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Abstract. The optimal control of infinitesimal flow disturbances experiencing the largest transient gain
over a fixed time span, commonly termed “optimal perturbations,” is undertaken using a variational tech-
nique in two- and three-dimensional boundary layer flows. The cost function employed includes various
energy metrics which can be weighted according to their perceived importance, simplifying the task of
determining which terms are essential for a “good” control scheme. In the accelerated boundary layers in-
vestigated, disturbance kinetic energy can be typically reduced by about one order of magnitude. However,
it seems impossible to suppress perturbations completely over the entire control interval; “good” control
strategies still permit approximately an order of magnitude growth over the initial energy at some point in
the interval. It is shown that the control effort efficiently targets the physical mechanisms behind transient
growth.

1. Introduction

Flow control has long fascinated humankind. Irrigation for agricultural purposes, perhaps the most
widespread form of flow control, is thought to have been invented about nine millennia ago; there is a case
for arguing that modern civilization is a direct consequence of this technology. More recently, the problem
of determining the form an axisymmetric body should take in order to move through air with the least resis-
tance, an implicit form of flow control, inspired Newton to lay the foundations of the calculus of variations.
Prandtl’s seminal work on boundary layers at the beginning of the last century also proposed techniques for
controlling their separation. This report describes the control of small perturbations in boundary layers using
a variational approach.

Air travel is now a pervasive feature of modern life, as a consequence improvements in aircraft per-
formance are avidly sought. One such possibility lies in bettering the craft’s aerodynamics, with the specific
objective of minimizing viscous drag, which offers about half the total resistance to motion. While viscous
drag is unavoidable, at a given Reynolds number, laminar skin friction can be up to 90% less than turbulent
skin friction (Joslin, 1998). In practical terms, this implies that methods must be found for delaying the onset
of the transition from laminar to turbulent flow, a process which continues to elude complete understanding.

∗ This work began while PC was at the Laboratoire de Mécanique des Fluides, École Polytechnique Fédérale de Lau-
sanne, 1015 Lausanne, Switzerland, where he was partially supported by Swiss National Science Foundation Grant 2100–
52’592.97.
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The classical theory describing transition is due to Prandtl and his students. In it, environmental dis-
turbances excite two-dimensional waves inside the boundary layer which are exponentially amplified.
These Tollmien–Schlichting (TS) waves quickly manifest spanwise variations, giving rise to complex three-
dimensional motions which are the precursors to turbulence. Until recently, the attention of workers seeking
to understand transition has focused upon these two-dimensional waves.

In his reviews of the flow control problem, Gad-el-Hak (1989, 1996) makes a distinction between two
methods for transition control. Stability modifiers seek to change the shape of the mean flow velocity profile
and hence its stability characteristics. Wave cancellation targets the linear disturbances directly, exploit-
ing but not changing the stability properties of the mean flow. The latter technique is applicable while the
perturbation is small and the principle of linear superposition still holds. Its principal advantage is in the en-
ergetics: presumably less effort is required to subdue or modify infinitesimal disturbances than to change the
mean boundary layer. Below, a small selection of the relevant prior work on the direct active control of flow
instabilities is reviewed (for a comprehensive review, see Joslin et al. (1997)).

Wave cancellation has been essayed in physical and numerical experiments. In an early experiment,
Milling (1981) demonstrated the viability of the approach in a water tunnel by exciting TS waves using a vi-
brating ribbon at one station on a flat plate. Another wave, 180◦ out of phase with respect to the first, was
introduced at a downstream station by identical means and the resulting wave cancellation caused the tran-
sition location to move beyond the plate’s end. In other early work, Biringen (1984) used temporal direct
numerical simulation (DNS) to study the efficacy of periodic suction/blowing as a control mechanism in
plane channel flow. Reduction in the amplitude and growth rate of relatively large TS waves was attained by
control applied over one time step. Bower et al. (1987) confirmed the efficacy of wave cancellation for two-
dimensional disturbances in the context of the Orr–Sommerfeld equation, showing that such waves could
be attenuated via blowing/suction at the wall. In a more detailed DNS study, Laurien and Kleiser (1989)
investigated the control of waves in boundary layers via two-dimensional blowing/suction at the wall over
a finite time span. They reported up to an order of magnitude decrease in disturbance amplitude with subse-
quent transition delay when the control was applied early in the process, but noted that streamwise vortices
already present in the flow were unaffected by this type of control. Experimental confirmation of the feasi-
bility of control via blowing/suction was provided by Ladd (1990), who used an “invert & delay” feedback
controller to stabilize the naturally occurring flow about a slender ellipsoid. In this experiment, the wall shear
stress was halved. Breuer et al. (1989) applied a similar approach to the control of small- and large-amplitude
transient disturbances in a boundary layer, using the deformation of flexible membranes mounted flush to the
wall to induce control flow. By tuning the time delay between the actuation of the disturbance seeder and
a series of control membranes they were able to postpone the disturbances’ breakdown into a turbulent spot
by about 50 δ∗.

The last decade has seen a marked increase in the application of sophisticated mathematical techniques
to the active control of flow disturbances. Abergel and Témam (1990) applied the rigorous theoretical frame-
work afforded by the theory of optimal control to the problem of controlling turbulence in some simple
two-dimensional configurations. This approach was later adopted by Joslin et al. (1997), who applied it to
the suppression of a TS wave by suction/blowing at the wall in the context of a two-dimensional DNS. Be-
wley and Liu (1998) used modern control theoretical techniques to determine optimal and robust controllers
for linear waves and nonmodal disturbances in plane channel flows, also utilizing suction/blowing at the
wall. This approach is particularly relevant for practical implementation of stable closed-loop controllers
as might be envisioned in aerospace applications. Cathalifaud and Luchini (2000) attacked the problem of
controlling linear optimal perturbations in spatially developing boundary layers on flat and concave plates
by considering the wall receptivity. They used a direct/adjoint method to demonstrate that it was possible
to annihilate completely the streamwise disturbance at a given downstream position, although the control
provoked a larger transient gain than that experienced by the uncontrolled perturbation. The use of adjoint
techniques for boundary layer receptivity studies was initiated by Hill (1995), who employed it to gauge the
effect of various sorts of forcing on the flow.

The optimal perturbations referred to above are the result of some recent developments in the field of hy-
drodynamic stability. It has been shown that suitably configured infinitesimal disruptions can grow by many
orders of magnitude, even in subcritical flows (Butler and Farrell, 1992; Trefethen et al., 1993; Luchini,
2000). These perturbations take the form of vortices aligned with the mean flow, they engender streaks (large
variations in the streamwise perturbation velocity, commonly observed in experiments on transitional flows)
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and must be considered in any attempt to engineer flows with large laminar regions, since they may prema-
turely initiate transition. Control is of particular relevance for three-dimensional flows, not only since these
tend to be more prevalent in engineering applications, but also because the optimal initial disturbance in this
family of flows feeds the strongly growing exponential crossflow instability (Corbett and Bottaro. 2001).
Since optimal perturbations are non-modal in nature, the wave cancellation techniques based on mode super-
position previously explored in the literature are not readily applicable, and optimal control theory suggests
itself.

The objective here is to control the growth of optimal perturbations in subcritical two- and three-
dimensional boundary layers via suction and blowing at the wall, as has been shown to be feasible for TS
waves. The perturbations evolve in time in a “frozen” or parallel boundary layer, the goal is to determine
the time-varying wall-normal velocity at the wall which best attenuates them. The control targets the dis-
turbances directly, since this demands less control effort. Clearly, if the control requires more energy than
would be otherwise consumed in overcoming increased drag due to turbulence, it is economically uninter-
esting. The variational method employed to determine the optimal distribution of suction and blowing at the
wall is described, and the physical mechanisms exploited by the control are discussed for several practically
relevant cases.

The temporal approximation is unphysical for this class of problems; it has been employed here because
it leads to a relatively straightforward optimality system. Unfortunately, there is no correspondingly straight-
forward manner of transforming the results into the spatial framework, unlike classical linear stability theory
(Gaster, 1962; Nayfeh and Padhye, 1979; Nayfeh, 1980). Further, while direct simulations (which are per-
haps the best yardstick with which to compare nonmodal results) indicate that results obtained using the
temporal approach may be mapped with fair accuracy into a spatial context (Laurien and Kleiser, 1989;
Breuer and Kuraishi, 1994; Lasseigne et al., 1999), the full extension of this work into the spatial context
is by no means trivial: for three-dimensional flows the perturbation should be tracked from the attachment-
line. Finally, this linear analysis is unable to account for eventual nonlinear interactions between the control
and the disturbance. Clearly, the present work must be viewed as preliminary and exploratory in nature, and
the findings and control laws reported can only be interpreted qualitatively.

2. Model System

The behavior of small, unsteady, three-dimensional perturbations, ũ(x, y, z, t)= (ũ, ṽ, w̃, p̃)T, is considered
as they evolve in the base flow under consideration. In the temporal approach used here, the base flow is
assumed to be parallel, taking the form U = (U(y), 0,W(y), P(x))T. The Navier–Stokes equations are then
written for û(x, y, z, t)=U+ ũ. Since disturbances are small the equations may be linearized about the base
flow and the resulting system used to study the perturbation.

2.1. Base Flow

For generality, the two-parameter family of similarity solutions for yawed wedge flows given by Cooke
(1950) is used to specify the base flow. One parameter, m, communicates the intensity of the pressure gra-
dient, the other is the yaw (or sweep) angle Λ, specifying the ratio of chord- to spanwise velocities in
the undisturbed external flow. On the one hand, with both parameters zero this model recovers the Blasius
boundary layer, whereas on the other it can also be used to model the three-dimensional accelerated flow
occurring on an infinite swept wing.

The general situation is shown in Figure 1(a), where the wedge coordinate system (subscript “w”) is such
that xw lies perpendicular to the wedge leading edge, zw lies along it, and y is normal to the surface. The cor-
responding velocity components inside the boundary layer are Uw, Ww, and V . Using the Blasius similarity
variable ξ = √

Ue/(νxw) y, an affine solution to the boundary layer equations is sought for the case where
Ue = Cxm

w and We = constant, the subscript “e” indicating the situation external to the boundary layer at the
chordwise position under consideration. Introducing a stream function of the form ψ = √

Ueνxw f(ξ), conti-
nuity is satisfied directly and as a result Uw = Ue d f/dξ . Assuming Ww = Weg(ξ), the momentum equations
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Table 1. Boundary layer quantities and optimal perturbation parameters for flow at Rθ = 166, m = 0.1. Γ indicates the growth
attained by the optimal disturbance over the span t = tΓ .

φ δ∗ θ αθ βθ Γ tΓ

0◦ 1.3478 0.5566 0 0.2522 227.4 863.5
45◦ 1.4444 0.5806 0.0140 0.2312 360.0 616.0

Figure 1. (a) Sketch of the problem laying out the reference system and illustrating the mean flow. As shown, control is through
slots, with the indicated wall-normal velocity applied at the wall only in the shaded region. (b) Falkner–Skan–Cooke solutions for
m = 0.1 at various sweep angles. At 45◦ maximum cross-flow occurs.

then yield the system

f ′′′ + m +1

2
f f ′′ +m(1− f ′2)= 0,

g′′ + m +1

2
fg′ = 0,

f(0)= f ′(0)= g(0)= 0 and f ′(∞)= g(∞)= 1,

where primes indicate derivatives with respect to the independent variable.
After Gregory et al. (1955), flow stability is studied in the frame of reference of the external streamline.

If φ is the angle between the reference frame aligned with the external potential flow and the wing coordi-
nate system, and assuming Λ≈ φ, as might be expected some distance from the leading edge, the velocity
components parallel and normal to the external flow are given by

U(ξ)= f ′(ξ) cos2 φ+ g(ξ) sin2 φ,

W(ξ)=[g(ξ)− f ′(ξ)] cosφ sinφ,

when nondimensionalized with respect to Qe. Figure 1(b) shows the velocity profiles corresponding to the
flows investigated here. All reference lengths are defined with respect to the momentum thickness based on
the streamwise component of the mean flow, given by θ = ∫ ∞

0 U (1−U) dξ , and listed in Table 1. Aside from
time t, dependent quantities are indicated by a subscript θ.

2.2. Small Perturbations

The system of linearized Navier–Stokes equations mentioned previously is customarily reduced to two equa-
tions. First the perturbation pressure is eliminated, then the x- and z-momentum equations are combined to
form an expression for the perturbation vorticity in the wall-normal sense,

η̃= ∂ũ

∂z
− ∂w̃

∂x
.
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The disturbance is then completely described by ṽ= (ṽ, η̃)T. Assuming spatial periodicity in the stream- and
spanwise directions,

ṽ(x, y, z, t)= v(y, t) exp(iαx + iβz)

with α and β the corresponding (real) wavenumbers, results in the following system for v:

Fv = 0, where F = I
∂

∂t
+ V

. (1)

Here I is the identity matrix, and

V=
[
∆−1(C∆− iαU ′′ − iβW ′′) 0

−iαW ′ + iβU ′ C

]
, with C = iαU + iβW − 1

R
∆.

The Laplacian operator is represented above by ∆ = ∂2/∂y2 −k2, with k2 = α2 +β2. The Reynolds number

R = Qeδ

ν
,

characterizing the relative importance of convective to diffusive processes, appears when the original system
is uniformly nondimensionalized using a characteristic length (δ) and velocity (Qe). Pressure is scaled by
the grouping ρQ2

e and δ is taken to be proportional to the boundary layer thickness, δ= √
ν�/Qe, where � is

a reference distance in the chordwise sense.
Boundary conditions on the normal perturbation velocity, its normal derivative, and the perturbation vor-

ticity are necessary to render (1) well posed. Since disturbances are assumed to vanish in the free stream,
it remains to specify these quantities at the wall. A natural and convenient choice in the context of control
studies via blowing/suction at the wall is to let the wall-normal disturbance velocity take nonzero values,
whereas the stream- and spanwise perturbations do not. At the wall, then,

v(0, t)= vw(t), η(0, t)= 0, and
∂v(0, t)

∂y
= 0,

where vw(t) is the (a priori unknown) control function specifying the wall-normal velocity at the wall, and
the homogeneous Neumann condition on v is a consequence of continuity. It will prove useful to have an
explicit statement to the effect that the state matches the control at the wall,

H(v(0, t), vw(t))= v(0, t)−vw(t)= 0.

The temporal framework with its concomitant assumption of a parallel boundary layer presupposes that
the perturbation evolves much more rapidly than the boundary layer itself. Hence it permits the consideration
of streamwise varying disturbances, which is crucial when examining three-dimensional boundary layers.
While the boundary layer scaling employed by Luchini (2000) would permit the treatment of a spatially de-
veloping parabolic system, it does not allow consideration of disturbances with stream- and spanwise scales
of comparable magnitude.

3. Optimal Control Problem

There are three essential components to the optimal control problem (Abergel and Témam, 1990; Gunz-
burger, 1997), two of which have already been introduced. The control is the means by which the system
can be manipulated, in this case vw(t). A description of the system is provided by the state v, its behavior is
constrained by (1) and its attendant boundary conditions.

The remaining element in the system is a mathematical statement of the control’s objective. Here the goal
is to neutralize potentially disruptive perturbations in the boundary layer, thereby increasing the extent of the
laminar flow state. Furthermore, this objective is to be attained optimally, i.e., using minimal effort.
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A disturbance’s intensity at a given time t = τ is commonly quantified by the kinetic energy density

Eτ = 1

2

∞∫
0

(u ·u +v ·v+w ·w) dy = 1

2k2

∞∫
0

(−v ·∆v+η ·η) dy,

where the overbars indicate transpose conjugate quantities. The rightmost term comes about after expressing
u and w in terms of v and η, and integrating once by parts. Provided the initial conditions for the state are
normalized such that E0 ≡ 1, the energy becomes synonymous with the gain or growth G experienced by
the perturbation. Such a normalization is applied throughout this work.

An analogous control energy density can be used to quantify the control effort. Over a specified control
period t ∈ [0, T ], one has

C =
T∫

0

(vw ·vw) dt,

where C is referred to as the control energy. For an inner product between two arbitrary complex vectors p
and q defined [p, q] = ∫ T

0 (p ·q) dt +c.c. with c.c. denoting complex conjugate, C is seen to be proportional
to the inner product of vw with itself.

Although it is possible to employ other metrics in building the cost function (a point addressed further in
Section 4.3), for simplicity this work restricts itself to using the growth and control energy as just described,
with one caveat. In the context of transient growth phenomena it is desirable that the control be well be-
haved, i.e. it should not precipitate larger increases in the perturbation kinetic energy than that experienced
by the uncontrolled disturbance. It is possible to penalize any such candidate control by including a term
proportional to the average growth in the cost functional.

A succinct statement of the objective is now possible: minimize the growth at the end of the control
period using the least control energy possible without provoking excursions in the growth at intermediate
times. Proceeding to the formulation of the cost functional for a given interval t ∈ [0, T ], this becomes

J(v, vw)= ζ C +χ ET +ψ
T∫

0

Eτ dτ, (2)

which is a real scalar quantity. The real constants ζ , χ, and ψ serve as tunable parameters weighting the con-
trol energy, the perturbation kinetic energy at the end of the control interval, and the average perturbation
kinetic energy on the interval, respectively. Provided that a particular contribution in the cost functional can
be associated with undesirable behavior on the part of the control, the weights can be adjusted to penalize
that element. The optimal control problem consists of finding a control vw, and state v which minimize J
subject to the constraint that they satisfy (1) and its boundary conditions on the interval under consideration.
An essential point is that while a global extremum of the functional is certainly desirable, the techniques used
in this work only guarantee a local extremum.

In light of the difficulties inherent to the solution of constrained minimization problems, it is convenient
to introduce the adjoint (or costate) variables

a(y, t)= (a,b)T and c = c(t),

and write a Lagrangian functional

L(v, vw,a, c)= J(v, vw)−〈Fv,a〉−[H, c], (3)

where the new variables play the rôle of Lagrange multipliers enforcing the constraints. The new inner prod-

uct appearing above is defined 〈p, q〉 = ∫ T
0

∫ ∞
0 (p ·q) dy dt +c.c., ensuring that the range of the functional

is the real line. Since they have not been explicitly enforced, all candidate solutions will furthermore be
required to satisfy the original system’s boundary conditions. The introduction of (3) replaces the original
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constrained optimization problem with an equivalent but more tractable unconstrained problem: determine
the control vw, state v, and costates a, c which render L stationary, in accordance with the first-order neces-
sary conditions for an extremal point. This is accomplished by setting to zero the directional derivative with
respect to an arbitrary variation in the variable under consideration, e.g., in the case of the state,

∂L

∂v
δv = lim

ε→0

L(v+εδv, vw,a, c)−L(v, vw,a, c)

ε
,

where in contrast to the case of the constrained functional, each of L’s arguments is considered to be an
independent variable.

This requirement comes about because at an extremum point the Lagrangian’s first variation with respect
to each of its arguments vanishes. Setting the first variation of the Lagrangian with respect to the state vari-
ables to zero as indicated above is greatly simplified provided the adjoint under the bracket inner product,
〈v, F∗a〉, is employed. The adjoint operator is

F∗ = I
∂

∂t
+ V∗,

with

V∗ =
[
∆−1(C∗∆+2i[αU ′ +βW ′]∂/∂y) ∆−1(iβU ′ − iαW ′)

0 C∗
]

and C∗ = iαU + iβW + 1

R
∆.

The complete costate equation associated with (3) then reads

F∗a= s, where s(y, t)= ψ

(
1

k2 ∆v(y, t) , − 1

k2 η(y, t)

)T

. (4)

Boundary conditions for the adjoint system are found in the successive integrations by parts from which it is
obtained: homogeneous Dirichlet boundary conditions apply to a, additional homogeneous Neumann con-
ditions apply to a. It is noteworthy that the adjoint system propagates backwards through time. Additionally,
from the v-equation one has

−χ 1

k2 ∆v(y, T)= ∆a(y, T) and c(t)= 1

R

∂3a(0, t)

∂y3 ,

and from the η-equation one obtains

χ
1

k2 η(y, T)= b(y, T).

Enforcing stationarity with respect to variations in the control, (∂L/∂vw) δvw = 0, yields the optimality
conditions

ζvw(t)= −c(t).

Finally, it is immediately evident upon setting the first variation of the Lagrangian with respect to the adjoint
variables to zero, (∂L/∂a) δa = 0 and (∂L/∂c) δc = 0, that one recovers the constraint equations, com-
pleting the optimality system. Combining the last series of results provides an expression for the terminal
conditions of the adjoint system,

a(y, T)= − χ

k2 v(y, T) and b(y, T)= χ

k2 η(y, T), (5)

as well as a relation for the control,

ζvw(t)= − 1

R

∂3a(0, t)

∂y3 . (6)
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Figure 2. Convergence plots for different solution techniques, showing the relative change in the cost function |J( j)−J( j−1)|/J( j)

over the first 60 iterations (this quantity must be less than 10−10 for convergence). SG: simple gradient (�= 1×10−3, unoptimized),
SD: steepest descent, and CG: conjugate gradient.

An optimal control solution satisfies the optimality system comprising (1), with a fixed initial condition
v0, (4)–(6) and minimizes (2). Implicit within the optimality system is the iterative algorithm used to solve
it. Starting from an arbitrary estimate for vw, (1) is integrated forwards in time to t = T , v is stored at each
step. Then (5) is used to determine terminal conditions for (4), which is subsequently integrated backwards
through time to t = 0. Along the way the third derivative of a at the wall is retained. A new estimate for the
control can be obtained using

v( j+1)
w = v( j)

w −�
(
v( j)

w + 1

ζ R

∂3a(0, t)

∂y3

)( j)

,

where � can be a constant (corresponding to a simple gradient method), or chosen to minimize the cost at
each iteration j +1 (for a steepest descent optimization). More sophisticated solution techniques can be em-
ployed to use the functional gradient represented by [1 , ζvw +c]; the Polack–Ribiere variant of the standard
conjugate gradient method is employed in this work (Press et al., 1992). Identical results are obtained irre-
spective of the solution technique, but Figure 2 shows that the method selected can have a substantial effect
on the computational effort. Steepest descent and conjugate gradient methods require one line minimization
per iteration, implying a number of forward integrations of (1); this is unnecessary in the simple gradient
method.

4. Results

Results are obtained using a Chebyshev collocation technique for the spatial discretization of (1) and (4) with
second-order backward Euler finite-differencing for the temporal integration. The method is a generalization
of that described by Corbett and Bottaro (2000), extended to treat the nonhomogeneous Dirichlet boundary
conditions which apply to v and the source terms appearing in the system for a. The computations presented
here employ 93 collocation points with the upper boundary situated at y∞ = 60, and a constant time step,
δt = 0.1. Grid convergence studies show these settings are adequate to ensure well-resolved results.

As discussed by Pralits et al. (2001), it is possible to check that (4) has been implemented correctly by
using finite differences to determine the gradient of the cost functional. For a given control vw this is accom-
plished by setting v̂w(τ)= vw(τ)+� , where � is some small number, then integrating (1) over the interval
using the modified control and evaluating J. One then compares the output of the adjoint computation at
t = τ with

δJ|τ = ∂J

∂v̂wr

δv̂wr +
∂J

∂v̂wi

δv̂wi,
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Figure 3. Validation of adjoint computation via centered difference evaluation of the cost functional gradient at iteration
(1) : v(1)w (t)≡ 0 with � = 2×10−6.

where subscripts indicate the real and imaginary parts and the partial derivatives can be found using any
suitable technique. Second-order centered differences have been employed to prepare the results shown in
Figure 3, which compares the functional gradients for the control of a three-dimensional boundary layer.
Clearly the accuracy of the procedure is a function of the time step and the magnitude of the control pertur-
bation. Noteworthy is that each of the 20 discrete evaluations of the cost gradient corresponds to two direct
integrations of (1). The advantage in carrying out instead one direct and one adjoint calculation is evident.

The discussion to follow focuses on controlling optimal perturbations in accelerated boundary layers be-
cause the rise time, i.e. , the time taken by the disturbance to attain maximum amplitude, is shortest in this
type of flow. The control of optimal perturbations for three-dimensional boundary layers, which are ideally
suited to precondition the flow for the exponentially amplified cross-flow instability, is particularly relevant
since these experience larger transients over shorter times than their two-dimensional counterparts: they rep-
resent ideal “worst-case” scenarios for determining the feasibility of controlling rapidly varying transient
phenomena. Table 1 describes the optimal perturbations experiencing the largest algebraic growth in subcrit-
ical favorable pressure-gradient flows found by Corbett and Bottaro (2001), which are investigated further
below.

4.1. Strategy

It is unlikely that terminal control, with the sole objective of reducing the growth at the end of the optimiza-
tion interval, will provide “good” results. In the context of suppressing optimal perturbations it is equally
important that the control action does not induce oscillations larger than the transient one seeks to eliminate.
This is expressed succinctly in (2), along with the evident desirability of employing minimal control effort;
it remains to determine the magnitude of the parameters ζ , χ and ψ which provide satisfactory results.

Setting the optimization interval to be the characteristic rise time of the optimal perturbation for the flow
under consideration (see Table 1), a set of parameters is found for which each of the elements in the cost
function contributes about equally (given in Table 2 under the heading “Equil”). Now it is possible to inves-
tigate various control strategies, expressed by varying the amplitude of selected parameters. Increasing only
the setting of ζ penalizes the control energy and encourages the use of minimal control effort (“cheap”). In-
creasing χ communicates the strong desire that the growth at the end of the interval be minimized, in this
case the control energy is in effect made freely available (“small”). Raising the setting of ψ restricts excur-
sions in the instantaneous value of growth (“flat”), with a similar relaxation of the limits placed on control
effort and terminal growth.

Growth curves for these cases are shown in Figure 4, where the uncontrolled case is included for ref-
erence, and circles indicate the end of the optimization interval. The disturbances’ evolution is tracked
beyond this point to determine their behavior after control ceases. Figure 5 shows the (spanwise-periodic)
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Table 2. Parametric study of the effect of the scalar weights for control on the interval T = tΓ . Given are parameter settings, value
of the cost functional, control and perturbation energies.

Case Strategy ζ χ ψ J C ET
∫

E dt

Two- Equil 1 1 0.001 51.0 16.9 19.3 14 865.2
dimen- Cheap 10 1 0.001 132.5 5.5 54.9 22 261.1
sional Small 1 10 0.001 126.2 41.7 4.6 38 919.7

Flat 1 1 0.01 173.6 15.4 25.1 13 306.5
Three- Equil 0.5 1 0.001 29.4 26.7 6.2 9845.8
dimen- Cheap 5 1 0.001 110.2 13.1 34.0 10 621.2
sional Small 0.5 10 0.001 45.4 41.6 0.8 16 930.3

Flat 0.5 1 0.01 108.0 22.3 12.7 8409.3

Figure 4. Different control strategies applied to a (a) two-dimensional and (b) three-dimensional boundary layer, with circles
indicating the end of the control period, T = tΓ .

Figure 5. Wall velocity profiles associated with the control strategies shown in Figure 4 for a (a) two-dimensional (zero imaginary
part), (b) three-dimensional boundary layer. (Line styles as in Figure 4.)

blowing/suction distribution employed in each case, the control for the three-dimensional boundary layer
shows a phase lag because the optimal perturbation has nonzero streamwise wave number (see Table 1).

At first it is gratifying to note that control is generally effective in attenuating the disturbance, and that
the growth as control ends is reduced to between less than 1% and one-quarter of its uncontrolled amplitude.
Further inspection reveals similarities and differences between each of the strategies. A common feature for
the range of parameters investigated is that the instantaneous growth attains a maximum before the end of
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Figure 6. Disturbance evolution in the y–z plane under regulation (“flat”) control in a three-dimensional boundary layer at (a) t = 0,
(b) t = 1

4 T , (c) t = 1
2 T , (d) t = 3

4 T , (e) t = T , and (f) t = 5
4 T , where T = tΓ . Shown are contours of u (dashed lines are negative)

and a vector representation of the in-plane velocity components (vector scaling and contour levels identical in all cases).

the control span (this maximum is referred to as the excursion growth – since the ideal growth curve for
the controlled flow is a straight line at unity, anything else is a deviation). Furthermore, the perturbation
undergoes another transient growth phase after control ends. There is a direct correspondence between the
magnitude of ET and the amount of post-control amplification (the magnitude of which is more pronounced
for two-dimensional boundary layers).

When the cost functional is balanced, the second lowest values of ET and excursion growth are at-
tained, and the growth rate is generally moderate. On the basis of terminal growth and the magnitude of
the subsequent transient, “cheap” control is the least effective strategy. However, growth rates are modest
and the control effort is at least a factor of two less than any other scheme; moreover, the control ef-
fort is distributed in the smoothest fashion, a consideration when seeking to apply control in an aerospace
context. “Small” control achieves the smallest exit growth and consequently exhibits the smallest tran-
sient after control ceases, but this is at the expense of experiencing the largest excursion growth during
the control interval, in addition to the largest growth rates. Finally, the “flat” control strategy invests most
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Figure 7. Snapshot of optimal perturbation for a two-dimensional boundary layer subject to various controls at t = 1
2 T = 1

2 tΓ :
(a) uncontrolled state for reference, (b) balanced cost control (“equil”), (c) minimal control (“cheap”), (d) terminal control (“small”),
(e) regulation control (“flat”). (Vector scaling and contour levels identical in all cases.)

effort in the initial stages of the control period, and the input disturbance undergoes the least excursion
growth on the interval. Note that in the two-dimensional boundary layer the output state produced by the
“cheap” and “flat” strategies experiences larger post-control amplification than occurs during the optimiza-
tion interval.

The physical mechanisms responsible for bringing about a reduction in perturbation kinetic energy can
be inferred by studying the disturbance state as it evolves under active control. Figure 6 shows the tem-
poral development of a disturbance subject to “flat” control in a three-dimensional boundary layer. The
optimal perturbation consists of a streamwise-oriented vortex with negligible u-velocity component. The
wall blowing/suction creates a half-vortex at the wall, in co-rotation with respect to the vortex in the free
stream, which displaces the latter away from the wall and inhibits the momentum transfer from the mean
flow that is the hallmark of algebraic growth. Additionally, it induces a “buffer streak” in the near-wall vicin-
ity which supplants the principal streak created by the optimal perturbation. As confirmed by Figure 4, the
key to “flat” control lies in quickly generating a buffer streak of fairly consistent magnitude. The persistent
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Figure 8. Regulation (“flat”) control applied over four different time spans in a (a), and two-dimensional, (b) three-dimensional
boundary layer. The end of the optimization period is shown by a circle.

crossflow-plane velocity components, although greatly attenuated in comparison with the uncontrolled case,
are sufficient to sustain a long-lived weak streak after control stops.

As shown in Figure 7 for the two-dimensional boundary layer, the primary difference amongst the control
strategies lies in the intensity of the buffer streak, which is proportional to the blowing/suction magnitude.
This also accounts for the variations in instantaneous growth, given the more or less direct relation between
the magnitude of u and E. There is a direct link between the control effort and the displacement of the exter-
nal vortex core with respect to the uncontrolled case. “Cheap” control is a good example of how small actions
can result in sizeable rewards: although it changes the position of the outer streak the least it nevertheless
yields a sizeable reduction in the terminal disturbance growth.

The above results indicate that optimal perturbations are remarkably difficult to control. Experiments to
determine the maximum degree of suppression feasible (achieved by setting ζ = χ = 0 with some ψ �= 0)
produce results practically identical to those obtained using the “flat” strategy. A pronounced peak in
blowing/suction as control is initiated indicates that this approach emphasizes the rapid establishment of the
buffer streak.

4.2. Control Period

Using the characteristic time scale of the optimal perturbation is a straightforward choice for the control
period: growth only occurs on this interval and the disturbance itself is in any case exponentially damped.
However, there is no reason to believe that this is the best or most appropriate optimization interval. From
the practical point of view it would be preferable to eliminate the threat posed by optimal perturbations as
quickly as possible. The post-control transients in Figure 4 show that room for growth remains even after
a prolonged intervention, so it is likely that better results will be attained for longer controls.

The “flat” strategy has been adopted in the following as its conservative approach, minimizing the dis-
turbance activity at all times, seems most appropriate in the context of the application. Figure 8 shows
growth resulting from the use of “flat” control on four optimization intervals. In each case the parameters
have been tuned so that ψ is ten times larger than its equilibrium value. It is apparent that for con-
trol spans less than the rise time of the optimal perturbation the disturbance is well behaved only while
control is active, subsequently undergoing unacceptably large post-control amplification. So the full rise
time sets a lower bound for satisfactory results, longer intervals are even better but more costly to com-
pute. Of course the temporal framework becomes an increasingly flawed approximation as time grows
large.

4.3. Suboptimal Control

The technological complexity of building a controller capable of precise action at an arbitrary location on
the surface of a wing is formidable. More common is a series of holes or slots in the wall, as illustrated
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Figure 9. Growth resulting from application of “equil” control to a three-dimensional boundary layer on five equal intervals,
simulating slots on an airfoil. The boxes indicate when blowing/suction is occurring.

in Figure 1. Provided this situation can be modeled in the temporal framework by applying control over
subintervals of the optimization period it becomes possible to assess the practicability of optimal control in
applications.

Figure 9 shows the result of controlling a three-dimensional boundary layer in five bursts of equal length
using the “equil” strategy. Since it is evident that the boundary layer is more sensitive at small times, the
control action is concentrated towards the origin. The control is switched on smoothly using a fringe func-
tion (Berlin, 1998), f(t)= S((t − τon)/τd)− S(1+ (t − τoff)/τd) where τon and τoff specify the start and end
times, τd specifies the delay over which f transitions from 0 to 1, and

S(σ)=




0, σ ≤ 0,[
1+exp( 1

σ−1 + 1
σ
)
]−1

, 0< σ< 1

1, σ ≥ 1.

, (7)

This is an exercise in suboptimal control since action is restricted to a portion of the optimization interval.
On balance, a significant reduction in terminal growth still occurs. However, the excursion growth is on the
order of the “small” strategy, and C is approximately three times larger than the continuous optimal control.
Inspection of the disturbance as it develops shows that the control establishes, and while active maintains,
a buffer streak of fairly constant amplitude over the optimization interval.

Another challenge facing implementation of optimal control in application is that it requires full know-
ledge of the flow field. In practice it is rather more likely that only the flow in the immediate vicinity of
a sensor can be measured, raising the interesting possibility of many actuators acting in parallel. In the tem-
poral framework this corresponds to full knowledge on a subinterval of the whole duration of the control, and
can be modeled by a normal optimization on the subinterval where the fixed input state is the output state of
the preceding subinterval.

The above describes receding horizon control, another instance of suboptimal control. Applying the con-
trol strategies described in Section 4.1 in a straightforward way is tedious, since the parameters in the cost
need to be adjusted such that the agglomerate cost matches the strategy.

This provides an opportunity to essay a slightly different metric in the cost functional. Define an alterna-
tive to the average kinetic energy density,

D = 〈v(y, t)−r,v(y, t)−r〉,
where r = (rv, rη)T is a fixed reference state towards which the control coerces the disturbance. Candidates
include the zero vector, the initial condition (which amounts to procrastination), or a damped TS wave. The
modified cost functional reads J̃(v, vw)= ζ C +χ ET +µD. A corresponding modification to the optimality
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Figure 10. Receding horizon suboptimal control (ζ = 1, χ = 0.1, µ= 1; r ≡ 0) applied to a three-dimensional boundary layer, show-
ing the departure from optimality as the number of subintervals increases (circles indicate interval boundaries, where the control may
be discontinuous).

system is required: s in (4) is replaced with

s̃(y, t)= −µ(v(y, t)−rv , η(y, t)−rη)
T.

Figure 10 shows how the growth varies as the number of subintervals increases. It is apparent that the
new metric approximates the average energy quite well, optimal control is practically identical to “flat” con-
trol. (This is not surprising, given the minor difference between the average energy and D when the reference
vector is zero.) As the number of subintervals increases, the overall quality of the control becomes increas-
ingly less optimal. In fact, it tends towards duplicating the “cheap” strategy, demonstrating the increasing
importance of C in the cost function as the interval shortens.

5. Summary

The optimal control problem for perturbations provoking the largest transient growth in parallel boundary
layers is considered, using a direct/adjoint technique. Uncontrolled, these initial conditions, which take the
form of streamwise-oriented vortices and give rise to streamwise-oriented streaks, are capable of growing
two orders of magnitude in subcritical flows. They are of particular relevance in swept boundary layers in
light of their strong resemblance to exponentially amplified crossflow vortices. Accelerated two- and three-
dimensional boundary layer flows are investigated since transient growth develops more rapidly in these
than in adverse- or zero-pressure-gradient flows. An order of magnitude reduction in disturbance growth is
demonstrated for both cases, the physics behind this attenuation is described.

The cost function combines the weighted sum of the control effort, the terminal disturbance growth, and
the magnitude of the average perturbation energy over the control interval. The effect of varying the weights
on the contributions and the duration of the control interval (with respect to the characteristic development
time of the optimal perturbation) has been investigated. It is important to limit the instantaneous growth of
the perturbation rather than focusing exclusively on its value as control ends. The rise time of the optimal
perturbation sets a lower limit for the optimization span, control over shorter intervals results in unacceptable
post-control amplification.

Physically, the control effort is directed at the streamwise oriented vortices which constitute optimal per-
turbations. In essence, the vortex core is displaced away from the wall and from the regions of high shear in
the mean flow which feed the disturbance via the lift-up mechanism.

This preliminary study has shown that optimal perturbations are difficult to eliminate using a transpiring
wall. Although substantially attenuated, it appears impossible to prevent them from undergoing one order
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of magnitude amplification using the cost function investigated herein. It is possible that more complex opti-
mization criteria yield better results. Note that although the blowing/suction profiles are remarkably smooth,
actually implementing them poses a significant technological challenge.

Before optimal control finds application in aerospace it will be necessary to study the control of three-
dimensional boundary layers in the spatial framework, and to develop robust controllers using limited
information about the flow. Steps in this direction have been made by Bewley and Liu (1998), Cathalifaud
and Luchini (2000), and Högberg and Bewley (2001), but much work remains. The utility of such technology
is evident, and of great practical interest.
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