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From very small to macroscopic: 
Random thoughts on the no-slip condition
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‘‘Life’’ is not smooth, but anisotropic, multiscale, 
heterogeneous, rough, porous, flexible, etc. 
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Sometimes a microscopic description of the flow         
around such multiscale surfaces is impossible …

GOALS of BIOSKINS:

• to model apparent slip over realistic surfaces, interfaces
and layers (poro-elastic and poro-plastic) using the theory
of homogenisation to average out the fine details around
the surface/interface/layer, and

• go beyond the macroscopic ‘‘Navier’s
slip condition’’ …
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Some definitions:

• True slip refers to the actual slippage of fluid
molecules over a solid surface

• Apparent slip occurs typically when a liquid slides
over a less viscous layer (gas layer, surface covered
by micro/nano bubbles, density depleted layer
adjacent to the surface) 

• Non-Newtonian slip is attributed to the 
disentanglement of surface-anchored polymer
chains (as opposed to the bulk chains)
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A BIT OF HISTORY

U(0) = Us
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Claude Louis Marie Henri Navier (1785-1836)
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Claude-Louis Navier
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Claude-Louis Navier

Sir George Gabriel Stokes
(1819-1903)
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(the wall)
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In today’s terminology, Navier’s argument was that
(i) there is partial slip, with
(ii) the resistance of the wall proportional to the slip 

velocity Us:

E Us = -e dU/dy|y=0 U(0) = (-e/E) dU/dy|y=0 = l dU/dy|y=0

l =  slip length



CFD & Optimization

Alessandro Bottaro

DICCA, University of Genova

• Navier’s slip condition is a first-order development
around a fictitious wall (the position y = 0 is arbitrary) 
applicable when either

(i) the surface geometry is microstructured or 
(ii)  the continuum approximation breaks down. 

• There is a unique slip length l for U and W only for 
isotropic (in x, z) walls. The general (anisotropic) case 
requires (to first order) that:   

U(x, 0, z)
W(x, 0, z)

=   𝜕

𝜕𝑦

U(x, 0, z)
W(x, 0, z)

,  

with  a slip tensor (plus a non-penetration condition
for 𝑉).
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In the 18th century Daniel Bernoulli, Du Buat and Coulomb 
had already argued for partial slip or no-slip …

Later on, the situation became somewhat confusing … 
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y

1816:       A thin layer of fluid remains attached to the wall
and the bulk of the fluid slips
over the outer surface of this

stagnant layer

Hg:      t        0

Us
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Note on the conditions at the surface of contact of a fluid with a solid body

Girard’s idea and 
experimental results
stuck for a while, as

beautifully described by 
Sydney Goldstein in a 

four-page historical
Appendix entitled: ‘‘Note 

on the conditions at the 
surface of contact of a 

fluid with a solid body’’  
of the book:
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Us

Girard’s stagnant fluid layer is also reminiscent of the near-
wall ‘‘Knudsen layer’’ (of thickness of the order of the mean
free path) which is established in compressible flows when

0.01 ≤ Kn ≤ 0.1 (slip flow regime). This can be studied using
NS in the bulk, while rarefaction effects are modeled
through partial slip at the wall (Maxwell slip velocity, 1879):

:  tangential momentum accommodation coefficient
(TMAC)

(more later …)

Us
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Navier’s equations have later been re-discovered and/or  
extended to the compressible case by:

1828: Augustin-Louis Cauchy (1789 - 1857)
Exercises de Mathématiques, p. 187

1829: Siméon-Denis Poisson (1781 – 1840)
Journal de l’Ecole Polytechnique, XXe cahier, p. 152, 1831

1843: Adhémar Jean Claude Barré de Saint Venant (1797 -1886)
Comptes Rendus de l’Academie des Sciences, v. 17, p.1243

1845: George Gabriel Stokes (1819-1903)
Transactions of the Cambridge Philosophical Society, 
Vol VIII, 1849, p. 287





Girard’s slip
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Turbulence!!
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NO SLIP?

tw  Us
2 

(because of  
surface

irregularities?)
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Later on …

1850: Stokes Us = 0     ‘‘highly satisfactory’’

1879: Lamb Us ≠ 0     on account of experiments by 
Helmholtz & Piotrowski (1860)

1890: Whetham Us = 0     through accurate experiments

1895: Lamb Us = 0     ‘‘... in all ordinary cases …’’

1922: Taylor Us = 0! 
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1890: Whetham Us = 0     through accurate experiments
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But what happens near
superhydrophobic surfaces?

And at the triple line of a
drop sliding down an incline?
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An excursion into the
microscopic world

The kinetic theory of gases:
1738: Daniel Bernoulli (1700-1782)
1857: Rudolf Julius Emanuel Clausius (1822-1888)
1867: James Clerk Maxwell (1831-1879)
1871: Ludwig Eduard Bolzmann (1944-1906)
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A fraction f of the molecules impinging on a wall leave it
(‘‘absorbed and then evaporated’’  diffuse reflexion), the 
remaining (1 - f ) are specularly reflected.  Evaluating mass 
and momentum of the gas before and after the collision, 
Maxwell concludes that …

[ f is the tangential momentum accommodation coefficient
(TMAC), now usually denoted as ; TMAC describes the 
effective gas-surface interactions]
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Criticism:

Later criticisms:

• Approach not valid for the transition and free 
molecular regime

• Singularity in the absence of diffuse reflections
(i.e. when the surface is atomically smooth)

• Neglect of inelastic scattering
• TMAC should be determined by the characteristics

of both the wall and the incident molecule at the 
location of impact and not be a simple constant
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True slip also in liquids?  

Increasing roughness
(rms roughness of case a: 6 nm)
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UsUsUs
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UsUsUs

Back to the macroscopic picture …
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free fluid

surface layer (eventually of zero thickness)

wall (or porous or 
poro-elastic matrix)

microscopic
equations

macroscopic picture
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FLUID FLOW ABOVE A POROUS LAYER

Later recovered theretically by P.G. Saffman (1971)   
and demonstrated valid at leading order (when the 
pore size tends to zero) by W. Jäger & A. Mikelić (1990)
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Us

Us

UsdU/dy|y=0 F:  fractional increase in mass flow rate

√𝑘

𝛼
is a ‘‘slip length’’ l

U(y)
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Most notable further developments by volume averaging:

stress jump
condition:
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Most notable further developments by multiscale:
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PROBLEM BEING PURSUED BY 
N. LUMINARI and M. PAUTHENET

FLUID FLOW OVER A POROELASTIC LAYER
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FLUID FLOW OVER A SURFACE WITH 
(REGULAR) ROUGHNESS

PROBLEM BEING PURSUED 
BY G. ZAMPOGNA
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FLUID FLOW OVER A BED OF MOBILE GRAINS

Continuous nature at the macroscale, 
discrete at the microscale
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Continuum approach with ‘‘surface layer’’ whose
rheological behavior is given by IBM/DEM simulations

 lower layer: Darcy
 surface layer: ANS (volume averaging a la Jackson)
 upper layer: NS




