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MINIMAL DEFECTS



1. TODAY, TRANSITION IN SHEAR FLOWS IS STILL NOT 
FULLY UNDERSTOOD.  For the simplest parallel flows  there is 
poor agreement between predictions from the classical linear 
stability theory (Recrit) and experimentals results (Retrans)

Poiseuille Couette       Hagen-Poiseuille    Square duct
Recrit 5772 ∞ ∞ ∞

Retrans ~ 1000 ~400 ~2000 ~2000



2. TODAY, TRANSITION IN SHEAR FLOWS IS STILL NOT 
FULLY UNDERSTOOD.  



HYDRODYNAMIC  STABILITY THEORY

Given the disagreement (critical conditions and type of 
transition) between theory and experiments is small 
perturbation theory at all relevant?

Yes, it still is!

… despite the fact that classical linear stability theory 
does not explicitly contain effects of free-stream 
turbulence, uncertain body forces, wall roughness 
(geometrical uncertainties), poorly modeled base flow 
conditions, etc.



Issues:
• Initial conditions → transient growth
• Dynamical uncertainties and poorly 

modeled terms → structured operator 
perturbations    [L(U, α; ω, β, Re) + ∆]v = 0



THE TRANSITION PROCESS

Receptivity phase: the flow filters environmental            
disturbances

Initial phase
ROUTE 1: TRANSIENT GROWTH
ROUTE 2: EXPONENTIAL GROWTH 

in nominally subcritical conditions
(related to the presence of defects in the base flow)

Late, nonlinear stages of transition



ROUTE 2: EXPONENTIAL GROWTH

ROUTE 2: EXPONENTIAL GROWTH

Preliminary observation: eigenvalues of the OS/Squire 
system are very sensitive to operator perturbations E
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ROUTE 2: EXPONENTIAL GROWTH

Consider a very particular operator perturbation, a 
distortion of the mean flow  U(y) (induced by 
whatever environmental forcing)  →

The δU-pseudospectrum is different from the 
classical ε-pseudospectrum, since it considers 
structured dynamical uncertainties, which depend 
only on base flow distortions from the ideal state
(Biau & Bottaro, PoF in press)
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ROUTE 2: EXPONENTIAL GROWTH

SENSITIVITY ANALYSIS

OS equation: L (U, α; ω, β, Re) v = 0

With a base flow variation δU(y):

δL v + L δv = 0
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ROUTE 2: EXPONENTIAL GROWTH

Projecting on a, eigenfunction of the adjoint system 
(L*a=0) we find

and hence,

In practice, for each eigenvalue αn we can tie the base 
flow variation δU to the ensuing variation δα via a 
sensitivity function GU
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ROUTE 2: EXPONENTIAL GROWTH

HAGEN-POISEUILLE FLOW

Spectrum of eigenvalues at Re = 3000, m = 1, ω = 0.5.  
The circle includes the two most receptive eigenvalues



ROUTE 2: EXPONENTIAL GROWTH
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Corresponding ∞ norm of rGu.  Modes 
arranged in order of increasing |αi|



ROUTE 2: EXPONENTIAL GROWTH

SENSITIVITY FUNCTIONS

Mode 22 (solid); mode 24 (dashed);
103*mode 1 (dash-dotted)



ROUTE 2: EXPONENTIAL GROWTH

“Optimization” 
look for optimal base flow distortion (minimal defect) 
of given norm ε, so that the growth rate of the instability   
(-αi) is maximized:

Necessary condition is that:
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ROUTE 2: EXPONENTIAL GROWTH

Employing the previous result:

A simple gradient algorithm can be used to find the  
new base flow that maximizes the growth rate, for    
any αn and for any given base flow distortion norm ε:

with
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ROUTE 2: EXPONENTIAL GROWTH

Re = 3000, m = 1, ω = 0.5. HP flow (circles), OD flow 
(triangles) with ε = 2.5*10-5 which minimizes αi of mode 22.



ROUTE 2: EXPONENTIAL GROWTH

Optimally distorted base flow vs Hagen-Poiseuille flow.
The curve of (U’/r)’/20 indicates an inflectional instability



ROUTE 2: EXPONENTIAL GROWTH

Re=3000

Re=2300
Re=1800

Re=1760

Growth rate as function of ω for m = 1 and ε = 10-5



ROUTE 2: EXPONENTIAL GROWTH



ROUTE 2: EXPONENTIAL GROWTH

ε=5*10-5

ε=10-5
ε=5*10-6

ε=2*10-6

Neutral curves for m = 1 and ε = 10-5.  Symbols give Recrit



ε scales as Re-2 → the critical amplitude scales as Re-1

ROUTE 2: EXPONENTIAL GROWTH



FULL NONLINEAR SIMULATIONS

1. Oblique transition
2. TS-like transition
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Spatial evolution of the disturbance energy for the Fourier modes
(m, n), with ω = 0.5.  Initial amplitude of the (±1, ±1) mode (shown 
with thick blue line) is 0.002. Re = 3000, ε = 2.5*10-5.



Instantaneous streamwise disturbance velocity at r = 0.7

Red: high velocity streaks





Instantaneous streamwise disturbance velocity at r = 0.7

x = 56



Instantaneous velocity field, x = 56 



C2 symmetric state in a turbulent puff at Re=2500
B. Hof et al., this meeting, 8 Aug. 2004 



H. Faisst & B. Eckhardt, PRL 2003 
streamwise-averaged C2 state



Oblique transition: TS-like transition:
non-linearities are destabilizing            non-linearities saturate 

subcritical bifurcation                             supercritical bifurcation



In both cases transition can take place also when 
the minimal defect is imposed only at the pipe 
entrance, provided its amplitude is sufficiently large 
for the instability to grow faster than the viscous 
diffusion of the defect (in the TS-like case we also     
need a sufficiently noisy background for the (2,1) 
mode to survive long enough).

More details in Gavarini et al., JFM in press



CONCLUSIONS

OS eigenmodes are very sensitive to base flow 
variations (δU-pseudospectrum, the growth is 
less than for the ε-pseudospectrum since two-
way  - possibly unphysical - coupling between 
OS and Squire equations is not allowed)



CONCLUSIONS

Exponential growth can take place in nominally
subcritical conditions for minimal defects of 
very small norm

Poiseuille flow, Re = 3000, ω = 0.5                   Minimal defect



CONCLUSIONS

The initial stage of transition  is likely to    
be  influenced  by the combined  effect          
of algebraic and exponentially  growing 
disturbances



CONCLUSIONS

Two paths of transition have been identified:

Oblique transition: helical waves produce streaks 
which break down; nonlinearities destabilize the 
linearly growing state

TS-like transition, initiated by an axisymmetric,  
TS-like wave.  Nonlinearities saturate the linearly 
growing wave, transition occurs via a secondary 
subharmonic instability (staggered patterns of Λ-
vortices, and intermediate, short-lived, TW of the 
kind studied theoretically by Faisst & Eckhardt, 
PRL 2003 and Wedin & Kerswell, JFM 2004)
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