Stability of the flow of a Bingham fluid in a channel: eigenvalue sensitivity, minimal defects and scaling laws of transition

By CHERIF NOUAR1 AND ALESSANDRO BOTTARO2

1LEMTA, UMR 7563 (CNRS-INPL-UHP), 2 Avenue de la Fort de Haye, BP 160 54504
Vandoeuvre Lès Nancy, France

2DICAT, Facoltà di Ingegneria
Università di Genova, Via Montallegro 1, 16145 Genova, Italy

(Received ?? and in revised form ??)

It has been recently shown that the flow of a Bingham fluid in a channel is always linearly stable (Nouar \textit{et al.} (2007)). To identify possible paths of transition we revisit the problem for the case in which the idealised base flow is slightly perturbed. No attempt is made to reproduce or model the perturbations arising in experimental environments – which may be due to the improper alignment of the channel walls or to imperfect inflow conditions – rather a general formulation is given which yields the transfer function (the sensitivity) for each eigenmode of the spectrum to arbitrary defects in the base flow. It is first established that such a function, for the case of the most sensitive eigenmode, displays a very weak selectivity to variations in the spanwise wavenumber of the disturbance mode. This justifies a further look into the class of spanwise-homogeneous modes. A variational procedure is set up to identify the base flow defect of minimal norm capable of optimally destabilising an otherwise stable flow; it is found that very weak defects are indeed capable to excite exponentially amplified streamwise-travelling waves. The associated variations in viscosity are situated mostly near the critical layer of
the inviscid problem. Neutrally stable conditions are found as function of the Reynolds number and the Bingham number, providing scalings of critical values with the amplitude of the defect consistent with previous experimental and numerical studies. Finally, a structured-pseudospectrum analysis is performed; it is argued that such a class of pseudospectra provides information well suited to hydrodynamic stability purposes.

1. Introduction

Viscoplastic materials exhibit solid-like behaviour when the applied tension is "low", and liquid-like behaviour at "high" stresses. They are also called yield-stress materials since it is common in engineering applications to model them by introducing a yield stress τ_0, above which the material strains continuously, without recovery of strain upon removal of the applied tension. Below the threshold value τ_0 the material will not flow, however long the stress is maintained. The solid-like behaviour is associated with elasticity, whereby the continuum deforms to a fixed value when subject to a given stress and there is complete strain recovery when the forcing is removed. In many cases, it is acceptable to neglect the elastic behaviour, by considering that the strain rate vanishes when the stress is below τ_0 (Coussot 1999). In this paper we follow this assumption, with all the caveats implicit in the physical concept of a yield stress (see the paper by Barnes 1999 for an exhaustive discussion of the debatable - but useful - concept of yield stress), and consider fluids without thixotropy, i.e. without time-dependent decrease of fluid viscosity under shear.

There are many classes of materials exhibiting a yield stress (Bird et al. 2007), like slurries, pastes and suspensions, which contain a relatively high volume concentration of solid particles dispersed in a liquid. Examples include drilling muds in the oil industry,
clays, cements, paints, printing inks, thickened hydrocarbon greases, certain asphalts and bitumens, cosmetical and pharmaceutical preparations, blood, plastic rocket propellant, and a large variety of food products. The range of applications of viscoplastic materials, and their commercial relevance, is so large that it is essential to characterise these materials properly and understand their flow behaviour.

The Bingham model is used in this work to describe the continuum; the model is simple, but it contains all the ingredients of viscoplastic materials, namely a yield stress and a nonlinear variation of the effective viscosity. Two kinds of difficulties can be encountered when working with Bingham or Bingham-like fluids†. The first is that the yield stress of a given material is very difficult to define and measure in practice; usually rheometers are used, either extrapolating shear stress-shear rate data to zero shear rate, or by direct measurements of the creep/recovery type, or with stress relaxation and stress growth techniques (cf. the review paper by Nguyen & Boger 1992). Other techniques exist, but the value of τ_0 provided is consistently just an estimate of the "true" value. Part of the difficulty stems from the fact that typical laboratory viscometers do not work in the very low shear rate range, where data points deviate from the linear behaviour characteristic of larger strains; this is compounded by the realisation that, when the applied stress slightly exceeds τ_0, the minimum time required for flow to be observed can be very large, to the point that the yield stress has been defined as "a measurement of the experimenter's patience" (De Kee & Fong 1993).

The second difficulty is that even when the yield stress is considered known, it is often not easy to determine the precise position of the yield surface (the interface between the sheared zone and the plug zone) since the problem is singular when the shear

† The difficulties persist when more complex rheological models, such as the Casson, the Herschel-Bulkley or the Robertson-Stiff model, are used.
rate vanishes. Some form of smoothing of the effective viscosity of the Bingham model has been found necessary in several numerical applications (Bercovier & Engelman 1980, Lips & Denn 1984, Papanastasiou 1987, Beverly & Tanner 1992). A practical guidance on using different types of viscosity regularisation and what one can expect by comparing with the exact model is provided in the paper by Frigaard & Nouar (2005).

Perhaps due to the factors above, the experimental and theoretical studies documenting the laminar-turbulent transition of yield-stress fluids in channels or ducts have produced contradictory and sometime confusing conclusions. Many early theories relied on the analysis of laboratory data, and led to empirical correlations for the onset of transition. Three configuration were investigated the most, the plane channel, the pipe and the concentric annulus, for their relevance to the chemical process industry (Hedström 1952, Metzner & Reed 1955, Dodge & Metzner 1959, Shaver & Merrill 1959, Ryan & Johnson 1959, Hanks & Christiansen 1962, Hanks 1963, Metzner & Park 1964, Meyer 1966, Hanks & Pratt 1967, Mishra & Tripathi 1971, Slatter 1999, Guzel et al. 2009).

The general approach relies on forming a parametric ratio of various flow quantities expected to affect the stability of the flow. For Newtonian fluids, the value of the parametric ratio at which the flow leaves the laminar regime is known or can be determined. The same value is then assumed to be valid for transition prediction in any purely viscous non-Newtonian fluid. However, when the rheological properties of the fluid depart significantly from Newtonian, the predictions provided by making such an assumption diverge (Nouar & Frigaard 2001), and there is no way to decide which criterion is preferable. It was observed that the critical Reynolds number determined using Hanks criterion (Hanks 1963) is the lowest one, with a behaviour like $B^{1/2}$ for large B. This scaling arises from the fact that the Bingham number effect was taken into account only through the width of the yielded region and the ensuing modification of the velocity
Stability of Bingham channel flow

gradient. Besides this, it was shown by Peixinho et al. 2005 and Esmael & Nouar 2008 for yield stress and shear-thinning fluids that transition occurs in two phases. At the end of the first phase, the mean flow profile is strongly deformed compared to that in the laminar regime. During the second phase there is a sharp increase of pressure drop, accompanied by the formation of turbulent spots. Clearly, using laminar flow solutions to generate transition criteria has severe shortcomings, although this has been done in several instances. Only a few papers (Abbas & Crowe 1987, Park et al. 1989, Escudier & Presti 1996, Peixinho et al. 2005, Escudier et al. 2005) have provided physical details of the transitional flow, through careful LDV measurements of the axial and transverse velocity components. The latter three cited publications have highlighted the presence of low frequency oscillations near the pipe walls and asymmetric flow patterns close to the onset of transition; these observations are the most exciting fluid dynamical results so far, for the pipe flow case.

Among the geometrical configurations treated by Hanks & Pratt 1967 there was also the plane channel case; by defining a Reynolds and a Bingham number† with the maximum fluid velocity, the density, the plastic viscosity, the yield stress and half the channel thickness, they reported an increase in transitional Reynolds number \(Re \) from about \(1.3 \times 10^3 \) to about \(2.9 \times 10^4 \) with the increase of the Bingham number \(B \) from about 0.5 to 300). On account of the fact that the viscosity of the Bingham fluid varies with the strain rate (whereas the plastic viscosity used in the dimensionless parameters above is constant), the transition correlation proposed in Hanks & Pratt 1967 has been much criticized, and several alternatives, based on the ”apparent” Newtonian viscosity evaluated at the wall and/or on the ”effective” hydraulic diameter, have been proposed. Although these debates have some importance, they cloud the real issue: a mechanistic

† The Bingham number is the non-dimensional ratio of yield stress to viscous stress.
explanation of transition is missing. In recent years, attention has thus turned to linear and non-linear stability theories.

The first article on the linear stability of Bingham fluids in a plane channel is due to Frigaard et al. 1994. They focussed on the asymptotic stability to two-dimensional travelling wave disturbances and found linearly increasing critical Reynolds numbers (Re_c) when the yield stress increased from zero. The complete formulation, equations and boundary conditions, was correctly given for the first time and it was shown in particular that the plug region remains unaffected by the disturbance field. However, the authors imposed even symmetry for the vertical velocity eigenfunction across the channel width, in analogy to the Newtonian case, and the results are consequently incomplete. Gupta 1999 made the same assumption for the channel flow linear stability of a general class of electrorheological fluids. A few years later, Nouar & Frigaard 2001 carried out the first nonlinear stability analysis of a yield stress fluid, determining in particular the asymptotic behaviour of the energy Reynolds number Re_E (below which there is monotonic decay in time of the disturbance kinetic energy) in the limit of large B, finding that $Re_E = O(B^{1/2})$. The bounds imposed were not sharp because of the difficulties involved in dealing with dissipative terms. Such difficulties can be relaxed if the energy is calculated from the linear modal equations; this was the object of the paper by Frigaard & Nouar 2003, where it was reported that the most dangerous disturbance is a short wave with $Re_E = O(B^{3/4})$, for $B \to \infty$. Recently, Nouar et al. (2007) extended this energy bound to the case of small and moderate values of B and, perhaps more importantly, provided extensive modal and non-modal results on the growth of two- and three-dimensional perturbations. Computations were extended to very large values of Re and B, always without any hint of asymptotic instability. On hindsight this was justified by the analogy of this case with the Newtonian Couette-Poiseuille flow
Stability of Bingham channel flow

(Potter 1966), account being taken of the fact that the Bingham terms are always dissipative. The short-time stability analysis was conducted to verify whether non-modal disturbances were capable to extract much energy from the mean flow, at least transiently. The results by Nouar et al. (2007) reveal that in the small B limit the Newtonian Couette-Poiseuille case (characterised by optimal disturbances in the form of longitudinal vortices) is recovered (Bergström 2005); as B becomes of order one the most amplified initial disturbance becomes three-dimensional. Significantly, smaller transient amplifications occur for increasing values of B, a trend consistent with experimental observations by Hanks & Pratt 1967.

The results given by Nouar et al. (2007) represent the premises on which the present contribution builds. Despite the importance of the transient growth mechanism, it is felt that knowledge of so-called optimal perturbations is still insufficient to explain the breakdown of the Bingham-fluid flow in a channel. This belief is corroborated by recent direct numerical simulations by Biau et al. 2007 for the flow of a Newtonian fluid in a duct of square cross-section, demonstrating that optimal disturbances fail to elicit a significant response from the flow in the nonlinear regime, whilst suboptimal disturbances can be very effective. Biau et al. 2007 report that transition is eventually triggered when the base flow of this otherwise linearly stable case is deformed sufficiently to withstand the exponential amplification of secondary disturbances.

In the present flow case the role of small base flow defects – and the ensuing viscosity variations – on the growth rate of instability modes is unknown. The issue is related to the non-normality and the pseudospectrum of the linear stability operator. The large transient growth that well-configured initial disturbances can express in this flow problem (Nouar et al. (2007)) is already an effect of non-normality, and the relation between this concept and that of the ϵ-pseudospectrum has been clearly illustrated by
Non-normality manifests itself through the extreme sensitivity of the stability operator to dynamical uncertainties of the system, which can be quantified by a disturbance operator (or matrix, in finite-dimensional space) Δ of norm ϵ. When all entries of the matrix Δ can be filled, we speak of ‘unstructured perturbation analysis’ and the conventional definition of the ϵ-pseudospectrum arises. On the other hand, it is perfectly conceivable that only a well-defined subset of the entries of the disturbance matrix Δ has non-zero terms, leading to a concept known as ‘structured perturbation analysis’ (Balas et al. 2001). The latter concept has not yet been exploited adequately in the stability analysis of fluid flows, while its use is becoming common in applications of optimal and robust control theory.

It will be shown here that minor base flow and viscosity differences with respect to the idealized model, positioned within the yielded region and optimally configured, are sufficient to cause exponential amplification of disturbances. This result brings up the receptivity issue: if small exogeneous disturbances, imperfect inlet conditions, or a slightly distorted base flow occur, the effect on the instability modes might be major. Whereas the ϵ-pseudospectrum lumps all these external effects under a unique definition, the ΔU-structured-pseudospectrum (Bottaro et al. 2003, Biau & Bottaro 2004) focuses on the effects of a single cause of deviation between the real and the ideal configurations.

The paper is organised as follows. Section 2 provides the equations and the base flow around which linearisation is performed. Section 3 gives a detailed formulation of the disturbance equations for the general case of three-dimensional disturbances. In section 4 the sensitivity functions are obtained for structured operator’s perturbations related to the presence of base flow and viscosity defects. Section 5 presents the formulation of the variational problem leading to the concept of minimal defects and discusses the results. In section 6 examples of ΔU-structured-pseudospectra are given. Section 7
reports a parametric study of the neutral stability conditions by varying the norm of the defect and the yield stress; scaling laws are recovered and compared to literature results. Concluding remarks and perspectives are left for the last section.

2. Poiseuille flow of a Bingham fluid

We consider the flow of an incompressible Bingham fluid with a yield stress τ_0 and a plastic viscosity μ_p in a plane channel bounded by two solid walls in $y = \pm H^*$. The governing equations in dimensionless form are:

$$\nabla . U = 0,$$

$$\frac{\partial U}{\partial t} + (U \nabla) U = -\nabla p + \nabla \tau(U),$$

where $U = U(y) e_x$ is the velocity vector (with e_x the unit vector in the streamwise direction x), p is the pressure and τ is the deviatoric stress tensor. The above equations are rendered dimensionless using half the channel height H^* as length scale, the maximum velocity U_0^* of the basic flow as velocity scale, and $\rho U_0^{* 2}$ to normalize stress and pressure. Using von Mises yield criterion, the dimensionless constitutive equations for Bingham fluids are:

$$\tau = \mu \dot{\gamma} \Leftrightarrow \tau > \frac{B}{Re},$$

$$\dot{\gamma} = 0 \Leftrightarrow \tau \leq \frac{B}{Re},$$

with

$$\mu = \frac{1}{Re} \left(1 + \frac{B}{\dot{\gamma}}\right).$$

$\dot{\gamma}$ and τ are respectively the second invariant of the strain rate $\dot{\gamma}$ and of the deviatoric stress tensor τ, and μ is a dimensionless effective viscosity. The parameters B and Re
are, respectively, the Bingham and Reynolds number, defined as
\[B = \frac{\tau_0 H^*}{\mu_p U_0^*}, \quad Re = \frac{\rho U_0^* H^*}{\mu_p}. \]

In the regions where the yield stress is not exceeded, the rate of strain tensor is identically zero and the stress tensor is undeterminate. The fluid within these unyielded (or plug) zones is constrained to move as a rigid body. The location $\pm y_0$ of the yield surface is determined by enforcing $\tau = B/Re$, so that the motion of the yield surface is governed by the stress field in the yielded zone.

The expression of the axial velocity profile $U_b(y)$ is:
\[
U_b(y) = \begin{cases}
1, & \text{if } 0 \leq |y| < y_0, \\
1 - \left(\frac{|y| - y_0}{1 - y_0}\right)^2, & \text{if } y_0 \leq |y| \leq 1,
\end{cases}
\]

sketched in figure 1. Using the conservation of flow rate, it can be shown that the position y_0 of the yield surface is solution of the equation:
\[
B(1 - y_0)^2 - 2y_0 = 0.
\]

For low and large B the following asymptotic relations for y_0 are easily found:
\[
y_0 \sim \frac{B}{2} - \frac{B^2}{2} \quad \text{as } \quad B \to 0,
\]
Stability of Bingham channel flow

\[y_0 \sim 1 - \sqrt{\frac{2}{B}} + \frac{1}{B} \text{ as } B \to \infty. \]

3. Liner stability approach

3.1. Perturbation equations

An infinitesimal perturbation \((\epsilon \mathbf{u}', \epsilon p')\) (with \(\epsilon << 1\)) is imposed on the basic flow \((\mathbf{U}, P)\), so that the following equations are satisfied:

\[\nabla \cdot [\mathbf{U} + \epsilon \mathbf{u}'] = 0, \]
\[\epsilon \mathbf{u}'_t + [(\mathbf{U} + \epsilon \mathbf{u}').\nabla][\mathbf{U} + \epsilon \mathbf{u}'] = -\nabla (P + \epsilon p') + \nabla \cdot \tau (\mathbf{U} + \epsilon \mathbf{u'}). \]

(3.1)

(3.2)

Wherever the yield stress is exceeded, the effective viscosity of the perturbed flow is expanded about the basic flow:

\[\mu (\mathbf{U} + \epsilon \mathbf{u}') = \frac{1}{Re} \left[1 + \frac{B}{|\mathbf{D}|} - \epsilon \left(\frac{\partial u'}{\partial y} + \frac{\partial v'}{\partial x} \right) \cdot \frac{B}{|\mathbf{D}|^2} + O(\epsilon^2) \right], \]

(3.3)

with \(\mathbf{D} \equiv d/dy\). Using equations (2.1) and (3.3), it is clear that \(|\tau (\mathbf{U} + \epsilon \mathbf{u}') - \tau (\mathbf{U})| = O(\epsilon)\). This means that the disturbance field can only linearly perturb the yield surface from its initial position:

\[y_0^\pm (\mathbf{U} + \epsilon \mathbf{u}') = \pm y_0 \pm \epsilon h^\pm(x, z, t). \]

The linear perturbation equations in the two yielded zones are derived by substitution of (3.3) into (3.2) via the deviatoric stress tensor and retaining only terms of order \(\epsilon\) in the continuity and momentum equations. It is found:

\[u'_x + v'_y + w'_z = 0, \]
\[u'_t = -U u'_x - v' U_y - p'_x + \frac{1}{Re} \nabla^2 u' + \frac{B}{Re} \left[\frac{u'_{xx} + u'_{zz} - v'_{yz}}{|\mathbf{D}|} \right], \]
\[v'_t = -U v'_x - p'_y + \frac{1}{Re} \nabla^2 v' + \frac{B}{Re} \left[\frac{d}{dy} \left(\frac{2 v'_{yy}}{|\mathbf{D}|} \right) + \frac{v'_{zz} + w'_{yz}}{|\mathbf{D}|} \right], \]

(3.4)

(3.5)

(3.6)
Cherif Nouar and Alessandro Bottaro

\[w'_t = -U w'_x - p'_z + \frac{1}{Re} \nabla^2 w' + \frac{B}{Re} \left[\frac{d}{dy} \left(\frac{v'_z + w'_y}{|DU|} \right) + \frac{w'_{xx} + u'_x x + 2w'_{zz}}{|DU|} \right], \quad (3.7) \]

with boundary conditions

\[u' (x, \pm 1, z) = 0; \]

the yield criterion at the perturbed yield surface, i.e., \(\tau (U + \epsilon u') = B/Re \), leads to

\[\dot{\gamma}_{ij} (U + \epsilon u') = 0 \quad \text{at} \quad y = y_i^\pm, \quad \forall i, j = 1, 2, 3. \quad (3.8) \]

Expanding and linearizing (3.8) about \(y_0 \) it is found:

\[u'_x (x, \pm y_0, z, t) = u'_y (x, \pm y_0, z, t) = w'_z (x, \pm y_0, z, t) = 0, \quad (3.9) \]

\[u'_z (x, \pm y_0, z, t) + w'_y (x, \pm y_0, z, t) = 0, \quad (3.10) \]

\[w'_y (x, \pm y_0, z, t) + v'_z (x, \pm y_0, z, t) = 0, \quad (3.11) \]

\[v'_z (x, \pm y_0, z, t) + u'_y (x, \pm y_0, z, t) = \frac{\pm 2h^\pm (x, z, t)}{(1 - y_0)^2}. \quad (3.12) \]

Since the domain is unbounded in \(x \) and \(z \), we can assume that the perturbation \((\epsilon u', \epsilon p', \epsilon h^\pm) \) is periodic along those directions; thus, because of the continuity of the velocity vector across the yield surface, the plug zone can only have a translational rigid-body motion.

Inside the plug, \(u, v \) and \(w \) are independent of the spatial coordinates, and fluid particles at the yield surface satisfy:

\[\frac{\partial}{\partial x} (U + \epsilon u') = \frac{\partial}{\partial z} (U + \epsilon u') = 0 \quad \text{at} \quad y = y_i^\pm. \quad (3.13) \]

Combining equations (3.9 - 3.12) with (3.13), the boundary conditions at the yield surfaces become:

\[u'_x (x, \pm y_0, z, t) = u'_y (x, \pm y_0, z, t) = 0, \quad (3.14) \]

\[v'_x (x, \pm y_0, z, t) = v'_y (x, \pm y_0, z, t) = v'_z (x, \pm y_0, z, t) = 0, \quad (3.15) \]

\[w'_x (x, \pm y_0, z, t) = w'_y (x, \pm y_0, z, t) = w'_z (x, \pm y_0, z, t) = 0. \quad (3.16) \]
Disturbances are assumed to have the form:
\[(u', v', w', p', h^\pm) = [u(y, t), v(y, t), w(y, t), p(y, t), h^\pm(t)] e^{i(\alpha x + \beta z)}, \]
(3.18)
where \(\alpha \) and \(\beta \) are the wavenumbers in the streamwise and spanwise directions. Using (3.18), equations (3.14 - 3.16) for \(\alpha \neq 0 \) or \(\beta \neq 0 \) reduce to
\[u(\pm y_0) = v(\pm y_0) = w(\pm y_0) = 0. \]
This means that the unyielded plug is not affected by infinitesimal perturbations in the sheared zone, and the stability problems in the two yielded regions decouple from one another. Since the problem in \([y_0, 1] \) is equivalent to that in \([-1, -y_0] \), it is sufficient to consider one domain, say \([y_0, 1] \). Substituting the ansatz (3.18) into the linearized disturbance equations (3.4 - 3.7), we obtain:
\[i[\alpha u + \beta w] + Dv = 0, \]
(3.19)
\[u_t = -i \alpha U u - vDU - i\alpha p + \frac{1}{Re} \mathcal{F} u + \frac{B}{Re} \left[-\frac{(\alpha^2 + \beta^2)u - i\alpha Dv}{|DU|} \right], \]
(3.20)
\[v_t = -i \alpha U v - Dp + \frac{1}{Re} \mathcal{F} v + \frac{B}{Re} \left[D \left(\frac{2 Dv}{|DU|} \right) - \frac{-\beta^2 v + i\beta Dw}{|DU|} \right], \]
(3.21)
\[w_t = -i \alpha U w - i\beta p + \frac{1}{Re} \mathcal{F} w + \frac{B}{Re} \left[D \left(\frac{i\beta v + Dw}{|DU|} \right) - \frac{(\alpha^2 + \beta^2)w + i\beta Dw}{|DU|} \right], \]
(3.22)
with \(\mathcal{F} \equiv D^2 - k^2 \). The boundary conditions at the wall \(y = 1 \) and at the interface \(y = y_0 \) are:
\[u(1) = v(1) = w(1) = 0, \]
\[u(y_0) = v(y_0) = w(y_0) = 0, \]
\[Dv(y_0) = Dw(y_0) = 0, Du(y_0) = -h^+ D^2U(y_0). \]
The system of equations (3.19 - 3.22) can be expressed in terms of \(u \) and \(v \) if \(\alpha \neq 0 \), or in terms of \(v \) and \(w \) if \(\beta \neq 0 \) (Nouar et al. (2007)).
The case $\alpha = 0$ can be dealt with by inspection observing that all modes are purely imaginary and always damped, for whatever base flow U. This fact, pointed out by Nouar et al. (2007), implies that whatever variation $\Delta U(y)$ in base flow is unable to trigger an instability in the form of longitudinal vortices. As a consequence the ΔU-structured-pseudospectrum will never protrude into the unstable half-plane, unlike the unstructured pseudospectrum. The difference is due to the fact that the unstructured pseudospectrum allows a two-way coupling between the u and v-equations, whereas it is easy to see that in the original system the u-equation is forced by the vertical velocity v, whereas the v-equation is homogeneous.

The (v, w) formulation of the problem, needed to treat the stability of streamwise-travelling modes and three-dimensional modes, reads:

$$
-i \begin{pmatrix} \mathcal{L}_1 & \mathcal{L}_2 \\ \mathcal{L}_3 & \mathcal{L}_4 \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix} = \frac{\partial}{\partial t} \begin{pmatrix} -i\text{Re} \left(D^2 - \alpha^2 \right) & \beta \text{Re} D \\ -i\beta \text{Re} D & \text{Re} k^2 \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix}
$$

and, in space state form, common in control theory, communication and signal processing, it can be written as:

$$
\frac{\partial \mathbf{q}}{\partial t} = -i \mathcal{M}^{-1} \mathcal{L} \mathbf{q}, \quad (3.23)
$$

with $\mathbf{q} = (v, w)^T$ the vector of state variables. The elements of the matrix \mathcal{L}_{vw} are:

$$
\mathcal{L}_1 = \mathcal{F}^2 + \beta^2 \mathcal{F} - i\alpha \text{Re} U \left(D^2 - \alpha^2 \right) + i\alpha \text{Re} \left(D^2 U \right) +
B \left[\frac{\alpha^2 \beta^2}{|DU|} - (4\alpha^2 + \beta^2) \right] \frac{D}{|DU|},
$$

$$
\mathcal{L}_2 = i \beta D \mathcal{F} + \alpha \beta \text{Re} \left(UD + DU \right) - i\beta B \left[k^2 D \left(\frac{1}{|DU|} \right) + (k^2 + \alpha^2) \right],
$$

$$
\mathcal{L}_3 = \beta D \mathcal{F} - i\alpha \beta \text{Re} \left(UD - DU \right) - B \beta \left[\frac{(k^2 + \alpha^2) D}{|DU|} + \alpha^2 D \left(\frac{1}{|DU|} \right) \right],
$$

$$
\mathcal{L}_4 = ik^2 \mathcal{F} + \alpha \text{Re} U k^2 + i B \left[\frac{\alpha^2 D^2 - k^4}{|DU|} + \alpha^2 D \left(\frac{1}{|DU|} \right) \right].
$$
The boundary conditions are \(v = Dv = w = 0 \) at the wall and at the yield surface.

3.2. Eigenvalue problem

Assuming solutions of the form \(q = \tilde{q} \exp(-i \omega t) \), where \(\omega \) is the complex frequency, the initial value problem (3.23) is transformed into the following generalized eigenproblem for \(\omega \):

\[
M^{-1} L (\tilde{v}, \tilde{w})^T = \omega (\tilde{v}, \tilde{w})^T.
\]

The amplification of a given mode is given by \(\omega_i \), the imaginary part of the eigenvalue \(\omega \). The ratio \(\omega_r / \left((\alpha^2 + \beta^2)^{0.5} \right) \), with \(\omega_r \) the real part of \(\omega \), corresponds to the phase speed of the wave travelling in the direction \((\alpha, 0, \beta)\).

3.3. Domain mapping

Since the width \((1 - y_0)\) of the yielded zone varies with \(B \), it is useful to map the domain \([y_0, 1]\) into \([0, 1]\), by introducing the following reduced parameters:

\[
\begin{align*}
x &= \tilde{x}(1 - y_0), \quad y = \tilde{y}(1 - y_0) + y_0, \quad z = \tilde{z}(1 - y_0), \quad t = \tilde{t} (1 - y_0) \\
\tilde{\alpha} &= \alpha (1 - y_0), \quad \tilde{\beta} = \beta (1 - y_0), \quad \tilde{\omega} = \omega (1 - y_0) \\
\tilde{Re} &= Re (1 - y_0), \quad \tilde{B} = B (1 - y_0).
\end{align*}
\]

The use of \((\tilde{\cdot})\) variables does not modify the expressions of the initial value problem (3.23) nor the ensuing eigenproblem (3.24), but the base flow now reads:

\[
U = 1 - \tilde{y}^2 \quad \text{for} \quad \tilde{y} \in [0, 1].
\]

In the following, the \((\tilde{\cdot})\) notation will be dropped with no ambiguity, lest it be remarked
that from now on Re and B are scaled with a length scale which characterizes the shear zone (unless otherwise specified).

4. Sensitivity functions for structured operator’s perturbations

It has recently been shown by Nouar et al. (2007) that the matrix $M^{-1}L$ is highly non-normal, reflecting a strong sensitivity of the normal modes to operators’ perturbations. Here we focus on a structured set of such perturbations, assuming infinitesimal variations in the base flow profile δU. These variations cause corresponding variations in the eigenvalues and eigenfunctions of the operator $M^{-1}L$:

$$U \rightarrow U + \delta U \Rightarrow \begin{cases}
\omega \rightarrow \omega + \delta \omega, \\
v \rightarrow v + \delta v, \\
w \rightarrow w + \delta w.
\end{cases} \quad (4.1)$$

Introducing (4.1) into (3.24) it is found:

$$\delta M^{-1}Lq + M^{-1}\delta Lq + M^{-1}\delta q = \delta \omega q + \omega \delta q, \quad (4.2)$$

with $\delta L = (\partial L / \partial U)\delta U$, δM^{-1} the zero matrix, and $\delta q = (\delta v, \delta w)^T$. We now project (4.2) onto the adjoint subspace, with the eigenvector $a(y) = (a, b)^T$ solution of the adjoint problem $M^+L^+a = \omega a$, to find the resulting eigenvalue variation:

$$\delta \omega = \frac{\langle a, M^{-1}\delta Lq \rangle}{\langle a, q \rangle} = \langle \mathcal{G}_U, \delta U \rangle. \quad (4.3)$$

The sensitivity function \mathcal{G}_U quantifies the effect of an infinitesimal modification of the base flow δU on a given eigenvalue ω. The expression of the sensitivity functions for three-dimensional modes is:

$$\mathcal{G}_U = \frac{I}{1 + B^{-1}T_3}, \quad (4.4)$$
with I_1, I_2 and I_3 given in the Appendix. The adjoint variables introduced above rely on the following definition of inner product: $(f, g) \equiv \int_0^1 f g dy$, and the matrices \mathcal{L}^+ and \mathcal{M}^+ of the adjoint eigenproblem are:

$$\mathcal{L}^+ \equiv \begin{pmatrix} \mathcal{L}_1^+ & \mathcal{L}_2^+ \\ \mathcal{L}_3^+ & \mathcal{L}_4^+ \end{pmatrix}$$

and

$$\mathcal{M}^+ \equiv \begin{pmatrix} -i \text{Re} (D^2 - \alpha^2) & i \beta \text{Re} D \\ -\beta \text{Re} D & \text{Re} k^2 \end{pmatrix}$$

with

\[
\mathcal{L}_1^+ = \mathcal{F}^2 + \beta^2 \mathcal{F} - i \alpha \text{Re} U \left(D^2 - \alpha^2 \right) - 2 i \alpha \text{Re} DU D + B \left[\frac{\alpha^2 \beta^2}{|DU|} - (4 \alpha^2 + \beta^2) D \left(\frac{D}{|DU|} \right) \right]
\]

\[
\mathcal{L}_2^+ = -\beta D \mathcal{F} + i \alpha \beta \text{Re} [U D + 2 DU] + \beta B \left[(k^2 + \alpha^2) \frac{D}{|DU|} + k^2 D \left(\frac{1}{|DU|} \right) \right]
\]

\[
\mathcal{L}_3^+ = -i \beta D \mathcal{F} - \alpha \beta \text{Re} U D + i \beta B \left[\alpha^2 D \left(\frac{1}{|DU|} \right) + k^2 + \alpha^2 \frac{D}{|DU|} D \right]
\]

\[
\mathcal{L}_4^+ = i k^2 \mathcal{F} + \alpha \text{Re} U k^2 + i B \left[\frac{\alpha^2 D^2 - k^4}{|DU|} + \alpha^2 D \left(\frac{1}{|DU|} \right) D \right].
\]

The two-dimensional $\beta = 0$ case appears to be very relevant on account of a theorem demonstrated by Georgievskii 1993 for viscoplastic fluids which holds that "among all amplified three-dimensional disturbances that satisfy the condition $\dot{\gamma}_{yz} = 0$ we can always find a two dimensional disturbance (in the plane of the basic motion) that grows at the same rate, for the same value of B and smaller Re number". Although the condition
on $\dot{\gamma}_{yz} = i\beta v + Dw$ is sufficient to guarantee the validity of this Squire-like theorem, it narrows the class of perturbations under consideration. It seems thus appropriate to assess right away the sensitivity of two- and three-dimensional disturbances to variations in the base flows, to assess whether a particular class of disturbances appears to be preferentially selected by environmental conditions.

From equation (4.3), assuming that δU is a properly normalised Dirac distribution centred on the position where the modulus of $\text{Im}(G_U)$ is maximum, it is easy to see that the relative displacement (along the imaginary axis) of each eigenmode from its reference position is proportional to $\max[\text{Im}(G_U)]/\omega_i$. In such a function, the large value of the ∞-norm of $\text{Im}(G_U)$ for large α is compensated by the large absolute value of the growth rate of the corresponding stable mode. We have thus plotted this quantity against α in figure 2, for two values of β and two Bingham numbers, $B = 0$ and $B = 18$ (this latter value corresponds to a base flow in which the unyielded zone of figure 1 occupies 90% of the available space). The results show that at $B = 0$ (which corresponds to the Newtonian Couette-Poiseuille flow) there is a mild variation of the sensitivity with the spanwise wavenumber β; the sensitivity grows until a value of α approximately equal to four, and then its value saturates. The behavior is similar for the larger B case, although now there is a slightly larger difference in the sensitivity between the two values of β plotted. Despite this, it seems fair to state that the effect of β is secondary and the statement is confirmed by many more cases (not shown) tested for varying B and β. We thus decided to limit the investigation to the simpler situation of z-independent instability modes.

4.1. Spanwise-homogeneous disturbances, $\beta = 0$

For the case of spanwise-homogeneous disturbances the matrices L and M are diagonal, and the normal v and longitudinal w components of the velocity are decoupled, and
Stability of Bingham channel flow

The continuous line (1) and the dashed line (2) correspond to the Newtonian Couette-Poiseuille situation for $B = 0$ and, respectively, $\beta = 0$ and $\beta = 8$. The dotted curve (3) and the dashed-dotted curve (4) correspond to the Bingham-Poiseuille flow with $B = 18$ and, respectively, $\beta = 0$ and $\beta = 8$. Likewise for their adjoints. Furthermore, the eigenproblem for w is Hermitian, and its spectrum is formed by modes which are always stable, so that in the sensitivity problem only v-modes are important. The v-eigenproblem is described by an Orr-Sommerfeld-like equation:

$$\mathcal{L}_{os}v = -i \omega \Re (D^2 - \alpha^2) v,$$

(4.5)

where

$$\mathcal{L}_{os} = (D^2 - \alpha^2)^2 - i\alpha \Re U (D^2 - \alpha^2) + i\alpha \Re D^2 U + B \left[-4\alpha^2 D \left(\frac{D}{|DU|}\right)\right],$$

(4.6)

with boundary conditions:

$$y = 0; \quad v = Dv = 0;$$

$$y = 1; \quad v = Dv = 0.$$
The additional condition $D^2v(0) = i\alpha h^+ D^2U(0)$ can be used to recover the amplitude of the yield surface deformation. The adjoint eigenvalue problem is:

$$\mathcal{L}_{os}^+ a = -i \omega \Re (D^2 - \alpha^2) a,$$

with

$$\mathcal{L}_{os}^+ \equiv (D^2 - \alpha^2)^2 - i \alpha \Re U (D^2 - \alpha^2) - 2 i \alpha \Re DU D + B \left[-4\alpha^2 D \left(\frac{D}{|DU|} \right) \right],$$

and same boundary conditions as for the direct equation. The terms proportional to B in (4.6) and (4.7) are the same, indicating that non-normality of \mathcal{L}_{os} arises uniquely from the inertial terms, like in the Newtonian case.

An example of the eigenvalues spectrum for $\alpha = 1$, $Re = 5000$ and $B = 2$ is shown in the left frame of figure 3 and, in analogy to the Newtonian case (Mack 1976), the branches have been labelled as 'A', 'P' and 'S'. We have verified that the spectrum is identical for the direct and the adjoint problems. The effect of the yield stress is to produce a misalignment of wall modes (branch 'A') and yield surface modes (branch 'P'). For each mode, the sensitivity function is defined by

$$G_U = \frac{i \alpha (\alpha^2 av + v D^2 a + 2 Da Dv) + \text{sign}(DU) \left(\frac{B}{Re} \right) \left(4\alpha^2 \right) D \left(\frac{Da Dv}{|DU|^2} \right)}{\int_0^1 i (\alpha^2 av + Da Dv) dy},$$

where the parameter $\text{sign}(DU)$ is +1 for positive DU, −1 otherwise. In the Newtonian limit the expression of G_U of equation (4.8) coincides with that given by Bottaro et al. 2003. The yield stress introduces a shear thinning behaviour which appears in the function G_U through the term proportional to B/Re; this term is not singular when $DU \to 0$ (as a simple application of l’Hôpital rule can show), although it could cause numerical difficulties.

The right frame of figure 3 displays the infinity-norm of G_U for the first 30 eigenvalues: modes near the crossing of branches, labelled with the numbers 12, 13, and 14 in the left frame of the figure, display the largest norm, coherently with ϵ-pseudospectra drawn by Nouar et al. (2007). Mode 13 responds the most to an infinitesimal deformation of the
base flow, whereas all the near-wall modes (1, 5, 8 and 11) displays very weak sensitivity to variations in U. These trends (and the order of magnitude of the sensitivity functions) are consistent with those that we have found for the case of the Couette-Poiseuille flow of a Newtonian fluid.

In figure 4 the real and imaginary parts of the sensitivity function for the most sensitive modes at two values of the Bingham number, $B = 2$ and $B = 20$, are shown. The eigen-spectra are very similar with varying B, and so are the plots of real and imaginary parts of G_U. The base flow variations which affects growth rate and frequency the most are localised near the centre of the yielded region, with a support of about half a unit of length. The Newtonian case ($B = 0$) responds the most to base flow variations at $R e = 5000$, but the situation is different for other values of the Reynolds number, as shown in figure 5 where the largest ∞-norm of the sensitivity functions is drawn for different B and $R e$. Whereas the ∞-norm of the most sensitive mode remains always of the same order as that of the Couette-Poiseuille flow of a Newtonian fluid ($B = 0$ in the figure), the observed behaviour is non-monotonic with $R e$.

Figure 3. Left: Eigenvalue spectra at $R e = 5 \times 10^3$, $B = 2$ and $\alpha = 1$. Right: Infinity-norm of the first 30 sensitivity functions, sorted by the imaginary part of ω.

Figure 4. Real part (left frame) and imaginary part (right frame) of G_U for the most sensitive eigenvalues at $B = 2$ (continuous line) and $B = 20$ (dashed line), at $Re = 5000$ and $\alpha = 1$.

Figure 5. Evolution of the infinity-norm of Im(G_U) for the most sensitive modes as function of B at different values of Re, for $\alpha = 1$.

5. Minimal defects

We now set to analyse how small defects can alter the stability characteristics of the Bingham-Poiseuille flow and focus, in particular, on ”minimal defects” (Bottaro et al. 2003,
Biau & Bottaro 2004, Gavarini et al. 2004, Ben Dov & Cohen 2007a, Ben Dov & Cohen 2007b), i.e. on the base flow deviations of minimal norm capable of yielding the largest amplification of instability modes. Small defects or deviations in the base velocity profile can arise because of geometrical imperfections in an experimental apparatus, or from fluctuations in the inflow conditions, or from the presence of roughness elements, gaps, junctions, etc., and can be responsible for the unexpected breakdown of the flow. Furthermore, it has been recently shown that minimal defects have a resemblance to edge states (Biau & Bottaro 2009), i.e. to those flow states which mediate the laminar-turbulent transition (Eckhardt et al. 2007). Whether this resemblance is just a coincidence or a matter of physical principles remains to be established.

5.1. On the issue of regularisation

The velocity profile that we wish to slightly modify to assess the effect on the stability is $U_{\text{ref}} = 1 - y^2$; some constraint needs to be placed on the norm of the allowable variation, to prevent the solution from differing too much from the reference. In the disturbance energy equations the only term proportional to the Bingham number is negative definite (Nouar et al. 2007), i.e. it causes only dissipation of the perturbation energy; it can thus be anticipated that only base flow variations occurring in the low-viscosity near-wall region might have a significant destabilising effect, while fluid layers near the plug zone (where DU approaches zero and $\mu \to \infty$) play mostly a passive role. Furthermore, when modifying the base flow profile we need to ensure that DU does not change sign locally (cf. equation 2.3), otherwise islands of unyielded material (with $\mu \to \infty$) would appear within the fluid domain. These requirements are dealt with by imposing that the allowable defect is of sufficiently small amplitude and confined to a zone away from the

† This is suggested also by the fact that the sensitivity functions invariably tend to zero smoothly as the yield surface is approached
plug; this zone occupies more than 90% of the whole fluid region. Thus, we constrain the velocity variation to be of the form \(f(y) \delta U \), so that equation (4.3) now reads:

\[
\delta \omega = (G_U, f \delta U) = (f G_U, \delta U),
\]

(5.1)

and write a formal constraint on the allowable defect as:

\[
\int_0^1 [f(y) (U - U_{ref})]^2 dy = \zeta;
\]

(5.2)

\(f(y) \) is a filter whose exact form is

\[
f(y) = \left[1 + \tanh \left(\frac{2y - 1}{c_1} + \frac{c_2}{c_2} \right) \right]^2;
\]

by choosing \(c_1 = 0.02 \) and \(c_2 = 0.9 \) the filter is centred in \(y = 0.054 \) and has a support equal to approximately 0.08 units of length. It is displayed in figure 6. We have tested several other regularization functions and have observed that the final result is independent of the details of the filter, provided the support remains sufficiently narrow and \(f(y) = 1 \) to within \(10^{-4} \) for \(y > 0.1 \). It is important to emphasize that the regularization procedure adopted has uniquely the scope of circumventing numerical difficulties associated with the vanishing value of \(DU \) as the yield surface is approached.
To pursue the goal of finding a new base velocity profile $U(y)$ with the largest possible ω_i, under (5.2), we optimise the augmented functional C defined as

$$C = \omega_i + \frac{\lambda}{2} \left\{ \int_0^1 [f(y) (U - U_{ref})]^2 \, dy - \zeta \right\},$$

with λ a Lagrange multiplier. Setting the variation of C to zero, and using (5.1), it is found that

$$\left(\frac{\partial C}{\partial U}, \delta U \right) = 0,$$

with $\partial C/\partial U$ the gradient of the functional, given by

$$\frac{\partial C}{\partial U} = f(y) \{ \text{Im} [G_U] + \lambda f(y) (U - U_{ref}) \},$$

and with the Lagrange multiplier equal to

$$\lambda = \pm \sqrt{\int_0^1 \left[\frac{\text{Im} [G_U]^2}{\zeta} \right] \, dy}, \quad (5.3)$$

whenever $\partial C/\partial U$ has been driven to zero. The negative root of λ is of interest in equation (5.3) above, since it leads to a maximisation of the functional; conversely, in control problems it might be interesting to minimise ω_i, for, e.g., stabilising an otherwise unstable mode by acting on the shape of the base velocity profile (Hwang & Choi 2006).

A gradient algorithm is set up to proceed towards the maximum value of ω_i for each eigenmode, requiring the repeated evaluation of direct and adjoint eigenfunctions. Assuming that the velocity profile has been estimated at iteration (n), the successive step reads simply:

$$U^{(n+1)} = U^{(n)} - \phi \left[\frac{\partial C}{\partial U} \right]^{(n)}, \quad (5.4)$$

with ϕ a positive relaxation parameter. This iterative procedure is extremely slow in attaining convergence since ϕ is kept very small to ensure that a given mode is always
Figure 7. Comparison of $\Delta U = U - U_{ref}$ between the cases with (empty circles) and without (continuous line) filter in the gradient procedure. The results shown pertain to an intermediate step of the iterative procedure (5.4) for $\zeta = 10^{-6}$, with the relaxation factor ϕ fixed at the constant value of 5.2×10^{-4}. The mode which has been targeted is mode 13 of figure 3, i.e. the most sensitive one.

followed throughout its movement in the complex plain, i.e. to prevent the procedure from jumping from a mode to another (a common occurrence if care is not taken).

It is instructive to observe the difference between the results obtained in the presence and absence ($f(y) = 1 \ \forall \ y$) of the filter. For this purpose we have drawn in figure 7 the base flow deviation that emerges after forty thousand gradient iterations under otherwise identical conditions. Neither of the two solutions has arrived at convergence yet, and in fact the profiles are not even (partially) superposed despite being similar because the presence of the filter affects the convergence rate of the iterative procedure. In the plot of ΔU near the yield surface the solution without filter displays numerical wiggles, which eventually pollute the whole field and lead to divergence of the procedure.
Figure 8. The dashed line represents the reference velocity profile $1 - y^2$. The continuous lines are the modified base flow and the velocity defect (lower curves in each frame). The vertical dotted line indicates the position of the critical layer. (Left) $\zeta = 0.4 \times 10^{-4}, B = 6, Re = 2067, \alpha = 1.73$, (right) $\zeta = 10^{-4}, B = 6, Re = 1387, \alpha = 1.70$.

5.3. Velocity and viscosity defects

For very small values of ζ the minimal velocity defect is equal to the imaginary part of the sensitivity function. As the norm of the defect increases, the most disrupting defect can be very different from the sensitivity function of the most sensitive mode. This is highlighted in figure 8 where the velocity profiles U and U_{ref} as well as the minimal defects are displayed for two values of the defect norm. In this figure, the least stable mode (numbered 1) has been targeted and followed iteratively. One can note that the defect is concentrated near the critical layer. The modified viscosity profile and the viscosity defect are shown in fig. 9. It is worthy to observe that the viscosity gradient in correspondence to the critical layer and the wall has been rendered positive, which according to Govindarajan et al. 2001 is a destabilizing conditions.
Figure 9. The dashed line is the reference viscosity profile \(1 + B/(2y)\). The continuous lines are the modified viscosity profiles and the viscosity defect (lower curves in each frame) for the two cases of figure 8.

6. The \(\Delta U\)-structured-pseudospectrum

In Section 1 the qualitative difference between the \(\epsilon\)-pseudospectrum and the \(\Delta U\)-structured pseudospectrum has already been introduced. In more formal terms, the classical pseudospectrum of an operator \(L\) can be defined as:

\[
\Lambda_\epsilon(L) = \{ \omega \in C : \omega \in \Lambda(L + \Delta) \text{ for some } \Delta \text{ with } \|\Delta\| \leq \epsilon \},
\]

with \(\Lambda(L)\) the spectrum of \(L\) and \(\Delta\) an unstructured disturbance operator. Other (equivalent) definitions exist but for comparison purpose the one given above is the most useful. The \(\Delta U\)-structured pseudospectrum is:

\[
\Lambda_\zeta(L) = \{ \omega \in C : \omega \in \Lambda[L(U_{\text{ref}} + \Delta U)] \text{ for some } \Delta U \text{ with } \|\Delta U\| \leq \zeta \}, \quad (6.1)
\]

where the norm of \(\Delta U\) is given by equation (5.2) and \(\Delta U = U - U_{\text{ref}}\) represents a finite (typically small) distortion of the reference base flow. Since in hydrodynamic stability problems slight and practically unavoidable modifications in the base flow represent the primary source of differences between theory and experiments, it is argued
that the pseudospectrum defined by (6.1) constitutes an alternative to the conventional ϵ-pseudospectrum which is based on a practically relevant norm.

The results shown in figure 10 are sufficient to illustrate our point. The bullets represent the spectrum for $Re = 5 \times 10^3$, $B = 2$ and $\alpha = 1$; the cloud of points around the unperturbed eigenmodes represent the ensemble of spectra computed by considering base flow defects of norm $\zeta = 10^{-6}$ of the form

$$\Delta U = \sqrt{\zeta \frac{a}{\pi}} e^{-a(y-y_0)^2},$$

with $a = 10000$ and y_0 spanning the y-range from 0.1 to 0.9 in steps of 0.0125. Modes close to the crossing of branches experience the largest deviations from the reference positions; other modes (such as 1 and 8 in the left frame of figure 3) show smaller
deviations. To draw the upper envelope of the ΔU-structured pseudospectrum we have successively targeted the first 13 modes and determined iteratively the worst possible base flow deformations. In the figure the ‘trajectory’ of each mode in the course of the iterations (5.4) is drawn with thin lines. The envelope of the converged, worst case scenarii, i.e. the upper portion of the ΔU-pseudospectrum, is plotted with thick dashed lines for the two cases of $\zeta = 10^{-6}$ and 10^{-5}. For the lower value of ζ the cloud of points is completely contained within the corresponding outer envelope and no unstable eigenvalues exist; for larger ζ the dashed line protrude into the unstable half-plane for a small range of frequencies around $\omega_r = 0.36$, revealing that disturbances can arise which are amplified exponentially in the presence of small defects in U. For yet larger values of ζ progressively larger unstable frequency bands are found.

It is possible to extend the contour of the ΔU-pseudospectra and trace the missing left and right quasi-vertical portions of the envelope, by searching for the base flow defect that maximises (and minimises) the real part of ω for each eigenmode. This task is however time consuming and not useful from the point of view of determining unstable modes for any given ζ, and thus we have not undertaken it.

The knowledge provided by the (portions of) structured-pseudospectra displayed in figure 10 is not irrelevant: if an experimentalist can put an error bar on measurements of a steady base flow and can evaluate - even locally - the norm of the distortion from the idealised velocity profile, the ΔU-structured pseudospectrum can inform on whether an exponential instability of the flow should be excluded or not.

We wish to stress here that we are not trying to refute the importance of transient growth phenomena or of the ϵ-unstructured pseudospectra. We are simply arguing on the significance of a possible, well-identified cause of mismatch between the real flow and its idealisation. Such a deviation can provoke exponential amplification of disturbances; on
the other hand, the modified base flow is still highly non-normal (as shown, for example by Bottaro et al. 2003) and is still susceptible to transient mechanisms. It is thus likely that exponential and transient effects are concurrently at play in the early stages of transition to turbulence, and neither should be discarded a priori (Biau & Bottaro 2004, Biau & Bottaro 2009).

7. The neutral conditions

Knowing that instability can arise from the presence of base flow distortions, we have undergone a very comprehensive study to isolate critical conditions as function of the norm of the defect. The neutral solutions \((Re_c, \alpha_c)\) are displayed against \(B\) in fig.11 for different values of the norm of the base-flow deviation \(\zeta\). It is worthy to observe that, as opposed to the case of unstructured operator’s perturbations for which the critical Reynolds number does not depend on \(B\) (Nouar et al. (2007)), here, \(Re_c\) increases with \(B\). For sufficiently large \(B\), the increase is close to the behavior \(Re_c vs B\) derived by Frigaard & Nouar 2003 and Nouar et al. (2007) to define conditions of no energy growth at large \(B\). We have also reported on the same figure (left frame) the two most popular phenomenological criteria (Hanks 1963 and Metzner & Reed 1955)†, proposed in the literature to predict the transition between the laminar and the turbulent regime (cf. also Nouar & Frigaard 2001). In terms of our parameters \(Re\) and \(B\), they are given by:

\[
Re_c(Metzner and Reed) = 787.5 B \frac{(1 - y_0)^2}{y_0^2 - 3y_0 + 2}, \tag{7.1}
\]

\[
Re_c(Hanks) = 1050. \tag{7.2}
\]

† The Metzner & Reed 1955 criterion originally proposed for pipe flows, has been generalised for any purely viscous fluid through ducts of arbitrary cross-section by Kozicki et al. (1966).
In reality, the literature contains about a dozen different phenomenological criteria. However, when the rheological properties of the fluid depart significantly from the Newtonian case, the predictions provided by the phenomenological criteria diverge and there is no way to determine which criterion is preferable. The shortcoming of all criteria is that they do not contain information on the receptivity environment. It is however comforting to observe the similarity in behaviour between our curves (labelled (1) through (7) in the left frame of figure 11) with the phenomenological curve labelled $M - R$. It can be speculated that the transition data of Metzner & Reed 1955 correspond to a single inflow disturbance environment, and that - had the inflow condition been varied - the threshold curve would have been shifted vertically, resembling the curves of the present analysis. For sufficiently large values of B it is found that $Re_c \sim B^{0.5}$, like the theoretical result by Nouar et al. (2007). Also, the critical wave number behaves closely as $\alpha \sim B^{-0.5}$.

Finally, the figure shows that the critical wave number is practically independent of ζ. The critical conditions as function of the Bingham number in terms of parameters which are not normalised with the width of the yielded zone, i.e. parameters without $\tilde{\cdot}$ (cf. Section 3.3), are represented in figure 12. In the same figure (left frame) we have also reported experimental points from Hanks & Pratt 1967; they follow rather closely our family of curves over the B range considered.

The variation of the critical Reynolds number with the norm of the base flow deviation ζ is displayed in the left frame of figure 13 for different values of B. The data points in this figure may be described by a relation of the kind $Re_c \sim 1/\zeta^\gamma$. In the right frame of fig.13 we have drawn the variation of γ with the Bingham number; it decreases with increasing B, remaining in the vicinity of 0.5 which is the value obtained for some shear flows in the Newtonian case (Bottaro et al. 2003, Gavarini et al. 2004). These results indicate that the size of the perturbation necessary to initiate transition in this
Stability of Bingham channel flow

8. Concluding remarks

The flow of a Bingham fluid in a channel is asymptotically stable to infinitesimal disturbances, a fact which renders challenging and interesting the investigation of transitional paths. A by-now classical technique consists in approaching the problem with
Figure 12. Variation of the unscaled critical conditions as function of the unscaled Bingham number for different values of ζ. Left frame: critical (unscaled) Reynolds number for the same ζ values as in figure 11. The dashed curve represents the behavior of the critical Reynolds number ensuring the no-energy growth condition for large B derived in Frigaard & Nouar 2003 and Nouar et al. (2007). The filled circles are experimental critical points obtained by Hanks & Pratt 1967. Right frame: critical (unscaled) wave number versus B for $\zeta = 10^{-4}$ (open square symbol) and $\zeta = 0.4 \times 10^{-4}$ (open circle symbol). The dashed curve represents the behavior of the critical wave number ensuring the no-energy growth condition for large B.

The search of optimal disturbances, i.e. those transiently growing perturbations capable to most effectively extract energy from the base flow over short time spans. In parallel shear flows such optimals often coincide with streamwise homogeneous vortex pairs (Trefethen et al. 1993). The linear optimal perturbation approach has been pursued for the present flow configuration by Nouar et al. (2007), but the usefulness of optimal disturbances has been disputed recently by Biau & Bottaro 2009 who argue on the crucial importance of nonlinear terms to sustain a distorted flow in the channel. Another path of transition can be envisioned starting from the realisation that the base flow around which linearization is performed is just an idealization, whereas in reality small defects inevitably occur. This alternative approach is also based on linear stability
Stability of Bingham channel flow

Figure 13. Left: variation of the critical Reynolds number as function of the norm of the base-flow deviation: (1) $B = 0$, i.e., Couette-Poiseuille flow, Newtonian case, (2) $B = 0.1$, (3) $B = 1$, (4) $B = 2$, (5) $B = 4$, (6) $B = 6$, (7) $B = 8$, (8) $B = 10$, (9) $B = 12$, (10) $B = 14$, (11) $B = 16$, (12) $B = 18$. In this figure variables are scaled with the thickness of the yielded region. Right: exponent γ versus B. The square symbol corresponds to the Newtonian case ($B = 0$).

equations (although the base flow distortion is of finite amplitude) and admits exponentially growing modes as solutions. It has been proposed by Bottaro et al. 2003, and has shown some success in capturing features of transition in pipe flow (Gavarini et al. 2004, Ben Dov & Cohen 2007a, Ben Dov & Cohen 2007b). It is here applied for the first time to the motion of a non-Newtonian fluid, with the goal of identifying scaling laws of the critical Reynolds number as function of the yield stress (expressed through the Bingham number) and the disturbance environment (measured by the norm of the deviation of the actual base flow from its idealized counterpart).

The procedure starts with the definition of a function quantifying the sensitivity of an eigenvalue (of the linear stability operator) to variations in the base flow (hence in the operator itself). Results show that such a function varies little with the characteristic spanwise dimension of the disturbance mode, and this is used as an argument to focus attention on a single-spanwise-wavenumber disturbance. Although there is no certainty
that at different values of β scaling laws of Re_c will be maintained, it is acceptable to
initiate the study of the sensitivity of the Poiseuille/Bingham flow from the (simpler)
$\beta = 0$ case. As already found in the Newtonian case, the most sensitive modes are those
at the intersection of the branches of the spectrum; minimal defects (computed from the
sensitivity function after setting up a proper variational problem) display peaks in the
proximity of the critical layer, rendering the flow inviscidly unstable. The deformations
in the viscosity profiles have trends similar to the corresponding base flow deviations.

The next step is that of identifying neutral conditions, as function of the disturbance
environment (modeled by the value of ζ), a very lengthy procedure which requires re-
peated searches in a multidimensional parameter space. The most significant result is
that the critical Reynolds number increases with the shear thinning behaviour of the fluid,
in agreement with asymptotic laws by Frigaard & Nouar 2003 and Nouar et al. (2007),
with phenomenological laws established in the fifties (Metzner & Reed 1955) and with
experimental neutral points by Hanks & Pratt 1967. Larger values of Re_c are found for
cleaner inflow environments, as one would intuitively expect. On the other hand, the
wavelength of the neutral disturbance mode does not vary with the disturbance level,
with shorter waves (cf. figure 12, right frame) preferentially excited with the increase of
the Bingham number.

As to one of the stated goals of the present investigation, i.e. scaling laws of transition,
it has been found that $Re_c \sim \zeta^{-\gamma}$, with γ a decreasing function of the yield stress param-
eter B. Similar scaling laws have been obtained recently by various linear and nonlinear
theoretical means, as well as through experiments, but only for the flow of Newtonian flu-
ids. For example, experiments by Peixinho & Mullin 2006 in a pipe have found a scaling
with $\gamma = 0.5$, recovered theoretically by Gavarini et al. 2004, Ben Dov & Cohen 2007a
and Ben Dov & Cohen 2007b. For the same flow case, Trefethen et al. 2000 have as-
sembedded a number of experimental, theoretical and numerical studies, based on which they recover $0.27777 \leq \gamma \leq 0.41666$. For plane Poiseuille flow, using asymptotic analysis, Chapman 2002 has found $\gamma = 0.3333$ when transition is initiated by streamwise-homogeneous initial perturbations (confirmed experimentally by Philip et al. 2007) and $\gamma = 0.4$ for oblique initial disturbances. For both classes of initial perturbation, Chapman 2002 has also found that $\gamma = 0.5$ for the Couette flow, a value also found in the numerical simulations by Kreiss et al. 1994. The scaling exponent found in the present contribution is close to all of these values and changes smoothly from 0.57 (when $B = 0$) to 0.37 (when $B = 18$). Having established the dependence of Re_c with ζ we have the answer to one important question: if an experimentalist can estimate the norm of the expected deviation from ideal conditions, the threshold curves obtained (corresponding to worst case scenarios) indicate whether an instability can be ruled out.

This work puts just a brick to a more comprehensive building. Many effects have been ignored, starting from the fact that the stability operator is non-normal and, as a consequence, transient amplification is concurrently at play with exponential growth in causing breakdown. Another fact is that nonlinearities must play a role in the breakdown of the flow, and recent developments, in the Newtonian frame, concern the existence of unstable nonlinear solutions and edge states (Eckhardt et al. 2007), which provide the skeleton around which transitional and turbulent trajectories are organized in phase space. A somewhat loose relation between edge state and minimal defects has been found for a specific configuration (Biau & Bottaro 2009), but more work is in order to connect these concepts, a challenging undertaking particularly when working in the non-Newtonian realm.
Appendix A. Expressions of I_1, I_2 and I_3

The terms I_1, I_2 and I_3 of equation (4.4) are:

$$I_1 = \alpha k^2 bw - \alpha \beta w Da + \alpha \left[\alpha^2 a v + v D^2 a + 2 Da Dv \right] - i \alpha \beta \left[2 b Dv + v Db \right],$$

$$I_2 = \alpha^2 \beta^2 D \left[\frac{a v}{\Gamma^2} \right] + \left(4 \alpha^2 + \beta^2 \right) D \left[\frac{Da Dv}{\Gamma^2} \right],$$

$$- \beta \left(k^2 + \alpha^2 \right) D \left[\frac{b Dv}{\Gamma^2} \right] - \alpha^2 D \left[\frac{D(bv)}{\Gamma^2} \right],$$

$$+ i \beta k^2 D \left[\frac{D(a w)}{\Gamma^2} \right] - \left(k^2 + \alpha^2 \right) D \left[\frac{a Dw}{\Gamma^2} \right],$$

$$- i \alpha^2 D \left[\frac{D(b Dw)}{\Gamma^2} \right].$$

(A1)

$$I_3 = -i a \left(D^2 v - \alpha^2 v \right) + \beta a Drw - i \beta b Dw + k^2 b w.$$

REFERENCES

BARNES, H.A. 1999 The yield stress - a review $\pi\alpha\tau\alpha\pi$ - everything flows. J. Non-Newtonian Fluid Mech. 81, 133–178.

Stability of Bingham channel flow

Frigaard, I.A. & Nouar, C. 2005 On the usage of viscosity regularisation methods for visco-
Cherif Nouar and Alessandro Bottaro

Metzner, A. B. & Reed, J. C. 1955 Flow of Non-Newtonian Fluids - Correlation of laminar,
Stability of Bingham channel flow

SLATTER, P. T. 1999 The laminar turbulent transition prediction for non-Newtonian slurries.