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Optimal perturbations for boundary layers subject to stream-wise
pressure gradient
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Configurations of perturbation velocity which optimally excite an algebraic growth mechanism in
the Falkner–Skan boundary layer are studied using a direct–adjoint technique. The largest transient
amplification is obtained by stream-wise oriented vortices, in agreement with previous results for the
Blasius boundary layer. Adverse pressure gradient is found to increase the resulting growth, the
reverse is true for accelerated flows. It is shown that optimally excited algebraic mechanisms are
capable of competition with optimally excited Tollmien–Schlichting waves in super-critical flows
before succumbing to viscous damping. Disturbances optimized for maximal amplification over
shorter periods are generally oblique and can experience significant transient growth; it is argued
that they should not be dismissed when searching for rapidly growing perturbations which may
preferentially induce early transition. Optimal disturbances transform into streaks downstream of
their inception, attesting to the ubiquity of these flow structures. ©2000 American Institute of
Physics.@S1070-6631~00!02101-2#
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I. INTRODUCTION

In seeking to understand the transition process, resea
ers have long studied the behavior of infinitesimal pertur
tions in model flows of physical relevance. To render t
analysis tractable, such disturbances were typically presu
to be periodic and modal in nature; the ensuing system
amenable to eigenanalysis. In this context, results of s
analyses reflect the behavior of the flow as it attains so
asymptotic state, and historically the likelihood of transiti
was inferred from this state.

The study of the origin and causes of such instabilitie
the field of receptivity. Here the question is how prevaili
conditions at the start of a boundary layer, or environmen
disturbances originating in the free-stream and present a
boundary layer’s edge, will be assimilated and transform
~some distance downstream! into instabilities. One seeks t
take into account the effects of such diverse excitations
small surface irregularities, acoustic forcing, and sm
anomalies in the oncoming mean stream due, for exampl
atmospheric turbulence. Considered from the black box p
of view, receptivity is the study of the ‘‘inputs,’’ and linear
ized stability theory represents the study of the ‘‘outputs.

Work in stability theory has been recently galvanized
a growing appreciation of the importance of the ‘‘interme
ate period.’’ Small perturbations in many flows of engine
ing significance might experience appreciable trans
growth before assuming their asymptotic state, even if
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latter state is a stable one. Mathematically, this is due to
non-normality of the linearized operators describing the d
turbances’ behavior. Since the eigenvectors of such syst
are nonorthogonal, constructive or destructive interfere
amongst the various modes is possible before modal be
ior sets in.

Linear physical mechanisms for transient growth
shear layers have been described by Ellingsen and Pa1

Landahl,2 and Luchini.3 These mechanisms work by effi
ciently extracting momentum from the mean flow and tra
ferring it to the perturbation. Twofold motivation exists fo
studying configurations which excite this mechanism op
mally ~commonly termed optimal perturbations, after Butl
& Farrell4!. First, is transient amplification of such magn
tude that a linear model is no longer appropriate? Secon
do these optimal perturbations resemble experimentally
served flow disturbances? In the former case, it has b
hypothesized that algebraic growth may be a candidate
causing by-pass transition.5

Optimal perturbations for the algebraic growth mech
nism have been extensively studied for flows of finite spa
extent, exemplified by the Couette and Poiseuille flows.4,6–8

These configurations are characterized by a complete,
crete spectrum of eigenvalues which permits an arbitrary p
turbation to be represented as a weighted sum of eigen
tors. The most widely used method of finding optim
perturbations for this class of flows is based on this prope
The classical linear stability eigenproblem is solved, a
each individual mode is assumed to evolve exponentia
Growth is then maximized using a variational approach, a
the weights for the sum expressing the optimal are de
© 2000 American Institute of Physics
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mined from the resulting generalized eigenproblem.4,6 A
similar variational approach is applied in an alternat
method based on an initial boundary value probl
formulation.7 Here, the temporal behavior of a complete s
of analytic basis functions must be found in order to det
mine the growth, and a weighted sum of these basis fu
tions gives the optimal perturbation.

In contrast to confined flows, the spectrum of flows on
semi-infinite domain is composed of a finite number of d
crete modes and a continuous spectrum.9 In practical terms,
this means that when the whole spectrum is determined
multaneously, using the QZ algorithm for example, a d
crete numerical approximation to the continuum is obtain
However, certain numerical issues arise when using this
proach: The quality of the approximation is not guarante
and a large number of collocation points is required to
equately resolve fine detail in the boundary layer. Since
QZ algorithm’s computational cost scales as the cube of
number of points used, this approach is associated with c
siderable computation burden. Resolution of the continu
spectrum is a critical issue since the continuum contribu
significantly to transient growth. Furthermore, as the strea
wise wave number approaches zero the discrete modes
appear completely, and it is precisely at zero wave num
that the largest transient growth is found.

Butler and Farrell successfully applied the eigenvec
expansion technique to the Blasius boundary layer by in
niously considering the case of two boundary layers de
oping in a channel. The channel width was adjusted so a
sufficiently resolve the optimal perturbations, and the c
tinuous spectrum was replaced by the discrete spectrum
herent to bounded flows. Their study of three-dimensio
optimal perturbations in this boundary layer analog fou
that a stream-wise oriented vortex which evolved into
stream-wise streak provoked the most response. A sim
result was found by Lasseigneet al.10 in their extension of
the initial boundary value formulation approach to bound
layers.

As mentioned in Ref. 4, an alternative technique
finding optimal perturbations can be envisioned utilizing t
direct and adjoint initial boundary value problems, where
an elegant link between the input and output states is es
lished, and conclusions about receptivity and optimal exc
tions can be drawn. This approach, first suggested for tra
ing the growth of anomalies in weather prediction,11 was
used by Luchini12 and Anderssonet al.5 to investigate opti-
mals for spatially developing Blasius boundary layers. L
chini and Bottaro13 applied the method in their study of th
receptivity of Görtler vortices~and determined the optima
perturbation for this instability!. The boundary layer scaling
appropriate to these spatial analyses preclude the inves
tion of oblique disturbances, i.e., only phenomena asymp
cally elongated in the longitudinal direction can be studi
Despite this, the results found using the spatial framew
are very similar to those reported by Butler & Farrell, sin
they also find that stream-wise vortices excite optimal
sponse.

The work presented here adapts the direct–adjoint te
nique to the temporal problem for the Falkner–Skan bou
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
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ary layers. In the temporal context, the parallel-flow assum
tion is adopted, and a uniform scaling is employed. The m
advantage to this approach is that it permits the study
oblique disturbances, i.e., those flow structures wh
stream-wise scale may be of comparable magnitude to t
span-wise scale. Should these attain sufficient amplitu
they will enjoy a wider range of nonlinear interactions than
purely two-dimensional perturbation.14,15

Clearly, the limitation of the present study lies in th
adoption of the temporal framework. Since a large numbe
previous studies adopt the same hypothesis, some work
focused on the identification of a transform relating the te
poral transient to its spatial counterpart. In this respect,
results reported by Criminaleet al.7 and Lasseigneet al.10

are particularly encouraging, and indicate that such a tra
formation may exist. Furthermore, optimal perturbatio
found using the temporal and the spatial techniques ar
good agreement with one another, indicating that some
derlying physical phenomenon is described well by eith
technique.

This work is devoted to the study of initial configura
tions which maximize the growth over a given time; the
are referred to aslocal optima. The configuration which
maximizes growth for all time is termed aglobal optimum.
While global optima can enjoy energy growth on the order
the square of the Reynolds number, local optima also ex
rience significant growth, and should not be discounted w
exploring the different paths leading to by-pass transiti
Physically, if transient growth of sufficient magnitude to i
duce nonlinear effects occurs in a short distance from
leading edge, the even larger growth eventually evoked
ther down-stream by the global optimal would be pre-emp
by transition.

II. MATHEMATICAL BACKGROUND

The behavior of a small three-dimensional velocity p
turbationũ5(ũ,ṽ,w̃)T in a parallel base flow,U5U(y), is
governed by the Navier–Stokes equations. Relating
stream- and span-wise perturbation velocity component
one another through the normal perturbation vorticity,h̃
5(]ũ/]z) 2(]w̃/]x), linearizing the Navier–stokes equa
tions, and eliminating the perturbation pressure yields a s
tem in ṽ and h̃16

F S ]

]t
1U

]

]x
2

1

R
D DD2

]2U

]y2

]

]xG ṽ50,

~1!

S ]

]t
1U

]

]x
2

1

R
D D h̃52

]U

]y

]

]z
ṽ.

The Laplacian operator is represented above byD
5(]2/]x2 )1( ]2/]y2 )1(]2/]z2). At solid walls and in the
free-stream the normal perturbation velocity and its norm
derivative are assumed to vanish. Similarly, since the stre
and span-wise perturbation velocities vanish at these bou
aries, the normal disturbance vorticity must, too. Sem
infinite domains are usually represented in a truncated c
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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122 Phys. Fluids, Vol. 12, No. 1, January 2000 P. Corbett and A. Bottaro
putational space, in which case these conditions
commonly replaced by their asymptotic equivalents at
upper limit.

The Reynolds number, which characterizes the rela
importance of convective to diffusive processes

R5
U`d

n
,

appears when the original system is uniformly nondim
sionalized using a characteristic length~d! and velocity
(U`). Pressure is scaled by the groupingrU`

2 . This work
uses Falkner–Skan boundary layer profiles to specifyU(y),
andd is taken to be proportional to the boundary layer thic
ness defined byd5An l /U`, with l a reference stream-wis
distance.

Assuming a disturbance velocity of the form

ũ~x,y,z,t ![u~y,t !exp~ iax1 ibz!,

with an analogous assumption for the disturbance pressup,
Eq. ~1! becomes

F S ]

]t
1 iaU2

1

R
D DD2 ia

]2U

]y2 Gv50,

~2!S ]

]t
1 iaU2

1

R
D Dh52 ib

]U

]y
v,

where the Laplacian takes the formD5(]2/]y2 )2k2, with
k25a21b2. Settingv5(v,h)T, ~2! can be written in matrix
form4,6

dv

dt
5Lv, with L5FV 0

Y S
G . ~3!

The elements in the linearized dynamical operatorL are

V5D21F S 2 iaU1
1

R
D DD1 ia

]2U

]y2 G ,
Y52 ib

]U

]y
,

S52 iaU1
1

R
D.

In the above form, for all cases of physical interest, i.
whenevera andb are not simultaneously zero, the opera
L is not self-adjoint. This implies that the transient behav
of the system in Eq.~3! cannot be described by a sing
eigenmode.17,18 Equation~3! retains its validity in the limit
as t→`, however, the asymptotic behavior of the system
obtained more efficiently using conventional eigenanalys

In the following, the inner product of two arbitrary com
plex vector quantitiesa andb is defined by

~a,b!5E
s
āT
•b ]s,

where the over-bar denotes a complex conjugate ands is the
spatial extent of the domain. So defined, the inner produc
a perturbation with itself is proportional to its kinetic energ
In the temporal analysis this is a function of time
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
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E~ t !5~u,u!.

This measure represents a positive-definite quadratic f
~norm! of physical significance. Scaling by the initial con
figuration’s norm gives the disturbance’s growth

G~ t !5
E~ t !

E~0!
,

which quantifies the magnitude of a given perturbation a
evolves in time. In the context of the temporal approa
outlined above, an optimal perturbation is an initial config
ration of v and h which maximizes growth at a specifie
time t5t and a given set of parameters,a, b, R, andm.

The technique used here to determine the optimal ini
configuration is based on the definition of the growth and
concept of the propagator. The propagatorF expresses the
evolution of an initial solution from its conception through
a given time,t5t

v~t!5F~t!v~0!.

IntroducingA, a rectangular transfer matrix betweenv andu

u5Av, with A5
1

k2F ia ~]/]y! 2 ib

k2 0

ib ~]/]y! ia
G ,

it becomes possible to rewrite the expression for growth
terms of the initial solution and the propagator

G~t!5
~Av~t!,Av~t!!

~Av~0!,Av~0!!
5

~AF~t!v~0!,AF~t!v~0!!

~Av~0!,Av~0!!
.

An equivalent form of this expression is

G~t!5
~v~0!,F* ~t!A* AF~t!v~0!!

~v~0!,A* Av~0!!
,

obtained by applying the definition of the adjoint in the e
ergy norm, where the superscript* is used to indicate adjoin
quantities. This is a Rayleigh quotient, and the growth w
be maximized by the largest eigenvalue of the problem

~A* A!21F* ~t!~A* A!F~t!v~0!5G~t!v~0!.

The optimal initial configuration sought is the correspondi
eigenvector. The linear operator multiplying the optimal
the left-hand-side is a positive-definite Hermitian form, co
sequentlyG(t) is real and positive, and the optimal pertu
bations are orthogonal to one another.

The simplest manner of obtaining the optimal perturb
tion is to apply power iterations of the form

v~0!k115~A* A!21F~t!* ~A* A!F~t!v~0!k. ~4!

This process is equivalent to finding the largest singu
value ~norm! of the propagator; in this context the optim
perturbation is the propagator’s largest singular vector. T
assumptions are inherent in the use of the power meth
The first is that the initial guess forv(0) is not orthogonal to
the first singular vector, the second is that the singular val
of the propagator are well-separated. Rapid convergenc
the iterative procedure will be interpreted as ana posteriori
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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123Phys. Fluids, Vol. 12, No. 1, January 2000 Optimal perturbations for boundary layers subject . . .
indication that these issues have been successfully addre
The power method algorithm is broken into four distin
steps, working from right to left in Eq.~4!

1. v(t)k5F(t)v(0)k,
2. z(t)k5(A* A)v(t)k,
3. z(0)k5F* (t)z(t)k,
4. v(0)k115(A* A)21z(0)k.

Successive iterates can be scaled to ensure that their m
tudes remain reasonable.

As remarked by Luchini,12 obtaining a matrix represen
tation of the propagatorF is an involved undertaking
whereas the direct initial boundary value problem is know
and its adjoint can be readily found. The action of the pro
gators in steps 1 and 3 above can be replaced by integra
of the direct and adjoint systems. Introducing the variablã
5(ã,b̃)T, the adjoint system reads

F S ]

]t
1U

]

]x
1

1

R
D DD12

]U

]y

]2

]x]yG ã52
]U

]y

]

]z
b̃,

~5!S ]

]t
1U

]

]x
1

1

R
D D b̃50.

The boundary conditions onã are chosen in the process
integration by parts from which the system~5! is obtained.
Here, these are set to be identical to those onṽ. Note that this
system’s intrinsic direction of stable evolution is reverse
i.e., time flows backwards for this system, as indicated
plicitly in step 3 above. Assuming periodicity in the stream
and span-wise directions as for the direct case results in
intermediate expression similar to Eq.~2!. Casting Eq.~5!
into matrix form analogous to Eq.~3! one obtains

da

dt
5L* a, with L* 5FV* Y*

0 S* G , ~6!

where the elements in the adjoint dynamical operatorL* are

V* 5D21F S 2 iaU2
1

R
D DD2 i2a

]U

]y

]

]yG ,
Y* 52 ibD21

]U

]y
,

S* 52 iaU2
1

R
D.

The last relation in the adjoint system is a contributi
from the time derivative terms

E
0

` ]

]t
~D v̄Ta1h̄Tb!dy5

]

]t
@~Dv,a!1~h,b!#50,

and relatesv to a. This expression implies that whatev
conditions are chosen for the integration of Eqs.~3! and~6!,
the inner product given by

e5~Bv,a!, with B5
1

k2 F ~]2/]y2! 2k2 0

0 1G ,
remains constant in time. This requirement not only provid
a link between the propagatorsF and F* in Eq. ~4! and a
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
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practical implementation of the power iteration algorithm u
ing the linearized dynamical operators in Eqs.~3! and~6!, it
also serves as a check on the accuracy of the method use
their integration.

Note that the kinetic energy of the perturbation can a
be written as

E~ t !5~Bv,w!,

wherew5(2v,h)T. The power iteration loop starts with a
arbitrary guess forv(0), which after direct integration of~3!
from t50 to t5t becomesv(1)(t), characterized by a ki-
netic energyE(1)(t). Choosinga(1)(t)[1/k2 w(1)(t) as a
starting condition for~6!, e (1) is identified as the desired
energy norm and must remain constant throughout
‘‘backward-in-time’’ integration of the adjoint system from
t5t to t50. The initial conditions used for the direct equ
tions at the start of the next loop are thenv (2)(0)
52k2a(1)(0) andh (2)(0)5k2b(1)(0). This iterative proce-
dure typically converges for the growth in five cycles or le

III. RESULTS

It remains to apply the procedures described above
physical model. The numerical methods employed to obt
the results presented in this section comprise a Chebys
collocation technique for the spatial discretization and i
plicit finite-differencing for temporal integration. Further de
tails are given in the Appendix.

A self-similar boundary layer for the general case
nonzero pressure gradients is obtained when the externa
tential flow is assumed to vary proportionally toxm, and
no-slip conditions are imposed at the wall. The Falkne
Skan similarity solution for the nondimensional strea
function f (j) corresponding to this situation is given by th
nonlinear ordinary differential equation

f-1
m11

2
f 9 f 1m~12 f 82!50,

were primes indicate derivatives with respect to the simil
ity variable

j5yx(m11)/2,

and the boundary conditions are

f ~0!5 f 8~0!50 and f ~j→`!→1.

The mean flow sought is described byUe5xmf 8. Deceler-
ated flow is described by20.0904,m,0, where the lower
limit corresponds to imminent separation, the Blasius bou
ary layer is recovered form50, whereas an accelerated flo
is obtained form.0. Only classical solutions to the equa
tions, characterized by monotonic increase ofU with j, will
be considered here. The Falkner–Skan profiles~and first de-
rivatives! corresponding to the mean flows investigated h
are shown in Fig. 1. Numerical values of the displacem
thickness

d* 5E
0

`

~12U !dj,

and the momentum thickness
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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u5E
0

`

U~12U !dj,

for the profiles shown, as well as the ratio of these two qu
tities, the shape factorH, are listed in Table I.

Optimal perturbations have been defined quite precis
in the previous section, it remains to describe the time fram
over which they will be sought. Consider a perturbation d
scribed by the wave number pair (a0 ,b0) in a mean flow
parameterized byR and m. A local optimal is an initial
configuration ofv andh which excites the algebraic growt
mechanism optimally at a given finite timet5t, the growth
at this time is

FIG. 1. Variation of the Falkner–Skan profile and its first derivative a
function of the imposed pressure gradient.
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
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G5G~a0 ,b0 ,t,R,m!.

The global optimal disturbance for this set of parameters
the initial condition which maximizes the growth, i.e.,

g5max
;t

G~a0 ,b0 ,R,m!,

its specification is completed bytg , the time at which this
growth occurs. Generally, local optima are sought for tim
smaller thantg . The largest global growth obtained for an
set of wave numbers

G5max
;a,b

g~R,m!,

is a characteristic only of the base flow.
This study’s principal objective is to quantify the ma

nitude of the maximum global growthG, and to determine
the physical characteristics of the disturbance responsible
it. Since a linear mechanism is responsible for algebr
growth, it is reasonable to expecttg to scale linearly, and in
light of the boundary layer nature of the flow, quadratic sc

TABLE I. Integral parameters for selected Falkner–Skan profiles.

m d* u H

20.0904 3.446 04 0.867 979 3.970 19
20.05 2.117 76 0.751 462 2.818 18

0 1.7208 0.664 115 2.591 11
0.1 1.347 87 0.556 593 2.421 64
0.5 0.854 69 0.3779 2.261 68
1 0.647 91 0.292 34 2.216 29

a

,

-

FIG. 2. Variation of the maximum
global growth, scaled byR2, and its
characteristic development time
scaled byR, shown as a function of
the span-wise wave number. Parts~a!
and ~b! use the displacement thick
ness, parts~c! and~d! use the momen-
tum thickness.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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125Phys. Fluids, Vol. 12, No. 1, January 2000 Optimal perturbations for boundary layers subject . . .
ing of G with the Reynolds number can be anticipated.
the other hand, its behavior with respect to variations inm
cannot be foreseen.

Results for the Blasius boundary layer have shown t
flow structures infinitely elongated in the stream-wise se
experience the most amplification. It was found that this
also the case in boundary layers described by the Falkn
Skan profiles. In order to determine the scaling behavio
maximum global optimal perturbation it is necessary
evaluateg andtg over the range ofb where the maximum is
anticipated at different Reynolds numbers and pressure
dients.

FIG. 3. ~a! The effect of pressure gradient on the initial stream-wise per
bation velocity for maximum global optimal, scaled byuvumax. (Ru5166)
~b! Initial normal and span-wise velocity profiles for the same conditio
similarly scaled.

TABLE II. Variation in the characteristics of maximum global optima
with pressure gradient (Ru5166).

m bu G tG

20.05 0.247 05 356.4 898.2
0 0.251 14 280.7 870.8
0.1 0.252 23 227.4 863.5
0.5 0.251 44 179.1 869.7
Downloaded 21 Oct 2004 to 130.251.56.122. Redistribution subject to AI
n

t
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s
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a-

Figure 2 showsg and tg at the four values ofm indi-
cated. For each imposed pressure gradient, results c
sponding to three arbitrary Reynolds numbers are sho
Figures 2~a! and 2~b! show the results of scaling with respe
to Rd* , the Reynolds number defined by the displacem
thickness, and Figs. 2~c! and 2~d! show what happens whe
scaling withRu , the Reynolds number defined with the m
mentum thickness. Figures 2~a! and 2~c! confirm the ex-
pected quadratic scaling of the growth with Reynolds nu
ber, Figs. 2~b! and 2~d! show tg scales linearly. Either
scaling accounts well for differences in Reynolds numb
and the effect of pressure gradient is made immediately

-

,

FIG. 4. ~a! Stream-wise perturbation velocity magnitude profiles attG ,
scaled byuuumax. ~b! Normal and span-wise velocity magnitudes attG .

TABLE III. Variation in the characteristics of maximum global optima
with Reynolds number~Blasius boundary layer!.

Ru bu G tG

166.0 0.251 15 280.7 870.8
385.9 0.251 19 1515.1 2023.4
498.1 0.251 30 2523.7 2610.2

Butler & Farrell ~Ref. 4!
385.9 0.25 1514 2016
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 5. Contours ofg ~solid lines! and tg ~dot-dash lines! in the wave number plane forRu5166. ~a! m520.05, disturbances in the shaded region a
exponentially unstable.~b! Blasius.~c! m50.1. In all cases, the increment between level curves oftg towards the origin is 400. Note the 4:1 axis ratio.
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a

dent. The results show that, in comparison to the Blas
boundary layer, optimal perturbations in flows subject to
verse pressure gradients experience greater amplifica
and those in accelerated flows enjoy less amplification.

Notable is that, when scaled withu, the span-wise wave
number forG appears to be independent of the mean fl
conditions,bu'1/4. Even more remarkable is how wellu
scaling accounts for the variation intg resulting from differ-
ences in the base flow. A similar result for the neutral cu
of Görtler vortices is well-established.19 Since momentum
thickness scaling appears to reveal some universal beha
in the algebraic growth mechanism, it will be used to rep
all results which follow. Aside from time, those quantitie
for which this has implications are indicated by a subsc
‘‘ u.’’

Tables II and III present some numerical results. T
former shows how the characteristics of theG point vary
with changes inm (Ru is kept constant!, and the latter shows
how these characteristics vary with changes in Reyno
number at a given pressure gradient. In this case the Bla
boundary layer has been chosen, so the results can be
pared with those of Butler and Farrell. The agreemen
remarkably good, the slight variation between them mi
stem from the different spatial discretization, or to the a
proximation used for the continuous spectrum.

From the engineering point of view, a perturbation is
most interest at its conception. The velocity profiles of t
optimal perturbations reported in Table II are shown in Fig
~the effect of varyingm is sought since the Reynolds scalin
can be inferred directly!. In each case,u has been scaled
such thatuv(0)umax[1, the maximum normal velocity com
ponent is unity. Unsurprisingly, the optimal is seen to be
stream-wise oriented vortex situated mainly within t
boundary layer, but extending some distance into the fr
stream. When scaled with the momentum thickness,
shape of the starting vortex is independent of the impo
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pressure gradient. The magnitude of the initial stream-w
velocity component varies in proportion tom, but is in all
cases two orders of magnitude less than the cross-flow c
ponents.

In order to answer the second question motivating t
work, Fig. 4 shows the evolved state of the optimal pert
bations att5tG . Here,u has been scaled by the maximu
stream-wise velocity component,uu(tG)umax[1. The resem-
blance in shape, despite the different external flow con
tions, for the stream-wise velocity components is rema
able. Note that fora50 the system in Eq.~2! simplifies
significantly, and the effect of the mean flow is felt on

FIG. 6. Contours ofg ~solid lines! and tg ~dot-dash lines! in the wave-
number plane for Blasius flow atRu5386. The exponentially unstable are
for this flow is shaded.
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through its first derivative in the source term for theh equa-
tion ~cf. Fig. 1!. The remnants of the initial vortex are sti
present although it has diffused outwards away from
wall. The final state of the optimal perturbation for the alg
braic instability strongly resembles the streaks frequently
served in boundary layers. This finding is in good agreem
with the spatial results reported in Refs. 5 and 12.

To this point, it might be said that only worst-case sc
narios have been considered, since incoming disturba
are unlikely to be configured to optimally excite the ma
mum global growth. The pervasiveness of transient gro
in a boundary layer for a wide range of wave number co
binations is apprehended immediately from a plot of le
curves ofg ~andtg) in the wave number plane. The series
plots presented in Fig. 5 shows such isolines
m520.05, 0, 0.1, in order to make the effect of pressu
gradient immediately evident. For all cases, significant al
braic growth occurs in a large part of the wave number pl
examined. The first part of the figure corresponds
m520.05, for which a section of the wave number pla
experiences exponential instability. This section has b

FIG. 7. ~a! Contours ofG(tG) for R5386 ~local optimum growth!. The
critical stability limit is indicated by the thick line. The innermost lev
curve in the exponentially unstable area isG51660. ~b! Growth amongst
the various mechanisms.
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shaded. The figures are otherwise similar, with growth
creasing radially away from theG point. For each givenau

(au.0), most growth occurs for perturbations characteriz
by weakly increasing values ofbu , with bu'1/3. As might
be inferred from Fig. 2, greater growth is experienced
adverse pressure gradients, whereas growth is damped
favorable pressure gradients.

Figure 6, which showsg for a Blasius boundary layer a
Ru5385.9, is included to show the effect of increasing Re
nolds number, an effect apparently not dissimilar to imp
ing an adverse pressure gradient. The shaded region a
indicates exponential growth. Remark that for all casestg ,

FIG. 8. ~a! Optimal initial excitation for the three–dimensional Tollmien
Schlichting mode exhibiting greatest transient growth over timet5tG . The
symbols show the eigenfunction of the adjoint stability problem.~b! The
optimally excited three-dimensional Tollmien-Schlichting mode attG . The
symbols denote the mode shape predicted by linear stability theory.

TABLE IV. Modes of largest asymptotic two dimensional and mo
transiently amplified three-dimensional Tollmien–Schlichting waves
t5tG .

au bu R(vu) I(vu) G(tG)

0.1030 0 3.65131022 1.21331023 1636.3
0.1030 0.0190 3.70531022 1.17131023 1678.0
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while generally moderate, experiences a sharp peak for
wave-length perturbations, andtG lies just at the edge of this
peak. As evidenced by the increase intg towards the origin
of the wave number plane, long wave-length disturban
evolve very slowly, and the parallel flow assumption fails.
light of this, data has not been collected in this area, as
dicated by the blanked-out region in Figs. 5 and 6.

It is interesting to assess the maximum global optima
relative strength by comparing it to local optima fortG . This
is of particular interest for Reynolds numbers above critic
since it will show whether the algebraic growth mechani
can successfully compete with the Tollmien–Schlichting
stability. Contours ofG(tG) for the Blasius boundary layer a
Ru5385.9 are shown in the first part of Fig. 7. Evident
stream-wise oriented vortices of various wave-lengths
hibit strong growth, but substantial local growth also occ
in the linearly unstable region, where for these conditions
oblique Tollmien–Schlichting wave obtains the largest
sponse.~While growth is unbounded as time becomes la
in this region, it is bounded and well-defined for finite time!
The results show that over a finite period algebraic growt
fully capable of competition with Tollmien–Schlichtin
waves. Furthermore, perturbations with wave numbers in
vicinity of either mechanism will experience growth.

The situation is considered in more detail in the seco
part of Fig. 7, which plots the growth exhibited by the va
ous competing disturbances. The two lower curves co
spond to growth rates obtained from linear stability theo
reported in Table IV. In this context it is assumed that t
corresponding Tollmien–Schlichting wave exists in t
boundary layer att50 and develops exponentially. Th
slightly lesser growth rate corresponds to the oblique w
which experiences the most amplification attG , the other
corresponds to the most amplified Tollmien–Schlichti
wave ~two-dimensional in accordance with Squire’s the
rem!. The other three curves correspond to optimally p
turbed mechanisms. The solid line is the growth obtained
the stream-wise vortex, whereas the dashed and dotted

FIG. 9. Contours ofG(t'100) for Ru5221, m520.05. The critical sta-
bility limit is indicated by the thick line.
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show the growth obtained by the optimally perturb
Tollmien–Schlichting~TS! waves. The greater growth of th
oblique wave is due to its larger transient amplification.
conception and shortly afterwards, the algebraic mec
nism’s growth is approximately an order of magnitude larg
than its nearest competitor. Optimally perturbed TS wa
attain an asymptotic state relatively quickly, further grow
is at the rate predicted by classical theory.

The optimal configuration for exciting the oblique T
wave is shown in Fig. 8. Hill’s study of TS receptivity20

demonstrated that these waves are most receptive to di
bances given by the eigenfunctions of the adjoint Or
Sommerfeld equations. The symbols superposed on the
files correspond to these eigenfunctions. Att5tG this
perturbation has evolved into the state depicted in the sec
part of Fig. 8, the modal state predicted by classical stab
theory is represented by the superposed symbols.

Should the above results be transferable to the spa
context via some transform based upon anO(1) convection
speed, it follows from the long evolution period for glob
optimals that a substantial stream-wise development dista
of O(Rd) is necessary for the streak to emerge. This is bo
out by the Reynolds number scaling oftg in Fig. 2, rendering
the validity of the parallel flow hypothesis rather questio
able. Also, it seems improbable that a~maximum! global
optimal perturbation can develop undisturbed over suc
long period in an actual flow. These arguments make it na
ral to inquire about the behavior of local optimals in th
short-time limit.

As a first step in this direction, consider the competiti
between TS waves and the algebraic mechanism for adv
pressure gradients. The maximum global optimal takes
long to develop in decelerated flows that the TS mechan
attains growth two orders of magnitude larger over the sa
period. The situation at short time is completely different
shown clearly in Fig. 9, which presents level curves ofG at
t599.8. The limit of exponential amplification is indicate
by a thick line. Optimals on a significant portion of the wa

FIG. 10. Effect of pressure gradient on the evolution of the wave numbe
the maximum local optimum with time. Sampled at times beforetG for Ru

5166; t indicated form50.
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number plane enjoy two orders of magnitude growth. Int
estingly, this growth occurs for oblique structures. In co
trast, over this short time the~optimally excited! TS mecha-
nism has yet to manifest itself.

It turns out that maximum local optima tend to be o
lique, as shown by Figs. 10 and 11. These depict the w
number pair of the local optimal experiencing maximum a
plification sampled for times between inception andtG ~the
target time is indicated for reference!. Figure 10 shows how
pressure gradient affects this behavior,Ru5166 has been
fixed andm is allowed to vary. It can be seen from Fig. 1
that change in the Reynolds number has a much larger ef
particularly at very short times. The second part of Fig.
compares the growth obtained by local optima to that ex
rienced by the maximum global optimal. Oblique local o
tima attain greater growth than the global optimal ov
shorter periods by efficiently extracting energy from t
mean flow via the Orr mechanism.21,22

Oblique local optimal perturbations, with stream- a
span-wise wave-lengths of comparable magnitude, canno
determined by a theory based upon boundary layer scali
but in light of the large growth they can provoke, they shou

FIG. 11. ~a! The effect of Reynolds number on the evolution of the wa
number of the maximum local optimum, shown for Blasius flow.~b! Com-
parison between local and global optimal growth forRu5386.
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clearly not be dismissed. While the stream-wise oriented v
tex may be the most effective streak generator, it is
alone: The oblique local optimals also develop into dist
bances where the stream-wise component plays a pred
nant rôle.

IV. CONCLUDING REMARKS

Initial configurations of perturbation normal velocity an
vorticity which obtain the greatest response for a given in
have been studied for the Falkner–Skan boundary la
Conditions corresponding to adverse, zero and favora
pressure gradients are considered using a direct–adjoint t
nique in the temporal framework. This technique depen
neither upon the eigenvectors of the generalized linear
bility eigenproblem nor upon the choice of an arbitrary set
basis functions to discretize the propagator. This permits
boundary layer problem on the half-plane to be attacked
rectly, by-passing issues concerning the discretization of
continuous spectrum characteristic of such problems.

The disturbance which evokes the greatest response
all time is a stream-wise oriented vortex which gives rise
a stream-wise streak. The response is quantified by
growth, defined as the ratio of final to initial perturbatio
kinetic energies. For a given pressure gradient, the time
which such growth is attained is found to scale linearly, a
the growth itself quadratically, with the Reynolds numb
The effect of adverse pressure gradient is to enhance gro
whereas a favorable pressure gradient at the same Reyn
number has a damping effect. The maximal growth and
characteristic development time are found to scale best w
the nondimensional boundary layer momentum thickne
Similarly scaled, the perturbation velocity profiles are r
markably similar.

In the case of the Blasius boundary layer, the resu
obtained are in excellent agreement with previous work
ing the temporal framework by Butler and Farrell.4 Further-
more, the optimal’s general characteristics agree favora
with those found by Luchini12 and Anderssonet al.5 using
spatial analysis. Those findings showed good agreemen
tween the final state and experimentally observed pertu
tion velocity profiles.

Initial configurations which maximize growth at a s
time shorter than that required for maximal possible exc
tion, termed local optima in this work, have shown the c
pacity for significant amplification. Such perturbations a
shown to be oblique for periods up to about a third of t
characteristic time required for maximum growth, a
evolve downstream into streaks.

The current method’s applicability to receptivity studi
is straightforward. It is demonstrated in a quantitative fa
ion that the optimally stimulated algebraic growth mech
nism is capable of competing with Tollmien–Schlichtin
waves in Blasius flow, even when these are also optim
excited. Algebraic growth is dominant at short times for
flow conditions considered.

It is apparent that even within the restrictions of the p
allel flow temporal framework much can be learned ab
the transient behavior of boundary layers subject to pres
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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gradients. Current work focuses on the search for local
global spatial optimals, in three-dimensional boundary l
ers.
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APPENDIX: NUMERICAL IMPLEMENTATION

All calculations were carried out in double precision
an engineering work-station using the Matlab linear alge
package.23

Equations~3! and~6! are discretized using the method
lines: Chebyshev collocation is used for the spatial discr
zation and a second-order backward Euler finite-differe
scheme is used in the temporal discretization.

The unknowns are represented at collocation po
given by the Chebyshev–Gauß–Lobatto nodes, and de
tives are obtained by matrix-vector multiplication with th
differentiation matrix. The DMSuite routines by Weidema
and Reddy24 are used to obtain the Chebyshev–Gau
Lobatto collocation points and the Chebyshev differentiat
matrices. This package has been designed to circumven
ror arising from finite-precision arithmetic. Boundary cond
tions are imposed by replacing rows in the original opera
matrices. This renders the inverse Laplacian appearing iV
andV* well-posed. An algebraic stretching is used to tra
form the computational domain into the physical one, 0<y
<y`

yj5
y`H

2

11xj

11H2xj
,

whereH is a constant stretching factor. Integral quantiti
such as the inner product, can be obtained efficiently us
Gaussian quadrature rules adjusted by the Jacobian o
mapping given above.

The temporal integration requires a fairly accurate, re
able and efficient method. A second-order backward Eu
discretization of Eqs.~3! and~6! is used. Time advancemen
involves matrix-vector multiplication, and storage for tw
previous solutions is required.

Numerical parameters were determined by grid conv
gence study. A stretching factor ofH51/9 was used, which
places half the points inside the boundary layer, and the o
boundary has been fixed aty`>80. All data was obtained
usingn>84 collocation points anddt<0.2.

A line search algorithm based on golden section sea
and parabolic interpolation was employed to determinetg for
global optimals. Searches involving two parameters, i
those for maximum global and local optimal perturbatio
were performed using a simplex search method.

Finally, note that the generalized eigenvalue probl
arising in classical stability theory is easily obtained fro
Eq. ~3!. The solution’s behavior in time is assumed to go
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v~y,t !5 v̂~y!exp~2 ivt !,

where the circular frequency is complex. Equation~3! be-
comes simply

2 iv v̂5Lv̂, ~A1!

which is efficiently inverted using the QZ algorithm. Mod
results presented here have been obtained using this
nique.
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