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Configurations of perturbation velocity which optimally excite an algebraic growth mechanism in
the Falkner—Skan boundary layer are studied using a direct—adjoint technique. The largest transient
amplification is obtained by stream-wise oriented vortices, in agreement with previous results for the
Blasius boundary layer. Adverse pressure gradient is found to increase the resulting growth, the
reverse is true for accelerated flows. It is shown that optimally excited algebraic mechanisms are
capable of competition with optimally excited Tollmien—Schlichting waves in super-critical flows
before succumbing to viscous damping. Disturbances optimized for maximal amplification over
shorter periods are generally obligue and can experience significant transient growth; it is argued
that they should not be dismissed when searching for rapidly growing perturbations which may
preferentially induce early transition. Optimal disturbances transform into streaks downstream of
their inception, attesting to the ubiquity of these flow structures.2@O0 American Institute of
Physics[S1070-663100)02101-3

I. INTRODUCTION latter state is a stable one. Mathematically, this is due to the
non-normality of the linearized operators describing the dis-
In seeking to understand the transition process, researcharbances’ behavior. Since the eigenvectors of such systems
ers have long studied the behavior of infinitesimal perturbaare nonorthogonal, constructive or destructive interference
tions in model flows of physical relevance. To render theamongst the various modes is possible before modal behav-
analysis tractable, such disturbances were typically presumedr sets in.
to be periodic and modal in nature; the ensuing system is Linear physical mechanisms for transient growth in
amenable to eigenanalysis. In this context, results of sucbhear layers have been described by Ellingsen and Palm,
analyses reflect the behavior of the flow as it attains someandahl?> and Luchini® These mechanisms work by effi-
asymptotic state, and historically the likelihood of transitionciently extracting momentum from the mean flow and trans-
was inferred from this state. ferring it to the perturbation. Twofold motivation exists for
The study of the origin and causes of such instabilities isstudying configurations which excite this mechanism opti-
the field of receptivity. Here the question is how prevailing mally (commonly termed optimal perturbations, after Butler
conditions at the start of a boundary layer, or environmentak Farrell¥). First, is transient amplification of such magni-
disturbances originating in the free-stream and present at thede that a linear model is no longer appropriate? Secondly,
boundary layer's edge, will be assimilated and transformedio these optimal perturbations resemble experimentally ob-
(some distance downstreanmto instabilities. One seeks to served flow disturbances? In the former case, it has been
take into account the effects of such diverse excitations afypothesized that algebraic growth may be a candidate for
small surface irregularities, acoustic forcing, and smallcausing by-pass transition.
anomalies in the oncoming mean stream due, for example, to  Optimal perturbations for the algebraic growth mecha-
atmospheric turbulence. Considered from the black box pointism have been extensively studied for flows of finite spatial
of view, receptivity is the study of the “inputs,” and linear- extent, exemplified by the Couette and Poiseuille fl6{%Z
ized stability theory represents the study of the “outputs.” These configurations are characterized by a complete, dis-
Work in stability theory has been recently galvanized bycrete spectrum of eigenvalues which permits an arbitrary per-
a growing appreciation of the importance of the “intermedi- turbation to be represented as a weighted sum of eigenvec-
ate period.” Small perturbations in many flows of engineer-tors. The most widely used method of finding optimal
ing significance might experience appreciable transienperturbations for this class of flows is based on this property.
growth before assuming their asymptotic state, even if thishe classical linear stability eigenproblem is solved, and
each individual mode is assumed to evolve exponentially.

aElectronic mail: Peter.Corbett@epfl.ch Grovvth_ is then maximized using a_variational_approach, and
DElectronic mail: Bottaro@imft.fr the weights for the sum expressing the optimal are deter-
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mined from the resulting generalized eigenprobfefinA ary layers. In the temporal context, the parallel-flow assump-
similar variational approach is applied in an alternativetion is adopted, and a uniform scaling is employed. The main
method based on an initial boundary value problemadvantage to this approach is that it permits the study of
formulation! Here, the temporal behavior of a complete setoblique disturbances, i.e., those flow structures whose
of analytic basis functions must be found in order to deterstream-wise scale may be of comparable magnitude to their
mine the growth, and a weighted sum of these basis funcspan-wise scale. Should these attain sufficient amplitude,
tions gives the optimal perturbation. they will enjoy a wider range of nonlinear interactions than a
In contrast to confined flows, the spectrum of flows on apurely two-dimensional perturbatidfi
semi-infinite domain is composed of a finite number of dis-  Clearly, the limitation of the present study lies in the
crete modes and a continuous spectruim.practical terms, —adoption of the temporal framework. Since a large number of
this means that when the whole spectrum is determined sprevious studies adopt the same hypothesis, some work has
multaneously, using the QZ algorithm for example, a dis-focused on the identification of a transform relating the tem-
crete numerical approximation to the continuum is obtainedporal transient to its spatial counterpart. In this respect, the
However, certain numerical issues arise when using this apgesults reported by Criminalet al” and Lasseignet al '
proach: The quality of the approximation is not guaranteedare particularly encouraging, and indicate that such a trans-
and a large number of collocation points is required to adformation may exist. Furthermore, optimal perturbations
equately resolve fine detail in the boundary layer. Since théound using the temporal and the spatial techniques are in
QZ algorithm’s computational cost scales as the cube of thgood agreement with one another, indicating that some un-
number of points used, this approach is associated with corglerlying physical phenomenon is described well by either
siderable computation burden. Resolution of the continuoutechnique.
spectrum is a critical issue since the continuum contributes  This work is devoted to the study of initial configura-
significantly to transient growth. Furthermore, as the streamtions which maximize the growth over a given time; these
wise wave number approaches zero the discrete modes digre referred to adocal optima. The configuration which
appear completely, and it is precisely at zero wave numbemaximizes growth for all time is termedgiobal optimum.
that the largest transient growth is found. While global optima can enjoy energy growth on the order of
Butler and Farrell successfully applied the eigenvectotthe square of the Reynolds number, local optima also expe-
expansion technique to the Blasius boundary layer by ingedence significant growth, and should not be discounted when
niously considering the case of two boundary layers develexploring the different paths leading to by-pass transition.
oping in a channel. The channel width was adjusted so as tBhysically, if transient growth of sufficient magnitude to in-
sufficiently resolve the optimal perturbations, and the conduce nonlinear effects occurs in a short distance from the
tinuous spectrum was replaced by the discrete spectrum ieading edge, the even larger growth eventually evoked fur-
herent to bounded flows. Their study of three-dimensionather down-stream by the global optimal would be pre-empted
optimal perturbations in this boundary layer analog foundby transition.
that a stream-wise oriented vortex which evolved into a
stream-wise streak provoked the most response. A similar
resu_lt.\{vas found by Lasseigred al..10 in their extension of Il. MATHEMATICAL BACKGROUND
the initial boundary value formulation approach to boundary
layers. The behavior of a small three-dimensional velocity per-
As mentioned in Ref. 4, an alternative technique forturbationti=(T,v,W)" in a parallel base flowJ =U(y), is
finding optimal perturbations can be envisioned utilizing thegoverned by the Navier—Stokes equations. Relating the
direct and adjoint initial boundary value problems, whereinstream- and span-wise perturbation velocity components to
an elegant link between the input and output states is estalpne another through the normal perturbation vorticigy,
lished, and conclusions about receptivity and optimal excita= (Jt/dz) — (sW/9x), linearizing the Navier—stokes equa-
tions can be drawn. This approach, first suggested for trackions, and eliminating the perturbation pressure yields a sys-
ing the growth of anomalies in weather predictidnwas  tem inV and71®
used by Luchirfi and Anderssoret al?® to investigate opti-

mals for spatially developing Blasius boundary layers. Lu- £+Ui— EA A (92_U ka2 9=0
chini and Bottard® applied the method in their study of the gt “ox R ayZ ax|V "
receptivity of Gatler vortices(and determined the optimal (1)
perturbation for this instability The boundary layer scalings d g 1 U 4
; ; ; iva. (= tU—=—=A|7=—— =V
appropriate to these spatial analyses preclude the investiga- | s X R ay 9z

tion of oblique disturbances, i.e., only phenomena asymptoti-

cally elongated in the longitudinal direction can be studied.The Laplacian operator is represented above Ay

Despite this, the results found using the spatial framework=(9%/9x?)+ ( 8%/dy?)+ (9% 9z%). At solid walls and in the

are very similar to those reported by Butler & Farrell, sincefree-stream the normal perturbation velocity and its normal

they also find that stream-wise vortices excite optimal re-derivative are assumed to vanish. Similarly, since the stream-

sponse. and span-wise perturbation velocities vanish at these bound-
The work presented here adapts the direct—adjoint techaries, the normal disturbance vorticity must, too. Semi-

nigue to the temporal problem for the Falkner—Skan boundinfinite domains are usually represented in a truncated com-
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putational space, in which case these conditions are E(t)=(u,u).
commonly replaced by their asymptotic equivalents at its

upper limit. This measure represents a positive-definite quadratic form
The Reynolds number, which characterizes the relativé"0rm of physical significance. Scaling by the initial con-
importance of convective to diffusive processes figuration’s norm gives the disturbance’s growth
U.o E(t)
_ o G(t)= =,
R=—, O=¢w0)

appears when the original system is uniformly nondimenwhich quantifies the magnitude of a given perturbation as it
sionalized using a characteristic lengtt) and velocity —€volves in time. In the context of the temporal approach
(U..). Pressure is scaled by the groupipg?. This work  outlined above, an optimal perturbation is an initial configu-

uses Falkner—Skan boundary |ayer prof”es to Spddq:y), r?.tion of v and 7]Wh|Ch maximizes gI’OWth at a Specified
and §is taken to be proportional to the boundary layer thick-time t=7 and a given set of parameters, 5, R, andm.
ness defined bﬁ: ‘/V”Uw, with | a reference stream-wise The techl’lique used here to determine the Optlmal initial
distance. configuration is based on the definition of the growth and the
Assuming a disturbance velocity of the form concept of the propagator. The propagad®rexpresses the
5 ) ) evolution of an initial solution from its conception through to
U(x,y,z,t)=u(y,t)expgliax+ipBz), a given timet=r

with an analogous assumption for the disturbance pregsure v(7)=®(7)v(0).
Eq. (1) becomes
IntroducingA, a rectangular transfer matrix betweeandu

Jd . 1 U

E+Iau_§A A—laa—y2v=0, 1 ia(aldgy) —ip
= i _ = 2

J . 1 ~ U (2 u=Av, with A= 2| Kk _o ,

E+|C¥U_§A 7]:—|ﬁwv, IB(a/ay) .

where the Laplacian takes the forin=(d2/ay2)—k2, with it becomes possible to rewrite the expression for growth in
k2= a2+ B2. Settingv=(v,7)T, (2) can be written in, matrix  terms of the initial solution and the propagator

form® 6y VD AV(D) _ (AB(IV(O)AD(7V(0))
dv , Q o 7T (AV(0),AV(0))  (Av(0),Av(0))
—=Av, with A= . 3 ) ) o
dt Y X An equivalent form of this expression is
The elements in the linearized dynamical operafoare (v(0),®* (1)A* A®(7)V(0))
BRI DT TR AA)
Q=A —iaU+ A |A+ia——7]|,
R ay obtained by applying the definition of the adjoint in the en-
U ergy norm, where the superscripis used to indicate adjoint
Y=—ig—, quantities. This is a Rayleigh quotient, and the growth will
%y be maximized by the largest eigenvalue of the problem
S=—iaU+ éA' (A*A) " 1®* (7)(A* A)D(7)Vv(0)=G(7)v(0).

The optimal initial configuration sought is the corresponding
In the above form, for all cases of physical interest, i.e.eigenvector. The linear operator multiplying the optimal on
whenevera and 8 are not simultaneously zero, the operatorthe |eft-hand-side is a positive-definite Hermitian form, con-
A is not self-adjoint. This Implles that the transient behaViorsequenﬂyG(T) is real and posi[ive, and the 0ptima| pertur-
of the system in Eq(3) cannot be described by a single pations are orthogonal to one another.
eigenmode*® Equation(3) retains its validity in the limit The simplest manner of obtaining the optimal perturba-
ast—o, however, the asymptotic behavior of the system istion is to apply power iterations of the form
obtained more efficiently using conventional eigenanalysis.

In the following, the inner product of two arbitrary com-  V(0)"=(A*A)*®(n)* (A* A)d(7)v(0)*. 4

plex vector quantities andb is defined by This process is equivalent to finding the largest singular

value (norm) of the propagator; in this context the optimal
(ab)= f a'-bdo, perturbation is the propagator’s largest singular vector. Two
7 assumptions are inherent in the use of the power method:
where the over-bar denotes a complex conjugatecaisdthe  The first is that the initial guess fa(0) is not orthogonal to
spatial extent of the domain. So defined, the inner product athe first singular vector, the second is that the singular values
a perturbation with itself is proportional to its kinetic energy. of the propagator are well-separated. Rapid convergence of

In the temporal analysis this is a function of time the iterative procedure will be interpreted asaposteriori
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indication that these issues have been successfully addressedactical implementation of the power iteration algorithm us-
The power method algorithm is broken into four distincting the linearized dynamical operators in E(®. and (6), it

steps, working from right to left in Eq4) also serves as a check on the accuracy of the method used for
1.v(7 k:(D(T)V(O)k, their integration. o _
2. 2(7)k= (A* A)v(7)K, Ngte that the kinetic energy of the perturbation can also
3. Z(O)k:(D*(T)Z(T)k, be written as
4.v(0) 1= (A*A) " 'z(0). E(t)=(Bv,w),
Successive iterates can be scaled to ensure that their magWherew=(—v, 7). The power iteration loop starts with an
tudes remain reasonable. arbitrary guess fov(0), which after direct integration of3)

As remarked by Luchint? obtaining a matrix represen- from t=0 to t=r becomesv)(7), characterized by a ki-
tation of the propagatod is an involved undertaking, netic energye™)(7). Choosinga®(7)=1k?w®)(7) as a
whereas the direct initial boundary value problem is knowngarting condition for(6), ) is identified as the desired
and its adjoint can be readily found. The action of the propagnergy norm and must remain constant throughout the
gators in steps 1 and 3 above can be replaced by integratiofyackward-in-time” integration of the adjoint system from
of th?~ direct and adjoint systems. Introducing the vari@le {— ; to t=0. The initial conditions used for the direct equa-
=(&,b)7, the adjoint system reads tions at the start of the next loop are therf?(0)
=—k2a®(0) and »?(0)=k?bM(0). This iterative proce-

i +U i + 1A A+2aU —{92 a0y dure typically converges for the growth in five cycles or less

A TVATR oy axay oy a2 ypieally converg k g |
5

i+Ui+lA B0 ©® lll. RESULTS

g “ox RT)TT

It remains to apply the procedures described above to a
The boundary conditions ca are chosen in the process of physical model. The numerical methods employed to obtain
integration by parts from which the systei®) is obtained. the results presented in this section comprise a Chebyshev
Here, these are set to be identical to thos&.oNote that this  collocation technique for the spatial discretization and im-
system’s intrinsic direction of stable evolution is reversed,plicit finite-differencing for temporal integration. Further de-
i.e., time flows backwards for this system, as indicated im4ails are given in the Appendix.
plicitly in step 3 above. Assuming periodicity in the stream- A self-similar boundary layer for the general case of
and span-wise directions as for the direct case results in amonzero pressure gradients is obtained when the external po-
intermediate expression similar to E(). Casting Eq.(5)  tential flow is assumed to vary proportionally 18", and
into matrix form analogous to E@3) one obtains no-slip conditions are imposed at the wall. The Falkner—
ok Skan similarity solution for the nondimensional stream-
d_a: QY 6) function f(£) corresponding to this situation is given by the
dt 0o X*/

A*a, with A*= . ) . f .
nonlinear ordinary differential equation
where the elements in the adjoint dynamical operatbrare

m+1
7+ Tf”f+m(1—f’2)=0,

1 ou 4
* AL | - —i [
=4 ( al RA)A 2 dy ay|’ were primes indicate derivatives with respect to the similar-
ity variable
Y*:—iﬁA’lE g=yx(m+1)2
ay’ y )

1 and the boundary conditions are
Tr=—ial-2A. f(0)=f'(0)=0 and f(&—)—1.

The mean flow sought is described by,=xMf’. Deceler-
ated flow is described by-0.0904<m<0, where the lower
limit corresponds to imminent separation, the Blasius bound-
ary layer is recovered fan=0, whereas an accelerated flow
is obtained form>0. Only classical solutions to the equa-
tions, characterized by monotonic increaseJofith &, will

and relatesv to a. This expression implies that whatever pe considered here. The Falkner—Skan profiéesl first de-
conditions are chosen for the integration of E@.and(6),  rivatives corresponding to the mean flows investigated here

The last relation in the adjoint system is a contribution
from the time derivative terms

*d - d
| avaraiay= Si(av.ar+ (n)1-0,

the inner product given by are shown in Fig. 1. Numerical values of the displacement
1 (52/0")/2) _ k2 0 thickness
e=(Bv,a), with B= i2 0 1l

o= f (1-U)d¢,
remains constant in time. This requirement not only provides 0
a link between the propagatods and®* in Eq. (4) and a and the momentum thickness
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12.0 TABLE I. Integral parameters for selected Falkner—Skan profiles.
s = =005
— m=0 m & 6 H
10.0 —--m=0.1
—— m=05 —0.0904 3.446 04 0.867 979 3.97019
—0.05 2.11776 0.751 462 2.818 18
8.0 0 1.7208 0.664 115 259111
0.1 1.347 87 0.556 593 2.421 64
% 0.5 0.854 69 0.3779 2.261 68
= 60 P 7 1 0.647 91 0.292 34 2.216 29

40+
20 r G=G(agp,Bq,7,R,m).
00 . The global optimal disturbance for this set of parameters is
"0.0 0.4 0.6 0.8 L0 the initial condition which maximizes the growth, i.e.,

(U, U/,

FIG. 1. Variation of the Falkner—Skan profile and its first derivative as a
function of the imposed pressure gradient.

vy=maxG(eag,Bq,R,m),
Yt

its specification is completed ky,, the time at which this
. growth occurs. Generally, local optima are sought for times
ng U(1-U)d¢, smaller thart,,. The largest global growth obtained for any
0 set of wave numbers

for the profiles shown, as well as the ratio of these two quan- _
tities, the shape factdtl, are listed in Table I. F_‘UZ?;(Y(R’m)’

Optimal perturbations have been defined quite precisely
in the previous section, it remains to describe the time frameis a characteristic only of the base flow.
over which they will be sought. Consider a perturbation de-  This study’s principal objective is to quantify the mag-
scribed by the wave number paitg,Bo) in @ mean flow nitude of the maximum global growth, and to determine
parameterized byR and m. A local optimal is an initial the physical characteristics of the disturbance responsible for
configuration ofv and » which excites the algebraic growth it. Since a linear mechanism is responsible for algebraic
mechanism optimally at a given finite tinte= 7, the growth  growth, it is reasonable to expeictto scale linearly, and in
at this time is light of the boundary layer nature of the flow, quadratic scal-
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FIG. 3. (@) The effect of pressure gradient on the initial stream-wise pertur-FIG. 4. (a) Stream-wise perturbation velocity magnitude profilestat
bation velocity for maximum global optimal, scaled p¥|max. (R,=166)  scaled by|u|,nay. (b) Normal and span-wise velocity magnitudestat

(b) Initial normal and span-wise velocity profiles for the same conditions,

similarly scaled.

Figure 2 showsy andt,, at the four values ofn indi-
cated. For each imposed pressure gradient, results corre-
sponding to three arbitrary Reynolds numbers are shown.
Figures Za) and 2b) show the results of scaling with respect
a{o Rs , the Reynolds number defined by the displacement

Results for the Blasius boundary layer have shown thag . )
oo . it hickness, and Figs.(@) and 2d) show what happens when
flow structures infinitely elongated in the stream-wise Sensécaling WithR,, the Reynolds number defined with the mo-

experience the most amplification. It was found that this is

also the case in boundary layers described by the Falknermentum thickness. Figures@ and 2c) confirm the ex-

Skan profiles. In order to determine the scaling behavior o ecr:te'(:ji qua%tr)?tlcnsdcazl{lg)g orf] tcvetgrowtkll Wltl?nReryl/nolgﬁhm;m—
maximum global optimal perturbation it is necessary to € ,Iin gs. nta well f rsdic:‘f ryn sca iensR er? I)cgl. . rr?b ;
evaluatey andt,, over the range off where the maximum is scaling accounts wetl 1o erences eynolds number,

anticipated at different Reynolds numbers and pressure grg—nd the effect of pressure gradient is made immediately evi-
dients.

ing of I with the Reynolds number can be anticipated. On
the other hand, its behavior with respect to variationsnin
cannot be foreseen.

TABLE Illl. Variation in the characteristics of maximum global optimals

o L ) ) with Reynolds numbe(Blasius boundary layer
TABLE IlI. Variation in the characteristics of maximum global optimals

with pressure gradientR,=166). R, By r tr
m By r tr 166.0 0.251 15 280.7 870.8
385.9 0.251 19 1515.1 2023.4
—0.05 0.247 05 356.4 898.2 498.1 0.251 30 2523.7 2610.2
0 0.251 14 280.7 870.8
0.1 0.252 23 227.4 863.5 Butler & Farrell (Ref. 4
0.5 0.251 44 179.1 869.7 385.9 0.25 1514 2016
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FIG. 5. Contours ofy (solid lineg andt,, (dot-dash linesin the wave number plane fd®,=166. (a) m=—0.05, disturbances in the shaded region are
exponentially unstableb) Blasius.(c) m=0.1. In all cases, the increment between level curvets, ebwards the origin is 400. Note the 4:1 axis ratio.

dent. The results show that, in comparison to the Blasiupressure gradient. The magnitude of the initial stream-wise
boundary layer, optimal perturbations in flows subject to advelocity component varies in proportion to, but is in all
verse pressure gradients experience greater amplificationases two orders of magnitude less than the cross-flow com-
and those in accelerated flows enjoy less amplification.  ponents.

Notable is that, when scaled with the span-wise wave In order to answer the second question motivating this
number forl" appears to be independent of the mean flomwork, Fig. 4 shows the evolved state of the optimal pertur-
conditions, B4~1/4. Even more remarkable is how well  bations att=t;. Here,u has been scaled by the maximum
scaling accounts for the variation iy resulting from differ- ~ stream-wise velocity component(ty)|ma=1. The resem-
ences in the base flow. A similar result for the neutral curveblance in shape, despite the different external flow condi-
of Gortler vortices is well-established. Since momentum tions, for the stream-wise velocity components is remark-
thickness scaling appears to reveal some universal behaviable. Note that fore=0 the system in Eq(2) simplifies
in the algebraic growth mechanism, it will be used to reportsignificantly, and the effect of the mean flow is felt only
all results which follow. Aside from time, those quantities
for which this has implications are indicated by a subscript
“ g

Tables II and Ill present some numerical results. The
former shows how the characteristics of thepoint vary
with changes irm (R, is kept constant and the latter shows
how these characteristics vary with changes in Reynolds
number at a given pressure gradient. In this case the Blasius
boundary layer has been chosen, so the results can be com-
pared with those of Butler and Farrell. The agreement is
remarkably good, the slight variation between them might
stem from the different spatial discretization, or to the ap-
proximation used for the continuous spectrum.

From the engineering point of view, a perturbation is of
most interest at its conception. The velocity profiles of the
optimal perturbations reported in Table Il are shown in Fig. 3
(the effect of varyingm is sought since the Reynolds scaling
can be inferred directly In each caseu has been scaled
such thafv(0)|ma=1, the maximum normal velocity com-
ponent is unity. Unsurprisingly, the optimal is seen to be a
stream-wise oriented vortex situated mainly within the
boundary layer, but exter_1d|ng some distance mto the freeIEIG. 6. Contours ofy (solid lineg andt, (dot-dash linegsin the wave-
stream. When scaled with the momentum thickness, th\%}umber plane for Blasius flow &,=386. The exponentially unstable area
shape of the starting vortex is independent of the imposeébr this flow is shaded.
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FIG. 8. (a) Optimal initial excitation for the three—dimensional Tollmien-
Schlichting mode exhibiting greatest transient growth over timé-. The
symbols show the eigenfunction of the adjoint stability problém).The
optimally excited three-dimensional Tollmien-Schlichting modérat The
symbols denote the mode shape predicted by linear stability theory.

FIG. 7. (a) Contours ofG(ty) for R=386 (local optimum growth The
critical stability limit is indicated by the thick line. The innermost level
curve in the exponentially unstable areads= 1660. (b) Growth amongst
the various mechanisms.

through its first derivative in the source term for thequa-  shaded. The figures are otherwise similar, with growth de-
tion (cf. Fig. 1. The remnants of the initial vortex are still creasing radially away from thE point. For each givemy,
present although it has diffused outwards away from thgq,>0), most growth occurs for perturbations characterized
wall. The final state of the optimal perturbation for the alge-by weakly increasing values ¢,, with 8,~1/3. As might
braic instability strongly resembles the streaks frequently obpe inferred from Fig. 2, greater growth is experienced for
served in boundary layers. This finding is in good agreemengdverse pressure gradients, whereas growth is damped for
with the spatial results reported in Refs. 5 and 12. favorable pressure gradients.

To this point, it might be said that only worst-case sce-  Figure 6, which shows for a Blasius boundary layer at
narios have been considered, since incoming disturbances,=385.9, is included to show the effect of increasing Rey-
are unlikely to be configured to optimally excite the maxi- nolds number, an effect apparently not dissimilar to impos-
mum global growth. The pervasiveness of transient growthng an adverse pressure gradient. The shaded region again
in a boundary layer for a wide range of wave number comindicates exponential growth. Remark that for all casgs
binations is apprehended immediately from a plot of level
curves ofy (andt,) in the wave number plane. The series of
p|OtS presented in Fig. 5 shows such isolines forTABL.E V. Moq_es of Iarge_st asymptotic two dimen_sior_1a| and most
m=—0.05, 0, 0.1, in order to make the effect of pressuretran3|ently amplified three-dimensional Tollmien—Schlichting waves for

S . . O t=tr.
gradient immediately evident. For all cases, significant alge-__

braic growth occurs in a large part of the wave number plane «, B R(wg) I(wy) G(tr)
exilmmed. The f|_rst part (_)f the figure corresponds to 0.1030 o 3655102 12132102 1636.3
m=—0.05, for which a section of the wave number plane 439 0.0190 3.70810 2 1171x10°3 1678.0

experiences exponential instability. This section has been
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© FIG. 10. Effect of pressure gradient on the evolution of the wave number of
FIG. 9. Contours of3(t~100) for R,=221, m=—0.05. The critical sta- % "eXImum ocal optimum with time. Sampled at times befpréor &,

bility limit is indicated by the thick line. B o

while generally moderate, experiences a sharp peak for longhow the growth obtained by the optimally perturbed
wave-length perturbations, amgd lies just at the edge of this Tollmien—Schlichting TS) waves. The greater growth of the
peak. As evidenced by the increasetjntowards the origin  oblique wave is due to its larger transient amplification. At
of the wave number plane, long wave-length disturbancesonception and shortly afterwards, the algebraic mecha-
evolve very slowly, and the parallel flow assumption fails. Innism’s growth is approximately an order of magnitude larger
light of this, data has not been collected in this area, as inthan its nearest competitor. Optimally perturbed TS waves

dicated by the blanked-out region in Figs. 5 and 6. attain an asymptotic state relatively quickly, further growth
It is interesting to assess the maximum global optimal’sis at the rate predicted by classical theory.
relative strength by comparing it to local optima fer. This The optimal configuration for exciting the oblique TS

is of particular interest for Reynolds numbers above criticalwave is shown in Fig. 8. Hill's study of TS receptivify
since it will show whether the algebraic growth mechanismdemonstrated that these waves are most receptive to distur-
can successfully compete with the Tollmien—Schlichting in-bances given by the eigenfunctions of the adjoint Orr—
stability. Contours of5(tr) for the Blasius boundary layer at Sommerfeld equations. The symbols superposed on the pro-
R,=385.9 are shown in the first part of Fig. 7. Evidently, files correspond to these eigenfunctions. &ty this
stream-wise oriented vortices of various wave-lengths experturbation has evolved into the state depicted in the second
hibit strong growth, but substantial local growth also occurspart of Fig. 8, the modal state predicted by classical stability
in the linearly unstable region, where for these conditions arnheory is represented by the superposed symbols.
oblique Tollmien—Schlichting wave obtains the largest re-  Should the above results be transferable to the spatial
sponse(While growth is unbounded as time becomes largecontext via some transform based upon@{il) convection
in this region, it is bounded and well-defined for finite tilne. speed, it follows from the long evolution period for global
The results show that over a finite period algebraic growth ioptimals that a substantial stream-wise development distance
fully capable of competition with Tollmien—Schlichting of O(RJ) is necessary for the streak to emerge. This is borne
waves. Furthermore, perturbations with wave numbers in theut by the Reynolds number scalingtofin Fig. 2, rendering
vicinity of either mechanism will experience growth. the validity of the parallel flow hypothesis rather question-
The situation is considered in more detail in the secondable. Also, it seems improbable that(aaximum) global
part of Fig. 7, which plots the growth exhibited by the vari- optimal perturbation can develop undisturbed over such a
ous competing disturbances. The two lower curves correlong period in an actual flow. These arguments make it natu-
spond to growth rates obtained from linear stability theoryral to inquire about the behavior of local optimals in the
reported in Table IV. In this context it is assumed that theshort-time limit.
corresponding Tollmien—Schlichting wave exists in the  As a first step in this direction, consider the competition
boundary layer at=0 and develops exponentially. The between TS waves and the algebraic mechanism for adverse
slightly lesser growth rate corresponds to the obligue waveressure gradients. The maximum global optimal takes so
which experiences the most amplificationtat the other long to develop in decelerated flows that the TS mechanism
corresponds to the most amplified Tollmien—Schlichtingattains growth two orders of magnitude larger over the same
wave (two-dimensional in accordance with Squire’s theo-period. The situation at short time is completely different as
rem). The other three curves correspond to optimally pershown clearly in Fig. 9, which presents level curvessoat
turbed mechanisms. The solid line is the growth obtained by=99.8. The limit of exponential amplification is indicated
the stream-wise vortex, whereas the dashed and dotted linky a thick line. Optimals on a significant portion of the wave
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15 ¢ 75 a) clearly not be dismissed. While the stream-wise oriented vor-
e tex may be the most effective streak generator, it is not
alone: The oblique local optimals also develop into distur-

, bances where the stream-wise component plays a predomi-
~. nant rde.

e IV. CONCLUDING REMARKS

i
)

';9'--“»'5' / Initial configurations of perturbation normal velocity and
05 - S ' vorticity which obtain the greatest response for a given input
&g%-%ﬁfﬁ have been studied for the Falkner—Skan boundary layer.
- R,=386 Conditions corresponding to adverse, zero and favorable
pressure gradients are considered using a direct—adjoint tech-
00 , . . ‘ nique in the temporal framework. This technique depends
0.0 0.2 0.4 0.6 0.8 neither upon the eigenvectors of the generalized linear sta-
% bility eigenproblem nor upon the choice of an arbitrary set of
2000 - b) basis functions to discretize the propagator. This permits the
boundary layer problem on the half-plane to be attacked di-
rectly, by-passing issues concerning the discretization of the
continuous spectrum characteristic of such problems.

The disturbance which evokes the greatest response over
all time is a stream-wise oriented vortex which gives rise to
a stream-wise streak. The response is quantified by its
© 1000 o growth, defined as the ratio of final to initial perturbation

kinetic energies. For a given pressure gradient, the time in
° ° G which such growth is attained is found to scale linearly, and
500 b the growth itself quadratically, with the Reynolds number.

° The effect of adverse pressure gradient is to enhance growth,
. whereas a favorable pressure gradient at the same Reynolds
. ’ number has a damping effect. The maximal growth and its
0 1000 2000 characteristic development time are found to scale best with

t the nondimensional boundary layer momentum thickness.

FIG. 11. (a) The effect of Reynolds number on the evolution of the wave Similarly scaled, the perturbation velocity profiles are re-
number of the maximum local optimum, shown for Blasius fléh).Com- ~ markably similar.
parison between local and global optimal growth Ry=386. In the case of the Blasius boundary layer, the results

obtained are in excellent agreement with previous work us-

ing the temporal framework by Butler and Farfefurther-
number plane enjoy two orders of magnitude growth. Interimore, the optimal’s general characteristics agree favorably
estingly, this growth occurs for oblique structures. In con-with those found by Luchiff and Anderssoret al® using
trast, over this short time th@ptimally excited TS mecha- spatial analysis. Those findings showed good agreement be-
nism has yet to manifest itself. tween the final state and experimentally observed perturba-

It turns out that maximum local optima tend to be ob-tion velocity profiles.
lique, as shown by Figs. 10 and 11. These depict the wave Initial configurations which maximize growth at a set
number pair of the local optimal experiencing maximum am-time shorter than that required for maximal possible excita-
plification sampled for times between inception @pdthe tion, termed local optima in this work, have shown the ca-
target time is indicated for referencd-igure 10 shows how pacity for significant amplification. Such perturbations are
pressure gradient affects this behaviBy,=166 has been shown to be oblique for periods up to about a third of the
fixed andm is allowed to vary. It can be seen from Fig. 11 characteristic time required for maximum growth, and
that change in the Reynolds number has a much larger effeayolve downstream into streaks.
particularly at very short times. The second part of Fig. 11 The current method’s applicability to receptivity studies
compares the growth obtained by local optima to that expeis straightforward. It is demonstrated in a quantitative fash-
rienced by the maximum global optimal. Oblique local op-ion that the optimally stimulated algebraic growth mecha-
tima attain greater growth than the global optimal overnism is capable of competing with Tollmien—Schlichting
shorter periods by efficiently extracting energy from thewaves in Blasius flow, even when these are also optimally
mean flow via the Orr mechanisth?? excited. Algebraic growth is dominant at short times for all

Oblique local optimal perturbations, with stream- andflow conditions considered.
span-wise wave-lengths of comparable magnitude, cannot be It is apparent that even within the restrictions of the par-
determined by a theory based upon boundary layer scalingsllel flow temporal framework much can be learned about
but in light of the large growth they can provoke, they shouldthe transient behavior of boundary layers subject to pressure

1500
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gradients. Current work focuses on the search for local and  v(y,t)=0(y)exp —iwt),
global spatial optimals, in three-dimensional boundary lay-

ers. where the circular frequency is complex. Equati@ be-

comes simply
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