MINIMAL DEFECTS

work conducted together with:
|. Gavarini and F.T.M. Nieuwstadt
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1. TODAY, TRANSITION IN SHEAR FLOWS IS STILL NOT
FULLY UNDERSTOOQOD. For the simplest parallel flows there is
poor agreement between predictions from the classical linear
stability theory (Re;) and experimentals results (Rey,.)
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2. TODAY, TRANSITION IN SHEAR FLOWS IS STILL NOT
FULLY UNDERSTOQOD.

¢ Classical theory predicts Tollmien-Schiichting waves in Poiseuille and boundary

layer flows:

¢ Except in very noise-free and controlled experiments, flow structures in transition
are more like turbulent spots and streaky boundary layers:




HYDRODYNAMIC STABILITY THEORY

« Given the disagreement (critical conditions and type of
transition) between theory and experiments is small
perturbation theory at all relevant?

« Yes, it still is!

= ... despite the fact that classical linear stability theory
does not explicitly contain effects of free-stream
turbulence, uncertain body forces, wall roughness
(geometrical uncertainties), poorly modeled base flow
conditions, etc.



Issues:
« Initial conditions — transient growth

 Dynamical uncertainties and poorly
modeled terms — structured operator
perturbations [L(U, a; o, B, Re) +Alv=20



THE TRANSITION PROCESS

Receptivity phase: the flow filters environmental
disturbances

Initial phase
¢ ROUTE 1: TRANSIENT GROWTH
¢ ROUTE 2: EXPONENTIAL GROWTH

in nominally subcritical conditions
(related to the presence of defects in the base flow)

Late, nonlinear stages of transition



ROUTE 2: EXPONENTIAL GROWTH

[ ROUTE 2: EXPONENTIAL GROWTH }

Preliminary observation: eigenvalues of the OS/Squire
system are very sensitive to operator perturbations E

A (L)= {oc eC: ae A(L+E), with E such that [E|< 8}




ROUTE 2: EXPONENTIAL GROWTH

Consider a very particular operator perturbation, a
distortion of the mean flow U(y) (induced by
whatever environmental forcing) —

AL ={0eC: aeAL(U,,+8U)], with [5U]|<g|

The dU-pseudospectrum is different from the
classical e-pseudospectrum, since it considers
structured dynamical uncertainties, which depend
only on base flow distortions from the ideal state
(Biau & Bottaro, PoF in press)




ROUTE 2: EXPONENTIAL GROWTH

SENSITIVITY ANALYSIS

OS equation: L (U, o; o, B, Re) v=20
With a base flow variation dU(y):

oLv+Lov=0

8Ua—Lv+8oca—LV+L ov=>0
ouU

o



ROUTE 2: EXPONENTIAL GROWTH

Projecting on a, eigenfunction of the adjoint system
(L*a=0) we find

oL oL
a-ouU—v+oaa-—v+a-Lov=0
oU ool
and hence, AL
a.SUWV 1
S0 =— ——F~—=..= [G, 8U dy
Qa-——V -1
oo,

In practice, for each eigenvalue o we can tie the base
flow variation U to the ensuing variation da via a
sensitivity function Gy




ROUTE 2: EXPONENTIAL GROWTH

HAGEN-POISEUILLE FLOW
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Spectrum of eigenvalues at Re=3000, m=1, ® =0.5.
The circle includes the two most receptive eigenvalues



ROUTE 2: EXPONENTIAL GROWTH
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ROUTE 2: EXPONENTIAL GROWTH ” “ [J'J
J
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ROUTE 2: EXPONENTIAL GROWTH

“Optimization”

look for optimal base flow distortion (minimal defect)
of given norm g, so that the growth rate of the instability
(-o;) is maximized:

{ Find min(a;) with U — U, of norm ¢ }

1
Min(a,;) = Min{oci + y{ j (U-U_;)*dy— 8:|}
-1
Necessary condition is that:

1
Sa. +y[j2(U—Umf) SU dy }:o
-1




ROUTE 2: EXPONENTIAL GROWTH

Employing the previous result:

j[lm(Gu) +2y(U-U )] 8U dy =0

-1
A simple gradient algorithm can be used to find the
new base flow that maximizes the growth rate, for
any o, and for any given base flow distortion norm e:

U(i+1) _ U(i) 19 tIm(GU(i)) n 2Y(i) (U(i) _Uref)J

with - \ ;
J [Im(GU(i))z]
—1

4g

7" =




ROUTE 2: EXPONENTIAL GROWTH
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Re =3000, m=1, ® = 0.5. HP flow (circles), OD flow
(triangles) with £ = 2.5*10-> which minimizes o, of mode 22.



ROUTE 2: EXPONENTIAL GROWTH

(U/r)</20, U

Optimally distorted base flow vs Hagen-Poiseuille flow.
The curve of (U’/r)’/20 indicates an inflectional instability



ROUTE 2: EXPONENTIAL GROWTH
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ROUTE 2: EXPONENTIAL GROWTH
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FI1GURE 18. Critical Reynolds number for op-
timally perturbed base flows with e = 107", as
a function of the azimuthal wavenumber m.
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ROUTE 2: EXPONENTIAL GROWTH
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ROUTE 2: EXPONENTIAL GROWTH
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The initial stage of transition in pipe flow 17
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FicURE 16. Norm of the base-flow deviation = FIGURE 17. Norm of the base-flow deviation as
as a function of the critical Reynolds number a function of the critical streamwise wavenum-
for m = 1. ber for m = 1.

¢ scales as Re? — the critical amplitude scales as Re™!



FULL NONLINEAR SIMULATIONS

1. Oblique transition
2. TS-like transition
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Spatial evolution of the disturbance energy for the Fourier modes
(m, n), with ® = 0.5. Initial amplitude of the (£1, £1) mode (shown
with thick blue line) is 0.002. Re = 3000, ¢ = 2.5*10°.




Red: high velocity streaks
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Ficure 24. Spatial evolution of the disturbance kinetic energy for various Fourier modes (m,n),
with w = 0.5 fundamental frequency. The inflow condition consists of a combination of the
unstable eigenmodes at Re = 3000, m = 0, n = £2, ¢ = 2.5 x 1075, each one with A, = 0.001,
plus small-amplitude random perturbations. The dotted vertical line indicates the start of the
fringe region.
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Instantaneous velocity field, x = 56
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C, symmetric state in a turbulent puff at Re

B. Hof et al.
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Oblique transition: TS-like transition:
non-linearities are destabilizing non-linearities saturate
subcritical bifurcation supercritical bifurcation
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FIGURE 28. Spatial evolution of the total disturbance energy, for the case in which the optimal
base-flow distortion is maintained over the whole length of the pipe. Left: the inflow condition
is (£1,41). Right: the inflow condition is (0, £2). The dashed lines indicate the exponential
growth predicted by linear theory for the two cases.



In both cases transition can take place also when
the minimal defect is imposed only at the pipe
entrance, provided its amplitude is sufficiently large
for the instability to grow faster than the viscous
diffusion of the defect (in the TS-like case we also
need a sufficiently noisy background for the (2,1)
mode to survive long enough).

More details in Gavarini et al., JFM in press



[ CONCLUSIONS }

OS eigenmodes are very sensitive to base flow
variations (d6U-pseudospectrum, the growth is
less than for the e-pseudospectrum since two-
way - possibly unphysical - coupling between
OS and Squire equations is not allowed)



£ CONCLUSIONS }

Exponential growth can take place in nominally
subcritical conditions for minimal defects of
very small norm
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E CONCLUSIONS }

The initial stage of transition is likely to
be influenced by the combined effect
of algebraic and exponentially growing
disturbances



[ CONCLUSIONS }

= [wo paths of transition have been identified:

¢ Oblique transition: helical waves produce streaks
which break down; nonlinearities destabilize the
linearly growing state

¢ TS-like transition, initiated by an axisymmetric,
TS-like wave. Nonlinearities saturate the linearly
growing wave, transition occurs via a secondary
subharmonic instability (staggered patterns of A-
vortices, and intermediate, short-lived, TW of the
kind studied theoretically by Faisst & Eckhardt,
PRL 2003 and Wedin & Kerswell, JEM 2004)
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