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3Linné Flow Centre, KTH Mechanics, 10044 Stockholm, Sweden
(Received 10 May 2012; published 12 October 2012)

Elastic filamentous structures found on swimming and flying organisms are versatile in function,

rendering their precise contribution to locomotion difficult to assess. We show in this Letter that a single

passive filament hinged on the rear of a bluff body placed in a stream can generate a net lift force without

increasing the mean drag force on the body. This is a consequence of spontaneous symmetry breaking in

the filament’s flapping dynamics. The phenomenon is related to a resonance between the frequency

associated with the von Kármán vortex street developing behind the bluff body and the natural frequency

of the free bending vibrations of the filament.
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Intriguing and unexpected properties of the physical

Universe can be explained and understood in terms of

spontaneously broken symmetry [1]. In fluid dynamics,

examples of symmetry breaking have been known since

Jacobi’s famous 1834 discovery that a rotating fluid mass

could have equilibrium configurations lacking rotational

symmetry [2]. More recently, symmetry breaking of fluid-

structure interaction problems have come to play an im-

portant role in our understanding of animal locomotion.

For example, it has been found that the periodic vertical

movement of a symmetric body, which is free to move in

the horizontal direction, can spontaneously generate loco-

motion due to symmetry breaking [3,4]. Another example

is the symmetry-breaking bifurcation of flagella due to a

buckling instability, which has a significant impact on the

waveform and swimming trajectory of spermatozoa [5].

Our aim here is to provide evidence and physical support

for the emergence of symmetry breaking for a simple, even

if nontrivial, fluid-structure interaction system. It consists

of an elastic filament free to flap in the wake of a two-

dimensional (2D) circular cylinder. The filament is an-

chored to the cylinder and the unperturbed upstream fluid

flows parallel to the filament axis. A sketch of the system is

shown in Fig. 1. This particular 2D configuration can be

experimentally realized using soap-film flows [6,7]. The

following important features characterize all numerical

experiments we have performed. When placed in an

unperturbed stream, the cylinder alone does not show any

symmetry breaking; the flow behind it consists of the

celebrated von Kármán street of alternating vortices. Note

that the up-down symmetry is not broken and, after half a

period, the upper eddies are mirror images of the lower

ones. The same up-down symmetry is observed for the

filament alone when it undergoes a regular flapping motion

[7–9]. When we let the two symmetry-preserving systems

interact a surprising feature arises: after a transient we

observe a clear symmetry breaking (see Fig. 2), with the

filament oscillating in either the upper or the lower part of

the cylinder wake. The filament length plays the role of a

bifurcation parameter. As we will see, symmetry breaking

is associated to a net generation of lift and torque.

Consequently, if the system is allowed to move freely, it

will experience self-propulsion in the y direction and ro-

tation around the cylinder axis. Describing and finding

possible explanations for the above scenario is the main

concern of the present Letter.

We consider a two-dimensional inextensible elastic fila-

ment of length Ls, mass per unit length $s and flexural

rigidity B—as shown in Fig. 1—attached to the rear of a

rigid circular cylinder of diameter D. The filament is

surrounded by a viscous incompressible fluid of density

$f, kinematic viscosity (, and free stream velocity U.

Scaling space and time with D and D=U respectively,

four dimensionless parameters arise,

Re ¼
UD

(
; R1 ¼

$s

$fD
;

R2 ¼
B

$fU
2D3

; L ¼
Ls

D
;

FIG. 1 (color online). The simply supported elastic filament

anchored to a rigid cylinder subject to a uniform streamwise

flow. The initial configuration is symmetric with respect to the

normal coordinate y, which is centered on the cylinder.
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which are the Reynolds number, the mass, the rigidity, and

the length ratios.

The motion of the fluid and solid is governed by the mass

and momentum conservation equations, written in im-

mersed boundary form [10–12],

u t þ u # ru ¼ %rpþ Re%1r2uþ !þ f;

r # u ¼ 0; R1Xtt ¼ @sðT!̂Þ % R2@ssðCn̂Þ þ F:
(1)

In the first equation, uðx; tÞ, pðx; tÞ and !ðx; tÞ are, respec-
tively, the fluid velocity and Lagrange multipliers to

enforce incompressibility of the flow, and the no-slip con-

dition at cylinder boundary points. The last equation gov-

erns the dynamics of the filament position Xðs; tÞ with a

simply supported condition at s ¼ 0 and a free-end condi-

tion at s ¼ L. Here, T is the tension, which enforces

inextensibility, C is the filament curvature, and !̂ and n̂

are unit vectors pointing in the tangential and normal

direction of the filament, respectively. The fluid and the

filament are coupled at their interface by the no-slip

condition Xt ¼ UðXðs; tÞ; tÞ, with UðXðs; tÞ; tÞ ¼
R
uðx; tÞ3ðx%Xðs; tÞÞdx the Lagrangian filament velocity

and fðx; tÞ ¼
R

s Fðs; tÞ3ðx%Xðs; tÞÞds, with fðx; tÞ the

Eulerian force density and Fðs; tÞ the Lagrangian force

density.

The flow past a circular cylinder (without the filament)

becomes unstable at Re ( 47 via a Hopf bifurcation, re-

sulting in the emergence of the von Kárman vortex street.

The sustained vortex shedding is periodic up to approxi-

mately Re ( 180, before the limit cycle becomes unstable

to three-dimensional disturbances. Next, let us consider

the flexible filament alone, clamped at one end and free

at the other in a uniform flow field. If it is sufficiently long

or the imposed uniform flow sufficiently strong (LsU=( *

103), its motion is steady for low mass ratios R1, periodic

for intermediate R1 and finally chaotic for large R1 [13].

The bending rigidity R2 has a stabilizing effect on the

structure, but for filaments with high bending stiffness

R2, an additional destabilizing effect becomes significant,

due to the upstream influence-through modification of

pressure-of the vortices shed from the trailing edge [14].

We have numerically solved the governing equations for

the flow past the cylinder in the presence of the filament

[15]. Figure 2(a) shows the filament position at different

times in the presence of a long filament (label s1), a short

filament of small rigidity (label s2), and a short filament of

high rigidity (labels3). For L ¼ 3 sinuous waves propagate

along the filament and amplify as they approach the free

end. In the cases of L ¼ 1:5 the filament flaps-depending

on the initial perturbation-either above or below the y ¼ 0

axis. Both the symmetric and asymmetric motions shown

in Fig. 2(a) are periodic [see Fig. 2(b)] and synchronized

with the von Kármán vortex street. The observed asymme-

try develops spontaneously, resulting in a significant net lift

force, a reduced mean drag, and the creation of torque on

the composite body compared to the cylinder without the

filament (see Table I).

The equation describing the lateral motion [Yðs; tÞ] of
the unforced inextensible filament is R1YttþR2Yssss¼0.

The corresponding eigenfrequency is fs¼½R2=ðR1L
4Þ*1=2

and constitutes the characteristic time scale associated

with the free vibrations of the elastic filament. On the

FIG. 2 (color online). Solid (red) lines in (a) depict the fila-

ment position at different times. The symmetric flapping fila-

ment (L ¼ 3, R2 ¼ 0:005) is marked with label s1, whereas

asymmetric flapping filaments, corresponding to a flexible (L ¼
1:5, R2 ¼ 0:005) or rigid (L ¼ 1:5, R2 ¼ 0:1) configuration, are
marked with labels s2 ands3, respectively. For all cases, the other

parameters are fixed at Re ¼ 100 and R1 ¼ 0:1. In (b), the

transverse component of the filament tail position yL is shown

as a function of time.

TABLE I. Total mean drag, lift, torque coefficients (Cd, Cl,

Cq, respectively) and Strouhal number (fc) at Re ¼ 100 in the

absence of a filament (C) and for three different filaments (cases

s1–s3). Values after the + sign denote the oscillation amplitudes

around the means. Cd and Cl are normalized with 1=2$fU
2D,

whereas Cq is normalized with 1=2$fU
2D2.

L R2 Cd Cl Cq fc

C 0.0 - 1:36+ 0:01 0:00+ 0:34 0.00 0.164

1 3.0 0.005 1:28+ 0:06 0:00+ 0:23 0.00 0.157

2 1.5 0.005 1:32+ 0:08 0:18+ 0:28 0.01 0.159

3 1.5 0.100 1:23+ 0:05 0:21+ 0:24 0.02 0.145
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other hand, the characteristic, dimensionless frequency

of the flow behind a cylinder at Re ¼ 100 is fc ¼
fD=U ¼ 0:164, where f is the vortex shedding fre-

quency. In order to have efficient coupling between the

filament’s elastic degree of freedom and vortex structures

shed by the cylinder, it is expected that the relationship

fs , fc holds. For fs - fc the filament’s elastic re-

sponse to strain is strongly inhibited because of its

slow reaction time. The flow does not feel the filament’s

elastic degree of freedom with the result that the flow

symmetries—prevalent in the absence of filament—are

restored. In the opposite limit, fs . fc, the filament

instantaneously reacts to strain thus affecting flow prop-

erties and its original symmetries. We can formulate the

resonance by the condition, Lr , ½R2=ðR1f
2
cÞ*

1=4.

The total energy of the filament reads

EðtÞ ¼
1

2

Z L

0

R1jXtj
2 þ R2jXssj

2ds; (2)

where we have disregarded the term due to tensile force,

since its contribution is orders of magnitude smaller than

the bending term. Since the filament flapping is synchro-

nized with the vortex shedding, D=U is the natural time

scale of the filament. However, it is appropriate to consider

the nondimensional filament energy in terms of density $s

and length Ls of the filament, instead of $f and D. This

results in the following scaling of the total energy ~E ¼
E=ðR1L

3Þ. In Fig. 3(a) the mean value of ~E shows a distinct

peak in the response of the flexible and rigid filaments for

L ( 1:25 and L ( 2:25, respectively. These values are in

good agreement with Lr ¼ 1:2 and Lr ¼ 2:6 predicted

from the resonance condition.

The actual critical values for symmetry breaking, Lc, are

in qualitative agreement with the values inferred from the

resonance condition Lr. In Fig. 3(b), we show the emer-

gence of a sustained asymmetric flapping state at a well-

defined threshold, which takes the value Lc ¼ 1:5 and

Lc ¼ 2:1, for the flexible and stiff filaments, respectively.

At this critical condition, lift and drag coefficients display a

sharp discontinuity. The criterion for asymmetric behavior

can be based on a nonzero mean value of the angle .

formed by the straight line connecting the filament anchor

point to its tail position with the x axis. Note that the angle
. in Fig. 3(b) does not approach zero for small L, the
fingerprint of a possible singularity for L ! 0.

The number of the filament’s bending modes excited

increases with its flexibility, resulting in a dynamically

more complex fluid-structure interaction. For the flexible

structure, this results in a third regime for intermediate

values of the length ratio (1:6<L< 2:5) where the fila-

ment behavior is quasiperiodic or even chaotic. In this

regime, each shed von Kármán vortex slightly deflects

the filament from its asymmetric position towards the

opposite side. As a consequence, the filament travels

back and forth between the upper and lower regions on a

slow time scale as it undergoes synchronized undulations

with the vortex street on a fast time scale, resulting in

quasiperiodic motion. We do not exclude the possibility

for further asymmetric states in the chaotic regime.

In the region of reversed flow behind the cylinder (for

Re ¼ 100 this extends up to x ¼ 1:9D for the time-

averaged flow) the filament is interchangeably compressed

and stretched; outside this region, the filament is exposed

to stretching. This induces a nonuniform tension on the

filament in order to oppose the stretching and compressive

viscous stress. The filament also has a restoring force due

to its bending rigidity; if it is too flexible (R2 & 10%4), it is

unable to resist the pressure drag [16] exerted by the back

flow and collapses towards the cylinder. Note that flexibil-

ity is not necessary for symmetry breaking; therefore-and

in contrast to observations made for Stokes flows [5] or

non-Newtonian fluids [17]-the trapping of the filament in

either the lower or upper half-plane is not due to the

buckling instability of a flexible filament.

In order to highlight how the filament interacts with

the unsteady vortical structures in the recirculation re-

gion, we compute the maximum value of the finite-time

Lyapunov exponent (FTLE). Contours of the FTLE

correspond to precise vortex boundaries and reveal

Lagrangian coherent structures [18,19] in a similar fash-

ion as visualization techniques based on the injection of

‘‘tracers,’’ such as dye or smoke. Figure 4 shows maxi-

mum values of the FTLE of instantaneous flow fields.

FIG. 3 (color online). (a) Mean value of the total filament

energy h ~Ei as a function of the filament length, demonstrating

the resonance behavior between hydrodynamic and elastic de-

grees of freedom. (b) Average value . as function of L. The
crossover from nonzero to zero values of . is the fingerprint of

the bifurcation from symmetric to asymmetric flapping motion.

Parameters are Re ¼ 100, R1 ¼ 0:1.
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The near field of the vortex street is nearly left unaltered

in the presence of the long filament reported in Fig. 4(a),

in contrast to the short filaments shown in Figs. 4(b) and

4(c). The snapshots in Figs. 4(b) and 4(c) correspond to

shortly after the beginning of the upward movement of

the filaments. At this instant there is a significant com-

pressive fluid force; in order to resist compression the

short filaments induce vorticity with negative (clockwise)

circulation. For the flexible filament [Fig. 4(b)], the

emergence of a corotating vortex pair separated by the

flexible filament is clearly visible. The more rigid fila-

ment [Fig. 4(c)] releases a vortex from its trailing edge

with the same rotation as the upper cylinder vortex [20].

The filament-induced vorticity in the wake breaks the

symmetry by modifying the pressure distribution in the

near cylinder wake [Figs. 4(d)–4(f)].

The vorticity induced by the short filaments does not

only result in a nonzero mean lift force and torque because

of broken symmetry, but also in a reduced mean drag force.

Significantly, cf. Table I, asymmetric flapping always re-

sults in a smaller total mean drag (i.e., including the drag

force on the filament) than for a cylinder alone. A similar

drag-reducing mechanism has been observed [21–23]

when a number of short filaments (L ( 1=4) is distributed
over the rear side of a cylinder. In this context, it is

interesting to mention recent observations [24,25] that

the von Kármán vortex shedding can be significantly al-

tered in the range 47< Re< 100 by placing a second

small object approximately at a 45 degree angle from the

y ¼ 0 axis and around 1–2 diameters downstream of the

cylinder. In fact, it was found that the vortex shedding can

be stabilized altogether up to Re ¼ 70. Our results show

that the filament tethered at the rear end of the cylinder,

oscillates in the proximity of the most sensitive regions

identified in Ref. [25], with an ensuing favorable effect on

the wake dynamics.

We have shown that the presence of passive short fila-

ments in unsteady wakes can generate lift without increas-

ing drag. Such filaments may thus in many circumstances

favor the hydro- or aerodynamic behavior of bluff body

wakes. Numerous observations [26] suggest that animals

control the flow around their bodies in order to reduce drag

by making use of their pelage, of scales, feathers, and other

appendages, with a wide range of textures, rigidities,

lengths, and active under different Reynolds numbers. In

many cases the functional role of appendages is not fully

understood, as their behavior varies greatly depending on

the task being carried out. The pteropod Clione antarctica

is one example: equipped with three bands of cilia as well

as a pair of wings, it possesses two distinct modes of

swimming: ciliary mode and flapping mode. While flap-

ping, significant-possibly passive-movement of the cilia is

observed but the functional role of this movement is not yet

clear [27]. Based on the results presented here it can be

speculated that even passive, apparently inert cilia have a

positive influence on the locomotion of flying and swim-

ming animals.
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