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Formation of Secondary Vortices in Turbulent Square-Duct Flow
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A linear approach, inspired by hydrodynamic stability theory, is used to describe the formation of large-scale
coherent vortices for the turbulent flow that develops in a duct of square cross section. A set of equations for small-
amplitude coherent motion is derived and closed with a simple mixing-length strategy. The initial condition that
maximizes a chosen functional (related to either the kinetic energy of the coherent motion or the rate of turbulence
production) is found through a direct/adjoint numerical approach borrowed from optimal control theory. It is
found that different kinds of secondary flows can appear in the duct cross section, sustained by the mean shear.
Some of these optimal states display a symmetry about the bisectors and the diagonals of the duct, in agreement
with experimental observations and direct numerical simulations.

Nomenclature
E0 = initial energy
h = half-length of the duct wall along y or z
I = norm of the coherent motion
J = cost functional
L = optimization distance along x
L = extended cost functional
lm = mixing length
M = total number of interior nodes in the

cross-section, M = (N − 2) × (N − 2)
N = number of Gauss–Lobatto grid points along

the cross-stream directions
NL = number of grid points in the streamwise

direction
PT = turbulent pressure
p, u, v, w = vectors composing q
Q, R, G1, G2 = discretization matrices
q, r = vectors of direct and adjoint coherent fields
Re = Reynolds number, Re = U0h/ν
Si j , s ′

i j = mean and fluctuating strain rates
t = time
U, P∗ = base unidirectional velocity and corresponding

pressure
U0 = peak speed in the duct
u′, v′, w′, p′ = fluctuating velocity components and pressure
ũ, ṽ, w̃, p̃ = coherent velocity components and pressure
x, y, z = axes along the streamwise and the cross-stream

directions
α1, α2 = parameters in the cost functional
�x = streamwise grid spacing
δi j = Kronecker delta
ε = order of magnitude of the coherent variables,

ε � 1
λ0 = scalar Lagrange multiplier
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ν = kinematic viscosity
νt = eddy viscosity
ν̂t = dimensionless eddy viscosity, ν̂t = νt/ν
ρ = density
	v, φv = mean and turbulent dissipation functions
ω̃ = coherent streamwise vorticity component

Subscripts

i, j = variable number or cross-stream grid index
n = streamwise discretization index
x, y, z = partial derivative

Superscripts

− = time average
˜ = coherent variable
′ = fluctuating variable

I. Introduction

T HE problem of secondary flows developing under transitional
and turbulent conditions in ducts of triangular and rectangular

cross section has attracted much attention after the initial observa-
tion by Nikuradse1 that large-scale secondary motions significantly
alter the mean velocity contours in the cross section of the duct. The
problem has been studied from many points of view, through ex-
periments (e.g., Brundett and Baines2 and Gessner3), simulations of
the Reynolds-averaged equations (e.g., Demuren and Rodi4), large-
eddy simulations (e.g., Madabhushi and Vanka5), and direct numer-
ical simulations (e.g., Gavrilakis6). The picture that emerges from
these studies is that, from averaging over time and/or streamwise
distance, a coherent motion of small amplitude exists, formed by
eight vortices of very weak streamwise vorticity ω in the (y, z)
cross section, symmetric about the duct diagonals and the bisection
lines. Such vortices differ from those usually observed near walls
in turbulent boundary layers, because they are large-scale and are
locked near the corners by the imposed geometric constraints.

Conventional wisdom7 attributes these secondary vortices to an
imbalance of transverse Reynolds-normal stresses, with the term
P2 = (v′v′ − w′w′)yz acting as the main production term for the
streamwise vorticity equation (under the assumption of fully de-
veloped flow). Hence, anisotropic turbulence models have been ad-
vocated as indispensable8 to capture numerically secondary currents
of Prandtl’s second kind in the proximity of corners. On the other
hand, if the assumption of fully developed flow is relaxed, other
growth mechanisms for secondary structures can be invoked. In
fact, in such a case ω can be produced also through the skewing of
the mean shear through the source term P1 = Uz Vx − Uy Wx , with U ,
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V , and W representing the mean flow. These issues will be further
elaborated upon in Sec. V.C.

The problem of organized structures in turbulence has witnessed
a rekindling of attention in the past few years because of the dis-
covery of so-called “exact coherent states” in a number of simple
wall-bounded shear flows9−11 and the very recent experimental ob-
servation of three-dimensional traveling waves in pipe flow12 that
match quite closely the theoretically predicted states.13,14 If tran-
sitional and turbulent shear flows can indeed be described by a
small number of periodic orbits in phase space around which the
dynamical system wanders for a while, before occasional escapes
(escapes characterized by strong intermittent turbulent activity such
as bursting events; see Kawahara and Kida15 for the case of plane
Couette flow), the consequences for statistical analysis and the con-
trol of turbulence can be far-reaching. In particular, well-defined
global averages, such as the rate of energy dissipation or skin fric-
tion coefficients, could be obtained in finite time by replacing the
turbulent attractor with representative periodic trajectories, thus rul-
ing out fluctuations engendered by finite sampling. Furthermore,
the crucial task of system identification for the purpose of feed-
back control could be greatly alleviated if a small set of unstable
recurrent patterns were all that was required to develop acceptable
system reconstruction capabilities. Finally, optimal control laws tar-
geting specific patterns could be precomputed and fed dynamically
to the controller as soon as flow sensors gave indications of specific
occurrences.

This paper aims at making progress toward the objective of iden-
tifying organized flow states likely to appear when a fluid moves
turbulently through a square duct and at providing tentative expla-
nations for their origin. Rather than focusing on a mechanism for
the creation of streamwise vorticity based exclusively on the effect
of turbulence, the mechanism that is necessarily responsible for the
creation of ω when the flow is considered invariant in the stream-
wise direction x , we assume that the turbulent flow in a square duct
is streamwise inhomogeneous and, thus, we aim at modeling the
initial stages of a phenomenon that is dominated by transients. Re-
cently, Galletti and Bottaro16 have employed a linear theory to show
that the mean shear can sustain the transient amplification of cross-
stream structures of large scale in square and rectangular ducts. Here,
their optimization approach is further elaborated and extended, also
guided by the conjecture, first outlined by Malkus,17 that there exists
a functional that turbulent shear flows tend to maximize.

II. Decomposition of the Flow and the Equations
We consider the turbulent flow in the duct sketched in Fig. 1, with

cross-sectional aspect ratio A = 1. Our interest lies in describing the
formation of secondary (corner) vortices, and in particular in assess-
ing whether they could arise from a linear, transient amplification of
large-scale, steady disturbances growing on top of a unidirectional
base motion (with a turbulencelike profile). The chosen perspective
is thus radically different from that of most previous studies of cor-

Fig. 1 Sketch of the configuration studied. Cross-stream axes have
already been normalized by half-channel height h.

ner vortices,2−4,7,8,18 which focused on fully developed states and
searched for Reynolds-stress-related source terms in the kinetic en-
ergy and/or streamwise vorticity equations, capable of generating
secondary currents. Our conjecture is that turbulence is a process
characterized by a succession of transient events, which contribute
to the creation of secondary structures through the transfer of en-
ergy between the mean, unidirectional flow and the coherent field.
Although our linearized approach is clearly incapable of providing
a complete description of the full energy-transfer phenomenon, and
in particular of how the energy cascades from the large- to the small-
scale eddies of the turbulence, it is aimed at modeling at least the
initial stages of the transients alluded to earlier, with the objective
of inferring a relationship between the secondary flows captured by
direct numerical simulations (for example) and the coherent fields
computed here.

The approach is inspired by that of Reynolds and Hussain,19 re-
cently adopted and extended by Reau and Tumin20,21 and Lifshitz
et al.,22 and it starts from a triple decomposition of the state variables
as follows:

(u, v, w, p) = [U (y, z), 0, 0, P(x)]

+ [ũ(x, y, z), ṽ(x, y, z), w̃(x, y, z), p̃(x, y, z)]

+ [u′, v′, w′, p′](x, y, z, t)

The first two terms of the decomposition represent the mean, steady
flow that we wish to model: the first term comprises the steady,
fully developed streamwise flow U (y, z), driven by the mean pres-
sure gradient dP/dx , whereas the second one, (ũ, ṽ, w̃, p̃), rep-
resents the x-dependent, large-scale, secondary flows. Finally, the
last term (u′, v′, w′, p′) models the turbulent fluctuations. We fur-
ther assume that the coherent motion (expressed by quantities with
tildes) is of amplitude much smaller than either the amplitude of
[U (y, z), 0, 0, P(x)] or that of fluctuating quantities, so that in
the equations for coherent motion, quadratic terms in ũi ũ j can be
neglected.

Upon insertion of the triple decomposition into the equations and
averaging over time (this operation is denoted by overbars), the
linearized Reynolds-averaged equations are found:

ũx + ṽy + w̃z = 0

Uũx + ṽUy + w̃Uz = − 1

ρ

dP

dx
− 1

ρ
p̃x + ν(Uyy + Uzz

+ ũxx + ũ yy + ũzz) − (u′u′)x − (u′v′)y − (u′w′)z

U ṽx = − 1

ρ
p̃y + ν(ṽxx + ṽyy + ṽzz) − (v′u′)x − (v′v′)y − (v′w′)z

U w̃x = − 1

ρ
p̃z + ν(w̃xx + w̃yy + w̃zz)

− (w′u′)x − (w′v′)y − (w′w′)z (1)

with ρ the fluid density and ν the fluid kinematic viscosity.
A Boussinesq hypothesis is employed for the Reynolds stresses,

with the eddy viscosity νt split into two parts like the mean flow
(U + ũ, ṽ, w̃), νt of order one and ν̃t “small”:

− u′
i u

′
j = − PT

ρ
δi j + (νt + ν̃t )

[
∂(Ui + ũi )

∂x j
+ ∂(U j + ũ j )

∂xi

]
(2)

After Eq. (2) is introduced into Eqs. (1), several assumptions are
made on the scales of the different variables to simplify the equa-
tions. In particular, the longitudinal velocity U is normalized with U0

(peak speed in the duct), ρU 2
0 is used as scale for P∗ = P + PT , duct

length L is used as streamwise scale (L � h), and h is cross-stream
scale. Thus, the leading-order terms of the streamwise momentum
equation (1) give rise to

0 = − 1

ρ

dP∗

dx
+ ν(Uyy + Uzz) + (ν̄tUy)y + (ν̄tUz)z (3)
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together with no-slip boundary conditions for U at the walls. Further
scales to be employed for the terms left at higher orders are h/ε for
x (with ε a small parameter to be chosen), h for y and z, Ũ for ũ
(Ũ an unspecified velocity scale for the coherent terms, which is
much smaller than U0 and uτ , the latter being the friction velocity,
an appropriate scale for the fluctuations), εŨ for ṽ and w̃, ε2ρŨU0

for p̃. Furthermore, a classical analogy with kinetic theory suggests
that ν̄t is of order huτ , so that ν̃t scales with huτ Ũ/U0.

By so doing, the different orders of magnitudes of the terms left
in system (1) [after subtracting Eq. (3)] are

ũx + ṽy + w̃z = 0︸ ︷︷ ︸
O(εŨ/h)

Uũx + ṽUy + w̃Uz︸ ︷︷ ︸
O(εŨU0/h)

= − p̃x/ρ︸ ︷︷ ︸
O(ε3ŨU0/h)

+ νũxx︸︷︷︸
O(ε2νŨ/h2)

+ ν(ũ yy + ũzz)︸ ︷︷ ︸
O(νŨ/h2)

+ (ν̄ũx )x︸ ︷︷ ︸
O(ε2Ũuτ /h)

+ (ν̄t ũ y + ν̃tUy)y + (ν̄t ũz + ν̃tUz)z︸ ︷︷ ︸
O(Ũuτ /h)

U ṽx︸︷︷︸
O(ε2ŨU0/h)

= − p̃y/ρ︸ ︷︷ ︸
O(ε2ŨU0/h)

+ νṽxx︸︷︷︸
O(ε3νŨ/h2)

+ ν(ṽyy + ṽzz)︸ ︷︷ ︸
O(ενŨ/h2)

+ (ν̄t ũ y + ν̃tUy)x + (2ν̄t ṽy)y + [ν̄t (ṽz + w̃y)]z︸ ︷︷ ︸
O(εŨuτ /h)

U w̃x︸︷︷︸
O(ε2ŨU0/h)

= − p̃z/ρ︸ ︷︷ ︸
O(ε2ŨU0/h)

+ νw̃xx︸︷︷︸
O(ε3νŨ/h2)

+ ν(w̃yy + w̃zz)︸ ︷︷ ︸
O(ενŨ/h2)

+ (ν̄t ũz + ν̃tUz)x + [ν̄t (ṽz + w̃y)]y + (2ν̄t w̃z)z︸ ︷︷ ︸
O(εŨuτ /h)

(4)

The small parameter ε results by imposing the requirement that the
Reynolds stress terms are of the same order of the convective terms,23

so that the ratio between the cross stream and the streamwise length
scale is

ε = uτ /U0

This results agrees with that of Mellor23 for the external region of a
turbulent boundary layer (the so-called defect layer). In the near-wall
region a different ratio of length scales can be found by comparing
the Reynolds-stress term to the viscous term; however, in the present
case, rather than building separate approximations in the wall layer
and in the defect layer, we use a composite approximation by re-
taining the leading viscous terms (even if formally negligible since
ε � ν/U0h = Re−1 except very close to the walls) in the equations
above. Finally, the following dimensional system of equations for
the coherent flow is obtained:

ũx + ṽy + w̃z = 0

Uũx + ṽUy + w̃Uz = ν(ũ yy + ũzz) + (ν̄t ũ y + ν̃tUy)y

+ (ν̄t ũz + ν̃tUz)z

U ṽx = − p̃y/ρ + ν(ṽyy + ṽzz) + (ν̄t ũ y + ν̃tUy)x

+ (2ν̄t ṽy)y + [ν̄t (ṽz + w̃y)]z

U w̃x = − p̃z/ρ + ν(w̃yy + w̃zz) + (ν̄t ũz + ν̃tUz)x

+ [ν̄t (ṽz + w̃y)]y + (2ν̄t w̃z)z (5)

To close them a suitable representation for turbulent viscosity must
be found. The original hypothesis by Boussinesq24 was that νt was
approximately constant, and indeed reasonably good agreement
with simple shear flows (jets and wakes) can be found by employing
a constant eddy viscosity, whose value is 10–100 times the laminar
value. A Newtonian eddy viscosity was also used by Reynolds and

Hussain.19 In the presence of boundaries, a kinetic-theory-like as-
sumption gives

νt = c1 rms(u)lm

with c1 an order-one constant, rms(u) a measure of the rms velocity,
such as the friction velocity uτ , and lm a dispersion length scale
called mixing length. Bearing in mind the inherent limitations of
mixing length models,25 we limit ourselves here to the simplest
possible closure by writing

νt = ν̄t + ν̃t = c2(U + ũ)lm

with c2 a constant (function of the Reynolds number of the flow)
and lm a function of position, defined as the harmonic mean of the
distance of any given point in a quadrant from the two orthogonal
walls. In particular, if η (respectively ψ) represents the distance of
a given point from the nearest wall parallel to the y axis (z axis), we
impose

lm = 2[ηψ/(η + ψ)]

Through this definition the mixing length is very small whenever a
point is in proximity of a wall, and becomes close to the arithmetic
mean of η and ψ when the two lengths become of comparable size.

Because it is not the point of the present paper to focus on turbu-
lence closure models, we satisfy ourselves with the simple approx-
imation above; we refer to Mompean26 for recent developments on
linear and nonlinear closure strategies aimed at capturing corner
vortices.

For convenience, Eqs. (3) and (5) are rendered dimensionless.
This is done by employing h as a length scale, U0 as a scale for
all velocity components, and ρU 2

0 as a scale for both P∗ and p̃.
Without changing notations between dimensional and dimension-
less variables, the equations now read

0 = −dP∗

dx
+ 1

Re
(Uyy + Uzz) + ( ˆ̄νtUy)y + ( ˆ̄νtUz)z (6)

ũx + ṽy + w̃z = 0

Uũx + ṽUy + w̃Uz = 1

Re
(ũ yy + ũzz) + ( ˆ̄νt ũ y + ˆ̃νtUy)y

+ ( ˆ̄νt ũz + ˆ̃νtUz)z

U ṽx = − p̃y + 1

Re
(ṽyy + ṽzz) + ( ˆ̄νt ũ y + ˆ̃νtUy)x + (2 ˆ̄νt ṽy)y

+ [ ˆ̄νt (ṽz + w̃y)]z

U w̃x = − p̃z + 1

Re
(w̃yy + w̃zz) + ( ˆ̄νt ũz + ˆ̃νtUz)x

+ [ ˆ̄νt (ṽz + w̃y)]y + (2 ˆ̄νt w̃z)z (7)

with ν̂t = νt/ν = ˆ̄ν t+ˆ̃ν t .

III. Unidirectional Motion U

To solve for U we simply impose the pressure gradient dP∗/dx ,
for example, on the value calculated by Gavrilakis6 at Re = 2933
(hence dP∗/dx = −15.3463), and discretize Eq. (6). The un-
known are the values of U (y, z) at the N × N Gauss–Lobatto
grid points, yi = cos π(i − 1)/(N − 1) with i = 1, . . . , N and
z j = cos π( j − 1)/(N − 1) with j = 1, . . . , N . For instance, if Ui j

denotes U at the grid point (yi , z j ) the approximation adopted is

U (y, z) =
N∑

i = 1

N∑
j = 1

Ui jφi (y)φ j (z)

where φi (y) and φ j (z) are the Lagrangian interpolating polynomials
based on the nodes yi and z j , respectively. The internal nodal values
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a)

b) c)

Fig. 2 Solution of Eq. (6) for the mean flow: a) surface plot of U(y, z) in the duct cross section. Comparisons with the mean speed profile computed
by Gavrilakis6 (circles) along a bisection line y or z = 0 (panel b) and along a diagonal (panel c) display acceptable agreement. Observe that the result
by Gavrilakis also includes ũ.

of U are arranged into a vector U, and the discrete form of Eq. (6)
is solved with a simple iterative technique.

Numerical tests show that fitting the constant c2 to the value of
22 (which indicates by how much the turbulent viscosity exceeds
the kinematic viscosity near the centerline of the duct) produces
acceptable results for U , displayed in Fig. 2.

IV. Functional Optimization for Coherent Motion
A. Cost Functionals and Energy Constraint

The choice of which cost functional we should maximize is cru-
cial because it affects the results obtained and their interpretation.
In stability theory it is customary to consider the disturbance ki-
netic energy density as a suitable cost (see, for example, Tumin
and Ashpis27); also in the present case, the first thing attempted by
Galletti and Bottaro16 was the optimization at a given downstream
position L of an energylike norm I(L) related to the streaky motion,
with

I(x) = 1

2

∫ 1

−1

∫ 1

−1

ũ(x, y, z)2 dy dz (8)

for a given initial energy. On second thought, there are other func-
tionals that might perhaps better represent the behavior of turbulent
flows in ducts. It has been suggested by Malkus17 and later elabo-
rated by Busse28 that turbulence achieves statistical extreme states
related to the degree of disorganization, or entropy, of the process.
In statistically steady shear flow, the temperature of the fluid relative

to the walls can reach a maximum value when the rate of viscous
dissipation of energy into heat is largest. This seems to imply that
a sensible quantity to optimize is the cross-sectional integral of the
turbulent dissipation function φv , that is,∫ 1

−1

∫ 1

−1

φv dy dz = 1

Re

∫ 1

−1

∫ 1

−1

2s ′
i j s

′
i j dy dz

with

s ′
i j = 1

2

(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)
the fluctuating rate of strain. This quantity is indispensable to the
dynamics of turbulence and recent results by Plasting and Kerswell29

have shown that the solutions maximizing the dissipation rate bear
some resemblance to turbulent flows realized in a pipe.12 Usually,
the fluctuating strain rate is much larger than the mean strain rate

s ′
i j � Si j = 1

2

[
∂(Ui + ũi )

∂x j
+ ∂(U j + ũ j )

∂xi

]
indicating that the eddies contributing the most to the dissipation of
energy have very small convective time scales compared to those of
the mean flow. In the present context, adopting an objective function
based on s ′

i j s
′
i j entails relying heavily on the adopted model for the
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Reynolds stress and produces a very complicated expression. How-
ever, if we assume that, on average, the rate of energy dissipation
and the work of deformation of the mean motion by the Reynolds
stresses are equal, that is, that there is mechanical-energy equilib-
rium, the viscous dissipation can be estimated from the large-scale
dynamics. Thus, an equally important cost functional to consider is
the turbulent energy production per unit mass:

P(x) = −
∫ 1

−1

∫ 1

−1

u′
i u

′
j Si j dy dz

By introducing the Boussinesq assumption (2), the rate of production
at leading order is given by∫ 1

−1

∫ 1

−1

ˆ̃ν t
∂Ui

∂x j

∂U j

∂xi
+ ˆ̃ν t

(
∂U j

∂xi

)2

+ ˆ̄ν t
∂U j

∂xi

∂ ũi

∂x j
+ ˆ̄ν t

∂U j

∂xi

∂ ũ j

∂xi
dy dz

Assuming that the eddy viscosity ν̂t is given, a suitable cost is then∫ 1

−1

∫ 1

−1

∂U j

∂xi

∂ ũi

∂x j
+ ∂U j

∂xi

∂ ũ j

∂xi
dy dz

which reduces in the present case to∫ 1

−1

∫ 1

−1

(Uyũy + Uzũz) dy dz

However, it is easy to see that this integral goes to zero because of
the symmetry properties of the coherent motion around diagonals
and/or bisection lines, so that an appropriate functional to maximize
must be sought at next higher order, and reads

I(x) =
∫ 1

−1

∫ 1

−1

(
ũ2

y + ũ2
z

)
dy dz (9)

The weak point of this argument lies in the statement that ν̂t is
assumed as a datum; we could equally well have assumed a func-
tional dependence of ν̂t on the mean flow Ui + ũi (as we did in the
preceding section when closing the direct problem to search for a
numerical solution), thus obtaining a different cost function. In the
search of a suitable objective, however, we prefer not to use a model
of the eddy viscosity and consider it as a property of small scale, in-
coherent processes. This assumption has the advantage of producing
a functional that is not unnecessarily complicated. Different types
of functionals have also been optimized, extensively discussed by
Soueid,30 producing results qualitatively similar to those discussed
in the following.

When an energylike norm is chosen, such as

E(x) = 1

2

∫ 1

−1

∫ 1

−1

ũ(x, y, z)2 + ε2[ṽ(x, y, z)2 + w̃(x, y, z)2] dy dz

(the term ε2 is present because of the different scales of the velocity
components), it is easy to see31 that an inflow with ũ(0, y, z) = 0
yields a gain (ratio of outlet to inlet norm) which is asymptotically
large and of order ε−2. In this case, combining the first two equations
of set (7) to eliminate ũx , one finds that at x = 0 the variables ṽ and
w̃ are related by

U ṽy + U w̃z = ṽUy + w̃Uz

so that there are only two independent initial conditions to apply,
ũ, which vanishes, and ṽ, which comes out of the optimization
procedure. The other velocity component at the inlet, w̃, must be
assigned by the use of the preceding equation.

For all functionals studied we have thus decided to constrain the
initial energy norm as follows:

E0 = 1

2

∫ 1

−1

∫ 1

−1

[ṽ(0, y, z)2 + w̃(0, y, z)2] dy dz = 1

with ũ(0, y, z) = 0.

B. Discrete Problem for the Coherent State
The unknowns contained in Eq. (7) are treated in a manner similar

to the variable U , that is, by introducing Gauss–Lobatto grid points
and Lagrangian interpolating polynomials. By denoting as p, u, v,
and w the column vectors containing the interior nodal values of
p̃, ũ, ṽ, and w̃, the discretized form of Eqs. (7) can be written
as

Qqx = Rq (10)

where q = [p, u, v, w]T is a 4M × 1 vector and Q and R are
4M × 4M matrices of the form

Q =

⎛⎜⎜⎝
0 0 0 0

0 Q22 0 0

0 Q32 Q33 0

0 Q42 0 Q44

⎞⎟⎟⎠ , R =

⎛⎜⎜⎝
0 R12 R13 R14

0 R22 R23 R24

R31 0 R33 R34

R41 0 R43 R44

⎞⎟⎟⎠
obtained after multiplying the continuity equation by U and then
subtracting the result from the x-momentum equation (see Soueid30

for details). All of the M × M submatrices Ri j are singular for i �= j .
M = (N − 2) × (N − 2) is the total number of interior nodes and
the no-slip boundary conditions are enforced implicitly. The ini-
tial conditions arise from the optimization, however, for the cases
of p and u we simply impose vanishing values. (This is justified
for the case of p by the fact that there is no streamwise pres-
sure coupling for the variable p̃.) Along the streamwise direc-
tion an implicit finite difference discretization is adopted, of sec-
ond order except for the first step, so that the discrete problem
reads

q0 = [0, 0, v(0), w(0)]T , q1 = G1q0

qn + 1 = G2(4qn − qn − 1), n = 1, . . . , NL − 1 (11)

where qn = q(n�x), G1 = (Q − R�x)−1Q, G2 = (3Q −2R�x)−1Q,
and L = NL�x is the length of the channel. The expressions
Q − R�x and 3Q − 2R�x are singular matrices, and to obtain
G1 and G2 we must resort to an inversion procedure based on
singular value decomposition. Any square matrix can be ex-
pressed as the product of an orthogonal matrix U, a diagonal
matrix W with the singular values wi on the diagonal elements
arranged in decreasing order, and the transpose of a second or-
thogonal matrix V. The inverse of the matrix is then simply the
product

V[diag(1/wi )]UT

and if a singular value wi vanishes or nearly vanishes (a sig-
nal of matrix singularity or poor conditioning) we simply re-
place 1/wi with zero in this expression.32 This procedure has
been adopted successfully in the present case and validated by
comparing it to an alternative procedure based on the reduction
of the order the matrices.16 Numerical tests reveal that �x = 2.2
produces converged results, together with N = 23 collocation
points along y and z. This is demonstrated in Fig. 3, where the
quantity

ET = 1

2L

∫ 1

−1

∫ 1

−1

∫ L

0

ũ(x, y, z)2 dx dy dz

arising from several direct calculations at different resolutions is
reported for an initial condition at x = 0 given by

ũ(0, y, z) = 0, ṽ(0, y, z) = U (y, z)[cos π z + cos π(y − z)]

The cost function is written in a generic way:

J = α1I(L) + α2

L

∫ L

0

I(x) dx
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a) b)

Fig. 3 Grid resolution study: a) streamwise step fixed at Δx = 2.2 with L = 220 and b) all calculations performed with N = 23 and L = 396.

to either target I at the final position (when α2 = 0) or as an integral
over x (when α1 = 0). The former option has been used in most of
the studies on optimal perturbations to date.33 In discrete form, this
cost has the form

Jn = 1

2
α1qT

NL
AqNL + α2

2L

NL∑
n = 1

qT
n Aqn�x (12)

with the 4M × 4M matrix A containing both a filter, to account for
the choice of J [either Eq. (8) or Eq. (9)], and quadrature weights.34

In the discrete setting the constraint on the initial energy norm
can be expressed as

1
2
qT

0 Bq0 = E0 (13)

with the 4M × 4M matrix B containing, as before, a filter to go
from the vector q to the vectors v and w needed to compute E0, and
quadrature weights.

Applying a methodology based on Lagrange multipliers,35 the
constrained optimization problem is transformed into an uncon-
strained one for the extended, discrete functional:

Ln = 1

2
α1qT

NL
AqNL + rT

0 (q1 − G1q0)

+
NL − 1∑
n = 1

{
rT

n [qn + 1 − G2(4qn − qn − 1)] + α2

2L
qT

n Aqn�x

}

+ α2

2L
qT

NL
AqNL �x + λ0

(
1

2
qT

0 Bq0 − E0

)
with r a 4M × 1 vector of Lagrange multipliers and λ0 a scalar
multiplier needed to force the initial energy norm to the given value
E0 = 1. In a continuous setting, an adjoint set of equations is found
by performing integration by parts36; in the present discrete setting
it is sufficient to rewrite the functional in the equivalent form

Ln =
[

1

2

(
α1 + α2�x

L

)
qT

NL
A + rT

NL −1

]
qNL − rT

NL
G2qNL −1

− λ0 E0 +
(

λ0

2
qT

0 B − rT
0 G1 + rT

1 G2

)
q0

+
NL − 1∑
n = 1

{
rT

n − 1 + [
rT

n + 1 − 4rT
n

]
G2 + α2�x

2L
qT

n A

}
qn

and enforce stationarity with respect to all independent variables to
demonstrate that the direct system of discrete equations is coupled

to a discrete adjoint system to be integrated backward in space. Such
a system reads as follows:

rNL = [0, 0, 0, 0]T , rNL − 1 = −[α1 + �x(α2/L)]AT qNL

rn − 1 = GT
2 (4rn − rn + 1) − �x(α2/L)AT qn, n = NL − 1, . . . , 1

(14)

together with the optimality condition

q0 = (
λ0BT

)−1(
GT

1 r0 − GT
2 r1

)
This condition makes it possible to iteratively update the inflow
solution of the direct problem on the basis of the adjoint solution at
the streamwise nodes n = 0 and n = 1. The multiplier λ0 is iteratively
updated to enforce the constraint on E0. Typically we perform up to
500 direct/adjoint iterations until the difference in J between two
successive iterations is smaller than a given threshold. The need
for such a large number of iterations arises from the fact that the
functional often displays in the course of the iterations one or two
plateaus before convergence, an indication of the weak selectivity
of the optimal solution eventually achieved.

V. Results
A. Energy Functional

The variety of structures that appear upon optimizing the ener-
gylike norm of Eq. (8) at a final position (α1 = 1, α2 = 0) or as an
integral over x (α1 = 0, α2 = 1) is displayed in Figs. 4 and 5. Al-
though the norms achieved at any given L seem very small (cf. the
values on the ordinate axis of the graphs) and further decreasing
very steeply with the optimization distance L for the first case (for
the latter a local maximum appears at x = 15.5, from which point on
a mild monotonic decrease sets in toward what appears to be a limit
value for L asymptotically large), they should still be multiplied by
ε−2 to yield a number with physical relevance. As the distance from
the inflow increases, structures with larger cross-stream dimensions
are capable of optimally draining energy from U (Fig. 4). How-
ever, beyond a threshold value of L equal to about 300 half-channel
thicknesses one and the same optimal solution is consistently found:
eight vortices in the cross section, symmetric about the diagonals
and the bisection lines, are capable of extracting the most energy out
of U . In the case in which an integral measure is considered, eight
vortices constitute the optimal disturbance over small distances, and
progressively larger cross-stream structures make their appearance
as L increases.

It can be speculated that, once a localized inhomogeneity has trig-
gered a spatial transient in the duct, the flow evolves to select sec-
ondary patterns such as those displayed here, until nonlinear mixing
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Fig. 4 Energy norm (α1 = 1, α2 = 0) as a function of the optimization
distance, and corresponding solutions. The vector plots provide the opti-
mal initial conditions ṽ and w̃ at x = 0, that is, that maximizing the energy
at a prescribed length L; the contour plots are isolines of the streamwise
velocity ũ at the final position L. Dashed lines denote negative values
of ũ.

Fig. 5 Energy norm (α1 = 0, α2 = 1) as a function of the optimization
distance, and corresponding solutions.

mechanisms become sufficiently vigorous to moderate, maintain, or
regenerate coherence. We make no claims on how “optimal” cross-
stream structures appear in a turbulent duct at some position (which
in our reference frame is x = 0): this is a matter related to the flow
receptivity and the response of the system to environmental forc-
ing. We simply state that if vortices such as those found here are
eventually present at some “initial” position in a square duct, a local
or integral energy norm will be optimized downstream. It is thus
appropriate at this point to look at a norm even loosely related to the

dissipation rate, because this is the functional that Malkus17 con-
jectured could be maximized during the development of a chaotic
flow.

B. “Production” Functional
Results obtained by focusing on a “production” cost [Eq. (9)] are

shown in Figs. 6 and 7. Figure 6, in particular, shows that the optimal
organized motion is unique (and L dependent), irrespective of the

Fig. 6 Productionlike norm (α1 = 1, α2 = 0) as a function of the opti-
mization distance, and corresponding solutions.

Fig. 7 Productionlike norm (α1 = 0, α2 = 1) as a function of the opti-
mization distance, and corresponding solutions.
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chosen cost, in optimizing a local quantity (cf. Fig. 4). This seems
indicative of a “universal” behavior of the coherent field.

Also in the case of an integral measure the results are similar
between the two objective functions (cf. Figs. 5 and 7), at least
for small values of L . When L exceeds 100 there is a tendency of
the “optimal” states for the integral measure to consistently exploit
the symmetry around the bisection lines, rather than that around
diagonals.

C. Discussion
A possible mechanism for the formation of secondary currents in

a square duct has been presented.
The classical argument goes that streamwise vorticity can be

produced in a streamwise homogeneous turbulent flow by the
anisotropy of turbulence. In the context of the triple decomposi-
tion adopted here, the streamwise vorticity equation that follows
from Eq. (1) reads

U ω̃x = ν(ω̃yy + ω̃zz) + Uz ṽx − Uyw̃x︸ ︷︷ ︸
P1

+ (v′v′ − w′w′)yz︸ ︷︷ ︸
P2

+ (∂zz − ∂yy)v′w′︸ ︷︷ ︸
P3

+ ∂x [(u′v′)z − (u′w′)y]︸ ︷︷ ︸
P4

(15)

so that, if the assumption of fully developed flow is made, the balance
equation is

ṽω̃y + w̃ω̃z = ν(ω̃yy + ω̃zz) + P2 + P3 (16)

where the (nonlinear) left-hand side has been included to account for
the convection of the streamwise vorticity by the secondary flows.
Experiments by Perkins18 have demonstrated that the Reynolds
stress terms P2 and P3 are in balance over the majority of the cross
section, with the convective term significant near the corners and
the viscous term very near the wall. A classical Boussinesq clo-
sure for P2 and P3 (with a constant eddy viscosity) would decouple
Eq. (16) from the streamwise momentum equation, producing the
solution ṽ = w̃ = 0, which is the reason that a nonlinear relation
for the Reynolds stress tensor8 has traditionally been considered
indispensable.

The (conventional) assumption of streamwise invariance of the
motion, however, removes two potential sources for the coherent
field: in the context of the equation for ω such source terms are P1,
related to the mean shear skewing and present also in the laminar
case, and P4, which couples the equations for ω̃ and ũ even in the
context of the simple Boussinesq assumption with constant νt . Thus,
relaxing the homogeneity hypothesis implies not only that the sec-
ondary flows are maintained/enhanced by turbulence, but also that
they can be produced during a spatial transient phase through inter-
action with the mean shear terms Uy and Uz . Transients dominate
the dynamics of the flow whenever the system reacts to sudden in-
homogeneities, such as roughness elements, that is, during receptiv-
ity phases. Furthermore, we argue that fully developed turbulence
is just a (convenient) representation of a reality that is, in fact, a
succession of transients. Clearly, the structures found would decay
under the action of viscosity if it were not for a nonlinear mixing
mechanism involving the coherent field (mechanism not considered
here) that could maintain/regenerate/alter the secondary vortices,
ultimately yielding the states observed in several simulations and
experiments. Also, the anisotropy of turbulence near the walls (par-
ticularly through the action of the terms labeled P2 and P3) plays
an important role in sustaining the secondary flows, and it is not the
purpose of this work to play down the importance of such an effect.

On the negative side, we observe that the present conjecture on
the initial stages of corner flows would be more appealing had we
consistently found optimal states composed by eight vortices with
symmetries about diagonals and bisection lines. Although it could
be argued that we still need to account for the generic nonlinear
mixer to describe fully developed states [in which case, however,
the separation of scales between streamwise and cross-stream dis-
tances eventually leading to system (7) would be untenable] and

that secondary flows with the right symmetries do not necessarily
have to be expected during a transient, the results found leave us
with mixed feelings. This must (at least in part) be ascribed to the
choice of the functional and to the impossibility, within the present
framework, of adequately representing the rate of turbulent energy
dissipation φv or, for that matter, any measure related to incoher-
ent fluctuations. Only a direct numerical simulation of turbulence
capable of providing exactly the fluctuating rate of strain s ′

i j , cou-
pled to an optimization procedure, could provide a definite answer.
Simulations of this kind have not yet been attempted.

VI. Conclusions
The optimization of coherent disturbances developing spatially

in a duct bounded by four solid walls has been performed by a
direct-adjoint technique based on linear equations. The procedure
has been carried out with respect to two different functionals: a
kinetic-energy-like norm of the coherent motion and a production-
like norm of turbulent kinetic energy. The latter has been employed
instead of the dissipation rate (which would have required too many
assumptions to be truly significant) under the hypothesis that pro-
duction and dissipation are in equilibrium. Because no significant
differences have been found between the two costs tested, we are
incapable at this stage of speaking in favor of the argument that
turbulence is a process maximizing the rate of energy dissipation.

The approach was meant to elucidate aspects of the response
of the system to spatial inhomogeneities and stems from the real-
ization that large-scale steady coherent structures respond linearly
to the mean shear. Even with the limitations imposed by the sim-
ple isotropic turbulence closure used here, we have been able to
find optimal flow states with secondary currents, often reminiscent
of those observed in full numerical simulations and experiments.
Clearly, the present amplification mechanism is only of transient
nature and nonlinear effects must eventually be accounted for to
sustain the cross-stream flows, including in particular those effects
arising from the anisotropy of turbulence near walls.

The relation between secondary flows and so-called “exact co-
herent states”9−14 in square ducts remains to be established.
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Présentés par Divers Savants à l’Académie des Sciences, Paris, Vol. 23,

No. 1, 1877, pp. 1–660.
25Tennekes, H., and Lumley, J., A First Course in Turbulence, MIT Press,

Cambridge, MA, 1972.
26Mompean, G., “Numerical Simulation of a Turbulent Flow near a Right-

Angled Corner Using the Speziale Non-Linear Model with RNG k–ε Equa-
tions,” Computer and Fluids, Vol. 27, No. 7, 1998, pp. 847–859.

27Tumin, A., and Ashpis, D. E., “Optimal Disturbances in Boundary Lay-
ers Subject to Streamwise Pressure Gradient,” AIAA Journal, Vol. 41, No. 11,
2003, pp. 2297–2300.

28Busse, F. H., “Bounds for Turbulent Shear Flow,” Journal of Fluid
Mechanics, Vol. 41, 1970, pp. 219–240.

29Plasting, S. C., and Kerswell, R. R., “A Friction Factor Bound for Tran-
sitional Pipe Flow,” Physics of Fluids, Vol. 17, No. 1, 2005, p. 011706.

30Soueid, H., “Secondary Vortices in Turbulent Square Duct Flow: Effect
of the Choice of the Cost Functional,” Dipartimento di Ingegneria Ambien-
tale, DIAM Internal Rept. 1/05, Univ. of Genoa, Genoa, Italy, Sept. 2005,
available from the author upon request (soueid@diam.unige.it).

31Luchini, P., “Reynolds-Number-Independent Instability of the Bound-
ary Layer over a Flat Surface: Optimal Perturbations,” Journal of Fluid
Mechanics, Vol. 404, 2000, pp. 289–309.

32Press, W. H., Flannery, B., Teukolsky, S. A., and Vetterling, W. T.,
Numerical Recipes in Fortran, Cambridge Univ. Press, Cambridge, England,
U.K., 1992.

33Schmid, P. J., and Henningson, D. S., Stability and Transition in Shear
Flows, Springer, New York, 2001.

34Trefethen, L. N., Spectral Methods in MATLAB, Society for Industrial
and Applied Mathematics, Philadelphia, 2000.

35Gunzburger, M. D., Perspectives in Flow Control and Optimization,
Society for Industrial and Applied Mathematics, Philadelphia, 2002.

36Corbett, P., and Bottaro, A., “Optimal Linear Growth in Swept Boundary
Layers,” Journal of Fluid Mechanics, Vol. 435, 2001, pp. 1–23.

A. Plotkin
Associate Editor


