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Giirtler vortices: are they amenable to local eigenvalue analysis? 

A. BOTTARO a*, P. LUCHINI b 

ABSTRACT. - It is often quoted that Gortler vortices cannot be described by a local eigenvalue analysis. In this work, by using the inverse of 
the Gortler number as a small expansion parameter, we derive an asymptotic sequence continuable to all orders which is similar, in principle, to 
the one that justifies the application of the Orr-Sommerfeld equation to two-dimensional boundary-layer instabilities. Existing local theories from 
the literature can be framed within the leading term of this expansion; however, none of the heuristically proposed non-parallel corrections fully 
captures the next higher term. We show that, when this term is included, locally computed growth rates’quickly collapse onto those obtained 
from numerical simulations of the parabolic linear stability equations, with initial conditions applied at the leading edge. The Gortler number (or, 
equivalently, the downstream distance) beyond which this non-parallel local theory is found out to be accurate encloses the commonly recognized 
experimental range. The small Giirtler number (short distance) effect of initial conditions is described in a companion paper. 0 Elsevier, Paris. 

1. Introduction 

The original analysis (by Giirtler himself and others) of the curvature-excited streamwise vortices that have 
become known as Giirtler vortices was based on a heuristic extension of the theory of parallel centrifugal 
instabilities of the Taylor and Dean type. 

However, the possibility of applying a quasi-parallel analysis to Giirtler vortices has been questioned by Hall 
(1983) and ever since, because of the difficulties in identifying a suitable scaling parameter that could allow the 
theory to be cast into the form of a proper asymptotic expansion continuable to all orders. 

Our concern here is with formulating the local linear stability theory in a systematic manner, which could 
enable us to provide mathematically consistent non-parallel corrections, and so to obtain accurate pointwise 
information of amplification factors and mode shapes for the vortices of arbitrary spanwise wavenumber ,LI at 
any given (large) streamwise distance from the leading edge without resorting to full numerical simulations of 
the parabolic boundary layer equations. 

A wealth of parallel or quasi-parallel theories populates the literature; since they are comprehensively reviewed 
by Floryan (1991) and Saric (1994), we only cite chronologically the major contributions, with the preliminary 
remark that until 1983 all analyses used the local mode approach. Gortler (1941) started by considering the 
stability of a strictly parallel Blasius base flow along a curved surface of asymptotically large radius of curvature, 
and established the parameters and the equations ruling the neutral stability of the disturbances. Solutions to these 
equations were provided by him and, later, by Hammerlin (1955, 1956) and Smith (1955). Wide discrepancies 
in the prediction of the neutral curve were already noted at the time. Herbert (1976) extended the formulation to 
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allow for finite variable radius of curvature R and found a strong dependence of the neutral curve on R in the 
range of low spanwise wavenumbers. Floryan and Saric ( 1979, 1982) tried to deal with the non-parallelism of the 
base Blasius flow by including into the disturbance equations terms like r’,- (streamwise derivative of the base 
flow) and I- (wall-normal base velocity). They derived what became known as the locally non-parallel stahilit> 
rquations: results, however, were not substantially different from those of the locally parallel approximation 01 
Giirtler (1941), except for low ij. In 1982 Hall developed a WKB expansion in the wall-normal direction, valid 
when the Giirtler number G and wavenumber :j tend simultaneously to infinity in such a way that C: = ()(;-I’), 
and thus showed that at the abscissa S = O.l14R-“‘(v/C:, )-‘V” there is a transition from amplification to 
damping of the leading Giirtler mode. He thus obtained an analytic expression for the upper branch of the 
neutral curve. which is in excellent agreement with previously published numerical solutions for large :-l’s, 

In 1983 Hall took a different look at the linear stability equations. These equations are a parabolic set 01 
partial differential equations which do not - a priori - allow a separation of variables. He solved them by 
a streamwise marching numerical technique and pointed out that a unique neutral curve cannot be defined 
for the following reasons: 

1. the definition of amplification factor depends on the physical quantity being monitored; 
2. such a quantity (e.g., the disturbance energy) has a different streamwise development as function of the 

initial conditions imposed and the initial position at which the marching procedure is initiated. 

For the initial conditions chosen by Hall, and for his definition of amplification factor, there was a poor 
agreement in neutral curve prediction with previous local theories. This seemed to settle the issue. although 
local theories kept on being used because of their practicality in delivering pointwise information, and capacity 
of rapidly providing X factors for transition predictions. Later on, it was shown by Day et al. (1990) that 
the agreement between marching and local theories is quite good sufficiently far downstream for some choices 
of the amplification factor. They argued that the “downstream asymptotic” behaviour could be approximately 
described by a local analysis. GoulpiC rt (11. ( 1996) demonstrated that the disagreement between neutral curves 
reported by Hall originates from the choice of initial conditions used in the marching calculations. When initial 
conditions with the shape of streamwise vortices were chosen, good agreement was obtained between marching 
and local predictions. at least for S sufficiently large. 

The present study takes a fresh look at local theories, with the hope of arriving at a consistent formulation. 
It seems, in fact, odd that local theories - while widely accepted and used, for example, in defining the 
Orr-Sommerfeld (O-S) problem for the Blasius flow - are so controversial when applied to the Gartler problem. 
A convenient way to derive local theories is to adopt a multiple-scale formulation. The first such analysis fol 
the O-S problem was carried out by Bouthier (1972, 1973); to leading order he recovered the O-S equation, and 
through the equation at the next higher order he was able to provide a correction to the local results. From his 
analysis. non-parallelism seemed to have a strong effect on the neutral curve, acting as a destabilizing agent. 
Gaster (1974) performed a comparable analysis with an iterative method and concluded that neutral curves 
are almost unaffected by a non-parallel corrections, except near the critical conditions. Although these results 
were not supported by an agreement with the experiments available at the time, recent carefully controlled 
measurements by Klingmann er al. (1993) established that non-parallelism has a minor influence on the neutral 
conditions. The apparent disagreement between Bouthier (1972) and Gaster (1974) originates uniquely from the 
way the disturbance growth was measured (see. e.g.. the discussion given by Bertolotti 199 I). 

In this work we set out to demonstrate that a local analysis can also be consistently formulated for the Giirtler 
problem, and that non-parallel effects can be appropriately accounted for through a WKB expansion continuable 
to all orders, which includes at leading order some of the local theories briefly cited earlier. 
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2. Mathematical description of the instability 

We consider the flow over a concave surface of constant, asymptotically large radius of curvature R. The 
equations that govern the spatial evolution of a small disturbance are: 

(1.1) ILS + %‘I7 + wz = 0; 

(1.4) U’w*y + VW]- + pz = 2111-I. + ?l!%Z> 

with the Giirtler number G defined by G’ = ZRe/R and Re = (UXl/v) I/’ > 1. Here the longitudinal 
coordinate S is scaled with the reference length 1 that appears in the definitions of the Giirtler and Reynolds 
numbers, the longitudinal velocity U and its perturbation u are scaled with the free stream velocity I&, the wall 
normal and spanwise coordinates Y, 2 are scaled with S = (YZ/U, )1/2, and the corresponding velocities I’, v 
and 11; are scaled with RP-lli,. Appropriate boundary conditions are 

(2.1) IL = 7) = ‘W = 0 at I- = 0, and 

(2.2) for I’ ---f 00. 

Equations (1-2) were given for the first time by Floryan and Saric (1979). Details of their derivation can 
be found, e.g., in Bottaro and Luchini (1996). There is theoretical (Herron 1985, 1991) and experimental 
(Swearingen and Blackwelder 1987) evidence that the primary instability is stationary and hence time-derivative 
terms have been omitted. The base flow U, 1;’ is determined by the same two-dimensional boundary layer 
equations that hold on a flat plate. 

Because of translational invariance along 2, equations (1) admit solutions of the form: 

with p real spanwise wavenumber. A more compact set of disturbance equations can be obtained through 
elimination of the pressure term and III and reads (after dropping tildes) (“): 

(4.1) 7dJ-J. - l’ul- - ulljA\- - [p2 + Uy]u - q-1: = 0, 

(“) Alternative formulations based on different dependent variables are possible, and a particularly convenient one which leads tu a two-equation 

set on u and E (a modified streamwise vorticity) is described and used in the companion paper by Luchini and Bottaro ( 199X), from now on 

referred to as LB. 
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with boundary conditions 

(3 u=v=q*=o at Y = 0 and k- + 00, 

and initial conditions 

(6) u = uu and v = vo 

This form of the stability equations was first given by Hall (1983). The parameters governing this problem are 
the Giirtler number G, the wavenumber ,!?, and the initial position Se at which the perturbations are provided. 
Furthermore, the initial perturbation distributions ua and ~0 play a crucial role in the instability development in 
the proximity of Xu; as a consequence Hall showed that the concept of a unique neutral curve is not tenable. 
To monitor the development of the instability one typically defines a perturbation energy, for example 

(7) E(X) = 
.I’ 

u2 (X, Y)dY 

and introduces a dimensionless growth rate iT as 

X dE F,=----. 
2E dX 

The position of “neutral” stability is defined by the value of X for which ;? vanishes: since a Gortler number 
Gs = GX’/’ and a wave number p.y = PX’l” are associated to each X, a “neutral stability curve” in the 
(ps, Gs) plane can be constructed. GoulpiC et al. (1996) have, however, demonstrated that even the definition 
of energy has profound repercussions on the location of the neutral points; this supports Hall’s argument that 
a unique marginal curve can not be defined. 

What can be uniquely defined in the (p-y, G,y) plane are the different isolines of fixed amplification rate. Such 
isolines are unique if G,y is large enough, and can be obtained indifferently from marching or local approaches 
(Day et al., 1993). The possibility of having at any given large G-y (which will be quantified) accurate local 
information of growth rates and mode shapes for all D\-‘s is attractive because it allows local considerations 
of transition thresholds (e.g., calculations of N factors). In addition it sets the stage for the receptivity analysis 
described by LB which relies on the downstream existence of modes. 

3. Marching solutions of the linearized stability equations 

In order to demonstrate the existence of modes far enough downstream of the leading edge of the curved 
plate, and to establish the meaning of “far enough”, we give an example of solutions of the marching equations 
for a variety of initial conditions. Similar calculations have been performed by Day et al. (1990). 

Hall’s equations (4-6) are marched from X = X(1 = 0 to X = X,f = 1, where the value of G is set to 10. 
Notice that in this case the length scale is based on the final point, rather than the point from which the 
marching is initiated as is usually done when the computation is not initiated at X = 0. The parabolic set of 
equations is solved for three values of /3 (0.5, 1 and 2), with three different initial conditions at Xa. In figure I 
we report the evolution of the energy (on the left) and of a (right) with X. The value attained by the energy 
at X = Xf is clearly a function of the initial condition; the curves displaying the amplification factors, on the 
other hand, coalesce when X > 0.7 (Gs > 7.6) for each p. Likewise, the disturbance shapes collapse onto 
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one another. This indicates conclusively the existence of modes (and hence the applicability of the parallel flow 
approximation, Timoshin 1990) for Gortler numbers larger than about seven. 

Incidentally, it should be pointed out that seven is not an extraordinarily large number, and that recent nonlinear 
calculations (Bottaro et al., 1996) and experiments (Pexieder 1996) - both performed in a fairly standard 
disturbance environment - show that the quasi-exponential growth characteristic of the linear amplification 
phase persists up to Gs of about fifteen. 

4. Multiple-scale analysis 

A multiple-scale approximation can be set up when the disturbance behaves as a fast exponential exp[cp(X)/c]. 
The scale factor E can be determined by imposing that the dominant terms in equations (1) be of comparable 
magnitudes. For example, by imposing that vU~- = O(Uus) from equation (1.2) we obtain that ‘II z U/E; 
similarly by imposing that Uvs = O(G2Uu) (equation 1.3) we find that ‘u M G’Eu, so that the scaling parameter 
E = G-l emerges clearly. Asymptotic expansions can then be set up in the form: 

(9.1) u = &qU”(X, Y) + EU$Y, Y) + . . .I: 

(9.2) v = e*‘(“qv”(A-;Y) +m1(X,Y) + -1. 

Correspondingly, the derivative of, say, %r with respect to X shall be given by a series of the form 

(10) us = e ~(~yqE-lw) + (V(].>X + av1) + &(V1,*J + ml2) + . . .I, 

with the definition g(X) = dcp/dX. On inserting these expressions into equations (4) and collecting like powers 
of E, the following hierarchy of equations is obtained: 

O(e-1): 

(11.1) -@Uvo.l-17 + (P”U + uyy)ov” + 2p”uu() = 0, 

O( 1): 

(11.2) -dJuo - i&v, = 0, 

(11.3) --cTuvlJ~~~ + (/I?% + q-,.-)W, + 2/3”UU~ = -v() .IT~I-I- + G (Y 

O(E): 

(11.4) 

etc. 
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G= 10,p = 1.0 
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Fig. I. - Left: energy curves as function of >Y for (: z ItI and. from the top . ‘j = 0. .i. I and 2. from the marching equations 
Right: corresponding amplification factors. The three initial conditions chosen are: 

I, = 1/ exp( -4y), 2;, = U‘,, -- 1’: = 0: 
I, = 1 on the first point above the wall, ~1 = 0 everywhere else; (. = 0: 

- - ~2 = IO’” on the first point above the wall. LIj = 0 everywhere else: 11 = 0. 
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However, a difficulty, common to many other boundary layer perturbation expansions, is encountered: the 
expansion given above is not uniformly valid in I”, because the highest Y-derivatives are lost at leading order 
and with them disappears the possibility of enforcing a certain number of boundary conditions. Exactly the 
same difficulty turns up, for instance, in the derivation of the O-S equation as applied to non-parallel problems 
(Bouthier 1972. 1973; Caster 1974; Saric and Nayfeh 1975; Itoh 1986), and, in fact, in almost all classical 
applications of singular perturbation theory (see, e.g., Van Dyke 1975). In general, when an asymptotic expansion 
is not uniformly valid, there is no possibility of arranging it as a series of powers of the expansion parameter E 
(in Van Dyke’s words) which are of smaller and smaller orders without being simple powers. Such a sequence 
is evidently not unique, because a higher-order function of E can be summed into a lower-order one without 
disturbing the ordering of the sequence. Several examples are given in the introduction of Van Dyke’s book. 

One possibility to determine an asymptotic sequence from the singular perturbation expansion of a differential- 
equation problem - whose straightforward expansion in a power series would lead to lowering the order of 
the equations - is the multiple-deck approach. It consists in distinguishing the spatially limited zones in which 
the regular expansion loses validity and treating them separately after resealing the dependent and independent 
variables, constructing then a compound solution (which in general does not behave any more as a simple power 
of the expansion parameter) through the theory of matched asymptotic expansions. An example of this way of 
proceeding is Tollmien’s classical study of the stability of the boundary layer to two-dimensional perturbations, 
obtained by matching the solution of the Rayleigh equation with a separate treatment of the near-wall and 
critical-layer regions (e.g. Drazin and Reid 1981). This is the preferred route when an exact or approximate 
analytical solution can be found for each of the distinguished zones. 

In the present problem, an example of the multiple-deck technique is provided by Hall (1982). By applying 
a WKB approximation in the Y-direction, he found that in the limit of large p the eigenfunctions are only 
appreciably nonzero in the vicinity of the point where UIY~- is maximum. Therefore the problem was solved 
by analysing a resealed neighbourhood of this point independently of the wall (which is pushed away to minus 
infinity). Hall was thus able to determine the large-B behaviour of the neutral Gortler number analytically as 

(13) G” = 2.95B4[1 + 0.96p-1 + O(S-“)I. 

Unfortunately, for the $ of maximum amplification - the one expected to be observed in an experiment - 
Hall’s (1982) approximation is not applicable. 

On the other hand, when a numerical solution is sought, it is equivalent and much more convenient to construct 
a uniformly valid approximate differential equation by combining together all the terms of the original problem 
that become dominant in at least some zones. Once it is accepted that the result cannot be a power series but 
only an asymptotic sequence of u priori unspecified functions, it does not hurt, of course, if a non-dominant 
term (one that is of a higher order in the formal expansion in powers of the parameter) appears, and therefore 
the differential equation, just as the asymptotic sequence itself, is not unique. An example of this approach is 
the application of the Orr-Sommerfeld equation to boundary layer problems (see, e.g., Gaster’s 1974 discussion 
of the order of magnitude of different terms). It may be instructive to identify two “extreme” formulations. 
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The first model does not contain IT nor .y-derivatives of the base flow in the equations at leading 
order (equations 14.1-2) and is analogous to GGrtler’s original formulation. The equations at higher order 
(equations 14.3-4) provide a correction on the leading order modes. We call this model I and it is given by: 

model I: 

(14.1) -auu() - U>W() + E(U().J~~~ - $%L()) = 0, 

In the second model we include all the terms that can possibly be promoted from the next higher order. The 
resulting equations (14.5-6) are almost the same as those given by Floryan and Saric (1982) (I): 

model 2: 

(14.5) -aUuo - Ul-v. + E[u~,~-~. - /32uo - G2(Y)] = O> 

(14.7) -aUu1 - U>Wl + E[ul.J-y - ,n”u, - vul.l- - u.\-Ul] = U?loJ: 

(14.8) - cruvl.l-l- + (/3’U + Ul~l-)avl + 2,‘i%Ul + F[?ll.J~yyy - vv~.~~l~~- 

- (2P” + vl~)7/1.1-1- + (p% + b-*y~~)vl~l~ + (/P + I?“& + U;\‘l.l.)Vl 

+ 2aU*yul.Jr + 2aU*\-l-U1] = uvo&-~~ - (p’u + u~y-)7!oJ. 

Equations (14.5-6) are sometimes called the local, non-parallel equations. There is however no non-parallel 
correction involved since the eigenvalue 0 is calculated to the same order of approximation by equations (14.1-Z) 
and (14.5-6). 

Two additional formulations arise if the base flow is expressed in similarity coordinates X and q = Y/Ayl/“‘. 
a a 

Since jg 1*= dX 
I I 

Y a 
,, -~ _ 2x ay s’ 

the adoption of similarities variables is tantamount to subtracting an 

O(e) Y-derivative term from the order-0 equations and adding the same term to the order-l equations. We 
thus obtain from models 1 and 2: 

(‘) The difference with Floryan and Saric is due to the inverted order of normal mode substitution and differentiation with respect to X. Local 
results obtained with Floryan and Saric’s equations are indistinguishable to plotting accuracy from those obtained with the equations proposed 
here for all p’s (see also Bottaro ef al., 1996). 
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model 3: 

(14.9) 

(14.10) 

(14.11) -aUu1 - q*v, + E 
Y 

u1.~-1- - p”u1 + 2xuul.]- 
> 

= uuo,s + &ox + G2(Y), 

(14.12) - guPQ.Irlr + (P”U + Uyy)cnQ + 2p”uq 

i 

Y Y 
+ E vl.Y~~l~l- + 2yUVl.lTY - (P2U + ulrlF)~vl.l- = uvoJy~-l- 

I I 

Y 1 
+ 2yuvo.n~ + _yvo.n - (P”U + UYY) 

Y 
vo,x + 2_yvo.l- + Gl(Y), 

I > 

model 4: 

(14.13) -fluUo - hrvo + +o,yy - b2uo + +J- - G2(Y)] = 0, 
1 

(14.14) 

(14.15) -fluu1 - G-v1 + E 
Y 

U1.171~ - P”Ul + -uulJ- - VU1.J. - U,\Ul 2x 1 k’ 
= UUO,>J + -uqJ., 

2x 

(14.16) - ~UwlT- + (P”U + uy1+v + 2/3”UUl + & 
1 

Y 
vl,~-l~I-~- + -uqJ-1->- 

2x 

- (P”U + uy&vl.l* - vvl.J-l-l- - Fv’ + WwYl- + (P’V + uA-1+1.y 

+ (P4 + P2b + Uayyy)vl + 217u,yul.1. + 2fluAyl.ul 
I 
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The use of similarity variables may be advantageous because the point of maximum I~~,~~- near which the 
eigenfunctions are located according to Hall (1982) has a fixed position in similarity variables. Therefore the 
eigenfunctions can be expected to change more slowly with S if expressed in such coordinates. Itoh (I 986. 
1994) also pointed out the advantage inherent in the use of 71 for the analysis of non-parallel effects in the 
stability of boundary layers. 

In the just derived hierarchies, each pair of leading order equations like (14.1-2) forms a system ot 
homogeneous ordinary differential equations for the unknowns ~(1 and v() which must be solved with CT in the 
role of eigenvalue. The coefficients of these equations depend parametrically on S and so will the solution. 
The S-derivatives of this leading-order solution appear as known right-hand-sides in equations (14.3-4), which 
must be solved as ordinary differential equations in the unknowns ~1 and 711, and so on goes the sequence. In 
singular perturbation problems of the multiple-scale type, care must be taken of secular behaviour by imposing 
a solvability condition (Fredholm alternative). Suppose the leading order system has been solved, thus providing 
for a certain abscissa X a set of normalized direct eigenfunctions u,l(S. I-), VJ(S: I’) and adjoint eigenfunctions 
Us, (S, I’), v,,( S. I’), together with the eigenvalue IT(S). The actual leading-order solution will be expressed by 

(15) (U(): U()) = A(S)[‘u,,(X. I’), V,~(~r-. Y)]. 
where A(_Y) is a yet undetermined amplitude function. Substituting ( 1.5) into the solvability condition we obtain: 

(16) r.l-4-y + czj.3 = 0, 
with 1, = 1, 2, 3, 4 for each of the four formulations proposed, with 

(17.1) 

model I: 

model 2: 

(17.3) 

model 3: 

EUROPEAN JOIJRNAL OF MECHANICS H/FI.IJIDS. VOL. 18. No 1. Ic)c)!, 



Gortler vortices 

model 4: 

57 

Hence: 

(18) A(X) = A(O)exp 

Without consideration of A(z) the locally scaled amplification factor of the instability (defined by eq. 8) would be 

(19.1) 
Xa(X) 

G(S) = ___ 
& 

This is the Cgeometrical-optics approximation. With A(S) included it becomes 

(19.2) 

/ 

x 

with the normalization usdk- = 1 for the direct eigenfunctions. This is the physical-optics approximation. 

The form of the normalkation has been chosen so that the amplification factor calculated from eq. (19.2) is 
the same as that defined in eq. (8). However, it can be verified that if a different normalization were adopted 
eq. (18) would yield a different factor A(X) such that the product A(z)ud(S, Y) is unchanged. 

A comment is necessary concerning the order of the approximations involved. The amplification factor E? is 
itself a quantity O(E-r) with an expansion of the form 

WV ;i = iJ-]E -I + a& + i?J + . . . 

The geometrical-optics approximation halts at calculating the term a-1. The physical-optics (slightly non- 
parallel) approximation includes the term Crg. To this end it is irrelevant whether a few O(E) terms are positioned 
in equations (14.1-2) than in equations (14.3-4); in particular those O(E) terms that do not contain derivatives 
with respect to X nor highest-order derivatives with respect to Y can be put in either place and still give a 
physical-optics approximations of F which is good to within an error O(E). Once the amplitude factor is corrected 
one can dispense with actually calculating the solution to the order-one equations, which only affects 5 at O(E). 

5. Local versus marching results 

The local stability equations (14) are solved on the finite domain Y E [0, I,] using a Chebychev collocation 
method. Zero disturbance conditions are applied on 1’ = 0 and 1’ = k’, The quadratic transformation 

(21) I- = 1, { 1 - [0.5(1 - <)]“,5} 
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maps the computational variable 5 E [ - 1, l] onto real space. For the present computation we have established 
that k;, = 200 and 50 Chebychev polynomials are needed to guarantee accurate results. The generalized 
eigenvalue problems (and their adjoints) are solved by a QZ algorithm from the NAG library, for X going 
from 1 (where G is taken to be equal to 1) to 120 (G,y = 36.25)) in X-steps of 1. 

The parabolic equations (4) are marched streamwise with a second-order finite-difference procedure. Up to 
one thousand streamwise steps are employed, to guarantee grid-independent results. In the vertical direction a 
fourth-order compact finite-difference scheme is used, with one hundred grid points. Hall’s (1983) results were 
faithfully reproduced to provide confidence in the accuracy of the code. 

Geometrical optics vs marching 

. . . . .  . . . . .  . . . . . . . .  . .  . . . . . .  

. . . . . . .  . . . . . . .  

. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  

2.0 2.0- 
. . . . . . . . .  ......... 

1.5 

1.0 

0.5 

0.0 

1 I I II IllI 1 /III 1 /I/I 1 /III 1 /I/I III1 III1 1 1 II/l 1 II/l 1 Ill1 Ill1 

- marching 
___ model 1 
.._......... .._..... model 2 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 

GX 

Physical optics vs marching 

10.0 15.0 20.0 25.0 30.0 35.0 

- marching 
___ model 1 

.._..._............. model 2 

Fig. 2. - Strictly local results and quasi parallel corrections (Cartesian variables) against exact solutions for A = 62 
The initial condition for the marching calculation is the second condition of figure 1. 
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In figures 2 and 3 the amplification factor is shown for two representative cases, A = 62 and 210, computed 
in Cartesian coordinates, in comparison with the corresponding exact solutions drawn with thick solid lines. A 
is a dimensionless wavelength parameter, defined by 3/2 
(22) h=G $ . 

( > 
It is a quantity which remains constant with X, and is frequently used in experiments and numerical simulations. 
The case A = 62 is interesting because it demonstrates clearly the initial growth of the instability, followed 

Geometrical optics vs marching 

20.0- 

lO.O- 

o.o- 
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._............_........ model 2 
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II ) III I I IIll ) IIll 1 IIll 1 /III I II/I 
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G 
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. . . . . . . . . . . . model 2 

Fig. 3. - Same as figure 2 for A = 210 
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by downstream decay. d = 210 corresponds to what is often quoted as the most linearly unstable wavelength 
for the Gortler problem (Floryan and Saric 1984). Reference solutions for both situations are available in the 
literature (see, e.g. Day rt al., 1990; Goulpie et ~11., 1996), and both our marching and strictly parallel solutions 
perfectly match available results. The slightly non-parallel (physical-optics) estimates of the growth rates are. 
on the other side, new and lead to the following considerations: 

1. for low :1’s the agreement in Z between the two models and the exact solution is improved when going 
from the strictly local to the slightly non-parallel solution, but there is no perfect match; 

2. as :I increases both the geometrical- and the physical-optics approximations produce improved accord with 
the solution, except for G-1. less then about 7, where the influence of the inlet condition is felt: 

3. model 1 produces always a better agreement with the exact solution than model 2. 
Point one above seems to imply that the next approximation must be computed (the equations for Cr(r must be 

solved and the solvability condition for ;jl must be imposed) in order to find a better agreement between the 
local and the marching estimates of Cr. Luckily we do not need to go this far. 

Figure 4 shows the geometrical- and physical-optics results for 11 = 62 when similarity variables are employed. 
While the strictly local results now underestimate the amplification factor. there is an almost perfect agreement 
between the physical-optics results of both models and the exact solution. With the increase of *1 the situation 
becomes even better. and a perfect match is found already between strictly local and marching results for Go\- 
larger than 7. Incidentally, if the initial condition had been applied downstream of S = 0. its influence would 
have been felt beyond G.y = 7 and likewise the asymptotic collapse of growth rates would have occurred further 
downstream. This occurrence is, however, more of philosophical, rather than practical or physical, relevance. In 
figure 5 we give some examples of how the local II- and /q-mode shapes compare to the exact solutions. The 
normalization adopted is that the maximum absolute value of 1’ is equal to one. Results are plotted at G.y = 1.5 
for h = 62 and 210. Note that a similarly good agreement as far as the eigenfunctions shape is concerned could 
also be found when Cartesian variables were employed. 

The final stability diagram is provided in figure 6. The lines of different amplification rate C? have been 
obtained from physical-optics results of model 4. Instead of the conventional representation in the ;?\I - G\- 
plane we have chosen to show results in the +I- G-Y plane. This representation has the advantage of highlighting 
the physically interesting region of maximum amplification, namely that for which h is close to 200. The low-.! 
leading order asymptotic result of equation (13) is also shown in the figure, and it is found to perfectly match 
the present neutral boundary. This part of parameter space is, however, of little interest because of the very 
low amplification factors present at every G-l- for .1 less than about one hundred. A large body of experimental 
evidence (Bippes 1978, Swearingen and Blackwelder 1987, Pexieder 1996) reports observations of Gortler 
vortices with wavelengths 3 rangin g from 200 to 600, unless even larger wavelengths are explicitly triggered 
by perturbations inherent to the installation (Aihara et ~1. 1985). The isolines shown in figure 6 are only a 
few percent away from the corresponding strictly local results of either one of the four models proposed here 
(for Gs larger than seven). The agreement between local and exact growth rates improves with the increase 
of :\ (cf. tigures 2-4). 

6. The failure of local theories at low G-y’s and the receptivity problem 

The Gortler instability is initiated close to the S position where the concave curvature and the boundary layer 
thickness render c-l’s of order unity. Upstream of this position the effect of curvature is relatively irrelevant 
but there is already a three-dimensional algebraic instability of the flat plate boundary layer (G,l- E 0) related 
to the divergence of the Blasius flow (Luchini 1996). This instability applies to small spanwise wavenumber 
disturbances. So, vortex-like structures with low B and low G exist, even though local theories can not properly 
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Geometrical optics vs marching 

- marching 
___ model 3 

.._._......_... model 4 
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G 

Physical optics vs marching 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 

- marching 
~ model 3 

.._._..... model 4 

Fig. 4. - Same as tigure 2 for A = (i?. similarity variables 

account for them (*). Eventually curvature effects become important and the flat plate modes are amplified 
exponentially by the centrifugal instability mechanism. 

For specified initial conditions one can solve for the early development of the vortices by marching the 
parabolic equations numerically, but there is no way to know in advance whether one rather than another 

(‘) Le Cunff and Zebib (1996) noted that for d,\ + 0 the system of equations (14) becomes independent of the Giirtler number and suggested 
that the length scales should be rethought. Luchini (1996) identified the new instability of fhc Rat plate boundary layer exactly after scaling y 

and r differently from one another. 
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A = 62 
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Y 

Fig. 5. - u (above) and v mode shapes against exact solutions. G = 15, A = 62 (upper) and 210 (lower). 
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A 

Fig. 6. - Curves of constant locally scaled growth factor in the A - C,l plane. 
The leading order asymptotic neutral curve (equation 13) is given with a thick line. 

type of initial conditions deserves being investigated. The important question of what initial and boundary 
conditions are most effective in exciting Gijrtler instabilities (the so-called receptivity problem) is the subject 
of the companion paper by LB. 

7. Summary 

The linear stability theory for the Giirtler vortex problem has been outlined, the main characteristic of this 
problem as opposed to, e.g., the Dean problem, is the non-parallelism of the base flow; this entails the fact that 
the conventional normal mode approach must be abandoned and one should solve a parabolic system of partial 
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differential equations - equations (4.1-2) - subject to some initial and boundary conditions. These equations 
arise from a boundary-layer-type expansion in terms of Rc-’ . Different choices of the initial conditions (and ot 
the initial point from which the equations are spatially marched) cause different initial transients; the asymptotic 
behaviour for S sufficiently large is, however, independent of the initial stage. Such asymptotic structure can 
be described, for a wide range of spanwise wavenumbers ;J’, with an approach which exploits the existence ot 
two streamwise scales: one for the development of the base flow and one for the development of the vortices. 
The WKB expansion (in terms of the small parameter C;-’ ) of this problem has been outlined here for the 
first time, and its leading order approximation is the same that was heuristically employed by Gartler himself 
and several other authors; it permits, in a consistent manner. to take into account non-parallel effects in the 
evaluation of the amplification factor of the instability. 

We have chosen to show four models that may result from the proposed expansion when the vertical 
nonuniformity is eliminated. A similar non-uniqueness in the formulation of the first order problem arises in 
the context of the OS equation (cf., e.g., Barry and Ross 1970 and Gaster 1974) but its implication for the 
Giirtler instability has never been clearly addressed before. Here we have shown that for moderately large 
wavelengths (.I larger than about 100) different possible models produce results in very good agreement with 
one another and with marching solutions. For small values of ;I, a formulation that employs similarity variables 
is particularly convenient, and physical-optics results collapse onto one another and onto the exact solution. 
Hence, the choice of the leading order model is really unimportant. as long as growth rates are corrected 
through the appropriate solvability condition. 

The present modal analysis of the Giirtler problem only applies sufficiently far downstream (where the local 
Giirtler number is greater than about seven) and, just as any parallel or non-parallel local theory, calculates 
the amplitude of each mode only up to a (complex) multiplicative coefficient. The receptivity calculations of 
LB provide this coefficient. 
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