throughout its movement in the complex plain, i.e. to prevent the procedure
from jumping from a mode to another (a common occurrence if care is not taken).

It is instructive to observe the difference between the results obtained in the presence
and absence (f (y) = 1 ∀ y) of the filter. For this purpose we have drawn in figure 7
the base flow deviation that emerges after 40 000 gradient iterations under otherwise
identical conditions. Neither of the two solutions has arrived at convergence yet, and
in fact the profiles are not even (partially) superposed – despite being similar – because
the presence of the filter affects the convergence rate of the iterative procedure. In the
plot of �U near the yield surface the solution without filter displays numerical wiggles,
which eventually pollute the whole field and lead to divergence of the procedure.

5.3. Velocity and viscosity defects

For very small values of ζ the minimal velocity defect is equal to the imaginary part
of the sensitivity function. As the norm of the defect increases, the most disrupting
defect can be very different from the sensitivity function of the most sensitive mode.
This is highlighted in figure 8(a) where the velocity profiles U and Uref as well as

the minimal defects are displayed for a value of the defect norm ζ = 4 × 10−5. In this
figure, the least stable mode (numbered 1) has been targeted and followed iteratively.
One can note that the defect is concentrated near the critical layer. The modified
viscosity profile and the viscosity defect are shown in figure 8(b). It is worth observing
that the viscosity gradient in correspondence to the critical layer and the wall has
been rendered positive, which according to Govindarajan, L’vov & Procaccia (2001)
is a destabilizing condition.
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Figure 8. Velocity and viscosity defects at Re = 2067, B = 6, α = 1.73 and ζ = 4 × 10−5.
(a) The dashed line represents the reference velocity profile 1 − y2. The continuous lines
are the modified base flow and the velocity defect (lower curve). The vertical dotted line
indicates the position of the critical layer. (b) The dashed line is the reference viscosity profile
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6. The �U -structured pseudospectrum
In § 1 the qualitative difference between the ε-pseudospectrum and the �U -

structured pseudospectrum has already been introduced. In more formal terms, the
classical pseudospectrum of an operator L can be defined as

Λε(L) = {ω ∈ C : ω ∈ Λ(L + �) for some � with ‖�‖ � ε}, (6.1)

with Λ(L) the spectrum of L and � an unstructured disturbance operator. Other
(equivalent) definitions exist but for comparison purpose the one given above is the
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Figure 9. �U -structured pseudospectra for ζ = 10−5 (uppermost dashed curve) and ζ =10−6

(lowermost dashed curve). See text for details.

most useful. The �U -structured pseudospectrum is

Λζ (L) = {ω ∈ C : ω ∈ Λ[L(Uref + �U )] for some �U with ‖�U ‖ � ζ}, (6.2)

where the norm of �U is given by (5.2) and �U = U − Uref represents a finite
(typically small) distortion of the reference base flow. Since in hydrodynamic stability
problems slight and practically unavoidable modifications in the base flow represent
the primary source of differences between theory and experiments, it is argued that
the pseudospectrum defined by (6.2) constitutes an alternative to the conventional
ε-pseudospectrum which is based on a practically relevant norm.

The results shown in figure 9 are sufficient to illustrate our point. The bullets
represent the spectrum for Re = 5 × 103, B =2 and α = 1; the cloud of points
around the unperturbed eigenmodes represent the ensemble of spectra computed
by considering base flow defects of norm ζ = 10−6 of the form

�U =

√
ζ [a/π]1/2 e−a(y−y0)2, (6.3)

with a = 10 000 and y0 spanning the y range from 0.1 to 0.9 in steps of 0.0125. Modes
close to the crossing of branches experience the largest deviations from the reference
positions; other modes (such as 1 and 8 in figure 3a) show smaller deviations. To
draw the upper envelope of the �U -structured pseudospectrum we have successively
targeted the first 13 modes and determined iteratively the worst possible base flow
deformations. In the figure the ‘trajectory’ of each mode in the course of the iterations
(5.8) is drawn with thin lines. The envelope of the converged, worst case scenario,
i.e. the upper portion of the �U -pseudospectrum, is plotted with thick dashed lines
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for the two cases of ζ = 10−6 and 10−5. For the lower value of ζ the cloud of points
is completely contained within the corresponding outer envelope and no unstable
eigenvalues exist; for larger ζ the dashed line protrude into the unstable half-plane
for a small range of frequencies around ωr = 0.36, revealing that disturbances can
arise which are amplified exponentially in the presence of small defects in U . For yet
larger values of ζ progressively larger unstable frequency bands are found.

It is possible to extend the contour of the �U -pseudospectra and trace the missing
left and right quasi-vertical portions of the envelope, by searching for the base flow
defect that maximizes (and minimizes) the real part of ω for each eigenmode. This
task is however time consuming and not useful from the point of view of determining
unstable modes for any given ζ , and thus we have not undertaken it.

The knowledge provided by the (portions of) structured pseudospectra displayed in
figure 9 is not irrelevant: if an experimentalist can put an error bar on measurements
of a steady base flow and can evaluate – even locally – the norm of the distortion
from the idealized velocity profile, the �U -structured pseudospectrum can inform on
whether an exponential instability of the flow should be excluded or not.

We wish to stress here that we are not trying to refute the importance of transient
growth phenomena or of the ε-unstructured pseudospectra. We are simply arguing
on the significance of a possible, well-identified cause of mismatch between the real
flow and its idealization. Such a deviation can provoke exponential amplification of
disturbances; on the other hand, the modified base flow is still highly non-normal
(as shown, for example, by Bottaro et al. 2003) and is still susceptible to transient
mechanisms. It is thus likely that exponential and transient effects are concurrently at
play in the early stages of transition to turbulence, and neither should be discarded
a priori (Biau & Bottaro 2004, 2009).

7. The neutral conditions
Knowing that instability can arise from the presence of base flow distortions, we

have undergone a very comprehensive study to isolate critical conditions as function
of the norm of the defect. The neutral solutions (Rec, αc) are displayed against B in
figure 10 for different values of the norm of the base-flow deviation ζ . It is worth
observing that, as opposed to the case of unstructured operator’s perturbations for
which the critical Reynolds number does not depend on B (Nouar et al. 2007), here,
Rec increases with B . For sufficiently, large B , the increase is close to the behaviour
Rec versus B derived by Frigaard & Nouar (2003) and Nouar et al. (2007) to define
conditions of no energy growth at large B . We have also reported on the same
figure (figure 10a) the two most popular phenomenological criteria (Hanks 1963
and Metzner & Reed 1955, the latter, originally proposed for pipe flows, has been
generalized for any purely viscous fluid through ducts of arbitrary cross-section by
Kozicki, Chou & Tiou 1966), proposed in the literature to predict the transition
between the laminar and the turbulent regime (cf. also Nouar & Frigaard 2001). In
terms of our parameters Re and B , they are given by

Rec(Metzner and Reed) = 787.5 B
(1 − y0)

2

y3
0 − 3y0 + 2

, (7.1)

Rec(Hanks) = 1050. (7.2)

In reality, the literature contains about a dozen different phenomenological criteria.
However, when the rheological properties of the fluid depart significantly from the
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Figure 10. Variation of the critical conditions as function of the Bingham number for different
values of ζ . (a) Critical Reynolds number: (1) ζ = 10−4, (2) ζ = 9 × 10−5, (3) ζ = 8 × 10−5, (4)
ζ =7 × 10−5, (5) ζ = 6 × 10−5, (6) ζ = 5 × 10−5, (7) ζ = 4 × 10−5. The dotted curves (H ) and
(M − R) correspond respectively to results reported by Hanks (1963) and Metzner & Reed
(1955). The dashed curve represents the behaviour of the critical Reynolds number ensuring
the no-energy growth condition for large B derived in Frigaard & Nouar (2003) and Nouar
et al. (2007). (b) Critical wavenumber versus B for ζ = 10−4 (open square symbol) and
ζ =4 × 10−5 (open circle symbol). The filled square and circle correspond to B =0 (Newtonian
Couette–Poiseuille flow) for ζ = 10−4 and ζ = 4 × 10−5, respectively.

Newtonian case, the predictions provided by the phenomenological criteria diverge
and there is no way to determine which criterion is preferable. The shortcoming of all
criteria is that they do not contain information on the receptivity environment. It is
however comforting to observe the similarity in behaviour between our curves (labelled
(1) through (7) in figure 10a) with the phenomenological curve labelled M − R. It
can be speculated that the transition data of Metzner & Reed (1955) correspond to
a single inflow disturbance environment, and that – had the inflow condition been
varied – the threshold curve would have been shifted vertically, resembling the curves
of the present analysis. For sufficiently large values of B it is found that Rec ∼ B0.5,
like the theoretical result by Nouar et al. (2007). This behaviour lies in between the
prediction of the phenomenological criteria proposed by Metzner & Reed (1955) and
Hanks (1963). Also, the critical wavenumber behaves closely as α ∼ B−0.5. Finally,
for a reasonably large range of flow defect norms, the critical wavenumber has found
to be essentially independent of ζ .

The critical conditions as function of the Bingham number in terms of parameters
which are not normalized with the width of the yielded zone, i.e. parameters without
.̃ (cf. § 3.3), are represented in figure 11. In the same figure (figure11a) we have also
reported experimental points from Hanks & Pratt (1967); they follow rather closely
our family of curves over the B range considered.

The variation of the critical Reynolds number with the norm of the base flow
deviation ζ is displayed in figure 12(a) for different values of B . The data points in
this figure may be described by a relation of the kind Rec ∼ 1/ζ γ . In figure 12(b) we
have drawn the variation of γ with the Bingham number; it decreases with increasing
B , remaining in the vicinity of 0.5 which is the value obtained for some shear flows in
the Newtonian case (Bottaro et al. 2003; Gavarini et al. 2004). These results indicate
that the size of the perturbation necessary to initiate transition in this nominally
subcritical flow decreases (proportionally) more sharply with Re for large B , and this
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Figure 12. (a) Variation of the critical Reynolds number as function of the norm of the
base-flow deviation: (1) Dashed line corresponds to B = 0, i.e. Couette-Poiseuille flow of
Newtonian fluid, (2) B = 0.1, (3) B = 1, (4) B = 2, (5) B = 4, (6) B = 6, (7) B =8, (8) B = 10,
(9) B =12, (10) B = 14, (11) B = 16, (12) B =18. In this figure variables are scaled with the
thickness of the yielded region. (b) Exponent γ versus B . The square symbol corresponds to
the Newtonian case (B = 0).

is a consequence of the shear thinning behaviour of the fluid. In terms of unscaled
variables (i.e. when the reference length is the channel half-thickness) the same values
of the exponent γ are recovered, an indication that γ expresses well the effect of
shear thinning.

8. Concluding remarks
The flow of a Bingham fluid in a channel is asymptotically stable to infinitesimal

disturbances, a fact which renders challenging and interesting the investigation of
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transitional paths. The linear transient growth approach has been pursued for the
present flow configuration by Nouar et al. (2007), but the usefulness of optimal
disturbances has been disputed recently by Biau & Bottaro (2009) who argue on the
crucial importance of nonlinear terms to sustain a distorted flow in the channel. A
different route of transition can be envisioned starting from the realization that the
base flow around which linearization is performed is just an idealization, whereas
in reality small defects inevitably occur. This alternative approach is also based on
linear stability equations (although the base flow distortion is of finite amplitude) and
admits exponentially growing modes as solutions. It has been proposed by Bottaro
et al. (2003), and has shown some success in capturing features of transition in pipe
flow (Gavarini et al. 2004; Ben Dov & Cohen 2007a ,b). It is here applied for the first
time to the motion of a non-Newtonian fluid, with the goal of identifying scaling laws
of the critical Reynolds number as function of the yield stress (expressed through the
Bingham number) and the disturbance environment (measured by the norm of the
deviation of the actual base flow from its idealized counterpart).

The procedure starts with the definition of a function quantifying the sensitivity
of an eigenvalue (of the linear stability operator) to variations in the base flow
(hence in the operator itself). Results show that such a function varies little with the
characteristic spanwise dimension of the disturbance mode, and this is used as an
argument to focus attention on a single-spanwise-wavenumber disturbance (β = 0).
As already found in the Newtonian case, the most sensitive modes are those at the
intersection of the branches of the spectrum; minimal defects (computed from the
sensitivity function after setting up a proper variational problem) display peaks in
the proximity of the critical layer, rendering the flow inviscidly unstable. The
deformations in the viscosity profiles have trends similar to the corresponding base
flow deviations.

Neutral conditions have then been identified as function of the disturbance
environment (modelled by the value of ζ ); this is a lengthy procedure which requires
repeated searches in a multidimensional parameter space. The most significant result
is that the critical Reynolds number increases with the Bingham number (which
expresses the degree of nonlinearity of the effective viscosity at the wall when tilde
variables are employed), in agreement with asymptotic laws by Frigaard & Nouar
(2003) and Nouar et al. (2007), and with experimental neutral points by Hanks &
Pratt (1967). Larger values of Rec are found for cleaner inflow environments, as one
would intuitively expect. On the other hand, the wavelength of the neutral disturbance
mode does not vary with the disturbance level, with shorter waves (cf. figure 11b)
preferentially excited with the increase of the Bingham number.

As to one of the stated goals of the present investigation, i.e. scaling laws of
transition, it has been found that Rec ∼ ζ −γ , with γ a decreasing function of the
yield stress parameter B . Similar scaling laws have been obtained recently by various
linear and nonlinear theoretical means, as well as through experiments, but only for
the flow of Newtonian fluids. For example, experiments by Peixinho & Mullin (2006)
in a pipe have found a scaling with γ =0.5, recovered theoretically by Gavarini et al.
(2004), Ben Dov & Cohen (2007a) and Ben Dov & Cohen (2007b). For the same flow
case, Trefethen et al. (2000) have assembled a number of experimental, theoretical
and numerical studies, based on which it is 0.27777 � γ � 0.41666. For plane
Poiseuille flow, using asymptotic analysis, Chapman (2002) has found γ =0.3333 when
transition is initiated by streamwise-homogeneous initial perturbations (confirmed
experimentally by Philip, Svizher & Cohen 2007) and γ = 0.4 for oblique initial
disturbances. For both classes of initial perturbation, Chapman (2002) has also found
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that γ = 0.5 for the Couette flow, a value also recovered in the numerical simulations
by Kreiss, Lundbladh & Henningson (1994). The scaling exponent found in the
present contribution is close to all of these values and changes smoothly from 0.57
(when B = 0) to 0.37 (when B =18). Having established the dependence of Rec with ζ

we have the answer to one important question: if an experimentalist can estimate the
norm of the expected deviation from ideal conditions, the threshold curves obtained
(corresponding to worst case scenario) indicate whether an instability can be ruled out.

This work puts just a brick to a more comprehensive building. Many effects have
been ignored, starting from the fact that the stability operator is non-normal and, as a
consequence, transient amplification is concurrently at play with exponential growth
in causing breakdown. Another fact is that nonlinearities must play a role in the
breakdown of the flow, and recent developments, in the Newtonian frame, concern
the existence of unstable nonlinear solutions and edge states (Eckhardt et al. 2007),
which provide the skeleton around which transitional and turbulent trajectories are
organized in phase space. A somewhat loose relation between edge state and minimal
defects has been found for a specific configuration (Biau & Bottaro 2009), but more
work is in order to connect these concepts, a challenging undertaking particularly
when working in the non-Newtonian realm.

Appendix. Expressions of I1, I2 and I3

The terms I1, I2 and I3 of (4.4) are

I1 = α k2 bw − αβ wDa + iα[α2 a v + vD2a + 2Da Dv] − iα β [2 bDv + vDb], (A 1)

I2 = α2 β2D
[a v

Γ 2

]
+ (4α2 + β2)D

[
DaDv

Γ 2

]

− β (k2 + α2)D

[
b Dv

Γ 2

]
− α2 D

[
D(bv)

Γ 2

]

+ i β k2 D

[
D (a w)

Γ 2

]
− (k2 + α2) D

[
a Dw

Γ 2

]

− iα2 D

[
D(b Dw)

Γ 2

]
, (A 2)

I3 = −i a(D2 v − α2 v) + β a Dw − iβ b Dv + k2 b w. (A 3)
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