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Transition to turbulence in duct flow
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The transition of the flow in a duct of square cross-section is studied. Like in
the similar case of the pipe flow, the motion is linearly stable for all Reynolds
numbers; this flow is thus a good candidate to investigate the ‘bypass’ path to
turbulence. Initially the so-called ‘linear optimal perturbation problem’ is formulated
and solved, yielding optimal disturbances in the form of longitudinal vortices. Such
optimals, however, fail to elicit a significant response from the system in the nonlinear
regime. Thus, streamwise-inhomogeneous sub-optimal disturbances are focused upon;
nonlinear quadratic interactions are immediately caused by such initial perturbations
and an unstable streamwise-homogeneous large-amplitude mode rapidly emerges. The
subsequent evolution of the flow, at a value of the Reynolds number at the boundary
between fully developed turbulence and relaminarization, shows the alternance of
patterns with two pairs of large-scale vortices near opposing parallel walls. Such edge
states bear a resemblance to optimal disturbances.

1. Introduction
Transition to turbulence in ducts is still an unsolved issue despite the more than

120 years since the observations by Osborne Reynolds that led to the definition of
a similarity parameter, the ratio of the viscous to the convective time scale, capable
of broadly separating the cases where the flow state was laminar from those where
turbulence prevailed. Recent years have seen a resurgence of interest in the topic,
spurred by new developments in linear and nonlinear stability theories. As is now
well known, classical small-perturbation theory is not able to provide an explanation
for the onset of transition in ducts and pipes (Gill 1965; Salwen, Cotton & Grosch
1980; Tatsumi & Yoshimura 1990). Current understanding ascribes the failure of
classical theory to its focus on the asymptotic behaviour of individual modes; when a
small disturbance composed of a weighted combination of linear eigenfunctions
is considered, there is the potential for very large short-time amplification of
perturbation energy, even in nominally stable flow conditions. This behaviour has
been reported by Landahl (1980) and Boberg & Brosa (1988) and has been given
the name of algebraic instability (and later ‘transient growth theory’), since the initial
rapid growth in time of small disturbances is proportional to t . The property is related
to the non-normality of the linearized stability operator (which does not commute
with its adjoint).

Despite the appeal and elegance of transient growth theory, it was realized that
the fully nonlinear Navier–Stokes equations need to be used to understand transition
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phenomena. In this context, we mention Nagata (1990, 1997), Waleffe (1997, 1998,
2003), Faisst & Eckhardt (2003) and Wedin & Kerswell (2004), who present travelling
wave and equilibrium solutions of the Navier–Stokes equation for channel and pipe
flows that are possibly related to transition. Experimental investigations along these
lines are due to Hof et al. (2004, 2005).

In dynamical systems’ terminology it is argued that unstable travelling waves
appear through saddle node bifurcations in phase space; the travelling waves found
so far are all saddle points with low-dimensional unstable manifolds. The saddles
act by attracting the flow from the vicinity of the laminar state, and then repelling.
For transitional or turbulent, yet moderate, values of the Reynolds number Re the
flow wanders in phase space between a few repelling states, spending much time in
their vicinities, before being abruptly ejected, so that experimental observations yield
recurrent sequences of familiar patterns (Artuso, Aurell & Cvitanović 1990; Kerswell
2005).

A yet unresolved issue concerns the initial conditions that are most suited to yield
such unstable states. Traditional emphasis on so-called optimal perturbations may
be misplaced. In fact, there is but a weak connection between the flow structures
that grow most during the linear transient phase and the chaotic flows found at
large times. Such a connection for the case of pipe flow concerns the so-called edge
state which sits on a separatrix between laminar and turbulent flows (Eckhardt et al.
2007; Pringle & Kerswell 2007). This state, made up of two asymmetric vortices
in the cross-section, resembles the optimal disturbance of transient growth theory
(Bergstrom 1993). For the motion in a square duct there seems to be no connection
at all: the low-Re turbulent flow, when averaged in time and space, is characterized
by eight secondary vortices symmetric about diagonals and bisection lines. It seems
reasonable to argue that such secondary structures represent the skeleton of the
unstable periodic orbits, but the disturbances that grow most in the linear transient
phase are formed by two vortices, symmetric about a diagonal (Galletti & Bottaro
2004). In both configurations, pipe and square duct, the optimal perturbation is a
stationary pseudo-mode, elongated in the streamwise direction, and not a travelling
wave. This is a generic occurrence in wall-bounded shear flows, and it does not
bode well for the establishment of a simple, direct relation between small-amplitude
disturbances (excited in an initial receptivity phase) and finite-amplitude wave-like
states. Although nonlinear effects can be pinpointed as the missing link between
early stage of transition and late stages, there is scope for a receptivity analysis
focused on transiently growing initial conditions, followed by nonlinear simulations.
A motivation for the search for wave-like structures during the early stages of
transition is also provided by recent careful experiments (Peixinho & Mullin 2006) on
the reverse transition in pipe flow, where modulated wavetrains are found to emerge
from long-term transients.

The present paper starts by comparing the efficiency of optimal and sub-optimal
perturbations in triggering transition to turbulence at a value of Re at the threshold
between laminar and turbulent flow; it then shows that the turbulent motion oscillates
around edge states which display an intriguing resemblance to optimal disturbances,
before relaminarization occurs. Finally, an interpretation of the results is provided
after projecting them onto a suitably defined phase space.

2. Model configuration
The incompressible flow in a duct of square cross-section is an appealing

configuration for the presence of geometrical symmetries capable of strongly
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constraining the patterns of motion. Countless studies have been devoted to the
formation of secondary vortices in the turbulent regime (see Gavrilakis 1992 for
a direct numerical simulation approach) and, more recently, an attempt has been
made to link the appearance of such large-scale coherent states to the vortices
appearing during the initial optimal transient phase of disturbance growth (Galletti
& Bottaro 2004; Bottaro, Soueid & Galletti 2006). The longitudinal laminar flow
velocity component has an analytic form U (y, z) available, for example, in Tatsumi
& Yoshimura (1990), with y and z cross-stream axes. After normalizing distances
with the channel height h, velocities with the friction velocity uτ , with u2

τ = (−h/4ρ)
(dP/dx), time with h/uτ and pressure with ρu2

τ , the following equations are found to
govern the behaviour of the developed flow in an infinite duct:

ux + vy + wz = 0,

ut + uux + vuy + wuz = −px + �u/Reτ + 4,

vt + uvx + vvy + wvz = −py + �v/Reτ ,

wt + uwx + vwy + wwz = −pz + �w/Reτ ,

with �= ∂xx + ∂yy + ∂zz and Reτ = uτ h/ν. By using uτ as velocity scale we fix the
pressure gradient, rather than the flow rate.

An incompressible pseudo-spectral solver, based on Chebyshev collocation in y

and z and Fourier transform along x, has been employed to solve these equations.
For time-integration a third-order semi-implicit backward differentiation/Adams–
Bashforth scheme is used. In order to compute a pressure unpolluted by spurious
modes, the pressure is approximated by polynomials (PN−2) of two units lower-
order than for the velocity (PN ). Only one collocation grid is used, and no pressure
boundary condition is needed. The accuracy and stability properties of the method
are discussed by Botella 1997. An adequate grid at Reτ = 150 has been found to be
composed of 51 × 51 Chebyshev points, with Nx = 128 streamwise grid points or 84
Fourier modes after de-aliasing. The x-length of the domain has been chosen equal
to 4π to accommodate a sufficiently large range of wavenumbers α, with periodic
boundary conditions. A finer grid resolution has also been used for fully developed
turbulent flow with 71 × 71 × 256 physical grid points, or 71 × 71 × 170 spectral
modes and a streamwise length Lx =6π (with this resolution we obtain an excellent
match with the results by Gavrilakis 1992 for Reτ = 300). The finer resolution run
provides a slightly larger value of the threshold energy for transition, but integral
quantities such as disturbance energy or skin friction factor are only marginally
affected. Since the threshold value is, in any case, a function also of the shape of
the initial condition, we do not deem it necessary to pursue expensive calculations to
determine it exactly. For all cases studied, an adequate time step has been found to be
�t = 5 × 10−4.

The mean value of the generic function g is defined as g(y, z) = (1/Lx T )/∫
xt

g(x, y, z, t) dx dt . The addition of time averaging is necessary because of the

finite (relatively low) streamwise length. The bulk velocity is Ub =
∫

yz
u dy dz and the

centreline velocity is Uc = u(0.5, 0.5). The friction factor for the square duct can be
written as f = 8 u2

τ /U 2
b . Some representative results are given in table 1, and the

secondary flow field at Reτ =150, averaged over forty units of time, is shown in
figure 1. It displays a very regular pattern with eight vortices, despite the fact that no
averaging over quadrants has been performed.
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f Uc/Ub Reb Rec

Laminar 0.018 2.0963 3163 6630.4
Turbulent 0.0415 1.53 2084 3188

Table 1. Comparison of some numerical values for laminar and fully developed turbulent flow
at Reτ = 150. The subscript b refers to bulk and c to centreline. The skin friction f given by
the empirical correlation by Jones (1976) is f = 0.0481.
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Figure 1. Turbulent mean crossflow vortices and streamwise flow contours; isolines are
spaced by 4uτ .

3. Optimal perturbations
The Navier–Stokes equations, linearized around the ideal laminar flow, are

iαu + vy + wz = 0,

ut + iαUu + vUy + wUz = −iαp + (−α2u + uyy + uzz)/Reτ ,

vt + iαUv = −py + (−α2v + vyy + vzz)/Reτ ,

wt + iαUw = −pz + (−α2w + wyy + wzz)/Reτ ,

associated with boundary conditions u = v = w =0 on the walls; α is the streamwise
wavenumber. The equations are integrated from a given initial condition at t = 0 up
to a final target time t = T . To identify the flow state at t = 0 producing the largest
disturbance growth at any given T , a variational technique, based on the repeated
numerical integration of direct and adjoint stability equations, is used, coupled with
transfer and optimality conditions (Corbett & Bottaro 2000). The functional for which
optimization is sought is based on an energy-like norm and is

G(T ) =
E(T )

E(0)
, with E =

1

2

∫
y

∫
z

(u∗u + v∗v + w∗w) dy dz,

with ∗ denoting complex conjugate.
As a preliminary result the energy stability limit for this flow is determined; the

minimal Reynolds number below which disturbances decrease monotonically is found
to be Reτ = 23.22 for α = 0. In terms of Reynolds number based on centreline velocity
and half the channel height, this limiting value is Rec = 79.44. For comparison, in the
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Figure 2. Crossflow velocity vectors for the optimal disturbances for α = 0, 1 and 2. Note
that for α �= 0 the streamwise velocity fluctuations do not vanish at t = 0.

case of Poiseuille flow, Rec � 49, with α =0 and spanwise wavenumber β � 2 (cf.
Schmid & Henningson 2001).

Then, we compute optimal perturbations at Reτ = 150, for three different Fourier
modes: α = 0, 1, 2. The gain and the corresponding crossflow optimal disturbances
at t = 0 are presented in figure 2. A global optimal solution (G = 873.11) is found
for α = 0 at a time T = 1.31 and a comparable gain (G = 869.03) is found at a later
time (T = 2.09) for a solution which is topologically different. These two solutions,
which we call ‘global optimals’ represent streamwise vortices of vanishing streamwise
disturbance velocity; they evolve downstream producing streaks of high and low
longitudinal velocity. A global optimal state with two cells arranged along a duct
diagonal, was obtained by Galletti & Bottaro (2004) in the context of a spatial, rather
than temporal, optimization strategy. The existence of a four-cell optimal was not
reported. It will be shown below that the two- and the four-cell states are very robust:
when they are used as initial conditions for nonlinear simulations the flow trajectory
cannot evolve away from them towards a different topology which eventually exploits
other symmetries, except when exceedingly large disturbance energies are given as
input.

For non-zero streamwise wavenumber, sub-optimal perturbations are found which
take the form of modulated travelling waves. For α = 1, G =381.41 at T = 0.384 and
for α = 2, G = 237.05 at T = 0.246. To represent a wavetrain the temporal dependence
of the generic disturbance can be written as the product of an exponential wave part
and an envelope function slowly modulated in time: q(x, y, z, t) = q̃(y, z, t)eiα(x−ct).
The phase velocity is found to be quasi-constant with time and close to the
bulk velocity: c(α = 1) = 1.1117 and c(α = 2) = 1.1536, both scaled with Ub. The
study of the temporal (rather than the spatio-temporal) evolution of disturbances is
acceptable when flow structures travel at a well-defined speed within the duct. Such an
approximation appears to be reasonably well satisfied in experiments on equilibrium
puffs in pipe flow (Hof et al. 2005), which are found to be advected downstream
at speeds slightly larger than Ub, for values of the Reynolds number Reb = UbD/ν
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Figure 3. Skin friction for the four different optimal perturbations. For α = 0, the initial
energy E0 is equal to 10−1, for α = 1, E0 = 7.8 × 10−3 and for α =2, E0 = 4.4 × 10−3.

(D pipe diameter) exceeding Reb ≈ 1800. Below such a threshold, turbulence can no
longer be maintained autonomously.

4. Nonlinear evolution
Temporally evolving simulations have been conducted in a periodic duct of length

4π for a variety of initial conditions at Reτ =150, a value very close to the threshold of
self-sustained turbulence, as confirmed independently by Uhlmann et al. (2007). For
each direct numerical simulation the initial state consists of the quasi-parabolic base
flow profile plus a optimal or sub-optimal perturbation, normalized with prescribed
energy E0, plus random noise. The complex amplitude of the noise in Fourier space
varies between ±10−10; the noise is necessary to fill the spectrum.

In figure 3 the time evolution of the skin friction factor f is plotted for four initial
conditions of different initial energies. When the simulations are initiated with one
of the two global optimal solutions of figure 2 the ensuing behaviour is uneventful
(see figure 3), and even for a rather large initial disturbance amplitude, E0 = 0.1, no
instability appears to modify the flow, which returns slowly to the laminar condition
with f =0.018. The results are more illuminating when linear travelling waves are
used to initiate the nonlinear computations. When the condition at t = 0 is the sub-
optimal state with α = 1 or 2, the initial growth of f is slower than for the global
optimal case but, by t =2, a strong mean flow deviation is created by nonlinear
interactions, leading to a friction factor which oscillates around the turbulent mean
value f = 0.0415. It is notable that the energies E0 of the sub-optimal initial conditions
sufficient to trigger transition are very much lower than 10−1.

We have explored in more detail the long-time behaviour of the flow when the
sub-optimal initial perturbation with α = 1 is used to trigger transition; the results
are summarized in figure 4. As a function of the value of E0, the Navier–Stokes
calculations either recover the linear behaviour (when E0 � 5 × 10−3) or depart
from it. The threshold for transition is found for E0 = 7.8 × 10−3: below this initial
energy value the flow returns rapidly (within a few units of time) to the laminar
state; above it the flow becomes turbulent. The energy gain of figure 4 shows that
when E0 = 7.8 × 10−3 there is, at t =0.8, a sudden increase of the fluctuation energy,
probably linked to an instability of the distorted mean flow. There is an interesting
connection here with the recent theory of ‘minimal defects’ (Bottaro, Corbett &
Luchini 2003; Biau & Bottaro 2004; Gavarini, Bottaro & Nieuwstadt 2004; Ben-Dov
& Cohen 2007). The secondary flow at t = 0.8 shown in the same figure displays
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Figure 4. Evolution in time of the fluctuation energy, with initial condition given by the
sub-optimal perturbation with α = 1. Different curves correspond to different initial energy
values: solid line E0 = 7.8 × 10−3, dash-dotted line E0 = 7.7 × 10−3; dashed line E0 = 5 × 10−3

and dotted line represents the linear computation. The energy is normalized with its initial
value E0. The streamwise-averaged vortices are drawn at times t = 0.8, 20, 50, 70 and 80.

symmetries about bisectors and diagonals, but this is not a generic occurrence and
different initial conditions generate mean flow defects with other symmetries. For
E0 = 7.7 × 10−3 the growth is followed by decay and rapid relaminarization (see also
figure 5a); when E0 = 7.8 × 10−3 the growth which starts at t =0.8 is followed by a
rapid filling of the spectrum with a peak in the intensity of fluctuations at t =1.8.
Such a filling is made clear by figure 5(b): first the modes with α = n, n ∈ �, grow
because of quadratic interactions, then the modes with α = (2n − 1)/2, n ∈ �, emerge
out of the random noise (visible in the figure after t = 5). Figure 5(a) focuses on
the modes α =0 and α =2 which are the first to be produced by nonlinearities. The
streamwise-independent mode remains amplified for a long time because of the lift-up
effect, its appearance from the α = ± 1 fundamental mode is the analogue of the
so-called oblique transition process in channel flow (Schmid & Henningson 1992).
By time t = 3 the turbulent flow can be considered as fully developed; we speculate
that this is an edge state, under the assumption that there is turbulence on the edge
surface in phase space at the smallest possible Re for which it is sustained. Such an
edge state persists until t ≈ 78 (see figure 4); it remains dynamically connected to the
laminar base flow solution since relaminarization is abruptly reached at t ≈ 80, after
coalescence of the smaller vortices into a pair and then into a single large vortex.
While turbulence is maintained, the secondary patterns displayed at t = 20, 50 and
70 in figure 4 resemble the four-cell global optimal disturbance. At t = 20, two pairs
of vortices are clearly visible in the cross-section; they are close to the two vertical
walls, which can thus be defined as ‘active’ since it is there that the turbulent wall
cycle operates (Uhlmann et al. 2007). This 4-cells state oscillates while maintaining
remarkable coherence for some twenty units of time. Averaging over t yields the same
flow pattern with four regular vortices discovered very recently by Uhlmann et al.
(2007). Past t = 50, the active walls shift and the large-scale vortices ‘lean’ on the
horizontal surfaces, despite the presence of smaller intermittent features that can be
found near the left vertical wall at t = 50 and the right wall at t = 70. At t ≈ 80 the flow
relaminarizes; tests performed with different lengths of the computational domain
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Figure 5. (a) Temporal behavior of three different Fourier modes (α = 0, 1, 2) for the
nonlinear simulation initiated by the optimal α = 1 initial condition with E0 = 7.8 × 10−3

(solid lines) and E0 = 7.7 × 10−3 (dashed lines), plus low-amplitude noise. (b) The evolution of
the fluctuations (α = 0.5, 1, 1.5, ...) for the case E0 = 7.8×10−3. The power density spectrum κn

is defined by κn = 1/N2
∫

yz
(ũ∗ũ)n +(ũ∗ũ)N−n dy dz, with ũn (αn, y, z, t) the x-Fourier transform

of u, from which the laminar profile has been subtracted.
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Figure 6. ‘Phase diagram’ representation of the transition process: time evolution in Reynolds
number, based on bulk velocity, and mean flow energy EU . The simulations start from
the laminar flow solution (open circle in (a)) plus a (sub-)optimal perturbation. The cross
with arrows is intended to show qualitatively the presence of an unstable saddle node. The
time-averaged values of EU and Reb in the fully developed turbulent regime are indicated by
dashed lines in the zoom (b) which refers only to the initial disturbance perturbations with
α = 1.

show that the threshold E0 for transition remains unaffected, but relaminarization
occurs later both for a shorter computational box (t ≈ 90 when Lx =2π) and a longer
box (t ≈ 150 when Lx = 6π), for the same numerical grid density. Interestingly, for
the case of the short box the oscillations of the variables around the mean display
enhanced amplitudes, highlighting the fact that a distorted dynamics could be caused
by constraining the flow structures too much.

For a geometrical description of the transition process, we choose the phase
subspace spanned by two observables: the Reynolds number (based on bulk velocity)
and the energy of the streamwise-averaged flow, EU = 0.5

∫
yz

U 2 +V 2 +W 2 dy dz, with

(U, V, W ) the velocity vector after streamwise averaging.
Figure 6 shows some trajectories between the laminar (Reb =3163, EU = 306.45)

and turbulent (Reb = 2084, EU = 116) fixed points (the latter is defined as the temporal



Transition to turbulence in duct flow 141

average of EU and Reb in the fully developed turbulent regime). The paths for the
initial conditions with α = 0 correspond to homoclinic orbits in phase space. For
the two cases which follow a non-trivial branch (α = 1 and 2) the flow approaches the
unstable saddle node (qualitatively sketched in the figure) before departing from it
along its unstable manifold. The trajectory in figure 6(b) then starts circling around the
point which characterizes the fully developed turbulent state, with orbits of increasing
size. Before the end of the fifth orbit, it escapes through the unstable manifold of the
saddle node towards the laminar fixed point. Each orbit has an ellipsoidal shape and
is made up of two portions with very small local radii of curvature, around which
the flow spends most of its time, and two long portions of large radii of curvature
which are crossed very rapidly by the flow. Relaminarization is consistent with the
emerging picture of shear flow turbulence as a transient event with a characteristic
lifetime increasing exponentially with Reynolds number (Hof et al. 2006).

5. Discussion and conclusions
Although non-normality and transient growth are important issues, the traditional

emphasis on optimal disturbances may be misleading when trying to predict the onset
of transition. The results found here suggest that optimal initial perturbations in the
form of steady streamwise vortices play a mostly passive role, while rapidly growing
travelling wave packets have the potential to induce transition past a reasonably low
threshold value of the initial disturbance energy. This suggests that an energy-like
functional is possibly not the most pertinent objective of the optimization procedure.

In the simulations performed here we have found that key to transition is the
establishment of a disturbed mean flow profile (mode α = 0), susceptible to an
exponential or algebraic instability which causes enhanced growth of the travelling
wave mode with α = ± 1. Such an early stage can be described by a weakly nonlinear
triadic interaction model.

Once turbulence is established, its sustainment depends on non-normality, capable
of producing rapid transient growth of the disturbance energy, and nonlinearity,
which enables directional redistribution of the amplified disturbances. The coupling
between transient growth and directional redistribution of energy causes the flow
to orbit around the turbulent fixed point in the phase-space of figure 6. Near the
edge of chaos the lifetime of turbulence is finite, and beyond a given value of t (a
function of the Reynolds number and of the streamwise dimension of the periodic
domain) relaminarization occurs. Interestingly, the edge state resembles the optimal
disturbance; this has recently been observed in pipe flow (Eckhardt et al. 2007; Pringle
& Kerswell 2007) and still awaits an explanation.
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