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Optimal perturbations for the family of three-dimensional boundary layers described
by the Falkner–Skan–Cooke similarity solution are obtained using a variational tech-
nique in the temporal framework. The disturbances experiencing the most growth
take the form of vortices almost aligned with the external streamline at inception
and evolve into streaks. In subcritical flows these can attain about twice the transient
amplification observed in comparably forced two-dimensional flows. Possible connec-
tions between optimal perturbations and exponentially amplified crossflow vortices
are explored.

1. Introduction
The laminar–turbulent transition process in boundary layers is generally studied

for the limiting case of a two-dimensional base flow. While the complexity of the tran-
sition phenomenon warrants such simplification, it happens that three-dimensional
boundary layers predominate in a wide spectrum of engineering applications.

The flow over a swept wing is a canonical example of a three-dimensional bound-
ary layer which is of obvious interest to the aerodynamicist. A spanwise pressure
gradient on the wing causes a crossflow velocity component to develop inside the
boundary layer, altering the flow’s stability characteristics as a consequence. In a
two-dimensional boundary layer a favourable pressure gradient delays transition by
changing the shape of the mean velocity profile. Since laminar flow incurs signifi-
cantly less viscous drag than turbulent flow, modern wing sections are often designed
to ensure a favourable pressure gradient over a large part of the wing chord. It is
precisely in this environment, however, that crossflow instability is likely to arise.

Crossflow instability, which came to light in a series of flight tests on swept-wing
aircraft by Gray (1952), differs fundamentally from the viscous Tollmien–Schlichting
instability occurring in two-dimensional boundary layers, as explained by Gregory,
Stuart & Walker (1955). It is an inviscid instability resulting from the inflectional
crossflow velocity profile, and manifests itself primarily in the form of steady crossflow
vortices almost aligned with the free stream upon which travelling disturbances may
be superposed.

A plausible scenario for crossflow-induced transition in the low-disturbance en-
vironment likely to be encountered by a cruising commercial airliner can be pieced
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together from the literature. Sub-micron-sized imperfections on the wing surface
serve as seed sites for the first identifiable disturbances in the boundary layer, as
shown by Radeztsky, Reibert & Saric (1999). These have shapes and wavelengths
consistent with the most amplified steady and travelling perturbations predicted by
classical stability theory. By all accounts, the major discrepancy between theory and
observation lies in quantification of the disturbance’s growth rate. Theory predicts
that travelling perturbations grow quicker than their steady counterparts, which is
precisely the opposite of what is observed in many experiments. This may be explained
by observing that the steady vortices are continually excited by surface irregularities,
whereas nonlinear interaction at second order in perturbation theory is necessary
to generate travelling waves of the correct phase speed. Consequently, as remarked
by Reed & Saric (1989), steady crossflow vortices generally predominate in the low-
turbulence free-flight environment despite receiving suboptimal amplification. Once
present in the flow, steady crossflow vortices grow until they saturate at an amplitude
on the order of 10% of the base flow. The distorted boundary layer then becomes
susceptible to a high-frequency secondary instability which is generally credited with
bringing about transition. For a comprehensive discussion of crossflow transition, see
Reed & Saric (1989), Reed, Saric & Arnal (1996), Bippes (1999) and the references
therein.

The classical approach to hydrodynamic stability outlined in Drazin & Reid (1981)
posits the exponential time dependence of small disturbances in the flow under
consideration. Hence a positive growth rate implies instability, although it is worth
mentioning that the growth rates of primary instabilities commonly encountered in
boundary layer flows are small even for the ‘strongly unstable’ crossflow instability.
Left unclear are two issues of some significance: the first of these is how the bound-
ary layer selects and amplifies arbitrary initial disturbances from the surrounding
environment (the so-called ‘receptivity’ problem); secondly, once this selection has
taken place how long does it take for the known instability to establish itself? A
very weakly amplified mode may not attain full development until some point past
transition. Secondary stability theory, extensively applied in theoretical investigations
of crossflow instability, is not exempt from these considerations since it treats the
stability of the mean boundary layer flow modified by finite-amplitude disturbances,
usually saturated primary instabilities.

So ample motivation exists for investigating mechanisms capable of effecting rapid
transient growth. One such mechanism through which three-dimensional disturbances
in a mean shear flow can experience at least linear amplification in time has been
described by Ellingsen & Palm (1975) and Landahl (1980). This algebraic growth
mechanism produces streaks, or large variations in streamwise perturbation velocity,
which are pervasive features in transitional boundary layers. The eventual decay of
the initial disturbance through viscous diffusion gives the phenomenon its name
of ‘transient growth’. From the mathematical point of view the transient behaviour of
small perturbations in the boundary layer is a consequence of the non-normality of
the linearized equations which govern them, as discussed by Trefethen et al. (1993).

Recent studies of subcritical two-dimensional boundary layers have shown that
disturbances which experience maximum transient amplification exploit this mecha-
nism (see Butler & Farrell 1992; Luchini 1996; Andersson, Berggren & Henningson
1999; Luchini 2000; Corbett & Bottaro 2000). After the work of Butler & Farrell
(1992) such configurations of the initial perturbation velocities are termed optimal
perturbations (in the sense that they produce the most effect for the least effort). It is
not uncommon for the perturbation kinetic energy of optimally initiated disturbances
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to increase by several orders of magnitude, even in subcritical flows. Study of optimal
perturbations is warranted because they embody the ‘worst-case’ input to the flow
on the one hand, and may provide a link to events upstream of the point where an
asymptotic state can be said to exist on the other.

Optimal perturbations are of particular interest in swept wing flows since they
bear a strong resemblance to the primary exponential instability, in contrast to
the two-dimensional case. Thus, at subcritical conditions the algebraic mechanism
may actually precondition the boundary layer for the exponential instability which
develops later. In a related vein, when the primary instability is triggered optimally
it undergoes explosive transient growth, experiencing instantaneous growth rates an
order of magnitude larger than asymptotic. These considerations may have some
bearing on ‘bypass transition’ scenarios traditionally attributed to nonlinear effects.

Breuer & Kuraishi (1994) have shown that three-dimensional boundary layers
are capable of sustaining substantial transient growth. They chart the effects of
sweep angle, pressure gradient and Reynolds number on the growth of individual
Fourier modes but make no attempt to determine optimal perturbations, choosing to
work instead with modified eigenfunctions of the linear stability problem in which the
normal vorticity is set to zero. They also limit themselves to relatively large streamwise
wavenumbers, citing difficulties in resolving the degenerate discrete spectrum which
develops as the streamwise wavenumber tends to zero, even though their results show
that most growth occurs in this limit. Hultgren & Gustavsson (1981) have associated
the continuous spectrum with transient growth.

In this work optimal perturbations obtained using a temporal approach are pre-
sented for the Falkner–Skan–Cooke class of swept boundary layers. The optimization
technique is described in terms of a Lagrange multiplier formalism. Subcritical and
linearly unstable flows are investigated, and transient growth is found to play a
potential rôle in both stability régimes.

The temporal framework and its accompanying parallel-flow assumption comprise
this work’s major weakness, although recent results indicate that transients obtained
via temporal analysis may be mapped into a spatial context (Meyer 1989; Breuer &
Kuraishi 1994; Lasseigne et al. 1999). While this lends the present results a preliminary
flavour, it should be pointed out that extending the analysis to the more physical
spatial framework is not straightforward. An advantage to the temporal approach
is that it permits the consideration of oblique disturbances, i.e. flow structures with
a streamwise periodicity comparable to the spanwise periodicity, a scenario not
permitted by a boundary layer scaling such as that employed in the studies by
Luchini (2000) and Andersson et al. (1999) in the spatial framework.

2. Swept-wing boundary layer
The boundary layer on an infinite swept wing is modelled here using the two-

parameter family of similarity solutions for yawed wedge flows given by Cooke
(1950). The first parameter, m, describes the intensity of the pressure gradient, and the
second is the yaw (or sweep) angle Λ which provides a relation between chordwise
and spanwise velocities. This model’s principal advantage is that the parameters offer
a means of systematically varying the magnitude of the mean crossflow velocity
component.

The general situation is illustrated in figure 1, where the wing coordinate system
(subscript ‘w’) is such that xw lies along the wing chord, zw is in the spanwise sense and
y is normal to the surface. The corresponding velocity components inside the boundary
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Figure 1. Boundary layer development on an infinite swept wing. The attachment line is shown as
a dashed line, and the external streamline is indicated by the dotted line. The wing and streamline
reference frames are shown, as are the boundary layer velocity profiles in the plane aligned with the
external streamline.

layer are Uw , Ww and V . Using the Blasius similarity variable ξ = (Ue/(νxw))1/2y,
an affine solution to the boundary layer equations is sought for the case where
Ue = Cxmw and We = constant, where the subscript ‘e’ indicates the situation at the
boundary layer edge at the chordwise position under consideration. Introducing a
stream function of the form ψ = (Ueνxw)1/2f(ξ) continuity is satisfied directly, and
as a result Uw = Uedf/dξ. Assuming Ww = We g(ξ), the momentum equations then
yield the system

f′′′ +
m+ 1

2
ff′′ + m(1− f′2) = 0, g′′ +

m+ 1

2
fg′ = 0, (2.1a, b)

with

f(0) = f′(0) = g(0) = 0 and f′(∞) = g(∞) = 1, (2.1c)

where primes indicate derivatives with respect to the independent variable. A physi-
cally meaningful range of values for the pressure gradient parameter is −0.0904 6
m 6 1, where the lower limit corresponds to imminent separation and the upper limit
applies to stagnation-line flows.

After Stuart (Gregory et al. 1955, part II), stability is typically studied in the frame
of reference of the external streamline. For zero pressure gradient flows the problem
reduces to the Blasius case. If φ is the angle between the reference frame aligned
with the external potential flow and the wing coordinate system, and assuming Λ ≈ φ
as might be expected some distance from the leading edge, the velocity components
parallel and normal to the external flow are given by,

U(ξ) = f′(ξ) cos2 φ+ g(ξ) sin2 φ, (2.2a)

W (ξ) = [g(ξ)− f′(ξ)] cosφ sinφ, (2.2b)

when non-dimensionalized with respect to Qe, the velocity magnitude at the boundary
layer edge.

The effects of the parameters on the base flow can be readily inferred from (2.1)
and (2.2). From the widespread appearance of m in (2.1) it can be appreciated that
the pressure gradient plays a strong rôle in determining the shape of both velocity
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Figure 2. Solutions of the Falkner–Skan–Cooke flow, showing (a) the effect of changing φ for
m = 0.1, and (b) the effect of varying m at φ = 45◦.

m φ (deg.) δ∗ θ H |W |max

−0.0904 45 2.9490 0.9370 3.1473 0.1303

−0.05 0 2.1177 0.7515 2.8180 0
45 2.0042 0.7408 2.7055 0.0373

0.1 0 1.3478 0.5566 2.4215 0
45 1.4444 0.5806 2.4878 0.0392
48.8 1.4574 0.5834 2.4981 0.0388

0.46 46.9 1.0734 0.4532 2.3685 0.0927

1 45 0.8371 0.3648 2.2947 0.1199

Table 1. Integral boundary layer parameters for selected Falkner–Skan–Cooke profiles.

profiles. At a given pressure gradient, it is clear from (2.2) that the sweep angle will
regulate the magnitude, but not the shape, of the mean crossflow. The relationship is
investigated further in figure 2, where part (a) shows the retarding effect of increased
sweep on U, and the symmetry of W about a maximum at 45◦. Figure 2(b) presents
the result of varying the pressure gradient at fixed sweep; of note here is that the
mean crossflow reverses sense when subjected to an adverse pressure gradient.

As is customary, the displacement and momentum thicknesses are defined using
only the streamwise velocity component,

δ∗ =

∫ ∞
0

(1−U)dy and θ =

∫ ∞
0

U(1−U) dy.

For a given pressure gradient, these become weak functions of the sweep angle. Some
representative numerical values of these quantities, their ratio in the form of the
shape factor H , and the maximum value of the mean crossflow component are given
in table 1.

3. Small disturbances
Of interest is the behaviour of a small unsteady three-dimensional perturbation

with velocity components ũ(x, y, z, t) = (ũ, ṽ, w̃)T in a steady incompressible parallel
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boundary layer with crossflow, whose velocity components U (y) = (U, 0,W )T are
given by the Falkner–Skan–Cooke similarity solution. Linearizing the Navier–Stokes
equations eliminating the pressure and introducing the wall-normal perturbation
vorticity, η̃ = ∂ũ/∂z − ∂w̃/∂x, it becomes possible to describe the perturbation in
terms of ṽ = (ṽ, η̃)T. Further assuming periodicity of the form

ṽ(x, y, z, t) = v(y, t) exp (iαx+ iβz),

where α and β are real wavenumbers in the stream- and spanwise directions, yields
the following system for v (which may on occasion be referred to as the ‘state’):[(

∂

∂t
+ iαU + iβW − 1

R
∆

)
∆− iα

d2U

dy2
− iβ

d2W

dy2

]
v = 0, (3.1a)

(
∂

∂t
+ iαU + iβW − 1

R
∆

)
η =

(
iα

dW

dy
− iβ

dU

dy

)
v. (3.1b)

Above, ∆ = ∂2/∂y2 − k2 represents the Laplacian operator, and k2 = α2 + β2. The
disturbance evolves from an initial condition vo(y) = (vo, ηo)

T (occasionally termed
the ‘control’) which satisfies the boundary conditions, which are as follows: the
normal perturbation velocity and its normal derivative vanish at solid walls, and die
out in the free stream. Since the stream- and spanwise perturbation velocities also
vanish at these boundaries, the normal disturbance vorticity must too.

The Reynolds number, characterizing the relative importance of convective to
diffusive processes,

R =
Qeδ

ν
,

appears when the original system is uniformly non-dimensionalized using a charac-
teristic length (δ) and velocity (Qe). Pressure is scaled by the grouping ρQ2

e and δ is
taken to be proportional to the boundary layer thickness defined by δ = (ν`/Qe)

1/2,
where ` is a reference distance in the chordwise direction.

A perturbation’s intensity at a given time t = τ is typically quantified by its kinetic
energy density, defined as

Eτ =
1

2

∫ ∞
0

(ū · u+ v̄ · v + w̄ · w)dy =
1

2k2

∫ ∞
0

(−v̄ · ∆v + η̄ · η)dy,

where the overbars indicate transpose conjugate quantities. The rightmost term in the
expression is found easily after expressing u and w in terms of v and η, and integrating
once by parts. Provided the inner product between two arbitrary complex vectors p
and q is defined (p, q) =

∫ ∞
0

(p̄ · q)dy + c.c. with c.c. denoting complex conjugate, Eτ
is seen to be simply one quarter of the inner product of u(y, τ) with itself. In the
discussion to follow importance is attached to disturbances which undergo significant
relative amplification over a given time interval. This gain is quantified by the growth,
defined as

G(τ) =
Eτ

Eo
,

where Eo is the kinetic energy density of the initial condition.
In closing this section, note that (3.1) can be written more compactly as,

F v = 0, where F = I
∂

∂t
+ Λ. (3.2)
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In the above expression I is the identity matrix and,

Λ =

[
∆−1(C∆− iαU ′′ − iβW ′′) 0

−iαW ′ + iβU ′ C

]
, with C = iαU + iβW − 1

R
∆.

An explicit statement that the state at t = 0 is constrained to match the control,

H(v(y, 0), vo(y)) = (I ,−I ) · (v(y, 0), vo(y))T = v(y, 0)− vo(y) = 0,

will prove useful later on. It is clear that the linearized dynamical operator Λ is not
self-adjoint whenever α and β are not simultaneously zero, i.e. in all cases of physical
interest. The implication is that while the long-term behaviour of an arbitrary initial
condition is adequately described by a single eigenmode, a short-term transient
bearing little resemblance to the mode is possible (Trefethen et al. 1993).

4. Optimal perturbations
Optimal perturbations are initial conditions which excite the most energetic per-

turbation in a given base flow. As remarked by Farrell (1988), ‘the concept of an
optimum requires a measure’; this work follows his lead in using the appropriately
scaled perturbation kinetic energy density (growth) to gauge optimality. It remains to
devise a technique which can be used to determine these optimal initial conditions.

A common approach is to represent generic disturbances as a weighted sum of
eigenvectors to the Orr–Sommerfeld/Squire system of equations ((3.1) with exponen-
tial time dependence, see § 5). The optimization problem then lies in determining the
weights which maximize the gain over a given time span, leading to a generalized
eigenvalue problem. Butler & Farrel (1992) use this method in their study of optimal
perturbations for Couette, Poiseuille and Blasius boundary layer flows, and its use
is widespread (Reddy & Henningson 1993; Hanifi & Henningson 1998). A primary
inconvenience with this approach is the treatment of the continuous spectrum which
plays an important part in transient growth (Hultgren & Gustavsson 1981; Breuer
& Kuraishi 1994), particularly as the streamwise wavenumber goes to zero. Further,
since the eigenvectors are non-orthogonal, a large number of modes may be required
to adequately resolve an arbitrary disturbance.

These problems have inspired the use of alternative vector bases (Lasseigne et al.
1999; Cossu et al. 2001), although this approach is considerably more involved. The
first challenge lies in finding a suitable set of basis functions which is well-adapted to
the problem geometry. This is a non-trivial problem in its own right for the case of
the semi-infinite boundary layer domain. Then the temporal evolution of each basis
function must be determined, before turning to the problem of determining the weight
on each basis function, as above.

An efficient variational alternative has been used by Luchini & Bottaro (1998),
Andersson et al. (1999), Luchini (2000) and Corbett & Bottaro (2000). The usual
description of this technique centres on the definition for G and the inner product
defining the energy. Upon introducing the propagator, the evolution operator which
takes an initial condition vo to the state at t = τ, it becomes possible to form
a Rayleigh quotient in which the adjoint to (3.1) under the energy inner product
appears. This is amenable to solution via power iteration (for an elegant account, see
Luchini 2000).

The mathematical framework of optimal control theory can also be employed to
find optimal perturbations. The essential elements in an optimal control problem are
a mathematical description of the objective to be attained, some means of adjusting
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the system to meet the objective, and a description of the system and its behaviour
(Abergel & Témam 1990; Gunzburger 2001). The last element (the constraints) is
provided by (3.1) and its boundary conditions, which together describe the state of
the perturbation at any instant in time. The second element (the control) is furnished
by the initial conditions vo through which the state can be directly affected. Finally,
a suitable real objective functional over the time interval t = τ is simply the growth,

J(v, vo) = G(τ).

Formally, the task is now to maximize J, a proposition which is considerably
complicated by the constraints on the state and the control.

In the light of the difficulties inherent in constrained optimization it is convenient
to introduce the adjoint (or costate) variables, a(y, t) = (a, b)T and c(y) = (c, d)T, and
to write a Lagrangian functional,

L(v, vo, a, c) = J− 〈F v, a〉− (H , c), (4.1)

where the adjoint quantities play the rôle of Lagrange multipliers in enforcing the
constraints. Again L is exclusively real, and the new inner product appearing above
is defined 〈p, q〉 =

∫ τ
0

∫ ∞
0

(p̄ · q) dy dt+ c.c., ensuring that the range of the functional is
the real line. Since they have not been enforced with their own Lagrange multipliers,
all candidate solutions will furthermore be required to satisfy the original system’s
boundary conditions.

The introduction of the Lagrangian functional replaces the original constrained
optimization problem for J with an equivalent unconstrained problem for L. Now
the task is to determine v, vo, a and c which render L stationary, in accordance with
the first-order necessary conditions for an extremal point. This is accomplished by
setting to zero the directional derivative with respect to an arbitrary variation in the
variable under consideration, e.g. in the case of the state,

∂L
∂v

δv = lim
ε→0

L(v + εδv, vo, a, c)−L(v, vo, a, c)

ε
,

where in contrast to the case of the constrained functional, each of the arguments
of L is considered to be an independent variable. It must be stressed that this
approach provides a local extremum, with no guarantee that it happens to be a global
extremum.

Setting the first variation of the Lagrangian with respect to the state variables to
zero as indicated above is greatly simplified provided the adjoint under the bracket
inner product is employed. By definition this is 〈v, F ∗a〉 where the adjoint operator is
expressed compactly as F ∗ in analogy to (3.2). Moving F to the other side of the inner
product involves repeated integration by parts, giving rise to terms which define the
boundary conditions on F ∗. In this manner equations for the costate are obtained,[(

∂

∂t
+ iαU + iβW +

1

R
∆

)
∆ + 2i

(
α

dU

dy
+ β

dW

dy

)
∂

∂y

]
a =

(
iα

dW

dy
− iβ

dU

dy

)
b,

(4.2a)(
∂

∂t
+ iαU + iβW +

1

R
∆

)
b = 0, (4.2b)

where the boundary conditions on a are identical to those for v. Additionally, from
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(3.1a) one has

− 1

2k2Eo
∆v(y, τ) = ∆a(y, τ), and ∆a(y, 0) = c(y);

and from (3.1b),

1

2k2Eo
η(y, τ) = b(y, τ), and b(y, 0) = d(y).

Enforcing stationarity with respect to variations in the control, (∂L/∂vo)δvo = 0,
yields the optimality conditions,

− Eτ

2k2E2
o

∆vo(y) = c(y), and
Eτ

2k2E2
o

ηo(y) = d(y).

Finally, it is immediately evident upon setting the first variation of the Lagrangian
with respect to the adjoint variables to zero, (∂L/∂a)δa = 0 and (∂L/∂c)δc = 0, that
one recovers the constraint equations, completing the optimality system. The above
expressions are identical to those obtained from the Rayleigh quotient approach
referred to previously, although the manner in which they come about is different.
Notably, the system of adjoint equations under the bracket inner product turns out to
be identical to the adjoint under the energy inner product appearing in the Rayleigh
quotient approach.

Combining the last series of results provides transfer relations between the direct
and adjoint systems at time t = τ,

a(y, τ) = − 1

2k2Eo
v(y, τ), b(y, τ) =

1

2k2Eo
η(y, τ), (4.3a, b)

as well as an expression for the optimal perturbation,

vo(y) = −2k2E2
o

Eτ
a(y, 0), ηo(y) =

2k2E2
o

Eτ
b(y, 0). (4.4a, b)

Implicit within these relations is the iterative algorithm used to find the optimal
perturbation. A guess is made for vo and (3.1) is integrated to t = τ. Using (4.3), this
result provides appropriate terminal conditions for (4.2) which is marched backwards
in time to t = 0, where (4.4) gives an improved set of initial conditions for the next
iteration. Convergence using this simple iterative approach (equivalent to using a
steepest descent method forJ) is quite rapid, rendering more sophisticated algorithms
unnecessary. In practice it is uncommon to perform more than five iterations to obtain
a converged result, which serves as an a posteriori indicator that the first two singular
values of the propagator are well separated, see § 6. (Convergence is attained when
the L2 norm of successive iterates for vo differ by less than 10−4, i.e. J changes
less than 10−9.) The fact that the procedure only guarantees a local extremum of
the objective functional is tempered by the observation that it will converge to the
singular vector corresponding to the largest singular value unless this happens to be
perfectly orthogonal to the arbitrary initial guess. The large separation between the
first and second singular values serves as a check on the worst-case scenario, easily
remedied by choosing another starting point.

5. Numerical treatment
The spatial discretization of (3.1) and (4.2) is accomplished using a Chebyshev

collocation technique, whereas the temporal discretization is carried out using second-
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order backward Euler finite differences (Canuto et al. 1988). The computational
space, in which the unknowns are represented at the Chebyshev–Gauß–Lobatto
nodes ζ, is mapped into the physical domain using an algebraic mapping y =
y∞(h/2)(1+ζ)/(1+h−ζ), where h is a constant stretching factor and y∞ is the location
of the upper boundary. Derivatives are obtained via matrix-vector multiplication with
the differentiation matrix, which is suitably adjusted by the Jacobian of the mapping.
Integral quantities are obtained using similarly adjusted Gaussian quadrature rules,
and are efficiently computed as vector products. The problem is programmed in
Matlab, and the collocation points and derivative matrices are computed using the
DMSuite package by Weideman & Reddy (2000). Time advancement requires a
matrix-vector multiplication and storage for two previous solutions.

Numerical parameters have been determined by grid convergence study. All data
presented have been obtained using n = 93 collocation points, δt 6 0.2, and y∞ = 100
(based on δ). A value of h = 1/9 has been used for the stretching factor, placing half
the points inside the boundary layer.

Optimizations with respect to two or more parameters have been performed using
the Nelder–Mead simplex algorithm (Press et al. 1992); results are verified using
different initial guesses. When optimizing with respect to one parameter, a line
search algorithm based on golden section search and parabolic interpolation has been
employed.

Modal results are easily obtained by assuming exponential time dependence,

v(y, t) = v̂(y) exp (−iωt),

where the angular frequency ω is complex. Then from (3.2) one obtains the Orr–
Sommerfeld/Squire system,

Λv̂ = iωv̂,

which is a generalized eigenproblem and can be efficiently inverted using the QZ
algorithm.

6. Results
It is desirable to quantify the transient growth possible in three-dimensional bound-

ary layers, and to compare it to that occurring in similar two-dimensional flows. The
algebraic instability of Falkner–Skan flows has been considered in a previous study
by Corbett & Bottaro (2000), and those results will be employed for comparison
purposes. Since the Falkner–Skan–Cooke boundary layer only engenders a crossflow
component for non-zero pressure gradient and sweep, confirmation will be sought
that the effects of the pressure gradient are the same in two- and three-dimensional
base flows; and the nature of the effect (if any) the sweep angle has on the transient
growth will be determined. Lastly, because the exponential crossflow instability and
the lift-up mechanism responsible for transient growth in two-dimensional flows are
both inviscid in nature and resemble one another physically, it is natural to explore
possible links between these mechanisms.

6.1. Terminology

In the temporal framework, an optimal perturbation is defined with respect to a given
lapse of time. Consider a subcritical mean flow parameterized by R, m and φ. Of all
initial conditions vo described by the wavenumber pair (α, β), an optimal perturbation
for the finite period t = τ attains the largest possible growth over that time span,
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φ = 48.8◦ and βθ = 0.2327. Optimal perturbations are denoted OP. (a) The total growth and (slightly
smaller) contribution from the streamwise velocity alone; (b) contributions from perturbation
velocities in the crossflow plane.

G(τ) = G(R,m, φ, α, β, τ). What is referred to here as a global optimal perturbation
is the combination of initial conditions and time span which together produce the
largest possible growth for all times,

γ = G(tγ) = max∀t G(R,m, φ, α, β, t),

where tγ denotes the interval on which this growth is attained.
In flows where exponential amplification is possible, global growth for unstable

perturbations is unbounded. Optimal perturbations for finite intervals can still be
determined, however, and here these will be referred to as local or short-term optimals.
As the interval under consideration increases beyond the duration of the transient
event, the asymptotic state sets in and the optimal perturbation for the modal
mechanism is recovered. As shown by Hill (1995), in this case the form of the optimal
is given by the eigenvectors to the adjoint stability problem which comes about when
the solution to (4.2) is assumed to have exponential time dependence.

6.2. Previous work

Breuer & Kuraishi (1994) have investigated transient phenomena in Falkner–Skan–
Cooke flows, demonstrating that these can support appreciable growth. They integrate
(3.1) using ‘near-optimal’ initial conditions, constructed by setting the normal vorticity
of the least damped Orr–Sommerfeld (OS) eigenfunction to zero. For numerical
reasons, they restrict themselves to modes with αθ > 0.04. To justify the more involved
procedure outlined in § 4, it suffices to compare the growth obtained by such a modified
mode and that experienced by a global optimal perturbation for the same conditions,
as shown in figure 3. The same figure presents results for a global optimal with a
streamwise wavenumber approximately one-third of the others, but the same spanwise
wavenumber. The full details for these three cases are reported in table 2. Note that all
results in this work are presented scaled in terms of the momentum thickness, which
was shown to be the most appropriate scaling for Falkner–Skan flow by Corbett &
Bottaro (2000).

The previous example argues that determining true optima is a worthwhile exercise:
not only do they experience substantially more growth than modified OS modes, but
this growth occurs for perturbations of small streamwise wavenumber, which pose no
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αθ βθ γ tγ

0.0142 0.2327 361.9 608.7
0.04 0.2327 284.9 363.5
0.04 0.2327 79.7 272.6

Table 2. Maximum transient growth parameters for Rθ = 166, m = 0.1, φ = 48.8◦. The first two
entries report growth experienced by optimal perturbations, the last entry records that obtained by
the least-damped Orr–Sommerfeld mode with η set to zero.

difficulty for the procedure of § 4. As might be expected from boundary layer scaling,
the streamwise velocity component of the perturbation is the prime benefactor from
algebraic amplification, and while the normal velocity is a driving factor in the process,
its magnitude contributes the least to the overall growth. However, in contrast to the
modified OS mode in which the normal perturbation velocity decays directly, optimal
perturbations are configured so that it also undergoes a transient, peaking before the
maximum growth is obtained. After the growth phase in this subcritical boundary
layer all disturbances decay at the rate of the asymptotic state predicted by classical
theory.

The velocity profiles of the three disturbances just discussed are given in figure 4.
Parts (a) and (b) show the initial conditions and are scaled to unit normal velocity.
The most evident difference between the optimals and the modified OS mode is in
the crossflow-plane velocity components; it is worthwhile mentioning in this regard
that the normal perturbation vorticity of optimal perturbations is small, but non-zero.
Parts (c) and (d) of the figure show the disturbances as maximum growth is attained;
here the scaling is to unit streamwise velocity. The output states are remarkably
similar, particularly for the case in which the wavenumbers are identical, despite
the differing initial conditions. As is the case for two-dimensional boundary layers,
the overall end state is a streak, and the input crossflow vortex is on the verge of
undergoing viscous dissipation, cf. figure 3.

Luchini (2000) has shown that it is the structure of the singular-value spectrum
of the propagator which is responsible for driving sub-optimal initial conditions to
output states that are close to optimal. He observes that the effect of the evolution
operator is equivalent to expanding an arbitrary initial condition as a weighted
sum of the operator’s left singular vectors, and then replacing these with the right
singular vectors, adjusting the corresponding weights in the sum by the singular
values. Provided that the growth (or first singular value) is substantially larger than
all other singular values, it follows that the output state of any initial condition will
strongly resemble that resulting from the optimal perturbation.

6.3. Effect of three-dimensionality

An idea of the extent and magnitude of transient growth possible in a given flow is
rapidly obtained by considering a plot of level curves of γ and tγ in the wavenumber
plane. Figures 5 and 6 present this information for swept and unswept Falkner–
Skan–Cooke flows subject to adverse (m = −0.05) and favourable (m = 0.1) pressure
gradients. In the three-dimensional case, the sweep angle, φ = 45◦, is such that the
crossflow component of the base flow is maximized. The Reynolds number, Rθ = 166,
corresponds to that investigated by Corbett & Bottaro (2000), whence the results for
the two-dimensional flow originate. The conditions for maximum global growth in
these flows are summarized in table 3.
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m φ (deg.) αθ βθ γ tγ

−0.05 0 0 0.2511 356.4 898.2
45 −0.0179 0.2449 506.3 590.8

0.1 0 0 0.2522 227.4 863.5
45 0.0140 0.2312 360.0 616.0

Table 3. Characteristics of the maximum global optimals for two- and three-dimensional
boundary layers at Rθ = 166.

The swept boundary layer subject to a moderately adverse pressure gradient por-
trayed in figure 5(a) illustrates a case where algebraic growth coexists with Tollmien–
Schlichting and crossflow instabilities. In this figure, areas of the wavenumber plane
which experience exponential amplification are shaded, and the extent of TS insta-
bility in the two-dimensional flow is indicated with a dotted line. The region of the
wavenumber plane subject to crossflow instability extends from the area dominated
by TS instability right into the heart of the area experiencing the largest algebraic
growth. In this case the largest transient growth is obtained by a disturbance which
lies at a point on the neutral stability curve. Notable is that the swept-wing flow
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Figure 5. (a) Maximum transient growth in a retarded three-dimensional boundary layer: solid
lines γ, dash-dot lines tγ . The flow parameters are Rθ = 166, m = −0.05, φ = 45◦. The shaded region
indicates exponential instability, the dotted line represents its extent for two-dimensional flows.
(b) Transient growth in a two-dimensional boundary layer subject to an identical pressure gradient
(from Corbett & Bottaro 2000).

sustains growth of almost half as much again as its two-dimensional counterpart, in
about two-thirds the time.

Figure 6 presents an analogous situation for the accelerated boundary layer, which
at this mild pressure gradient and low Reynolds number is entirely subcritical. Again,
in comparison to the unswept case the three-dimensional flow sustains significantly
more algebraic growth over a shorter time span.

Velocity profiles of the global optimal perturbation responsible for the greatest
growth in each of the four flows are reported in figure 7, both at inception and at the
time maximum growth is attained. It can be seen that momentum thickness scaling
is somewhat less efficacious for three-dimensional boundary layers, but the maximum
velocity amplitude remains well correlated. As is customary, the optimal perturbations
have been scaled to unit normal velocity, and the output state has been scaled to
unit streamwise velocity. The parameters for optimal growth are reported in table 3.
In comparison to their two-dimensional counterparts, optimal perturbations in swept
boundary layers have larger stream- and spanwise perturbation velocity amplitudes;
furthermore the maximum perturbation amplitude is closer to the wall. Especially
remarkable is the disparity in size of the initial vortex at the point of maximum
amplification between the two classes of flows.

In contrast to the two-dimensional case, the physical mechanism responsible for
transient growth is not immediately evident from the perturbation velocity profiles
shown in figure 7. To shed more light on the situation, the time evolution of the
optimal perturbation for the favourable pressure gradient case is shown in figure 8.
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in a similarly accelerated two-dimensional boundary layer (from Corbett & Bottaro 2000).

It shows snapshots of the optimal perturbation in the crossflow plane, alternating
between contours of u (negative iso-lines are dotted, and zero has been omitted) and
a vector representation of the crossflow velocity components of the disturbance, as
time increases from left to right. Contours of u on the plane yθ ≈ 4 are also shown,
from which the rapidity of the growth can be appreciated, as well as the longevity of
the streaks produced by the optimal.

6.4. Optimal sweep

To obtain an upper bound on the transient growth possible in a swept boundary
layer at given R and m, it is necessary to optimize γ with respect to the sweep angle.
The result of such an optimization for Rθ = 166, m = 0.1 is shown in figure 9. Part (a)
reports the optimal sweep angle Φ, i.e. γ(Φ) = max∀φ γ(φ); part (b) shows level curves
of γ and tγ obtained at Φ. Since the base flow is a weak function of the sweep angle,
a relatively small difference is observed in the growth at conditions of maximum
crossflow presented in figure 6(a) and that at the optimal sweep angle. Φ is never less
than about 48◦, and the largest maximum amplification occurs for a flow angle close
to this minimum. The shape of the maximum global optimal perturbation at these
conditions has already been reported in figure 4; it is quite similar to that found at
45◦.

In the wavenumber-plane surveys reported in figures 5, 6 and 9, tγ is fairly mod-
erate in much of the plane, but experiences a well-defined peak for disturbances
characterized by large spanwise wavelength and close to steady in the streamwise
sense. No attempt has been made to obtain data for very small wavenumbers since
the very long time intervals required for globally optimal growth render the validity
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of the parallel flow assumption questionable. For this reason the near vicinity of the
origin has been left blank in these plots.

6.5. Symmetries

It is noticeable that the level curves of γ and tγ , as well as the regions of exponential
instability shown in figures 5 and 6 are asymmetric for swept boundary layers.
This is due to the more complicated source term in (3.1b) when a mean crossflow
component is present. While (3.1) is symmetric about the origin when the base flow
is two-dimensional, the opposing signs in the source term when W 6= 0 causes it to
become skew-symmetric about the origin. From figure 2 one can anticipate that this
asymmetry will be mild unless the ratio α/β is quite large; the crossflow derivative
will not dominate in the cases considered here unless this ratio is about 5 or larger.
The reason why the asymmetry develops differently in the adverse and favourable
pressure gradient cases is that the sign of the mean crossflow changes in these two
cases.

The situation is different for the optimal flow angle. While the results shown in
figure 9(b) are symmetric about the origin, things are more complex for Φ, which is
skew-symmetric with respect to 90◦ about the origin. This behaviour is attributable on
the one hand to the source term in (3.1b), and on the other to the parity of the base flow
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components: U(φ) = U(180◦ − φ) is even about 90◦ whereas W (φ) = −W (180◦ − φ)
is odd.

6.6. Algebraic and exponential instability

Above, it has been shown that in contrast to the case of the Falkner–Skan pro-
files, where the transient growth mechanism competes with the Tollmien–Schlichting
instability, in swept boundary layers the algebraic growth mechanism and the expo-
nential crossflow instability are complementary, i.e. both excite disturbances of similar
structure (cf. figure 5). In the light of this and the argument that almost any input
disturbance will be converted into the final state resulting from optimal perturbation
of the flow (Luchini 2000), it is natural to inquire what rôle is played by transient
phenomena in flows subject to crossflow instability.

Short-term optimals, or initial conditions which evoke the largest growth at a fixed
time t = τ 6 tγ , specified by

G(τ) = max∀α,β G(R,m, φ, α, β, τ),

play a significant part in such an enquiry. This statement is based on the observation
that, in the event that temporal results can be transferred to the spatial context by
appeal to some O(1) convection speed, as would seem plausible based on the direct
numerical simulation results of Breuer & Kuraishi (1994) in the temporal framework
and Lasseigne et al. (1999) in the spatial framework, the global optimal perturbation
will require a significant streamwise distance of O(Rδ) to develop fully. The explosive
growth over short intervals characteristic of local optima may be especially relevant
for flows in which saturation of the primary instability and nonlinear effects are prime
causes of transition onset.

Figure 10 presents level curves of G at t = 165.6 in a strongly accelerated Falkner–
Skan–Cooke flow subject exclusively to crossflow instability. The flow conditions
correspond to the boundary layer studied extensively at the German Aerospace
Centre (DLR) described by Bippes (1999); in particular they correspond to those
used in investigations via temporal direct simulation by Meyer (1989) and Meyer &
Kleiser (1990): Rθ = 374, m = 0.46 and φ = 46.9◦. The boundaries of the exponentially
unstable regions are indicated by heavy lines. Symbols connected by a dashed line
indicate the wavenumber pairs of the perturbations experiencing the most short-
term growth at ten equally spaced intervals spanning the transient development time
of the optimal perturbation for the most amplified mode, indicated by the solid
dot. Noteworthy is that over brief time spans the short-term optima lie outside the
exponentially unstable region, that substantial transient growth occurs over a large
area of the wavenumber plane, and that at the time shown in the figure the most
transient growth at the spanwise wavenumber of the (eventually) most amplified
mode is produced for a structure which is exponentially damped.

As mentioned previously, the spanwise wavelength of experimentally observed
crossflow vortices concurs well with that of the theoretically most amplified mode, but
there are discrepancies concerning the growth rate. The above observation concerning
the short-term behaviour of disturbances at identical spanwise wavelengths, but
larger streamwise wavenumbers, is explored further in figure 11(a), which presents the
growth obtained by the most amplified mode and two other disturbances at integer
multiples of its streamwise wavenumber. The first of these is exponentially amplified,
the second is not. If one argues that the boundary layer is likely to select disturbances
with large instantaneous growth rates, then the observation of disturbances with
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lower than maximum asymptotic growth rates may be explained by their larger
initial (and instantaneous) rates of amplification. Figure 11(b) shows the asymptotic
disturbance velocity profiles, which are quite similar, apart from the magnitude of the
w-component.

Alternatively, one might consider the state of the boundary layer immediately
before it becomes unstable. In the temporal framework this means at a smaller
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and the crossflow velocity components. The uppermost plot corresponds to the maximum global
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middle plot shows the global optimal with wavenumbers identical to the mode below, at Rθ = 91.

Reynolds number but otherwise identical flow conditions. The reasoning behind this
is as follows: the wavenumber pair describing the global optimal with largest growth
in subcritical flows is quite similar to that describing the most amplified mode when
the boundary layer is unstable. Thus, it seems logical to ask whether the output of the
algebraic growth mechanism bears any resemblance to the mode predicted by theory,
and which agrees with measurements. Figure 12(a) compares the velocity profiles of
the ‘output’ state of the maximum global optimal perturbation in a subcritical flow at
Rθ = 91 with the eigenfunction of the most amplified mode at Rθ = 374. The two sets
of profiles are quite similar, indicating that algebraically growing disturbances at low
R are naturally fed into steady crossflow modes as the flow evolves. One could argue
that in swept flows algebraic growth preconditions the flow to provide proper initial
disturbances to the exponential instability. This is not the case in two-dimensional
base flows, where the output of the transient (the streak) bears no resemblance to
the modal instability (the TS wave). Figure 12(b) compares reconstructions in the
crossflow plane of two optimal perturbations at Rθ = 91 with the most amplified
mode at Rθ = 374. The first of the optimals for the subcritical flow is the maximum
global optimal, the second is described by the same wavenumber pair as the most
amplified mode.

7. Concluding remarks
Optimal perturbations, by definition those initial conditions which bring about

the largest increase in disturbance kinetic energy, have been studied in quasi-three-
dimensional boundary layers modelled by the Falkner–Skan–Cooke similarity sol-
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ution. Sub- and supercritical flows subject to adverse and favourable pressure gradi-
ents have been considered using a variational technique in the temporal framework.
This approach enables disturbances infinitely elongated in the streamwise sense to be
studied, impossible with the methods dependent upon some approximation of the con-
tinuous spectrum of eigenmodes hitherto employed in investigating this class of flows.

At conditions where only algebraic growth occurs optimal perturbations consist of
streamwise oriented vortices which engender a streamwise streak. The vortex/streak
axis is not perfectly aligned with the external streamline in which the analysis is
performed, i.e. the disturbance has a long (but finite) streamwise wavelength. It is
shown that, in comparison to the modified Orr–Sommerfeld modes used by Breuer
& Kuraishi (1994), optimal perturbations concentrate more kinetic energy closer to
the wall and experience significantly greater growth.

By considering three-dimensional boundary layers at flow conditions comparable
to those used in an earlier study of Falkner–Skan flow by Corbett & Bottaro (2000),
the effect of crossflow upon transient growth can be determined. At the sweep angle
which maximizes crossflow (45◦), both accelerated and decelerated three-dimensional
boundary layers show significantly greater capacity for algebraic growth than two-
dimensional boundary layers at equivalent Reynolds numbers, subjected to identical
pressure gradients. More algebraic growth occurs in retarded boundary layers, a
finding consistent with results for the two-dimensional case. The sweep angle which
maximizes growth does not correspond to that which induces the largest crossflow
component in the base flow.

In the adverse pressure gradient boundary layer considered here algebraic, crossflow
and Tollmien–Schlichting growth mechanisms are simultaneously active in different
areas of the wavenumber plane. In contrast to the two-dimensional case, the region
of the wavenumber plane where optimal perturbations experience the most growth
coincides with a region of exponential instability. This confirms that these two
essentially inviscid mechanisms amplify structurally similar disturbances.

This coincidence is explored further for the supercritical flow of the DLR exper-
iments. It is shown that while the strong growth of the modal mechanism dwarfs
algebraic growth over long periods, transient growth is appreciable for sufficiently
short intervals. Working from this observation, two paths by which optimal pertur-
bations may affect crossflow transition are outlined. It is plausible that the algebraic
growth mechanism investigated here constitutes a preferential receptivity path for
selecting steady crossflow modes.

Despite the limitations of the temporal approach employed in this study, transient
growth phenomena are clearly of some consequence in three-dimensional boundary
layers. Recent analyses confirming the importance of taking curvature and non-
parallel effects into account when studying crossflow instability on swept wings
indicate that an extension of the current work to the spatial framework is not readily
apparent (Högberg & Henningson 1998; Haynes & Reed 2000).
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